Abstract Families of Abstract Categorial Languages

Makoto Kanazawa
National Institute of Informatics

Tokyo, Japan



This talk

e Closure properties of the languages generated by abstract
categorial grammars (de Groote 2001).



This talk
e Closure properties of the languages generated by abstract
categorial grammars (de Groote 2001).

e Each level G(m, n) of de Groote's hierarchy gives rise to a
substitution-closed full abstract family of languages.



This talk

e Closure properties of the languages generated by abstract
categorial grammars (de Groote 2001).

e Each level G(m, n) of de Groote's hierarchy gives rise to a
substitution-closed full abstract family of languages.

e Most of the closure properties hold of the tree languages
generated by ACGs, and more generally of the languages of
A-terms generated by ACGS.



This talk

e Closure properties of the languages generated by abstract
categorial grammars (de Groote 2001).

e Each level G(m, n) of de Groote's hierarchy gives rise to a
substitution-closed full abstract family of languages.

e Most of the closure properties hold of the tree languages
generated by ACGs, and more generally of the languages of
A-terms generated by ACGS.

e Focuses on (a generalization of) closure under intersection
with regular sets.



Outline

e Abstract categorial grammar: an informal idea

e ADbstract categorial grammar: formal definitions and known
results

e Closure under intersection with regular sets (generalized)



Abstract categorial grammar (de Groote 2001)

e A grammar formalism for languages of linear A-terms.



Abstract categorial grammar (de Groote 2001)

e A grammar formalism for languages of linear A-terms.

— strings
ababb Mz.a(b(a(b(bz))))
— trees
f f(gab)(ha(gbb))
/\
g h
2 NN
a b a g
AN



Abstract categorial grammar (de Groote 2001)

e A grammar formalism for languages of linear A-terms.

— strings
ababb Mz.a(b(a(b(bz))))
— trees
f f(gab)(ha(gbb))
/\
g h
2 NN
a b a g
AN
b b
— and more

x tuples of strings (trees)
* logical formulae



Abstract categorial grammar (de Groote 2001)

e (Generalizes

— grammar formalisms with context-free derivation trees



Abstract categorial grammar (de Groote 2001)

e (Generalizes

— grammar formalisms with context-free derivation trees
* context-free grammar

* multiple context-free grammar (linear context-free
rewriting system)
* tree-adjoining grammar



Abstract categorial grammar (de Groote 2001)
e (eneralizes
— grammar formalisms with context-free derivation trees

* context-free grammar

* multiple context-free grammar (linear context-free
rewriting system)
* tree-adjoining grammar

— Montague semantics (modulo the linearity restriction)



Tree-adjoining grammar

derivation tree derived tree
S
|
€
| S
Sna N
N a S
a S N
PN b S
Sha @ AN
I ; b S
S N
AN S b
b 5 PN
PN S b
ova b A\
I S a
Sna |
AN €
b S
PN
S




Tree-adjoining grammar as abstract categorial grammar

derivation tree derived tree
Ay.)l/
S
|
|
S
Ayx. S
PN PN
a { a S
s VAN
AN b S
|X a b/\\S
Ayx. S —>
PN & PN
b { S b
S N
D -
| N
Ayx. S 5 d
PN |
b )l/ =
S
PN
X b

AX. X




Montague semantics (Heim & Kratzer-style)

word meanings
[some] = Auv.Ay.(uy A vy)
[every] = Auv.¥x.(ux = vx)
[woman] = Ay.woman y

[man] = Ax.man x

[found] = Ayx.find y x

Logical Form

S
/\
NP :
— AN
Det N 2 S
e werem  NE _ —> [some][[woman](Ay.[every][man](Xx.[found]yx))
Dt/\l\l 1/\5 —3 dy.(woman y A Vx.(man x = find y x))
e
| | PN sentence meaning

every man t; VP
I
V

T

found



Syntax and semantics with abstract categorial grammar

abstract derivation

SOME WOMAN (AYy.EVERY MAN (AX.FOUND y X))

SOME = Auv.v(some + u) SOME = Auv.dy.(uy A vy)
EVERY = Auv.v(every + u) EVERY = Auv.¥x.(ux = vx)
WOMAN = woman WOMAN = Ay.woman y
MAN = man MAN = Ax.man X
FOUND = Ayx.x + found + y FOUND = Ayx.find y x
Q RS
every + man + found + some + woman dy.(woman y A ¥x.(man x — find y x))

sentence form sentence meaning



Syntax and semantics with abstract categorial grammar

abstract derivation

SOME WOMAN (AYy.EVERY MAN (AX.FOUND y X))

SOME = Auv.v(some + u) SOME = Auv.dy.(uy A vy)
EVERY = Auv.v(every + u) EVERY = Auv.¥x.(ux = vx)
WOMAN = woman WOMAN = Ay.woman y
MAN = man MAN = Ax.man x
FOUND = Ayx.x + found + y FOUND = Ayx.find y x
Q g
every + man + found + some + woman dy.(woman y A ¥x.(man x — find y x))
sentence form sentence meaning

M+ N=XzM(Nz)



Higher-order signature

> =(AC, 1)

e A is a set of atomic types
e (C is a set of constants

o 7: C — J(A) (type assignment to constants)
T (A) is the set of types built up from A with —:

a,BeTA —=a—>pBe T(A).

Write oo — B — v for o — (B — 7).




Higher-order signature

> =(AC, 1)

e A is a set of atomic types
e (C is a set of constants

o 7: C — J(A) (type assignment to constants)
T (A) is the set of types built up from A with —:

a,BeTA —=a—>pBe T(A).

Write oo — B — v for o — (B — 7).
Define the order of a type:

ord(p) =1 if p is atomic,
ord(ax — B) = max(ord(a) + 1, ord(3)).

The order of ¥ is ord(X) = max{ord(7(c)) | c € C }.



A-terms over 2

A(X) consists of

e x € X (variable),

e cc(C,

e MN for M, N € \(X),
o \x.M for x € X, M € A(X).



A-terms over 2

A(X) consists of

e x € X (variable),

e c c(,

e MN for M, N € \(X),

o \x.M for x € X, M € A(X).

Write

MNP for (MN)P,
Ax.MN  for Ax.(MN),
AX1...xp.M  for Xxi.(Axo....(Axp.M)...).



A-terms over 2

FV(x) = {x},
FV(c) = &,
FV(MN) = FV(M) U FV(N),
FV(Ax.M) = FV(M) — {x}.



A-terms over 2

FV(x) = {x},
FV(c) = &,
FV(MN) = FV(M) U FV(N),
FV(Ax.M) = FV(M) — {x}.

Con(x) = e,
Con(c) = c,

Coh(MN) = Coh(M)Con(N),
Con(Ax.M) = Con(M).



A-terms over 2

FV(x) = {x},
FV(c) = &,
FV(MN) = FV(M) U FV(N),
FV(Ax.M) = FV(M) — {x}.

Con(x) = e,
Con(c) = c,

Coh(MN) = Coh(M)Con(N),
Con(Ax.M) = Con(M).
M is
e closed if FV(M) =&

e pure if Con(M) = e.



B-reduction

i MXM)N =g M x =N
This B-reduction step is
e non-erasing if x € FV(M),

e non-duplicating if x occurs free in M at most once.

Write |M|g for the B-normal form M.



Type assignment system A\ —s

[ =Xx1:a1,..., Xn i Qp: type environment

[y M :oa: typing judgment

s c:1(c) X:aklky x:«a
[ =y M:0 / [Fs M:a—B AFy N:o -
F—{x:alFs sM:a—p8 FUAFy MN —

Write A and F for A(X) and Fy when ¥ = (A, &, 9).



Linear \-terms

The set Ajin(X) of linear A-terms consists of A-terms M € A(X)
such that

(i) for every subterm Ax.N of M, x € FV(N),
(ii) for every subterm NP of M, FV(N)N FV(P) = @.



Linear \-terms

The set Ajin(X) of linear A-terms consists of A-terms M € A(X)
such that

(i) for every subterm Ax.N of M, x € FV(N),
(ii) for every subterm NP of M, FV(N)N FV(P) = @.

M is a Al-term if it satisfies (i).



Linear \-terms

The set Ajin(X) of linear A-terms consists of A-terms M € A(X)
such that

(i) for every subterm Ax.N of M, x € FV(N),

(ii) for every subterm NP of M, FV(N)N FV(P) = @.

M is a Al-term if it satisfies (i).
Strings and concatenation of strings are represented by linear

A-terms.
/ai...an/ = Xz.a1(...(anz)...)

+ = Xxyz.x(yz)



Linear \-terms

The set Ajin(X) of linear A-terms consists of A-terms M € A(X)
such that

(i) for every subterm Ax.N of M, x € FV(N),
(ii) for every subterm NP of M, FV(N)N FV(P) = @.

M is a Al-term if it satisfies (i).
Strings and concatenation of strings are represented by linear

A-terms.
/ai...an/ = Xz.a1(...(anz)...)

+ = Xxyz.x(yz)

String signature Xy = ({o},V, 7):

T7(a) = 0— o0 =str forevery aeV,

s, /w/ :str for every w € V™.



Abstract categorial grammar

G =(x,¥' L, s)

e > = (A C,7): higher-order signature (abstract vocabulary)
o ' = (A" C' 7): higher-order signature (object vocabulary)
o ¥ = (0,0): lexicon from ¥ to X':

—0:A— T(A),

— 60:C — Nin(Y),

— ks 8(c) : o(7(c)) for every c € C.
e s: atomic type of 2 (distinguished type).



Abstract categorial grammar

G =(x,¥' L, s)

e > = (A C,7): higher-order signature (abstract vocabulary)
o ' = (A" C' 7): higher-order signature (object vocabulary)
o ¥ = (0,0): lexicon from ¥ to X':

—0:A— T(A),

— 60:C — Nin(Y),

— ks 8(c) : o(7(c)) for every c € C.
e s: atomic type of 2 (distinguished type).

6 is naturally extended to a mapping from Aji,(X) to Ajn(X7).
Write Z(a) and Z (M) for o(a) and (M), respectively.



Abstract categorial grammar

G =(x,¥' L, s)

e > = (A C,7): higher-order signature (abstract vocabulary)
o ' = (A" C' 7): higher-order signature (object vocabulary)
o ¥ = (0,0): lexicon from ¥ to X':

—0:A— T(A),

— 60:C — Nin(Y),

— ks 8(c) : o(7(c)) for every c € C.
e s: atomic type of 2 (distinguished type).

6 is naturally extended to a mapping from Aji,(X) to Ajn(X7).
Write Z(a) and Z (M) for o(a) and (M), respectively.
The order of Z is ord(.Z) = max{ord(Z(p)) | p € A}.



Abstract categorial grammar

G =(x,¥' L, s)

e > = (A C,7): higher-order signature (abstract vocabulary)
o ' = (A" C' 7): higher-order signature (object vocabulary)
o ¥ = (0,0): lexicon from ¥ to X':

—0:A— T(A),

— 60:C — Nin(Y),

— ks 8(c) : o(7(c)) for every c € C.
e s: atomic type of 2 (distinguished type).

6 is naturally extended to a mapping from Aji,(X) to Ajn(X7).
Write Z(a) and Z (M) for o(a) and (M), respectively.
The order of Z is ord(.Z) = max{ord(Z(p)) | p € A}.

¢ € G(m,n) if ord(X) < m and ord(Z) < n.



Abstract categorial grammar

G =(x,¥' L, s)

e > = (A C,7): higher-order signature (abstract vocabulary)
o ' = (A" C' 7): higher-order signature (object vocabulary)
o ¥ = (0,0): lexicon from ¥ to X':

—0:A— T(A),

— 60:C — Nin(Y),

— ks 8(c) : o(7(c)) for every c € C.
e s: atomic type of 2 (distinguished type).

6 is naturally extended to a mapping from Aji,(X) to Ajn(X7).
Write Z(a) and Z (M) for o(a) and (M), respectively.
The order of Z is ord(.Z) = max{ord(Z(p)) | p € A}.

¢ € G(m,n) if ord(X) < m and ord(Z) < n.

¢ is m-th order if ¢ € G(m, n) for some n.



Languages of ACGs

The abstract language of ¥ is

A(4) ={ M e Nin(X) | M is B-normal and Fy M :s}.

the set of abstract derivations

The object language of ¥ is

OG) =1IZLM)lg | M e A(9) }.

the set of concrete forms



Languages of ACGs

The abstract language of ¥ is

A(4) ={ M e Nin(X) | M is B-normal and Fy M :s}.

the set of abstract derivations

The object language of ¥ is

OG) =1IZLM)lg | M e A(9) }.

the set of concrete forms

We say that ¢ generates its object language.



Example

ceC 7(c) Z(c) Z(1(c))

A (p1 —>s)—s Au. /a/ +ufe/ (str — str) — str

B (pp—s)—s \u./b/ +ufe/ (str — str) — str

C (p3—+s)—+s Au. /c/+u/e/ (str — str) — str

D q— s AV.V str— str

E p1L— P> —>pP3—>q—q AX1XoX3V.X1 + Xo+ X3+ Vv Str— str— str— str— str
F q /€/ str



Example

ceC 7(c) Z(c) Z(1(c))

A (p1 —>s)—s Au. /a/ +ufe/ (str — str) — str

B (pp—s)—s \u./b/ +ufe/ (str — str) — str

C (p3—>s)—s Au. /c/+u/e/ (str — str) — str

D q— s AV.V str— str

E p1L— P> —>pP3—>q—q AX1XoX3V.X1 + Xo+ X3+ Vv Str— str— str— str— str
F q /€/ str

Y € G(3,2).



Example

ceC 7(c) Z(c) Z(1(c))
A (p1 —>s)—s Au. /a/ +ufe/ (str — str) — str
B (pp—s)—s \u./b/ +ufe/ (str — str) — str
C (p3—>s)—s Au. /c/+u/e/ (str — str) — str
D q— s AV.V str— str
E p1L— P> —>pP3—>q—q AX1XoX3V.X1 + Xo+ X3+ Vv Str— str— str— str— str
F q /€/ str
Y € G(3,2).

P = A(>\X1.B(>\y1.B()\)@.A()\XQ.C()\Zl.C()\ZQ.D(EX1y121(EXQyQZQF)))))))) S A(g),
Z(P) —»p /abbacc/ € O(¥).



Example

ceC 7(c) Z(c) Z(1(c))
A (p1 —>s)—s Au. /a/ +ufe/ (str — str) — str
B (pp—s)—s \u./b/ +ufe/ (str — str) — str
C (p3—>s)—s Au. /c/+u/e/ (str — str) — str
D q— s AV.V str— str
E p1L— P> —>pP3—>q—q AX1XoX3V.X1 + Xo+ X3+ Vv Str— str— str— str— str
F q /€/ str
Y € G(3,2).

P = A(>\X1.B(>\y1.B()\)@.A()\XQ.C()\Zl.C()\ZQ.D(EX1y121(EXQyQZQF)))))))) S A(g),
Z(P) —»p /abbacc/ € O(¥).

O(Y)={/w/|wewmix}, where
MIX = {w € {a, b, c}" | #a(w) = #p(w) = #c(w) }.



Complexity

NON-EMPTINESS

e Instance: An ACG ¥.
e Question: Is O(¥) (or, equivalently, A(%)) non-empty?



Complexity

NON-EMPTINESS

e Instance: An ACG ¥ .

e Question: Is O(¥) (or, equivalently, A(%)) non-empty?
UNIVERSAL RECOGNITION

e Instance: An ACG ¥ = (L,Y,.Z,s) and M € \(Y').
e Question: M€ O(ZL)?



Complexity

NON-EMPTINESS

e Instance: An ACG ¥ .

e Question: Is O(¥) (or, equivalently, A(%)) non-empty?
UNIVERSAL RECOGNITION

e Instance: An ACG ¥ = (L,Y,.Z,s) and M € \(Y').

e Question: M € O(ZL)?
NON-EMPTINESS

e S decidalbe if and only if MELL is decidadble;
e S at least EXPSPACE-hard;
e reduces to UNIVERSAL RECOGNITION.



Complexity

NON-EMPTINESS

e Instance: An ACG ¥ .

e Question: Is O(¥) (or, equivalently, A(%)) non-empty?
UNIVERSAL RECOGNITION

e Instance: An ACG ¥ = (L,Y,.Z,s) and M € \(Y').

e Question: M € O(ZL)?
NON-EMPTINESS

e S decidalbe if and only if MELL is decidadble;
e S at least EXPSPACE-hard;
e reduces to UNIVERSAL RECOGNITION.

Both problems are NP-complete when restricted to lexicalized
ACGs (follows from the NP-completeness of MLL(—0)).



Generative capacity

Y € G(2,n)
n string languages | tree languages
1 | _— | REGT
2 CF CFTsp
3 yCFTsp 2 MREGT

> 4 | MCF = STR(HR) TR(HR)




Generative capacity

Y €G(2,n)

n string languages | tree languages
1 REGT

2 CF CFTsp

3 YCFTsp 2 MREGT
>4 | MCF = STR(HR) TR(HR)

These languages are semilinear and belong to LOGCFL.



Generative capacity

Y €G(2,n)

n string languages | tree languages
1 REGT

2 CF CFTsp

3 YCFTsp 2 MREGT
>4 | MCF = STR(HR) TR(HR)

These languages are semilinear and belong to LOGCFL.
Not much is known for higher-order cases:

e G(3,2): non-semilinear string languages.

e G(3,1): NP-complete tree languages.

e No example of an r.e. language has been found that cannot
be generated by an ACG.



ACGSs and AFLs

The string languages generated by ACGs in G(m, n) (m,n > 2)
form a substitution-closed full AFL.



ACGSs and AFLs

The string languages generated by ACGs in G(m, n) (m,n > 2)
form a substitution-closed full AFL.

A family of languages is a full abstract family of languages if it is
closed under

e union (U), concatenation (), Kleene star (%);

e homomorphism (h);

e inverse homomorphism (h™1):

e intersection with regular sets (NR).



ACGSs and AFLs

The string languages generated by ACGs in G(m, n) (m,n > 2)
form a substitution-closed full AFL.

A family of languages is a full abstract family of languages if it is
closed under

e union (U), concatenation (), Kleene star (%);

e homomorphism (h);

e inverse homomorphism (h™1):

e intersection with regular sets (NR).

Why is this interesting?



ACGSs and AFLs

The string languages generated by ACGs in G(m, n) (m,n > 2)
form a substitution-closed full AFL.

A family of languages is a full abstract family of languages if it is
closed under

e union (U), concatenation (), Kleene star (%);

e homomorphism (h);

e inverse homomorphism (h™1):

e intersection with regular sets (NR).

Why is this interesting?
e Not entirely obvious (NR).

e Depends on some techinical results about A\—y.
e Hopefully useful.

e May lead to an automaton model for ACGs.



Important facts about \—y

Subject Reduction Theorem.
If Fr'-s M:aand M —g M, then [ M': a.



Important facts about \—y

Subject Reduction Theorem.
If Fr'-s M:aand M —g M, then [ M': a.

Subject Expansion Theorem.
If Ty M": o and M —5 M’ by non-erasing non-duplicating
B-reduction, then [ Fy M : o.



Important facts about \—y

Subject Reduction Theorem.
If Fr'-s M:aand M —g M, then [ M': a.

Subject Expansion Theorem.

If Ty M": o and M —5 M’ by non-erasing non-duplicating
B-reduction, then [ Fy M : o.

(A special case: M linear.)



Important facts about \—y

Subject Reduction Theorem.
If Fr'-s M:aand M —g M, then [ M': a.

Subject Expansion Theorem.

If Ty M": o and M —5 M’ by non-erasing non-duplicating
B-reduction, then [ Fy M : o.

(A special case: M linear.)

Uniqueness Theorem.
If M is a Al-term and [ -y M : o, then there is a unique
A—s-deduction of this judgment.



Important facts about \—y

Subject Reduction Theorem.
If Fr'-s M:aand M —g M, then [ M': a.

Subject Expansion Theorem.

If Ty M": o and M —5 M’ by non-erasing non-duplicating
B-reduction, then [ Fy M : o.

(A special case: M linear.)

Uniqueness Theorem.
If M is a Al-term and [ -y M : o, then there is a unique

A—s-deduction of this judgment.

Principal Pair T heorem.
If = M :a then there is a most general such (I, a) (called a

principal pair for M).



Properties of lexicons

(B-reduction commutes with lexicons:

M —g M implies Z(M) —g L (M").



Properties of lexicons

(B-reduction commutes with lexicons:

M —g M implies Z(M) —g L (M").

Typing judgments are preserved under lexicons:

[[Fs M:a implies Z(IN)Fys (M) ZL(a).



Properties of lexicons

B-reduction commutes with lexicons:
M —g M implies Z(M) —g L (M").
Typing judgments are preserved under lexicons:
[[Fs M:a implies Z([)Fy L(M): ZL(a).

If £ = (01,01) is a lexicon from > g to ¥ and £ = (0»,60>) is a
lexicon from 2.1 to 2», then

0%200%1 = <O'200'1,92091>

is a lexicon from 2o to 2.



Relabeling

LY -3
o X(p)eAforallpe A
o X(c)e (' forallceC



Relabeling

LY -3
o X(p)eAforallpe A
o Z(c)e (' forallceC

A nondeterministic finite automaton M= {(Q,V,0,q,,{9r}):

8886

A=Q, Z(p) =0 forallpé€ a,
C={d79redlq,d)}, ZL{d79)=d.

7(d"™79) =r—aq.

weLM)<— /w/ e{ZL(N)|Fs N:gr—q}.



Relabeling

A nondeterministic bottom-up finite tree automaton

. S
M = <Q, F,{qp},é). N
a S
a—1 S52 —+ 5 b/\S
b— 2 S52 — 6 [
e—+3  S26—6 E
S3 4 S26 — 7 Y
S41 — 4 S17 =7 E
S41 =5 !
A=Q,

C={d"7"79"" | dg1...qs, > r €6},
T(dN7TIT Y =g = = g 1
ZL(p) =0 forall peA,
L(dr7 7w = (.

TELM)<—=Tc{ZL(N)|FsN:qgr}



Intersection with the image of a relabeling

ACG ¥4 = <ZO, > 1, %, S> relabeling % : Z,l — 21
type v € T (A")

Construct

%ﬁ — <26, Zl, 9%1 O o%/, S,Y>
such that

O(%n) = O(F) N { LM) | 5y My}



Intersection with the image of a relabeling

ACG ¥ = (¥X0,x1,Z,s) relabeling £1: Y] — X3
type v € T (A")
Construct
G = (35,21, L0 L, ST)
such that

O(%n) = O(F) N { LM) | 5y My}

e [ he construction generalizes standard constructions for
well-known grammar formalisms,

e but the proof of correctness is a lot more involved due to its
generality.



Construction
%ﬂ - <Z€), Zl, ﬁ/ﬂl o gl, S,Y>
X4 = (Ap, Ch. )
Ay={rPIpeAnBeTA) LB =20}

Co={dicnp | c € Co N€EN(X)) BET(A,
Z1(N) = Z(c), Z2(B) = ZL(7(0)),

|_le N :5 },
To(dienpy) = anti(7(c), B),
where
anti(p, B) = p°,

anti(a; = ap, B1 — B>) = anti(a1, B1) — anti(a, B2).

Note that 75(dc npy) is always defined and is a most specific
common anti-instance of 7(c) and (.



Construction

L' = (0',0") is a lexicon from X to X:

o' (pP) =B, 0'(die.npy) = N.



Construction

L' = (0',0") is a lexicon from X to X:

o' (pP) =B, 0'(die.npy) = N.

Define another lexicon £y = (09, 6p) from 2 to X o:

oo(P?) = p, Oo(dic.np)) = C.



Construction

L' = (0',0") is a lexicon from X to X:

o' (pP) =B, 0'(die.npy) = N.

Define another lexicon £y = (09, 6p) from 2 to X o:

oo(P?) = p, Oo(dic.np)) = C.

We have X o %y = %1 0 &L

Fy, ¢ 7(C) =1 > by, ZL(c): ZL(71(c))

A A
%o A

|_Zf) dicnpy - anti(7(c),B)



Proof of correctness

O(%) C O(F) N { Li(M) | Fyy Miv}



Proof of correctness

O(%) C O(F) N { Li(M) | Fyy Miv}

G = (X, X1, L0 L sT)

. Do(P) s —Z > by AL (P)s) : Aiy)

A A
,,2”0 Zl

> b |ZL(P)lg iy



Proof of correctness

O(%) C O(F) N { Li(M) | Fyy Miv}

G = (X, X1, L0 L sT)

r Do(P) s —Z s by, | LB (P : L(s)

A A
,,2”0 Zl

> b |ZZ(P)lg -y



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).



Proof of correctness
O(G)N{ L (M) [ Fsr My} CO(9n).

Lemma. If £ is a relabeling and M —g £ (N) by non-erasing
and non-duplicating B-reduction, then there is a P such that

M —g ZL(N)

“| <]

P_»,B N



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

Fy, P:s ﬁ) Fs, ZL(P): Z(s) —g Fy, Z1(M): ZL(s)

0
A

A

|_Z’ M’Y

1



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

Fy, P:s ﬁ) Fs, L (P): Z(s) —g Fy, Z1(M): ZL(s)

0
A

A

|_Z’ M’Y

1

Z:_o_/>7(P):C1...cm



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

. A .
b Plen, .y am] 15 2> by, PLL(1), ..., L(cm)]: L(5) =5 Fr, LUM): L(s)
A
21
|_Z’ M’Y

1

Z,‘_O_E(P):q...cm



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

. A .
s, Plet, ... cm] s —=> by, P[L(c1), ..., L(cm)]: ZL(s) g Fx, L1(M): L(s)
A A
5%1 0%1
—3 I_Z’ M : Y

1



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

. % .
s, Plc, ..., cm]:s —> by, P[ZL(c1). ..., L(cm)]: L(s) =g Fx, L(M): L(s)
A A
5%1 0%1
PNy, ..., N 3 Fyy Moy

1

Z:_o_/)‘r(P):q...cm
Z1(Ny) = Z(c)



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

A Z R
|_Zo P[Cl ..... Cm] S —> |_Zl P[g(C]_) ..... c%(Cm)] :O%(S) —3 |_Zl cg/ﬂl(M) : Z(S)
A A
1 2
|_211 16[/\/1 ..... Nm] :"Y _»[3 I_Z’l M : ,.Y

_C_O_IZI(P):Cl...Cm
Z1(Ny) = Z(c)



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

- Z R
|_Zo P[Cl ..... Cm] S —> |_Zl P[g(C]_) ..... O%(Cm)] :O%(S) —3 |_Zl cg/ﬂl(M) : Z(S)
A A
A £
Fs PN Nl : v g e My

Z:_o_/;(P):q...cm
Z1(Ny) = Z(ci)
Fs N Bi



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

> A R
|_Zo P[Cl ..... Cm] S —> |_Zl P[g(C]_) ..... o%(Cm)] :g(s) —3 |_Zl cg/ﬂl(M) : 0%(5)
A A
2 2
Fy PNy, ..., Nm] : v g e Moy

@(P):q...cm

Z1(N;) = Z(q)
Fsr Ni: B

Z21(Bi) = Z(7o(ci))



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

> A R
|_Zo P[Cl ..... Cm] S —> |_Zl P[c%(C]_) ..... o%(Cm)] :g(s) —3 I_Zl cg/ﬂl(M) : g(s)
A A
2 2
Fy PNy, ..., Nm] : v g e Moy

@(P):q...cm
Z1(N) = ZL(c)
Fy Ni B
Z1(B) = ZL(10(c)))
die, n;B) € Ao
T6(die, v,5) = anti(To(c), B;)



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

A

Fs PN Nl : oy g

@(P):q...cm
Z1(N) = ZL(c)
Fy Ni B
Z1(B) = ZL(10(c)))
die, n;B) € Ao
T6(die, v,5) = anti(To(c), B;)

y1:To(c1), ..., Vm  To(cm) F P, ..., Ym] :s
yi:B1, ..., J/m:,BmF'E)[)Q ----- Ym]:fY

/

\

Plci, ..., Cm]:s —> by, P[ZL(c1). ..., ZL(cm)] : ZL(s) »p Fx, ZL1(M) : ZL(s)

A

|_2/ M’Y

1



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

> A R
|_Zo P[Cl ..... Cm] S —> |_Zl P[c%(C]_) ..... o%(Cm)] :g(s) —3 |_Zl cg/ﬂl(M) : g(s)
A A
A 2
Fy PNy, ..., Nm] : v g e Moy

@(P):cl...cm
Z1(Nj) = Z(q)
Fs N Bi
Z21(Bi) = Z(7o(ci))
dic,.n.8) € Ao
T6(die, v, 3y) = anti(To(ci). B))
yi:1o(c1), .. ., Ym : To(cm) F Ply, . . ., Ym] s

yi:B1, ..., J/m:,BmF'E)[)Q ----- Ym]:’Y
y1 anti(7o(c1),B1), ..., Ym > anti(1o(cm), Bm) F ,f’[yl ..... Ym] : s



Proof of correctness

O(F) N {L1M) | b5y My} C O(%).

A

A

A ¥ R
=y, Plc, ..., Cm]:s —> by, P[Z(c), ..., L(cm)]: ZL(s) »p Fg, L(M): ZL(s)
A A
go 31
|—Z6 IS[d<C1,/V1,51 ..... d(Cm,Nm,ﬁm>] : s 7 |—Z/1 16[/\/1 ..... Nm] 2 Y —3

@(P):cl...cm
Z1(Nj) = Z(q)
Fs N Bi
Z21(Bi) = Z(7o(ci))
dic,.n.8) € Ao
T6(die, v, 3y) = anti(To(ci). B))
yi:1o(c1), .. ., Ym : To(cm) F Ply, . . ., Ym] s

yi:B1, ..., J/m:,BmF'E)[)Q ----- Ym]:fY
y1 anti(7o(c1),B1), ..., Ym > anti(1o(cm), Bm) F ,f’[yl ..... Ym] : s

|_2/ M’Y

1



Application: Parsing as intersection

Theorem. UNIVERSAL RECOGNITION reduces to
NON-EMPTINESS.

MeO(Y) < O(¥Y)N{M} # I



Application: Parsing as intersection

Lemma. A singleton set is the image of a relabeling.



Application: Parsing as intersection

Lemma. A singleton set is the image of a relabeling.

Take M € Ajjn(X) in long normal form with
|_Z M 1,8

___> A~
Let Con(M) = a1 ...ap, and let M|[xq, ..., xn] € Njin be such that
M = Mla, ..., an].



Application: Parsing as intersection

Lemma. A singleton set is the image of a relabeling.

Take M € Ajjn(X) in long normal form with

|_Z M Z,B
__% A~
Let Con(M) = a1 ...ap, and let M|[xq, ..., xn] € Njin be such that
M = Mlau, ..., an].
Let
X101, ..., xn:anl—/\Aﬂ[xl ..... Xp| @
be a principal pair for /\Aﬂ[xl ..... Xp]. Since /\Aﬂ[xl ..... Xp| is linear,

i, ..., o F a is a balanced sequent.



Application: Parsing as intersection

Lemma. A singleton set is the image of a relabeling.

Take M € Ajjn(X) in long normal form with

|_Z M 1,8
__% A~
Let Con(M) = a1 ...ap, and let M|[xq, ..., xn] € Njin be such that
M = Mlau, ..., an].
Let
X101, ..., Xn:anl—/\Aﬂ[xl ..... Xp| @
be a principal pair for /\Aﬂ[xl ..... Xp]. Since /\Aﬂ[xl ..... Xp| is linear,
i, ..., o F a is a balanced sequent.
By the Coherence Theorem,
[EN:a forsome [ C{x:ai,..., Xp @ Qpt

implies N =g, /\Aﬂ[xl, R i



Application: Parsing as intersection
Define X' = (A", C’, 7/):

A’ = the set of atomic types in a1, ..., a., «,

C'=4{a},...,a,}, distinct fresh constants

7'(a) = a.



Application: Parsing as intersection

Define X' = (A", C’, 7/):

A’ = the set of atomic types in oy, .. ., an, O,
C'={a}, ..., a.}, distinct fresh constants
7'(a) = a.

Define a relabeling & = (o, 0) from ¥’ to X

o is such that o(a;) = 7(a;), o(a) = 3,
6(a}) = a;.



Application: Parsing as intersection
Define X' = (A", C’, 7/):

A’ = the set of atomic types in o

C'={a}, ..., a.}, distinct fresh constants
7'(a) = a.
Define a relabeling & = (0, 0) from ¥’ to >:

o is such that o(a;) = 7(a;), o(a) = 3,
6(a}) = a;.

n

s N o implies N =g, /\Aﬂ[a’l, o, al].



Application: Parsing as intersection

Define X' = (A", C’, 7/):

A’ = the set of atomic types in oy, .. ., an, O,
C'={a}, ..., a.}, distinct fresh constants
7'(a) = a.

Define a relabeling & = (0, 0) from ¥’ to >:

o is such that o(a;) = 7(a;), o(a) = 3,
6(a}) = a;.

s N o implies N =g, /\Aﬂ[a’l, o, al].

n

Gives a quick proof that second-order ACGs generate PTIME
languages (Salvati 2005).



