Abstract Families of Abstract Categorial Languages

Makoto Kanazawa
National Institute of Informatics
Tokyo, Japan

• Closure properties of the languages generated by abstract categorial grammars (de Groote 2001).

- Closure properties of the languages generated by abstract categorial grammars (de Groote 2001).
- Each level G(m, n) of de Groote's hierarchy gives rise to a substitution-closed full abstract family of languages.

- Closure properties of the languages generated by abstract categorial grammars (de Groote 2001).
- Each level G(m, n) of de Groote's hierarchy gives rise to a substitution-closed full abstract family of languages.
- Most of the closure properties hold of the tree languages generated by ACGs, and more generally of the languages of λ -terms generated by ACGs.

- Closure properties of the languages generated by abstract categorial grammars (de Groote 2001).
- Each level G(m, n) of de Groote's hierarchy gives rise to a substitution-closed full abstract family of languages.
- Most of the closure properties hold of the tree languages generated by ACGs, and more generally of the languages of λ -terms generated by ACGs.
- Focuses on (a generalization of) closure under intersection with regular sets.

Outline

- Abstract categorial grammar: an informal idea
- Abstract categorial grammar: formal definitions and known results
- Closure under intersection with regular sets (generalized)

• A grammar formalism for languages of linear λ -terms.

- A grammar formalism for languages of linear λ -terms.
 - strings

$$\lambda z.a(b(a(b(bz))))$$

trees

f(gab)(ha(gbb))

- A grammar formalism for languages of linear λ -terms.
 - strings

$$\lambda z.a(b(a(b(bz))))$$

trees

f(gab)(ha(gbb))

- and more
 - * tuples of strings (trees)
 - * logical formulae

- Generalizes
 - grammar formalisms with context-free derivation trees

- Generalizes
 - grammar formalisms with context-free derivation trees
 - * context-free grammar
 - * multiple context-free grammar (linear context-free rewriting system)
 - * tree-adjoining grammar

- Generalizes
 - grammar formalisms with context-free derivation trees
 - * context-free grammar
 - * multiple context-free grammar (linear context-free rewriting system)
 - * tree-adjoining grammar
 - Montague semantics (modulo the linearity restriction)

Tree-adjoining grammar

derivation tree

derived tree

Tree-adjoining grammar as abstract categorial grammar

derivation tree

derived tree

Montague semantics (Heim & Kratzer-style)

found

word meanings

```
[\![ some ]\!] = \lambda uv. \exists y. (uy \land vy)[\![ every ]\!] = \lambda uv. \forall x. (ux \rightarrow vx)[\![ woman ]\!] = \lambda y. woman y[\![ man ]\!] = \lambda x. man x[\![ found ]\!] = \lambda yx. find y x
```

Logical Form

Syntax and semantics with abstract categorial grammar

abstract derivation

SOME WOMAN $(\lambda y. \text{EVERY MAN } (\lambda x. \text{FOUND } y. x))$

every + man + found + some + woman sentence form $\exists y. (\mathsf{woman}\ y \land \forall x. (\mathsf{man}\ x \to \mathsf{find}\ y\ x))$ sentence meaning

Syntax and semantics with abstract categorial grammar

abstract derivation

SOME WOMAN $(\lambda y. \text{EVERY MAN } (\lambda x. \text{FOUND } y. x))$

$$\exists y. (\mathsf{woman}\ y \land \forall x. (\mathsf{man}\ x \to \mathsf{find}\ y\ x))$$
sentence meaning

$$M + N = \lambda z . M(Nz)$$

Higher-order signature

$$\Sigma = \langle A, C, \tau \rangle$$

- A is a set of atomic types
- C is a set of constants
- $\tau: C \to \mathcal{T}(A)$ (type assignment to constants)

 $\mathscr{T}(A)$ is the set of types built up from A with \rightarrow :

$$\alpha, \beta \in \mathscr{T}(A) \Longrightarrow \alpha \to \beta \in \mathscr{T}(A).$$

Write $\alpha \to \beta \to \gamma$ for $\alpha \to (\beta \to \gamma)$.

Higher-order signature

$$\Sigma = \langle A, C, \tau \rangle$$

- A is a set of atomic types
- C is a set of constants
- $\tau: C \to \mathcal{T}(A)$ (type assignment to constants)

 $\mathcal{T}(A)$ is the set of types built up from A with \rightarrow :

$$\alpha, \beta \in \mathscr{T}(A) \Longrightarrow \alpha \to \beta \in \mathscr{T}(A).$$

Write $\alpha \to \beta \to \gamma$ for $\alpha \to (\beta \to \gamma)$.

Define the order of a type:

$$\operatorname{ord}(p) = 1$$
 if p is atomic, $\operatorname{ord}(\alpha \to \beta) = \max(\operatorname{ord}(\alpha) + 1, \operatorname{ord}(\beta)).$

The order of Σ is $\operatorname{ord}(\Sigma) = \max\{\operatorname{ord}(\tau(c)) \mid c \in C\}$.

$\Lambda(\Sigma)$ consists of

- $x \in X$ (variable),
- $c \in C$,
- MN for $M, N \in \Lambda(\Sigma)$,
- $\lambda x.M$ for $x \in X$, $M \in \Lambda(\Sigma)$.

$\Lambda(\Sigma)$ consists of

- $x \in X$ (variable),
- $c \in C$,
- MN for $M, N \in \Lambda(\Sigma)$,
- $\lambda x.M$ for $x \in X$, $M \in \Lambda(\Sigma)$.

Write

```
MNP for (MN)P, \lambda x.MN for \lambda x.(MN), \lambda x_1 ... x_n.M for \lambda x_1.(\lambda x_2....(\lambda x_n.M)...).
```

$$FV(x) = \{x\},\$$

$$FV(c) = \emptyset,\$$

$$FV(MN) = FV(M) \cup FV(N),\$$

$$FV(\lambda x.M) = FV(M) - \{x\}.$$

$$FV(x) = \{x\},\$$

$$FV(c) = \emptyset,\$$

$$FV(MN) = FV(M) \cup FV(N),\$$

$$FV(\lambda x.M) = FV(M) - \{x\}.\$$

$$\overrightarrow{Con}(x) = \epsilon,\$$

$$\overrightarrow{Con}(c) = c,\$$

$$\overrightarrow{Con}(MN) = \overrightarrow{Con}(M)\overrightarrow{Con}(N),\$$

$$\overrightarrow{Con}(\lambda x.M) = \overrightarrow{Con}(M).$$

$$FV(x) = \{x\},\$$

$$FV(c) = \emptyset,\$$

$$FV(MN) = FV(M) \cup FV(N),\$$

$$FV(\lambda x.M) = FV(M) - \{x\}.\$$

$$\overrightarrow{Con}(x) = \epsilon,\$$

$$\overrightarrow{Con}(c) = c,\$$

$$\overrightarrow{Con}(MN) = \overrightarrow{Con}(M)\overrightarrow{Con}(N),\$$

$$\overrightarrow{Con}(\lambda x.M) = \overrightarrow{Con}(M).$$

M is

- closed if $FV(M) = \emptyset$
- pure if $\overrightarrow{Con}(M) = \epsilon$.

β -reduction

$$\dots (\lambda x.M)N \dots \rightarrow_{\beta} \dots M[x := N] \dots$$

This β -reduction step is

- non-erasing if $x \in FV(M)$,
- non-duplicating if x occurs free in M at most once.

Write $|M|_{\beta}$ for the β -normal form M.

Type assignment system $\lambda \rightarrow_{\Sigma}$

 $\Gamma = x_1 : \alpha_1, \dots, x_n : \alpha_n$: type environment

 $\Gamma \vdash_{\Sigma} M : \alpha$: typing judgment

$$\vdash_{\Sigma} c : \tau(c)$$
 $x : \alpha \vdash_{\Sigma} x : \alpha$

$$\frac{\Gamma \vdash_{\Sigma} M : \beta}{\Gamma - \{x : \alpha\} \vdash_{\Sigma} \lambda x . M : \alpha \to \beta} \to I \qquad \frac{\Gamma \vdash_{\Sigma} M : \alpha \to \beta \quad \Delta \vdash_{\Sigma} N : \alpha}{\Gamma \cup \Delta \vdash_{\Sigma} M N : \beta} \to E$$

Write Λ and \vdash for $\Lambda(\Sigma)$ and \vdash_{Σ} when $\Sigma = \langle A, \varnothing, \varnothing \rangle$.

The set $\Lambda_{\text{lin}}(\Sigma)$ of linear λ -terms consists of λ -terms $M \in \Lambda(\Sigma)$ such that

- (i) for every subterm $\lambda x.N$ of M, $x \in FV(N)$,
- (ii) for every subterm NP of M, $FV(N) \cap FV(P) = \emptyset$.

The set $\Lambda_{\text{lin}}(\Sigma)$ of linear λ -terms consists of λ -terms $M \in \Lambda(\Sigma)$ such that

- (i) for every subterm $\lambda x.N$ of M, $x \in FV(N)$,
- (ii) for every subterm NP of M, $FV(N) \cap FV(P) = \emptyset$.

M is a λI -term if it satisfies (i).

The set $\Lambda_{\text{lin}}(\Sigma)$ of linear λ -terms consists of λ -terms $M \in \Lambda(\Sigma)$ such that

- (i) for every subterm $\lambda x.N$ of M, $x \in FV(N)$,
- (ii) for every subterm NP of M, $FV(N) \cap FV(P) = \emptyset$.

M is a λI -term if it satisfies (i).

Strings and concatenation of strings are represented by linear λ -terms.

$$/a_1 \dots a_n/=\lambda z.a_1(\dots(a_nz)\dots)$$

 $+=\lambda xyz.x(yz)$

The set $\Lambda_{\text{lin}}(\Sigma)$ of linear λ -terms consists of λ -terms $M \in \Lambda(\Sigma)$ such that

- (i) for every subterm $\lambda x.N$ of M, $x \in FV(N)$,
- (ii) for every subterm NP of M, $FV(N) \cap FV(P) = \emptyset$.

M is a λI -term if it satisfies (i).

Strings and concatenation of strings are represented by linear λ -terms.

$$/a_1 \dots a_n/=\lambda z.a_1(\dots(a_nz)\dots)$$

 $+=\lambda xyz.x(yz)$

String signature $\Sigma_V = \langle \{o\}, V, \tau \rangle$:

$$au(a) = o o o = str$$
 for every $a \in V$, $\vdash_{\Sigma_V} / w / : str$ for every $w \in V^*$.

$$\mathscr{G} = \langle \Sigma, \Sigma', \mathscr{L}, s \rangle$$

- $\Sigma = \langle A, C, \tau \rangle$: higher-order signature (abstract vocabulary)
- $\Sigma' = \langle A', C', \tau' \rangle$: higher-order signature (object vocabulary)
- $\mathcal{L} = \langle \sigma, \theta \rangle$: lexicon from Σ to Σ' :
 - $\sigma: A \to \mathscr{T}(A'),$
 - $-\theta:C\to \Lambda_{\text{lin}}(\Sigma'),$
 - $-\vdash_{\Sigma'}\theta(c):\sigma(\tau(c))$ for every $c\in C$.
- s: atomic type of Σ (distinguished type).

$$\mathscr{G} = \langle \Sigma, \Sigma', \mathscr{L}, s \rangle$$

- $\Sigma = \langle A, C, \tau \rangle$: higher-order signature (abstract vocabulary)
- $\Sigma' = \langle A', C', \tau' \rangle$: higher-order signature (object vocabulary)
- $\mathcal{L} = \langle \sigma, \theta \rangle$: lexicon from Σ to Σ' :
 - $\sigma: A \to \mathscr{T}(A'),$
 - $-\theta:C\to \Lambda_{\text{lin}}(\Sigma'),$
 - $\vdash_{\Sigma'} \theta(c) : \sigma(\tau(c))$ for every $c \in C$.
- s: atomic type of Σ (distinguished type).

 θ is naturally extended to a mapping from $\Lambda_{lin}(\Sigma)$ to $\Lambda_{lin}(\Sigma')$.

Write $\mathcal{L}(\alpha)$ and $\mathcal{L}(M)$ for $\sigma(\alpha)$ and $\theta(M)$, respectively.

$$\mathscr{G} = \langle \Sigma, \Sigma', \mathscr{L}, s \rangle$$

- $\Sigma = \langle A, C, \tau \rangle$: higher-order signature (abstract vocabulary)
- $\Sigma' = \langle A', C', \tau' \rangle$: higher-order signature (object vocabulary)
- $\mathcal{L} = \langle \sigma, \theta \rangle$: lexicon from Σ to Σ' :
 - $-\sigma:A\to \mathscr{T}(A'),$
 - $-\theta:C\to \Lambda_{\text{lin}}(\Sigma'),$
 - $-\vdash_{\Sigma'}\theta(c):\sigma(\tau(c))$ for every $c\in C$.
- s: atomic type of Σ (distinguished type).

 θ is naturally extended to a mapping from $\Lambda_{lin}(\Sigma)$ to $\Lambda_{lin}(\Sigma')$.

Write $\mathcal{L}(\alpha)$ and $\mathcal{L}(M)$ for $\sigma(\alpha)$ and $\theta(M)$, respectively.

The order of \mathcal{L} is $\operatorname{ord}(\mathcal{L}) = \max\{\operatorname{ord}(\mathcal{L}(p)) \mid p \in A\}.$

$$\mathscr{G} = \langle \Sigma, \Sigma', \mathscr{L}, s \rangle$$

- $\Sigma = \langle A, C, \tau \rangle$: higher-order signature (abstract vocabulary)
- $\Sigma' = \langle A', C', \tau' \rangle$: higher-order signature (object vocabulary)
- $\mathcal{L} = \langle \sigma, \theta \rangle$: lexicon from Σ to Σ' :
 - $\sigma: A \to \mathscr{T}(A'),$
 - $-\theta:C\to \Lambda_{\text{lin}}(\Sigma'),$
 - $-\vdash_{\Sigma'}\theta(c):\sigma(\tau(c))$ for every $c\in C$.
- s: atomic type of Σ (distinguished type).

 θ is naturally extended to a mapping from $\Lambda_{lin}(\Sigma)$ to $\Lambda_{lin}(\Sigma')$.

Write $\mathcal{L}(\alpha)$ and $\mathcal{L}(M)$ for $\sigma(\alpha)$ and $\theta(M)$, respectively.

The order of \mathcal{L} is $\operatorname{ord}(\mathcal{L}) = \max\{\operatorname{ord}(\mathcal{L}(p)) \mid p \in A\}.$

 $\mathscr{G} \in \mathbf{G}(m,n)$ if $\operatorname{ord}(\Sigma) \leq m$ and $\operatorname{ord}(\mathscr{L}) \leq n$.

$$\mathscr{G} = \langle \Sigma, \Sigma', \mathscr{L}, s \rangle$$

- $\Sigma = \langle A, C, \tau \rangle$: higher-order signature (abstract vocabulary)
- $\Sigma' = \langle A', C', \tau' \rangle$: higher-order signature (object vocabulary)
- $\mathscr{L} = \langle \sigma, \theta \rangle$: lexicon from Σ to Σ' :
 - $\sigma: A \to \mathscr{T}(A'),$
 - $-\theta:C\to \Lambda_{\text{lin}}(\Sigma'),$
 - $\vdash_{\Sigma'} \theta(c) : \sigma(\tau(c))$ for every $c \in C$.
- s: atomic type of Σ (distinguished type).

 θ is naturally extended to a mapping from $\Lambda_{lin}(\Sigma)$ to $\Lambda_{lin}(\Sigma')$.

Write $\mathcal{L}(\alpha)$ and $\mathcal{L}(M)$ for $\sigma(\alpha)$ and $\theta(M)$, respectively.

The order of \mathcal{L} is $\operatorname{ord}(\mathcal{L}) = \max\{\operatorname{ord}(\mathcal{L}(p)) \mid p \in A\}.$

 $\mathscr{G} \in \mathbf{G}(m,n)$ if $\operatorname{ord}(\Sigma) \leq m$ and $\operatorname{ord}(\mathscr{L}) \leq n$.

 \mathscr{G} is m-th order if $\mathscr{G} \in \mathbf{G}(m, n)$ for some n.

Languages of ACGs

The abstract language of ${\mathscr G}$ is

$$\mathcal{A}(\mathscr{G}) = \{ M \in \Lambda_{\text{lin}}(\Sigma) \mid M \text{ is } \beta\text{-normal and } \vdash_{\Sigma} M : s \}.$$
the set of abstract derivations

The object language of $\mathscr G$ is

$$\mathcal{O}(\mathcal{G}) = \{ |\mathcal{L}(M)|_{\beta} \mid M \in \mathcal{A}(\mathcal{G}) \}.$$
the set of concrete forms

Languages of ACGs

The abstract language of $\mathscr G$ is

$$\mathcal{A}(\mathscr{G}) = \{ M \in \Lambda_{\text{lin}}(\Sigma) \mid M \text{ is } \beta\text{-normal and } \vdash_{\Sigma} M : s \}.$$
the set of abstract derivations

The object language of $\mathscr G$ is

$$\mathcal{O}(\mathcal{G}) = \{ |\mathcal{L}(M)|_{\beta} \mid M \in \mathcal{A}(\mathcal{G}) \}.$$
the set of concrete forms

We say that \mathscr{G} generates its object language.

$c \in C$	au(c)	$\mathscr{L}(c)$	$\mathscr{L}(au(c))$
А	$(p_1 o s) o s$	$\lambda u./a/+u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
В	$(p_2 \rightarrow s) \rightarrow s$	$\lambda u. /b/ + u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
С	$(p_3 \rightarrow s) \rightarrow s$	$\lambda u. /c/ + u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
D	q o s	$\lambda v.v$	$str \rightarrow str$
E	$p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow q \rightarrow q$	$\lambda x_1 x_2 x_3 v \cdot x_1 + x_2 + x_3 + v$	$str \rightarrow str \rightarrow str \rightarrow str \rightarrow str$
F	q	$/\epsilon/$	str

$c \in C$	au(c)	$\mathscr{L}(c)$	$\mathscr{L}(au(c))$
Α	$(p_1 \rightarrow s) \rightarrow s$	$\lambda u./a/+u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
В	$(p_2 \rightarrow s) \rightarrow s$	$\lambda u. /b/ + u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
С	$(p_3 \rightarrow s) \rightarrow s$	$\lambda u. /c/ + u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
D	q o s	$\lambda v.v$	str ightarrow str
E	$p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow q \rightarrow q$	$\lambda x_1 x_2 x_3 v. x_1 + x_2 + x_3 + v$	$str \rightarrow str \rightarrow str \rightarrow str \rightarrow str$
F	q	$/\epsilon/$	str

$$\mathscr{G} \in \mathbf{G}(3,2)$$
.

$c \in C$	au(c)	$\mathscr{L}(c)$	$\mathscr{L}(au(c))$
А	$(p_1 \rightarrow s) \rightarrow s$	$\lambda u./a/+u/\epsilon/$	$(str \rightarrow str) \rightarrow str$
В	$(p_2 \rightarrow s) \rightarrow s$	$\lambda u. /b/ + u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
C	$(p_3 \rightarrow s) \rightarrow s$	$\lambda u. /c/ + u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
D	q o s	$\lambda v.v$	str ightarrow str
E	$p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow q \rightarrow q$	$\lambda x_1 x_2 x_3 v. x_1 + x_2 + x_3 + v$	$str \rightarrow str \rightarrow str \rightarrow str \rightarrow str$
F	q	$/\epsilon/$	str

$$\mathscr{G} \in \mathbf{G}(3,2)$$
.

$$P = \mathsf{A}(\lambda x_1.\mathsf{B}(\lambda y_1.\mathsf{B}(\lambda y_2.\mathsf{A}(\lambda x_2.\mathsf{C}(\lambda z_1.\mathsf{C}(\lambda z_2.\mathsf{D}(\mathsf{E} x_1 y_1 z_1(\mathsf{E} x_2 y_2 z_2 \mathsf{F})))))))))) \in \mathcal{A}(\mathcal{G}),$$

$$\mathcal{L}(P) \twoheadrightarrow_{\beta} / abbacc / \in \mathcal{O}(\mathcal{G}).$$

$c \in C$	au(c)	$\mathscr{L}(c)$	$\mathscr{L}(au(c))$
А	$(p_1 \rightarrow s) \rightarrow s$	λu . $/a/+u/\epsilon/$	$(str \rightarrow str) \rightarrow str$
В	$(p_2 \rightarrow s) \rightarrow s$	$\lambda u. /b/ + u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
С	$(p_3 \rightarrow s) \rightarrow s$	$\lambda u. /c/ + u/\epsilon/$	$(\mathit{str} { o} \mathit{str}) { o} \mathit{str}$
D	q o s	$\lambda v.v$	$str \rightarrow str$
E	$p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow q \rightarrow q$	$\lambda x_1 x_2 x_3 v. x_1 + x_2 + x_3 + v$	$str \rightarrow str \rightarrow str \rightarrow str \rightarrow str$
F	q	$/\epsilon/$	str

$$\mathscr{G} \in \mathbf{G}(3,2)$$
.

$$P = \mathsf{A}(\lambda x_1.\mathsf{B}(\lambda y_1.\mathsf{B}(\lambda y_2.\mathsf{A}(\lambda x_2.\mathsf{C}(\lambda z_1.\mathsf{C}(\lambda z_2.\mathsf{D}(\mathsf{E} x_1 y_1 z_1(\mathsf{E} x_2 y_2 z_2 \mathsf{F})))))))))) \in \mathcal{A}(\mathcal{G}),$$

$$\mathcal{L}(P) \twoheadrightarrow_{\beta} / abbacc/ \in \mathcal{O}(\mathcal{G}).$$

$$\mathcal{O}(\mathcal{G}) = \{ /w/ \mid w \in MIX \}, \text{ where}$$

 $MIX = \{ w \in \{ a, b, c \}^* \mid \#_a(w) = \#_b(w) = \#_c(w) \}.$

NON-EMPTINESS

- Instance: An ACG \mathscr{G} .
- Question: Is $\mathcal{O}(\mathcal{G})$ (or, equivalently, $\mathcal{A}(\mathcal{G})$) non-empty?

NON-EMPTINESS

- Instance: An ACG G.
- Question: Is $\mathcal{O}(\mathcal{G})$ (or, equivalently, $\mathcal{A}(\mathcal{G})$) non-empty?

UNIVERSAL RECOGNITION

- Instance: An ACG $\mathscr{G} = \langle \Sigma, \Sigma', \mathscr{L}, s \rangle$ and $M \in \Lambda(\Sigma')$.
- Question: $M \in \mathcal{O}(\mathcal{L})$?

NON-EMPTINESS

- Instance: An ACG G.
- Question: Is $\mathcal{O}(\mathcal{G})$ (or, equivalently, $\mathcal{A}(\mathcal{G})$) non-empty?

UNIVERSAL RECOGNITION

- Instance: An ACG $\mathscr{G} = \langle \Sigma, \Sigma', \mathscr{L}, s \rangle$ and $M \in \Lambda(\Sigma')$.
- Question: $M \in \mathcal{O}(\mathcal{L})$?

NON-EMPTINESS

- is decidable if and only if **MELL** is decidable;
- is at least EXPSPACE-hard;
- reduces to UNIVERSAL RECOGNITION.

NON-EMPTINESS

- Instance: An ACG G.
- Question: Is $\mathcal{O}(\mathcal{G})$ (or, equivalently, $\mathcal{A}(\mathcal{G})$) non-empty?

UNIVERSAL RECOGNITION

- Instance: An ACG $\mathscr{G} = \langle \Sigma, \Sigma', \mathscr{L}, s \rangle$ and $M \in \Lambda(\Sigma')$.
- Question: $M \in \mathcal{O}(\mathcal{L})$?

NON-EMPTINESS

- is decidable if and only if **MELL** is decidable;
- is at least EXPSPACE-hard;
- reduces to UNIVERSAL RECOGNITION.

Both problems are NP-complete when restricted to lexicalized ACGs (follows from the NP-completeness of $MLL(\multimap)$).

Generative capacity

$$\mathscr{G} \in \mathbf{G}(2, n)$$

n	string languages	tree languages
1		REGT
2	CF	CFT_{sp}
3	yCFT _{sp}	⊋ MREGT
<u>≥ 4</u>	MCF = STR(HR)	TR(HR)

Generative capacity

$$\mathscr{G} \in \mathbf{G}(2, n)$$

n	string languages	tree languages
1		REGT
2	CF	CFT_{sp}
3	yCFT _{sp}	⊋ MREGT
<u>≥ 4</u>	MCF = STR(HR)	TR(HR)

These languages are semilinear and belong to LOGCFL.

Generative capacity

$$\mathscr{G} \in \mathbf{G}(2, n)$$

n	string languages	tree languages
1		REGT
2	CF	CFT_{sp}
3	yCFT _{sp}	⊋ MREGT
<u>≥ 4</u>	MCF = STR(HR)	TR(HR)

These languages are semilinear and belong to LOGCFL.

Not much is known for higher-order cases:

- G(3, 2): non-semilinear string languages.
- G(3, 1): NP-complete tree languages.
- No example of an r.e. language has been found that cannot be generated by an ACG.

The string languages generated by ACGs in G(m, n) $(m, n \ge 2)$ form a substitution-closed full AFL.

The string languages generated by ACGs in G(m, n) $(m, n \ge 2)$ form a substitution-closed full AFL.

A family of languages is a full abstract family of languages if it is closed under

- union (∪), concatenation (·), Kleene star (*);
- homomorphism (h);
- inverse homomorphism (h^{-1}) ;
- intersection with regular sets $(\cap R)$.

The string languages generated by ACGs in G(m, n) $(m, n \ge 2)$ form a substitution-closed full AFL.

A family of languages is a full abstract family of languages if it is closed under

- union (∪), concatenation (·), Kleene star (*);
- homomorphism (h);
- inverse homomorphism (h^{-1}) ;
- intersection with regular sets $(\cap R)$.

Why is this interesting?

The string languages generated by ACGs in G(m, n) $(m, n \ge 2)$ form a substitution-closed full AFL.

A family of languages is a full abstract family of languages if it is closed under

- union (∪), concatenation (·), Kleene star (*);
- homomorphism (h);
- inverse homomorphism (h^{-1}) ;
- intersection with regular sets $(\cap R)$.

Why is this interesting?

- Not entirely obvious $(\cap R)$.
- Depends on some techinical results about $\lambda \rightarrow \Sigma$.
- Hopefully useful.
- May lead to an automaton model for ACGs.

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$.

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$.

Subject Expansion Theorem.

If $\Gamma \vdash_{\Sigma} M' : \alpha$ and $M \twoheadrightarrow_{\beta} M'$ by non-erasing non-duplicating β -reduction, then $\Gamma \vdash_{\Sigma} M : \alpha$.

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$.

Subject Expansion Theorem.

If $\Gamma \vdash_{\Sigma} M' : \alpha$ and $M \twoheadrightarrow_{\beta} M'$ by non-erasing non-duplicating β -reduction, then $\Gamma \vdash_{\Sigma} M : \alpha$.

(A special case: *M* linear.)

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$.

Subject Expansion Theorem.

If $\Gamma \vdash_{\Sigma} M' : \alpha$ and $M \twoheadrightarrow_{\beta} M'$ by non-erasing non-duplicating β -reduction, then $\Gamma \vdash_{\Sigma} M : \alpha$.

(A special case: *M* linear.)

Uniqueness Theorem.

If M is a λI -term and $\Gamma \vdash_{\Sigma} M : \alpha$, then there is a unique $\lambda \rightarrow_{\Sigma}$ -deduction of this judgment.

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$.

Subject Expansion Theorem.

If $\Gamma \vdash_{\Sigma} M' : \alpha$ and $M \twoheadrightarrow_{\beta} M'$ by non-erasing non-duplicating β -reduction, then $\Gamma \vdash_{\Sigma} M : \alpha$.

(A special case: *M* linear.)

Uniqueness Theorem.

If M is a λI -term and $\Gamma \vdash_{\Sigma} M : \alpha$, then there is a unique $\lambda \rightarrow_{\Sigma}$ -deduction of this judgment.

Principal Pair Theorem.

If $\Gamma \vdash M : \alpha$ then there is a most general such $\langle \Gamma, \alpha \rangle$ (called a principal pair for M).

Properties of lexicons

 β -reduction commutes with lexicons:

$$M \twoheadrightarrow_{\beta} M'$$
 implies $\mathscr{L}(M) \twoheadrightarrow_{\beta} \mathscr{L}(M')$.

Properties of lexicons

 β -reduction commutes with lexicons:

$$M \to_{\beta} M'$$
 implies $\mathscr{L}(M) \to_{\beta} \mathscr{L}(M')$.

Typing judgments are preserved under lexicons:

$$\Gamma \vdash_{\Sigma} M : \alpha$$
 implies $\mathscr{L}(\Gamma) \vdash_{\Sigma'} \mathscr{L}(M) : \mathscr{L}(\alpha)$.

Properties of lexicons

 β -reduction commutes with lexicons:

$$M \to_{\beta} M'$$
 implies $\mathscr{L}(M) \to_{\beta} \mathscr{L}(M')$.

Typing judgments are preserved under lexicons:

$$\Gamma \vdash_{\Sigma} M : \alpha \text{ implies } \mathscr{L}(\Gamma) \vdash_{\Sigma'} \mathscr{L}(M) : \mathscr{L}(\alpha).$$

If $\mathscr{L}_1 = \langle \sigma_1, \theta_1 \rangle$ is a lexicon from Σ_0 to Σ_1 and $\mathscr{L}_2 = \langle \sigma_2, \theta_2 \rangle$ is a lexicon from Σ_1 to Σ_2 , then

$$\mathscr{L}_2 \circ \mathscr{L}_1 = \langle \sigma_2 \circ \sigma_1, \theta_2 \circ \theta_1 \rangle$$

is a lexicon from Σ_0 to Σ_2 .

Relabeling

$$\mathscr{L} \colon \Sigma \to \Sigma'$$

- $\mathcal{L}(p) \in A'$ for all $p \in A$
- $\mathcal{L}(c) \in C'$ for all $c \in C$

Relabeling

$$\mathscr{L} \colon \Sigma \to \Sigma'$$

- $\mathcal{L}(p) \in A'$ for all $p \in A$
- $\mathcal{L}(c) \in C'$ for all $c \in C$

A nondeterministic finite automaton $M = \langle Q, V, \delta, q_I, \{q_F\} \rangle$:

$$A=Q,$$
 $\mathscr{L}(p)=o$ for all $p\in a,$ $C=\{d^{r\to q}\mid r\in\delta(q,d)\}, \ \mathscr{L}(d^{r\to q})=d.$ $\tau(d^{r\to q})=r\to q.$

$$w \in L(\mathbf{M}) \iff /w/ \in \{ \mathcal{L}(N) \mid \vdash_{\Sigma} N : q_F \to q_I \}.$$

Relabeling

A nondeterministic bottom-up finite tree automaton

$$A = Q,$$

$$C = \{ d^{q_1 \to \dots \to q_n \to r} \mid dq_1 \dots q_n \to r \in \delta \},$$

$$\tau(d^{q_1 \to \dots \to q_n \to r}) = q_1 \to \dots \to q_n \to r,$$

$$\mathcal{L}(p) = o \quad \text{for all } p \in A,$$

$$\mathcal{L}(d^{q_1 \to \dots \to q_n \to r}) = d.$$

$$T \in L(\mathbf{M}) \iff T \in \{ \mathcal{L}(N) \mid \vdash_{\Sigma} N : q_F \}$$

Intersection with the image of a relabeling

ACG
$$\mathscr{G}=\langle \Sigma_0, \Sigma_1, \mathscr{L}, s \rangle$$
 relabeling $\mathscr{L}_1\colon \Sigma_1' \to \Sigma_1$ type $\gamma \in \mathscr{T}(A')$

Construct

$$\mathscr{G}_{\cap} = \langle \Sigma_0', \Sigma_1, \mathscr{L}_1 \circ \mathscr{L}', s^{\gamma} \rangle$$

such that

$$\mathcal{O}(\mathscr{G}_{\cap}) = \mathcal{O}(\mathscr{G}) \cap \{ \mathscr{L}_{1}(M) \mid \vdash_{\Sigma'_{1}} M : \gamma \}.$$

Intersection with the image of a relabeling

ACG
$$\mathscr{G}=\langle \Sigma_0, \Sigma_1, \mathscr{L}, s \rangle$$
 relabeling $\mathscr{L}_1\colon \Sigma_1' \to \Sigma_1$ type $\gamma \in \mathscr{T}(A')$

Construct

$$\mathscr{G}_{\cap} = \langle \Sigma_0', \Sigma_1, \mathscr{L}_1 \circ \mathscr{L}', s^{\gamma} \rangle$$

such that

$$\mathcal{O}(\mathscr{G}_{\cap}) = \mathcal{O}(\mathscr{G}) \cap \{ \mathscr{L}_{1}(M) \mid \vdash_{\Sigma'_{1}} M : \gamma \}.$$

- The construction generalizes standard constructions for well-known grammar formalisms,
- but the proof of correctness is a lot more involved due to its generality.

$$\mathscr{G}_{\cap} = \langle \Sigma'_0, \Sigma_1, \mathscr{L}_1 \circ \mathscr{L}', s^{\gamma} \rangle$$

$$\Sigma_0' = \langle A_0', C_0', \tau_0' \rangle$$
:

$$A'_{0} = \{ p^{\beta} \mid p \in A_{0}, \beta \in \mathcal{T}(A'_{1}), \mathcal{L}_{1}(\beta) = \mathcal{L}(p) \},$$

$$C'_{0} = \{ d_{\langle c, N, \beta \rangle} \mid c \in C_{0}, N \in \Lambda_{\text{lin}}(\Sigma'_{1}), \beta \in \mathcal{T}(A'_{1}),$$

$$\mathcal{L}_{1}(N) = \mathcal{L}(c), \mathcal{L}_{1}(\beta) = \mathcal{L}(\tau(c)),$$

$$\vdash_{\Sigma'_{1}} N : \beta \},$$

$$au_0'(d_{\langle c,N,eta \rangle}) = \operatorname{anti}(au(c),eta),$$

where

$$\operatorname{anti}(p,\beta)=p^{\beta},$$

$$\operatorname{anti}(\alpha_{1}\to\alpha_{2},\beta_{1}\to\beta_{2})=\operatorname{anti}(\alpha_{1},\beta_{1})\to\operatorname{anti}(\alpha_{2},\beta_{2}).$$

Note that $\tau'_0(d_{\langle c,N,\beta\rangle})$ is always defined and is a most specific common anti-instance of $\tau(c)$ and β .

$$\mathscr{L}' = \langle \sigma', \theta' \rangle$$
 is a lexicon from Σ_0' to Σ_1' :

$$\sigma'(p^{\beta}) = \beta$$
,

$$\theta'(d_{\langle c,N,\beta\rangle})=N.$$

 $\mathscr{L}' = \langle \sigma', \theta' \rangle$ is a lexicon from Σ_0' to Σ_1' :

$$\sigma'(p^{\beta}) = \beta$$
,

$$\theta'(d_{\langle c,N,\beta\rangle})=N.$$

Define another lexicon $\mathcal{L}_0 = \langle \sigma_0, \theta_0 \rangle$ from Σ'_0 to Σ_0 :

$$\sigma_0(p^{\beta})=p$$
,

$$\theta_0(d_{\langle c,N,\beta\rangle})=c.$$

 $\mathscr{L}' = \langle \sigma', \theta' \rangle$ is a lexicon from Σ_0' to Σ_1' :

$$\sigma'(p^{\beta}) = \beta$$
,

$$\theta'(d_{\langle c,N,\beta\rangle})=N.$$

Define another lexicon $\mathcal{L}_0 = \langle \sigma_0, \theta_0 \rangle$ from Σ'_0 to Σ_0 :

$$\sigma_0(p^{\beta})=p$$
,

$$\theta_0(d_{\langle c,N,\beta\rangle})=c.$$

We have $\mathcal{L} \circ \mathcal{L}_0 = \mathcal{L}_1 \circ \mathcal{L}'$:

$$\vdash_{\Sigma_{0}} c : \tau(c) \xrightarrow{\mathcal{L}} \vdash_{\Sigma_{1}} \mathcal{L}(c) : \mathcal{L}(\tau(c))$$

$$\downarrow^{\mathcal{L}_{0}} \qquad \qquad \downarrow^{\mathcal{L}_{1}}$$

$$\vdash_{\Sigma'_{0}} d_{\langle c, N, \beta \rangle} : \operatorname{anti}(\tau(c), \beta) \xrightarrow{\mathcal{L}'} \vdash_{\Sigma'_{1}} N : \beta$$

Proof of correctness

$$\mathcal{O}(\mathscr{G}_{\cap})\subseteq\mathcal{O}(\mathscr{G})\cap\{\,\mathscr{L}_1(M)\mid \vdash_{\Sigma_1'}M:\gamma\,\}.$$

Proof of correctness

$$\mathcal{O}(\mathscr{G}_{\cap})\subseteq\mathcal{O}(\mathscr{G})\cap\{\,\mathscr{L}_{1}(M)\mid \vdash_{\Sigma'_{1}}M:\gamma\,\}.$$

$$\mathscr{G}_{\cap} = \langle \Sigma_0', \Sigma_1, \mathscr{L}_1 \circ \mathscr{L}', s^{\gamma}
angle$$

$$\mathcal{G}_{\cap} = \langle \Sigma'_{0}, \Sigma_{1}, \mathcal{L}_{1} \circ \mathcal{L}', s^{\gamma} \rangle$$

$$\vdash_{\Sigma_{0}} \mathcal{L}_{0}(P) : s \xrightarrow{\mathcal{L}} \vdash_{\Sigma_{1}} \mathcal{L}_{1}(|\mathcal{L}'(P)|_{\beta}) : \mathcal{L}_{1}(\gamma)$$

$$\downarrow^{\mathcal{L}_{0}} \qquad \qquad \downarrow^{\mathcal{L}_{1}}$$

$$\vdash_{\Sigma'_{0}} P : s^{\gamma} \xrightarrow{\mathcal{L}'} \vdash_{\Sigma'_{1}} |\mathcal{L}'(P)|_{\beta} : \gamma$$

Proof of correctness

$$\mathcal{O}(\mathscr{G}_{\cap})\subseteq\mathcal{O}(\mathscr{G})\cap\{\,\mathscr{L}_{1}(M)\mid \vdash_{\Sigma'_{1}}M:\gamma\,\}.$$

$$\mathscr{G}_{\cap} = \langle \Sigma_0', \Sigma_1, \mathscr{L}_1 \circ \mathscr{L}', s^{\gamma}
angle$$

$$\mathcal{G}_{\cap} = \langle \Sigma'_{0}, \Sigma_{1}, \mathcal{L}_{1} \circ \mathcal{L}', s^{\gamma} \rangle$$

$$\vdash_{\Sigma_{0}} \mathcal{L}_{0}(P) : s \xrightarrow{\mathcal{L}} \vdash_{\Sigma_{1}} |\mathcal{L}(\mathcal{L}_{0}(P))|_{\beta} : \mathcal{L}(s)$$

$$\downarrow^{\mathcal{L}_{1}}$$

$$\vdash_{\Sigma'_{0}} P : s^{\gamma} \xrightarrow{\mathcal{L}'} \vdash_{\Sigma'_{1}} |\mathcal{L}'(P)|_{\beta} : \gamma$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

Lemma. If \mathscr{L} is a relabeling and $M \to_{\beta} \mathscr{L}(N)$ by non-erasing and non-duplicating β -reduction, then there is a P such that

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_0} P: s$$

$$\vdash_{\Sigma_1} \mathscr{L}(P): \mathscr{L}(s) \longrightarrow_{\beta} \vdash_{\Sigma_1} \mathscr{L}_1(M): \mathscr{L}(s)$$

$$\uparrow_{\Sigma_1'} M: \gamma$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} P : s \qquad \xrightarrow{\mathscr{L}} \qquad \vdash_{\Sigma_{1}} \mathscr{L}(P) : \mathscr{L}(s) \qquad \xrightarrow{\twoheadrightarrow_{\beta}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\uparrow_{\Sigma_{1}} M : \gamma$$

$$\overrightarrow{Con}(P) = c_1 \dots c_m$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} \hat{P}[c_{1}, \ldots, c_{m}] : s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}[\mathscr{L}(c_{1}), \ldots, \mathscr{L}(c_{m})] : \mathscr{L}(s) \xrightarrow{\mathscr{H}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\uparrow_{\mathcal{L}_{1}}$$

$$\overrightarrow{Con}(P) = c_1 \dots c_m$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} \hat{P}[c_{1}, \dots, c_{m}] : s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}[\mathscr{L}(c_{1}), \dots, \mathscr{L}(c_{m})] : \mathscr{L}(s) \xrightarrow{\mathscr{H}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\uparrow_{\mathscr{L}_{1}} \qquad \qquad \uparrow_{\mathscr{L}_{1}} \qquad \qquad \uparrow_{\Sigma_{1}'} M : \gamma$$

$$\overrightarrow{Con}(P) = c_1 \dots c_m$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma'_1} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} \hat{P}[c_{1}, \ldots, c_{m}] : s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}[\mathscr{L}(c_{1}), \ldots, \mathscr{L}(c_{m})] : \mathscr{L}(s) \xrightarrow{\mathscr{H}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \downarrow_{\mathcal{L}_{1}} \qquad \qquad$$

$$\overrightarrow{Con}(P) = c_1 \dots c_m$$

 $\mathscr{L}_1(N_i) = \mathscr{L}(c_i)$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma'_1} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} \hat{P}[c_{1}, \dots, c_{m}] : s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}[\mathscr{L}(c_{1}), \dots, \mathscr{L}(c_{m})] : \mathscr{L}(s) \xrightarrow{\mathscr{H}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \downarrow_{\Sigma_{1}'} M : \gamma$$

$$\overrightarrow{Con}(P) = c_1 \dots c_m$$

 $\mathcal{L}_1(N_i) = \mathcal{L}(c_i)$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} \hat{P}[c_{1}, \dots, c_{m}] : s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}[\mathscr{L}(c_{1}), \dots, \mathscr{L}(c_{m})] : \mathscr{L}(s) \xrightarrow{\mathscr{H}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} M : \gamma$$

$$\vdash_{\Sigma_{1}'} \hat{P}[N_{1}, \dots, N_{m}] : \gamma \qquad \xrightarrow{\mathscr{H}} \qquad \vdash_{\Sigma_{1}'} M : \gamma$$

$$\overrightarrow{Con}(P) = c_1 \dots c_m$$

 $\mathcal{L}_1(N_i) = \mathcal{L}(c_i)$
 $\vdash_{\Sigma'_1} N_i : \beta_i$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} \hat{P}[c_{1}, \dots, c_{m}] : s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}[\mathscr{L}(c_{1}), \dots, \mathscr{L}(c_{m})] : \mathscr{L}(s) \xrightarrow{\mathscr{H}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \downarrow_{\mathcal{L}_{1}} \qquad \downarrow_{\mathcal{L}_{1}} \qquad \downarrow_{\mathcal{L}_{1}} \qquad \downarrow_{\mathcal{L}_{1}} \qquad \qquad \downarrow_{\mathcal{L$$

$$\overrightarrow{Con}(P) = c_1 \dots c_m$$

$$\mathcal{L}_1(N_i) = \mathcal{L}(c_i)$$

$$\vdash_{\Sigma'_1} N_i : \beta_i$$

$$\mathcal{L}_1(\beta_i) = \mathcal{L}(\tau_0(c_i))$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} \hat{P}[c_{1}, \dots, c_{m}] : s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}[\mathscr{L}(c_{1}), \dots, \mathscr{L}(c_{m})] : \mathscr{L}(s) \xrightarrow{\mathscr{H}_{\beta}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \downarrow_{\Sigma_{1}'} M : \gamma$$

$$\overrightarrow{Con}(P) = c_1 \dots c_m$$

$$\mathscr{L}_1(N_i) = \mathscr{L}(c_i)$$

$$\vdash_{\Sigma_1'} N_i : \beta_i$$

$$\mathscr{L}_1(\beta_i) = \mathscr{L}(\tau_0(c_i))$$

$$d_{\langle c_i, N_i, \beta_i \rangle} \in A_0'$$

$$\tau_0'(d_{\langle c_i, N_i, \beta_i \rangle}) = \operatorname{anti}(\tau_0(c_i), \beta_i)$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} \hat{P}[c_{1}, \ldots, c_{m}] : s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}[\mathscr{L}(c_{1}), \ldots, \mathscr{L}(c_{m})] : \mathscr{L}(s) \xrightarrow{\mathscr{H}_{\beta}} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} \qquad \qquad \uparrow_{\mathcal{L}_{1}} M : \gamma$$

$$\vdash_{\Sigma_{1}'} \hat{P}[N_{1}, \ldots, N_{m}] : \gamma \qquad \xrightarrow{\mathscr{H}_{\beta}} \qquad \vdash_{\Sigma_{1}'} M : \gamma$$

$$\overrightarrow{Cop}(P) = c_{1} \qquad c_{2}$$

$$\overrightarrow{Con}(P) = c_1 \dots c_m$$

$$\mathcal{L}_1(N_i) = \mathcal{L}(c_i)$$

$$\vdash_{\Sigma_1'} N_i : \beta_i$$

$$\mathcal{L}_1(\beta_i) = \mathcal{L}(\tau_0(c_i))$$

$$d_{\langle c_i, N_i, \beta_i \rangle} \in A_0'$$

$$\tau_0'(d_{\langle c_i, N_i, \beta_i \rangle}) = \operatorname{anti}(\tau_0(c_i), \beta_i)$$

$$y_1 : \tau_0(c_1), \dots, y_m : \tau_0(c_m) \vdash \hat{P}[y_1, \dots, y_m] : s$$

$$y_1 : \beta_1, \dots, y_m : \beta_m \vdash \hat{P}[y_1, \dots, y_m] : \gamma$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

$$\vdash_{\Sigma_{0}} \hat{P}[c_{1}, \dots, c_{m}] : s \xrightarrow{\mathscr{L}} \vdash_{\Sigma_{1}} \hat{P}[\mathscr{L}(c_{1}), \dots, \mathscr{L}(c_{m})] : \mathscr{L}(s) \xrightarrow{}_{\beta} \vdash_{\Sigma_{1}} \mathscr{L}_{1}(M) : \mathscr{L}(s)$$

$$\downarrow^{}_{\Sigma_{1}'} \hat{P}[N_{1}, \dots, N_{m}] : \gamma \xrightarrow{}_{\beta} \vdash_{\Sigma_{1}'} M : \gamma$$

$$\overrightarrow{Con}(P) = c_{1} \dots c_{m}$$

$$\mathscr{L}_{1}(N_{i}) = \mathscr{L}(c_{i})$$

$$\vdash_{\Sigma_{1}'} N_{i} : \beta_{i}$$

$$\mathscr{L}_{1}(\beta_{i}) = \mathscr{L}(\tau_{0}(c_{i}))$$

$$d_{\langle c_{i}, N_{i}, \beta_{i} \rangle} \in A'_{0}$$

$$\tau'_{0}(d_{\langle c_{i}, N_{i}, \beta_{i} \rangle}) = \operatorname{anti}(\tau_{0}(c_{i}), \beta_{i})$$

$$y_{1} : \tau_{0}(c_{1}), \dots, y_{m} : \tau_{0}(c_{m}) \vdash \hat{P}[y_{1}, \dots, y_{m}] : \gamma$$

$$y_{1} : \operatorname{anti}(\tau_{0}(c_{1}), \beta_{1}), \dots, y_{m} : \operatorname{anti}(\tau_{0}(c_{m}), \beta_{m}) \vdash \hat{P}[y_{1}, \dots, y_{m}] : s^{\gamma}$$

$$\mathcal{O}(\mathcal{G}) \cap \{ \mathcal{L}_1(M) \mid \vdash_{\Sigma_1'} M : \gamma \} \subseteq \mathcal{O}(\mathcal{G}_{\cap}).$$

Theorem. UNIVERSAL RECOGNITION reduces to NON-EMPTINESS.

$$M \in \mathcal{O}(\mathscr{G}) \iff \mathcal{O}(\mathscr{G}) \cap \{M\} \neq \emptyset$$

 $\iff \mathcal{O}(\mathscr{G}_{\cap}) \neq \emptyset$

Lemma. A singleton set is the image of a relabeling.

Lemma. A singleton set is the image of a relabeling.

Take $M \in \Lambda_{lin}(\Sigma)$ in long normal form with

$$\vdash_{\Sigma} M : \beta$$

Let $\overrightarrow{Con}(M) = a_1 \dots a_n$, and let $\widehat{M}[x_1, \dots, x_n] \in \Lambda_{lin}$ be such that $M = \widehat{M}[a_1, \dots, a_n]$.

Lemma. A singleton set is the image of a relabeling.

Take $M \in \Lambda_{lin}(\Sigma)$ in long normal form with

$$\vdash_{\Sigma} M : \beta$$

Let $\overrightarrow{Con}(M) = a_1 \dots a_n$, and let $\widehat{M}[x_1, \dots, x_n] \in \Lambda_{lin}$ be such that $M = \widehat{M}[a_1, \dots, a_n]$.

Let

$$x_1:\alpha_1,\ldots,x_n:\alpha_n\vdash \hat{M}[x_1,\ldots,x_n]:\alpha$$

be a principal pair for $\hat{M}[x_1, \ldots, x_n]$. Since $\hat{M}[x_1, \ldots, x_n]$ is linear, $\alpha_1, \ldots, \alpha_n \vdash \alpha$ is a balanced sequent.

Lemma. A singleton set is the image of a relabeling.

Take $M \in \Lambda_{lin}(\Sigma)$ in long normal form with

$$\vdash_{\Sigma} M : \beta$$

Let $\overrightarrow{Con}(M) = a_1 \dots a_n$, and let $\widehat{M}[x_1, \dots, x_n] \in \Lambda_{lin}$ be such that $M = \widehat{M}[a_1, \dots, a_n]$.

Let

$$x_1:\alpha_1,\ldots,x_n:\alpha_n\vdash \hat{M}[x_1,\ldots,x_n]:\alpha$$

be a principal pair for $\hat{M}[x_1, \ldots, x_n]$. Since $\hat{M}[x_1, \ldots, x_n]$ is linear, $\alpha_1, \ldots, \alpha_n \vdash \alpha$ is a balanced sequent.

By the Coherence Theorem,

$$\Gamma \vdash N : \alpha$$
 for some $\Gamma \subseteq \{x_1 : \alpha_1, \dots, x_n : \alpha_n\}$

implies
$$N =_{\beta\eta} \hat{M}[x_1, \dots, x_n]$$
.

Define
$$\Sigma'=\langle A',C',\tau'\rangle$$
:
$$A'=\text{ the set of atomic types in }\alpha_1,\ldots,\alpha_n,\alpha,$$

$$C'=\{a'_1,\ldots,a'_n\},\quad \textit{distinct fresh constants}$$

$$\tau'(a'_i)=\alpha_i.$$

Define $\Sigma' = \langle A', C', \tau' \rangle$: $A' = \text{the set of atomic types in } \alpha_1, \ldots, \alpha_n, \alpha,$ $C' = \{a'_1, \ldots, a'_n\}, \quad \textit{distinct fresh constants}$ $\tau'(a'_i) = \alpha_i.$

Define a relabeling $\mathcal{L} = \langle \sigma, \theta \rangle$ from Σ' to Σ :

 σ is such that $\sigma(\alpha_i) = \tau(a_i), \sigma(\alpha) = \beta$, $\theta(a_i') = a_i$.

Define $\Sigma' = \langle A', C', \tau' \rangle$:

A'= the set of atomic types in $\alpha_1,\ldots,\alpha_n,\alpha,$ $C'=\{a'_1,\ldots,a'_n\},$ distinct fresh constants $\tau'(a'_i)=\alpha_i.$

Define a relabeling $\mathcal{L} = \langle \sigma, \theta \rangle$ from Σ' to Σ :

 σ is such that $\sigma(\alpha_i) = \tau(a_i), \sigma(\alpha) = \beta$, $\theta(a_i') = a_i$.

 $\vdash_{\Sigma'} N : \alpha \text{ implies } N =_{\beta\eta} \hat{M}[a'_1, \ldots, a'_n].$

Define $\Sigma' = \langle A', C', \tau' \rangle$: $A' = \text{the set of atomic types in } \alpha_1, \dots, \alpha_n, \alpha,$ $C' = \{a'_1, \dots, a'_n\}, \quad \textit{distinct fresh constants}$

$$\tau'(a_i')=\alpha_i.$$

Define a relabeling $\mathcal{L} = \langle \sigma, \theta \rangle$ from Σ' to Σ :

$$\sigma$$
 is such that $\sigma(\alpha_i) = \tau(a_i), \sigma(\alpha) = \beta$, $\theta(a_i') = a_i$.

$$\vdash_{\Sigma'} N : \alpha \text{ implies } N =_{\beta\eta} \hat{M}[a'_1, \ldots, a'_n].$$

Gives a quick proof that second-order ACGs generate PTIME languages (Salvati 2005).