
Situations as strings

Tim Fernando

Trinity College Dublin

WoLLIC, Stanford
July 2006

Starting point A proposition is a set of worlds

Idea Sharpen world to situation (Barwise, . . .)

Tim Fernando Situations as strings

Situations big and small

natural language semantics world w event e
modality temporality

Carnap, Montague Davidson, . . .

L. Schubert on situations S is true in w e is of type S

logical semantics truth-conditional proof-theoretic
set-theoretic models constructive types

topology point-set point-less

w |= may-have-rained-yesterday iff (∃w ′Rw) w ′ |= rained-yesterday

w |= rained-yesterday iff (∃e v w) e : rained-yesterday

Tim Fernando Situations as strings

Below Propositions-as-types (PaT)

PaT says nothing special about

- what proofs of atomic formulas are

- time or change (inertia/frame problem: McCarthy and Hayes)

Subatomic semantics (T. Parsons)

the study of those “formulas in English” that are treated
as atomic formulas in most logical investigations of
English. The main hypothesis to be investigated is that
simple sentences of English contain subatomic
quantification over events.

Tense and aspect

(1) Pat had been gaining weight.

(2) Pat read the newspaper for/in an hour.

Tim Fernando Situations as strings

Case Study: Linear Temporal Logic (LTL)

Kripke frame (Z, <) with present 0 and temporal precedence <

i ∈ past iff i < 0

i ∈ future iff 0 < i

Valuation x : Z → 2P given a set P of atomic propositions

x |= p iff p ∈ x(0)

x |= next(ϕ) iff x1 |= ϕ

where x i = (λn ∈ Z) x(i + n)

x |= ϕ since ψ iff (∃i < 0) x i |= ψ and x j |= ϕ for i < j ≤ 0

Tim Fernando Situations as strings

From valuations (points) to strings (basic open sets)

x |= p ∧ next(q) iff p ∈ x(0) and q ∈ x(1)

iff now, p q v x

x |= p since q iff (∃s v x) s ∈ q p ∗ now, p︸ ︷︷ ︸
L(p since q)

Analyze ϕ as a language L(ϕ) ⊆ (2P∪{now})∗ so that

x |= ϕ iff (∃s v x) s ∈ L(ϕ)

Conflating strings with languages,

L(p ∧ previous(q)) = q now, p

L(p until q) = now, p p ∗ q

Tim Fernando Situations as strings

Infinite strings via lazy evaluation

x |= always>(ϕ) iff (∀i ≥ 0) x i |= ϕ

L(always>(p)) ≈ now,p p p p · · ·

= lim
i→∞

now,p p i

Finite approximations s ∈ (2Φ)∗ where Φ ⊇ P ∪ {now}

now,always>(p) now,p always>(p)

 now,p p always>(p)

...

 now,p p i always>(p) · · ·

Tim Fernando Situations as strings

Finite-state issues

fut(ϕ) �+ ϕ

ϕ until ψ ϕ + ψ

ϕ ∧ ψ ϕ,ψ

(p ∧ fut(q)) until r p, fut(q)
+

r

· · · ∩ p + r q + =
∑
i≥1

∑
1≤j≤i

p i r q j

non-regular!

Regular sublanguage p + r q and for p, fut(q)
+

r ,

p +(q, r + r �∗ q)

Tim Fernando Situations as strings

Constraints and subsumption

fut(ϕ) � ⇒ � ϕ +� fut(ϕ)

ϕ until ψ � ⇒ ϕ ψ + ϕ ϕ until ψ

always>(p) � ⇒ p always>(p)

s ∈ A ⇒ B iff any stretch of s that contains a string in A

contains one in B

Containment as subsumption D

a1 · · · an D b1 · · · bm iff n = m and ai ⊇ bi for 1 ≤ i ≤ n

p, q D p D p + q

LD L′ iff (∀s ∈ L)(∃s ′ ∈ L′) s D s ′

Tim Fernando Situations as strings

Regularity of constraints and conciseness

No (A ∧ ¬B)-counter-examples

A ⇒ B = (2Φ)∗(AD ∩ BD)(2Φ)∗

where

LD = {s | (∃s ′ ∈ L) s D s ′} .

Apply the constraint A ⇒ B to L

(A ⇒ B) ∩ LD

and take D-minimal strings.

LD = {s ∈ L | (∀s ′ ∈ L) s D s ′ implies s = s ′}
= L− {s | (∃s ′ ∈ L− {s}) s D s ′}

Fact. LD and LD are regular if L is.

Tim Fernando Situations as strings

Inertia and force (always finitarily)

ϕ is inertial if it persists unless forced not to

ϕ � ⇒ � ϕ + fϕ �

� ϕ ⇒ ϕ �+ fϕ �

fϕ ≈ there is a force against ϕ

fϕ ≈ there is a force for ϕ

(3) Pat stopped the car before it hit the tree.

· · · still(car) still(car) · · ·

(4) Pat left Dublin but is back.
?Pat has left Dublin but is back.

Tim Fernando Situations as strings

Coming to terms with discreteness

Prior 1967

the usefulness of systems of this sort does not depend on
any serious metaphysical assumption that time is discrete;
they are applicable in limited fields of discourse in which
we are concerned with what happens in a sequence of
discrete states, e.g. in the workings of a digital computer.

Discreteness

- in computation

- in planning

- from finiteness

To show: we can take time to be the real line

Tim Fernando Situations as strings

Events as strings, reduced

L(rain from dawn to dusk) = rain, dawn rain
+

rain, dusk

Is each string rain, dawn rain
i
rain, dusk a distinct event?

For i ≥ 1, reduce to rain, dawn rain rain, dusk

— “no time without change”
interval reduction ir(s) of s

ir(s) =


s if length(s) ≤ 1
ir(as ′) if s = aas ′

a ir(a′s ′) if s = aa′s ′ where a 6= a′

ir(�� p p p �� q �) = � p � q �

Tim Fernando Situations as strings

Events as inverse limits

Turn any finite sequence of real numbers

r1 < r2 < · · · < rn

into the string
� r1 � r2 � · · ·� rn �

to approximate the real line (<, <) by finite subsets X of <.

∩X (a1 · · · an) = (a1 ∩ X) · · · (an ∩ X)

∩{r2,r4}(� r1 � r2 � r3 � r4 �) = ��� r2 ��� r4 �

irX (s) = ir(∩X (s))

ir{r2,r4}(� r1 � r2 � r3 � r4 �) = � r2 � r4 �

lim
←−

(2X)∗ = {(sX)X∈Fin(<) ∈
∏

X∈Fin(<)

(2X)∗ |

sX ′ = irX ′(sX) for X ′ ⊆ X ∈ Fin(<)}

Tim Fernando Situations as strings

Natural versus programming languages

Dynamic semantics (DRT, DPL): not strictly computational
(negation = complement of the halting problem)

logical semantics truth-conditional proof-theoretic

topology point-set point-less (v)

formal verification model-checking theorem-proving

In nl semantics, access to suitable model/point is problematic.

No compiler for English.

Partiality is crucial — there’s nothing partial about a point.

Regard proofs as hypothetical (from a context of variable typings).

Tim Fernando Situations as strings

