New insights into Probabilistically Checkable Proofs (PCPs)

Eli Ben-Sasson Computer Science Department Technion

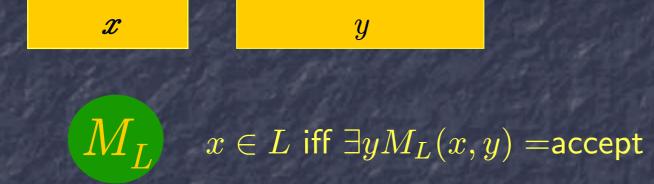
WoLLIC `06, Stanford, July 2006

Talk outline

Probabilistically checkable proofs (PCPs)
 Definition and statement of results
 Applications

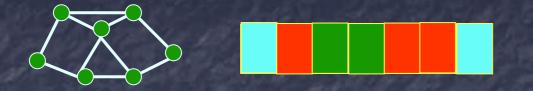
PCP building blocks
 Sublinear coding theory
 PCPs of proximity
 Soundness preservation/amplification

NP – Efficient proof verification



Efficiency: M_L runs in deterministic polynomial time in |x|Completeness: $x \in L \Rightarrow \exists y$, $M_L(x,y) = ext{accept}$ Soundness: $x \notin L \Rightarrow \forall y$, $M_L(x,y) = ext{reject}$

NP – Efficient proof verification

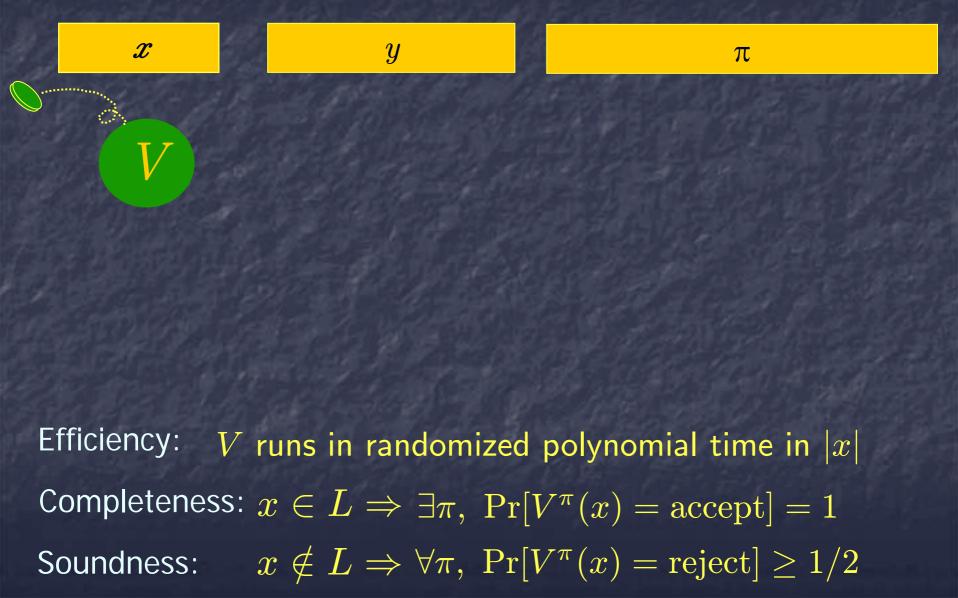


 M_L $x \in L$ iff $\exists y M_L(x, y) =$ accept

Efficiency: M_L runs in deterministic polynomial time in |x|Completeness: $x \in L \Rightarrow \exists y$, $M_L(x,y) = \text{accept}$ Soundness: $x \notin L \Rightarrow \forall y$, $M_L(x,y) = \text{reject}$ NP – Efficient proof verification $(x \lor y \lor \overline{z}) \land$ \vdots 0 1 1 0 1 1 1 $\land (\overline{x} \lor y \lor z)$ M_L $x \in L$ iff $\exists y M_L(x, y) = accept$

Efficiency: M_L runs in deterministic polynomial time in |x|Completeness: $x \in L \Rightarrow \exists y$, $M_L(x,y) = ext{accept}$ Soundness: $x \notin L \Rightarrow \forall y$, $M_L(x,y) = ext{reject}$

PCP – Super-Efficient Proof Verification



PCP – Super-Efficient Proof Verification

π

Y

T

Pros Cons • Few queries into proof π • Errors possible • Running time $polylog(\pi)$ Proofs longer Efficiency: V runs in randomized polynomial time in |x|Completeness: $x \in L \Rightarrow \exists \pi, Pr[V^{\pi}(x) = accept] = 1$ $x \notin L \Rightarrow \forall \pi, \ \Pr[V^{\pi}(x) = \operatorname{reject}] \ge 1/2$ Soundness:

Definition: PCP language class

We say $L \in PCP$ $\begin{bmatrix} time \leq t(n) \\ length \leq l(n) \\ query \leq q(n) \end{bmatrix}$ comp. $\geq c(n) \\ sound. \geq s(n) \end{bmatrix}$

If there exists verifier $V = V_L$ that on input x, |x| = n, runs in time t(n), makes q(n) quries to a proof of length l(n), such that:

Completeness: $x \in L \Rightarrow \exists \pi, \Pr[V^{\pi}(x) = \operatorname{accept}] \geq c(n)$ $x \notin L \Rightarrow \forall \pi, \Pr[V^{\pi}(x) = \operatorname{reject}] \geq s(n)$ Soundness:

PCP Theorems

Thm: $\mathbf{NP} \subseteq \mathrm{PCP}$ $\begin{bmatrix} \mathrm{time} & \leq n^{O(1)} \\ \mathrm{length} & \leq n^{O(1)} \\ \mathrm{query} & \leq O(1) \end{bmatrix}$ $\begin{array}{c} \mathrm{comp.} & \geq 1 \\ \mathrm{sound.} & \geq 1/2 \end{bmatrix}$

Two settings, two applications:Hardness of approximation [FGL+91]

PCP Theorems

Thm: $\mathbf{NP} \subseteq \mathrm{PCP}$ $\begin{bmatrix} \mathsf{time} & \leq \mathsf{polylog} \ n \\ \mathsf{length} & \leq \mathsf{n}^{O(1)} \\ \mathsf{query} & \leq \mathsf{t}(n) \end{bmatrix}$ comp. ≥ 1 1/2

Two settings, two applications:

- Hardness of approximation [FGL+91]
- Super-efficient proof/computation verification [BFL+91]

PCPs and Hardness of approximation [FGL+91]

Example [Hås97]: Thm: $\mathbf{NP} \subseteq PCP$ time $\leq n^{O(1)}$ comp. \geq 1- ϵ length $\leq n^{O(1)}$ sound. \geq 1/ ϵ query \leq 3 bits $1/2-\epsilon$ V computes XOR of 3 answer bits

List all possible verifier tests: $y_1 \oplus y_2 \oplus y_3 = 1$ $y_3 \oplus y_5 \oplus y_{20} = 0$

Completeness: $x \in L$: Exists y satisfying 1- ε fraction of constraints Soundness: $x \notin L$: Every y satisfies $\leq 1/2 - \varepsilon$ frac. of constraints

Corollary: NP-hard to 2-approximate MAX3LIN. NP-hard to 8/7-approximate MAX3SAT.

PCPs and Hardness of approximation [FGL+91]

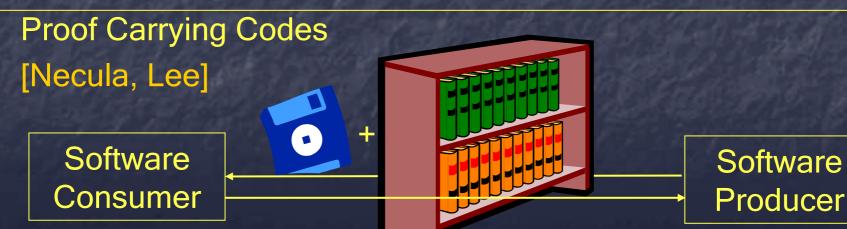
Thm: $\mathbf{NP} \subseteq \mathbf{PCP}$ $\begin{bmatrix} \mathsf{time} & \leq n^{O(1)} \\ \mathsf{length} & \leq n^{O(1)} \\ \mathsf{query} & \leq O(1) \end{bmatrix}$ $\begin{array}{c} \mathsf{comp.} & \geq 1 \\ \mathsf{sound.} & \geq 1/2 \\ \mathsf{ourlower} & 1/2 \\ \mathsf{ourlower} & \mathsf{comp.} & \geq 1/2 \\ \mathsf{ourlower} & \mathsf{ourlo$

Many hardness of approximation results

 [Hås96]
 Clique
 [Hås97]
 MAX3SAT
 8/7 - ε
 [Hås97]
 MAXCUT
 17/16
 [Fei98]
 Set Cover
 (1-ε) ln n
 [DR02]

...

PCPs and super-efficient verification [BFL+91] Thm [BS05; BGH+05]: NTIME(f(n)) \subseteq $ext{PCP} \left[egin{array}{cc} ext{time} &\leq f^{O(1)}(n) \ ext{length} &\leq f(n) \cdot ext{polylog}f(n) \ ext{query} &\leq ext{polylog}f(n) \end{array}
ight.$ $\begin{array}{ll} \mathsf{comp.} & \geq 1 \\ \mathsf{sound.} & \geq 1/2 \end{array}$ Not enough time to read input x(!)Settle for approximate soundness: If input *x* is not in *L*, then *V* rejects. far (in Hamming distance) from



PCPs and super-efficient verification [BFL+91] Thm [BS05; BGH+05]: NTIME(f(n)) \subseteq $ext{PCP} egin{bmatrix} ext{time} &\leq f^{O(1)}(n) \ ext{length} &\leq f(n) \cdot ext{polylog} f(n) \ ext{query} &\leq ext{polylog} f(n) \end{bmatrix}$ $\begin{array}{ll} \mathsf{comp.} & \geq 1 \\ \mathsf{sound.} & \geq 1/2 \end{array}$ Not enough time to read input x(!)Settle for approximate soundness: If input *x* is not in *L*, then *V* rejects. far (in Hamming distance) from

[Kil92], [Mic94]

Software

Producer

Proof Carrying Codes

[Necula, Lee]

Software

Consumer

Talk outline

Probabilistically checkable proofs (PCPs)
 Definition and statement of results
 Applications

PCP building blocks
 Sublinear coding theory
 PCPs of proximity
 Soundness preservation/amplification

PCP Blueprint

T

Want to verify that y witnesses x is in L
Encode y, "spreading" its information. Minimal requirements from code:

Locally testable
Locally decodable

Problem: Too many queries/too little soundness
Solution: Proof composition

π

Y

Error Correcting Codes

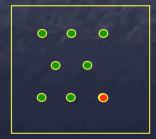
Encoding: $E:\{0,1\}^k \to \{0,1\}^n$, $C=\{E(m): m \text{ in } \{0,1\}^k\}$

E

Rate = k/n, blowup = 1/rate

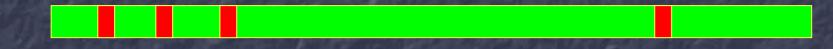
Distance: $\delta(x, y) = \Pr_{i \in [n]} [x_i \neq y_i]$ $\delta(C) = \min_{x \neq y \in C} \{\delta(x, y)\}$ $\delta_C(w) = \min_{x \in C} \{\delta(w, x)\}$

Message space= $\{0, 1\}^k$



Code space= $\{0, 1\}^n$

Sub-linear coding algorithms Running time = o(n), typically poly(log n)



n bits

Want "good" code (large rate and <u>distance</u>) s.t.
 <u>Sub-linear time for encoding</u> ith bit

 Sub-linear distance estimation locally testable code (LTC)

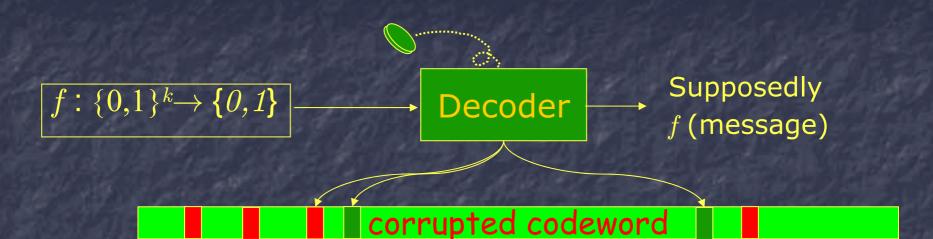
Sub-linear decoding of one message-bit locally decodable code (LDC)

Locally Testable Code Tester accept/reject corrupted codeword

t(n)=o(n), think of polylog n
q(n)=o(n), think of O(1)
Comp.: w ∈ C ⇒ Pr[Tester^w=accept] = 1
Sound.: δ_C(w)>δ₀ ⇒ Pr[Tester^w=reject] > .99

Def: Implicit in [BFL+91], explicit in [Aro94; Spi95; FS95]

Locally Decodable Code



Let F be family of Boolean functions on k bits
F is loc. dec. from E if t(n), q(n)=o(n) and for all f in F, Comp.: δ(w,E(m))<δ₀ ⇒ Pr[Dec.^w(f)=f(m)] ≥ .99
Remark: No soundness requirement
Def: Implicit in [BFL+91; Sud92], explicit in [KT00]

LTCs and LDCs – brief comparison

 Applications (other than PCPs and coding theory)
 LTCs: Property testing
 LDCs: Derandomization, Cryptography, Private Information Retrieval

Rate comparison for q=O(1)
 LTCs: n = k ⋅ polylog k [BS05;Din06]
 LDCs: n = exp(k^ε) [BIK+02]

LTCs – results

Positive (constructions)

- Hadamard codes [BLR90; BCH+96]
- Reed-Muller codes [BFL+91; ALM+92; AS97; RS97 ...]
- Derandomized Hadamard/Reed-Muller testers [GS02; BSV+03; BGH+04; SW04; BS05; RM06]
- Tensor codes [BS04; DSW06]
- Negative (lower bounds)
 - *q*=2 [BGS03]
 - LDPC expander codes [BHR03]
 - Cyclic codes [BSS05]
 - Two-wise tensor [Val05; CR05]
 - Very little known...

LDCs - results

Positive (lower bounds) Hadamard codes [BLR90] Reed-Muller codes [BF90] Improvements [Amb97; IK99; BI01; BIKR02] Negative (lower bounds) [Man98; KT00; GKS+02; Oba02] • Exponential lower bounds for q=2 [KdW03] Very little known ...

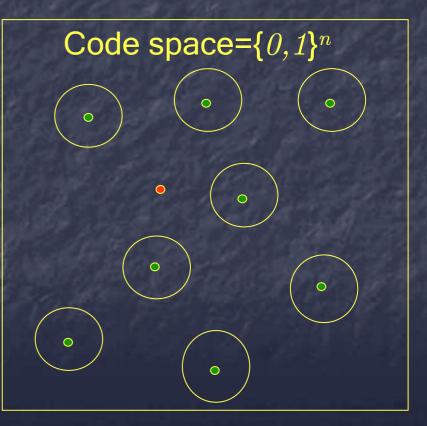
LTCs, LDCs and PCP Blueprint

Given x as input, request E(y), where

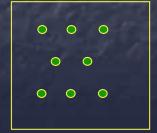
- *E* is Locally testable
- "Interesting" F is locally decodable from E

Use F to locally test that y witnesses x is in L

E



Message space= $\{0, 1\}^k$



Example: Hadamard-Walsh based PCP

Given x as input, request E(y), where

• *E* is Locally testable

• "Interesting" F is locally decodable from EUse F to locally test that y witnesses x is in L

E is a LTC, with *3* queries [BLR90] Every linear function is Loc. Dec. from *E*, with 2 queries

Verifying *x* is in *L* can be reduced to decoding a constant number of linear functions [ALM+91]

Problem: rate... $E: \{0,1\}^k \to \{0,1\}^{2^k}$

m)	
	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{array}$

m

Talk outline

Probabilistically checkable proofs (PCPs)
 Definition and statement of results
 Applications

PCP building blocks
 Sublinear coding theory
 PCPs of proximity
 Soundness preservation/amplification

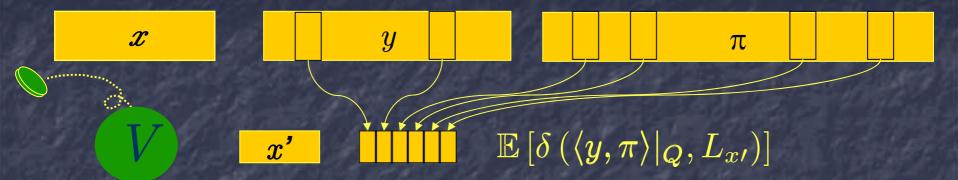
Proof Composition [AS91]

Y

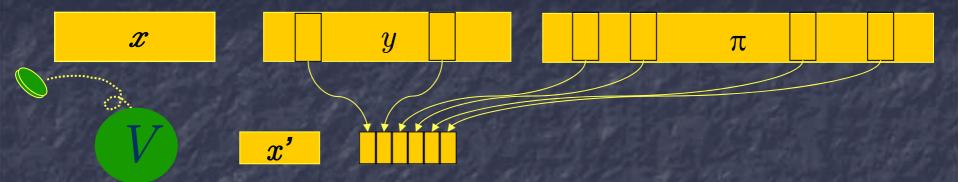
T

Problems If q(n) = O(1), s(n)=1/2, then $l(n)=\exp(n^2)$ If $l(n)=\operatorname{poly}(n)$, q(n)=O(1), then s(n)=1/nIf $l(n)=\operatorname{poly}(n)$, s(n)=1/2, then $q(n)=\operatorname{polylog}(n)$ Solution Proof composition

 π

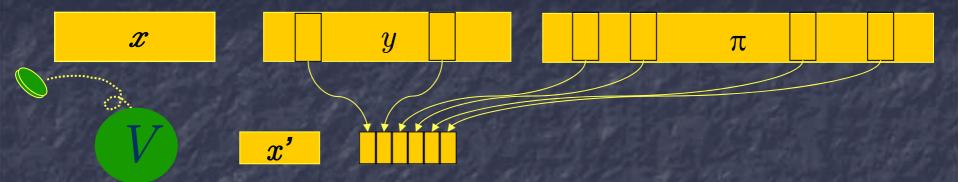


Let $L_2 = \{(x,y) : M_L(x,y) = \text{accept}\}$ Let $L_x = \{y : M_L(x,y) = \text{accept}\}$ A PCPP-verifier V verifies that y is close to L_x



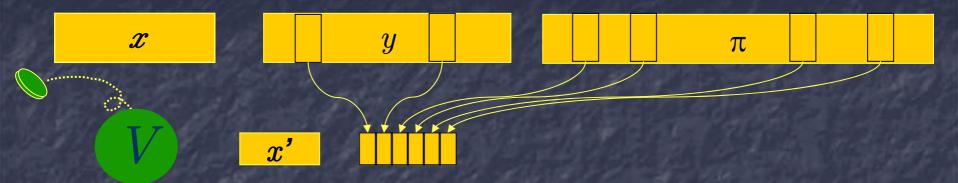
 $\begin{array}{c|c} \text{Definition:} \\ \text{We say } L_2 \in \text{PCPP} \\ \textbf{uery} & \leq l(n) \\ \text{query} & \leq q(n) \end{array} \begin{array}{c} \text{comp.} & =1 \\ \text{sound.} & \geq .99 \end{array} \right]$

If there exists a nonadaptive PCPP verifier *V* running in time t(n), making q(n) quries to a proof of length l(n), such that: Completeness: $y \in L_x \Rightarrow \exists \pi \mathbb{E} \left[\delta \left(\langle y, \pi \rangle |_Q, L_{x'} \right) \right] = 0$ Robust Soundness: $\forall \pi \mathbb{E} \left[\delta \left(\langle y, \pi \rangle |_Q, L_{x'} \right) \right] \ge 0.99 \cdot \delta(y, L_x)$



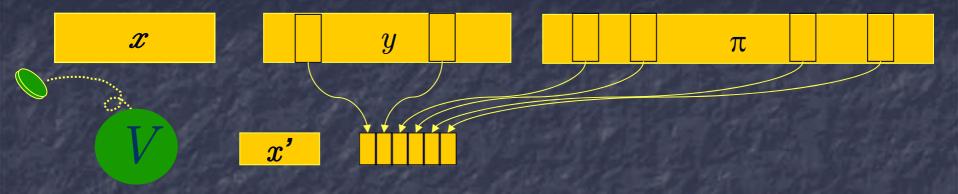
Theorem [BS05; Din06]: If $L \in \mathbf{NTIME}(f(n))$, then $L_2 \in \mathrm{PCPP}$ time $\leq f^{O(1)}(n)$ length $\leq f(n) \cdot \mathrm{polylog}f(n)$ comp.query $\leq O(1)$

Completeness: $y \in L_x \Rightarrow \exists \pi \mathbb{E} \left[\delta \left(\langle y, \pi \rangle |_Q, L_{x'} \right) \right] = 0$ Robust Soundness: $\forall \pi \mathbb{E} \left[\delta \left(\langle y, \pi \rangle |_Q, L_{x'} \right) \right] \ge 0.99 \cdot \delta(y, L_x)$



PCPPs - History

- Holographic proofs PCPPs where assignment y is encoded. [BFL+91]
- PCPP implicit in low-degree tests [RS92; ALM+91]
- PCPPs special case of "PCP Spot Checkers" [EKR99]
- PCPP extension of Property Testing [RS92; GGR96]



Applications of PCPPs

PCPPs yield PCPs

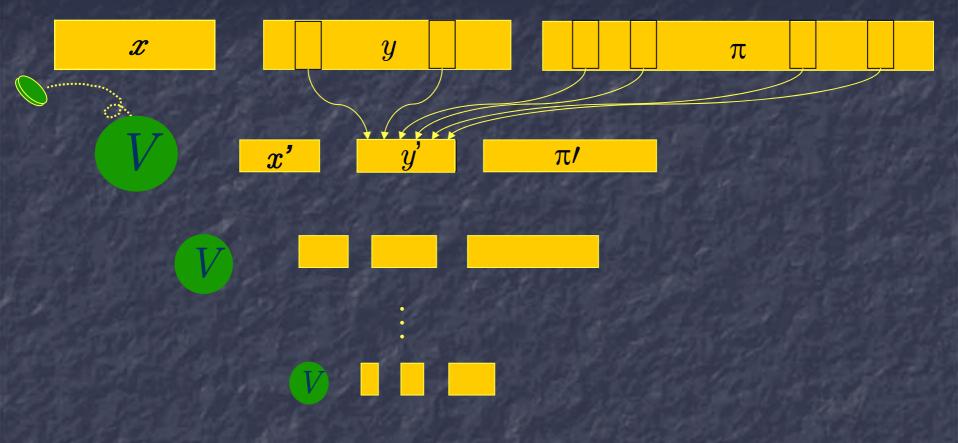
Simpler proof composition, essential in

- Shorter PCPs [BGH+05; BS05; BGH+06]
- PCPs via gap amplification [Din06]

Coding

- Locally Testable Codes [GS02;BSV+03;BGH+05...]
- Relaxed Locally Decodable Codes [BGH05+]
- Property testing
 - Every property is locally testable (with a little help)
 - Lower bounds for tolerant testing [FF05]

PCPP Composition



Completeness: $y \in L_x \Rightarrow \exists \pi \mathbb{E} \left[\delta \left(\langle y, \pi \rangle |_Q, L_{x'} \right) \right] = 0$ Soundness: $\forall \pi \mathbb{E} \left[\delta \left(\langle y, \pi \rangle |_Q, L_{x'} \right) \right] \ge 0.99 \cdot \delta(y, L_x)$

Talk outline

Probabilistically checkable proofs (PCPs)
 Definition and statement of results
 Applications

PCP building blocks
 ✓ Sublinear coding theory
 ✓ PCPs of proximity
 Soundness preservation/amplification

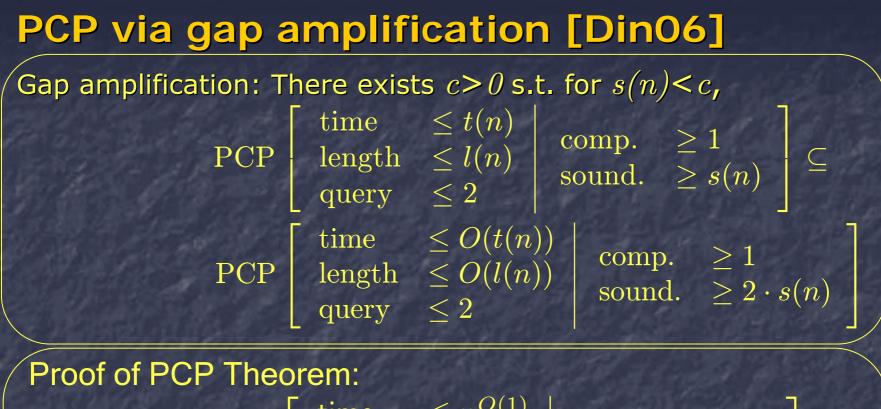
Putting it all together

Algebraic approach

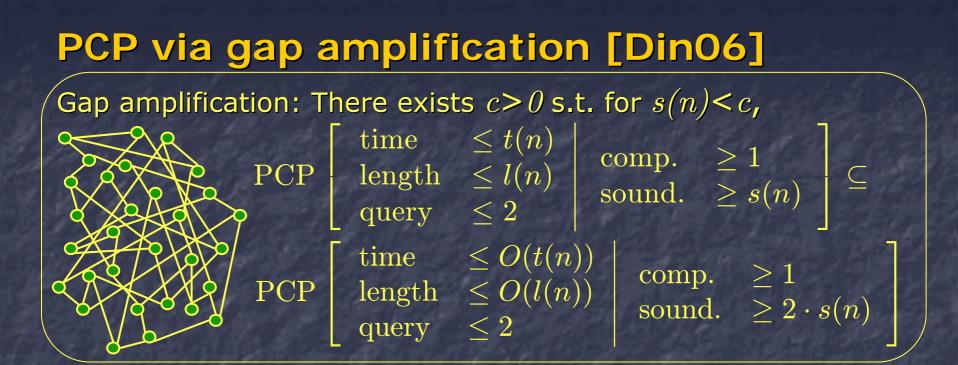
- Encode using LTCs/LDCs based on polynomials, specifically, Reed-Solomon and Reed-Muller codes
- Large q, large s
- PCPP Composition to reduce q, while preserving s

Expander-based approach [Din06]

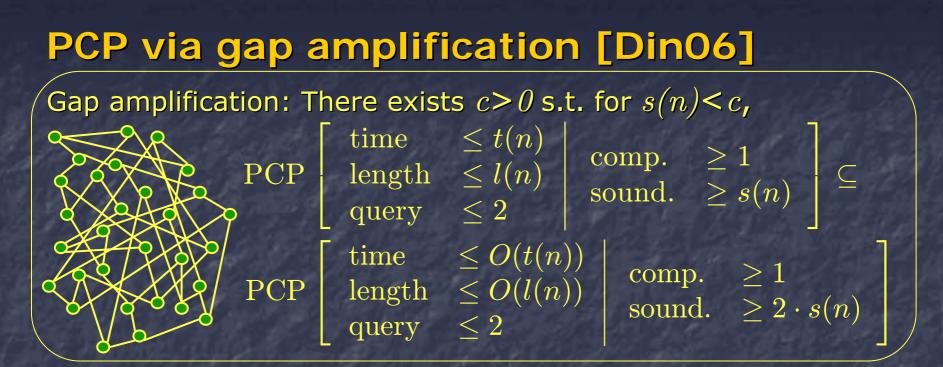
- Constant q, small s
- Randomness-efficient repetition to boost s (but q also increases)
- Encode using simple, rate-inefficient LTCs/LDCs
- PCPP Composition to reduce q, while preserving s



$$\begin{split} \mathbf{NP} \subseteq \mathrm{PCP} \begin{bmatrix} \mathsf{time} & \leq n^{O(1)} \\ \mathsf{length} & \leq n^{O(1)} \\ \mathsf{query} & \leq 2 \end{bmatrix} & \mathsf{comp.} & \geq 1 \\ \mathsf{sound.} & \geq 1/n \end{bmatrix} \\ & \mathsf{Apply} \ \mathsf{gap} \ \mathsf{amplification} \ \mathsf{log} \ n \ \mathsf{times...} \\ & \subseteq \mathrm{PCP} \begin{bmatrix} \mathsf{time} & \leq n^{O(1)} \\ \mathsf{length} & \leq n^{O(1)} \\ \mathsf{length} & \leq n^{O(1)} \\ \mathsf{query} & \leq 2 \end{bmatrix} & \mathsf{comp.} & \geq 1 \\ \mathsf{sound.} & \geq c \end{bmatrix} \quad \mathsf{QE} \end{split}$$



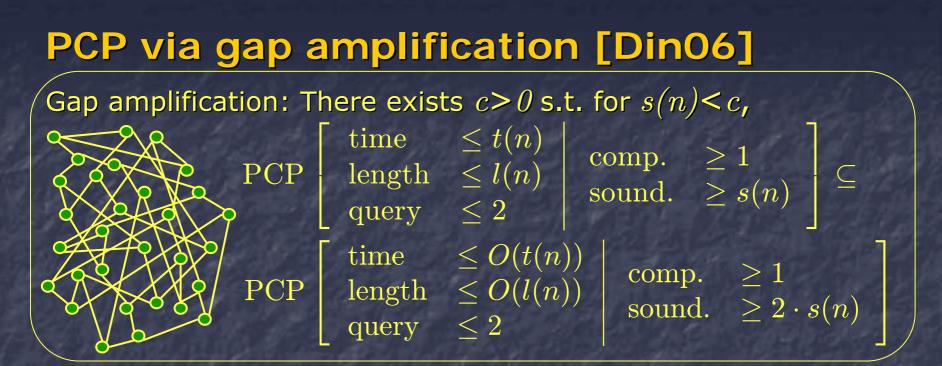
Constraint graph Vertices: Proof symbols Edges: constraints over pair of queries $x \in L \Rightarrow$ All constraints can be satisfied $x \notin L \Rightarrow$ At least s(n) frac. of constraints reject



Boosting soundness – 1st attempt

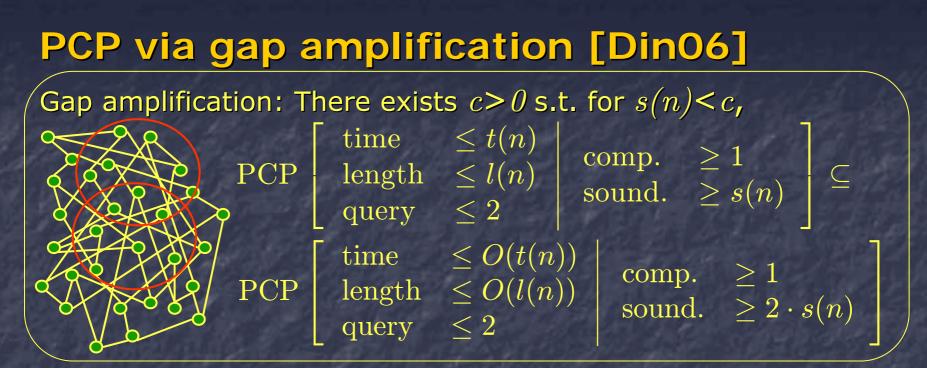
- Query 100 edges (sequential repetition)
 x ∈ L ⇒ all constraints can be satisfied
- $x \notin L \Rightarrow$ at least 10s(n) frac. of constraints reject

Problem: q is large



Boosting soundness – 2nd attempt

- Encode ass. to every 100-tuple of vertices using LDC/LTC
- Pick 100 edges, make 2 queries to get ass. to endpoints
- Use PCPPs to prove codewords satisfy all constraints
- q=2, c=1, sound. > 9s(n)
- Problems: (1) $l=n^{100}$, (2) consistency



Boosting soundness – 3rd (final) attempt

- W.I.o.g. *G* is constant degree regular expander graph
- Encode assignment to ball of radius 100 around every v using LDC/LTC
- Pick *u*,*v* at distance 150, query balls around *u*,*v*
- Use PCPPs to prove balls agree and satisfy intersection
- $q=2, c=1, \text{ sound.} > 4s(n), l=O(n) (\deg(G)=O(1))$
- Problem: consistency. Solution: G is an expander... QED

Summing up

PCPs are fundamental computational objects used in: Hardness of approximation Super-efficient verification of proofs Main building blocks: Locally testable and decodable codes PCPP composition Soundness amplification/preservation Open question: $\begin{array}{ll} \text{time} & \leq n^{O(1)} \\ \text{length} & \leq n \log^{O(1)} n \end{array}$? $NP \subseteq PCP$ $\begin{array}{ll} \text{comp.} & \geq 1 - \epsilon \\ \text{sound.} & \geq 1/2 - \epsilon \end{array}$ query < 3 bits

New insights into Probabilistically Checkable Proofs (PCPs)

Eli Ben-Sasson Computer Science Department Technion

Thank you

WoLLIC `06, Stanford, July 2006