
New insights into
Probabilistically Checkable

Proofs (PCPs)

Eli Ben-Sasson
Computer Science Department
Technion

WoLLIC `06, Stanford, July 2006

Talk outlineTalk outline

Probabilistically checkable proofs (PCPs)Probabilistically checkable proofs (PCPs)
Definition and statement of resultsDefinition and statement of results
ApplicationsApplications

PCP building blocksPCP building blocks
SublinearSublinear coding theorycoding theory
PCPs of proximityPCPs of proximity
Soundness preservation/amplificationSoundness preservation/amplification

ML

x y

NP NP –– Efficient proof verificationEfficient proof verification

Completeness:

Soundness: x /∈ L⇒
x ∈ L⇒

∀y,
∃y,

Efficiency:

ML(x, y) = accept

ML(x, y) = reject

ML runs in deterministic polynomial time in |x|

x ∈ L iff ∃yML(x, y) =accept

ML

y

NP NP –– Efficient proof verificationEfficient proof verification

Completeness:

Soundness: x /∈ L⇒
x ∈ L⇒

∀y,
∃y,

Efficiency:

ML(x, y) = accept

ML(x, y) = reject

ML runs in deterministic polynomial time in |x|

x ∈ L iff ∃yML(x, y) =accept

ML

y

NP NP –– Efficient proof verificationEfficient proof verification

Completeness:

Soundness: x /∈ L⇒
x ∈ L⇒

∀y,
∃y,

Efficiency:

(x ∨ y ∨ z̄) ∧
...
∧ (x̄ ∨ y ∨ z)

ML(x, y) = accept

ML(x, y) = reject

0 1 1 0 1 1 1

ML runs in deterministic polynomial time in |x|

x ∈ L iff ∃yML(x, y) =accept

V

x π

Completeness:

Soundness:

∃π, Pr[V π(x) = accept] = 1

∀π, Pr[V π(x) = reject] ≥ 1/2

Efficiency:

PCP PCP –– SuperSuper--Efficient Proof VerificationEfficient Proof Verification

y

V runs in randomized polynomial time in |x|

x /∈ L⇒
x ∈ L⇒

V

x π

Completeness:

Soundness:

∃π, Pr[V π(x) = accept] = 1

∀π, Pr[V π(x) = reject] ≥ 1/2

Efficiency:

PCP PCP –– SuperSuper--Efficient Proof VerificationEfficient Proof Verification

Pros

• Few queries into proof π

• Running time polylog(π)

Cons

• Errors possible

• Proofs longer

y

V runs in randomized polynomial time in |x|

x /∈ L⇒
x ∈ L⇒

Definition: PCP language classDefinition: PCP language class

Completeness:

Soundness: x /∈ L⇒
x ∈ L⇒

If there exists verifierV=VL that on input x, |x|=n, runs in
time t(n), makes q(n) quries to a proof of length l(n), such
that:

∀π, Pr[V π(x) = reject] ≥ s(n)
∃π, Pr[V π(x) = accept] ≥ c(n)

L ∈ PCP
⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ q(n)

¯̄̄̄
¯ comp. ≥ c(n)
sound. ≥ s(n)

⎤⎦¯We say

PCP TheoremsPCP Theorems

Thm: NP ⊆ PCP
⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ q(n)

¯̄̄̄
¯̄ comp. ≥ c(n)
sound. ≥ s(n)

⎤⎦

Two settings, two applications:

• Hardness of approximation [FGL+91]

O(1)

nO(1)

nO(1)
1

1/2

PCP TheoremsPCP Theorems

Thm: NP ⊆ PCP
⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ q(n)

¯̄̄̄
¯̄ comp. ≥ c(n)
sound. ≥ s(n)

⎤⎦

Two settings, two applications:

• Hardness of approximation [FGL+91]

• Super-efficient proof/computation verification [BFL+91]

O(1)

nO(1)

nO(1)
1

1/2

polylog n

nO(1)

t(n)

PCPs and Hardness of approximation PCPs and Hardness of approximation [FGL+91][FGL+91]

V V computes XOR of computes XOR of 33 answer bitsanswer bits

List all possible verifier tests:List all possible verifier tests:

Thm: NP ⊆ PCP
⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ q(n)

¯̄̄̄
¯̄ comp. ≥ c(n)
sound. ≥ s(n)

⎤⎦Example [H[Håås97]s97]::

y1⊕ y2⊕ y3=1

y3⊕ y5 ⊕ y20=0

M

Completeness: x ∈ L: Exists y satisfying 1-ε fraction of constraints

Soundness: x ∉ L: Every y satisfies ≤ 1/2-ε frac. of constraints

CorollaryCorollary: NP: NP--hard to 2hard to 2--approximate MAX3LIN.approximate MAX3LIN.

NPNP--hard to 8/7hard to 8/7--approximate MAX3SAT.approximate MAX3SAT.

3 bits

nO(1)

nO(1)
1-ε

1/2-ε

PCPs and Hardness of approximation PCPs and Hardness of approximation [FGL+91][FGL+91]

Many hardness of approximation resultsMany hardness of approximation results
[[HHåås96s96]] CliqueClique nn11--εε

[[HHåås97s97]] MAX3SATMAX3SAT 8/7 8/7 -- εε
[[HHåås97s97]] MAXCUTMAXCUT 17/1617/16
[Fei98][Fei98] Set CoverSet Cover (1(1-- εε)) lnln nn
[DR02][DR02] Vertex coverVertex cover 1.361.36
……

Thm: NP ⊆ PCP
⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ q(n)

¯̄̄̄
¯̄ comp. ≥ c(n)
sound. ≥ s(n)

⎤⎦
O(1)

nO(1)

nO(1)
1

1/2

Not enough time to read input Not enough time to read input xx (!)(!)

Settle for approximate soundness: Settle for approximate soundness:

If input If input xx is not in is not in LL, then , then VV rejects.rejects.
far (in Hamming distance) from

PCPs and superPCPs and super--efficient verification [BFL+91]efficient verification [BFL+91]

Software
Consumer

Software
Producer

+

Proof Carrying Codes

[Necula, Lee]

Thm [BS05; BGH+05]: NTIME(f(n)) ⊆

PCP

⎡⎣ time ≤ fO(1)(n)
length ≤ f (n) · polylogf (n)
query ≤ polylogf (n)

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ 1/2

⎤⎦

Not enough time to read input Not enough time to read input xx (!)(!)

Settle for approximate soundness: Settle for approximate soundness:

If input If input xx is not in is not in LL, then , then VV rejects.rejects.
far (in Hamming distance) from

PCPs and superPCPs and super--efficient verification [BFL+91]efficient verification [BFL+91]

Software
Consumer

Software
Producer

+

[Kil92], [Mic94]

Proof Carrying Codes

[Necula, Lee]

Thm [BS05; BGH+05]: NTIME(f(n)) ⊆

PCP

⎡⎣ time ≤ fO(1)(n)
length ≤ f (n) · polylogf (n)
query ≤ polylogf (n)

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ 1/2

⎤⎦

Talk outlineTalk outline

Probabilistically checkable proofs (PCPs)Probabilistically checkable proofs (PCPs)
Definition and statement of resultsDefinition and statement of results
ApplicationsApplications

PCP building blocksPCP building blocks
SublinearSublinear coding theorycoding theory
PCPs of proximityPCPs of proximity
Soundness preservation/amplificationSoundness preservation/amplification

PCP BlueprintPCP Blueprint

Want to verify that Want to verify that yy witnesses witnesses xx is in is in LL
Encode Encode yy, , ““spreadingspreading”” its information. Minimal its information. Minimal
requirements from code:requirements from code:

Locally testableLocally testable
Locally decodableLocally decodable

Problem: Too many queries/too little soundnessProblem: Too many queries/too little soundness
Solution: Proof compositionSolution: Proof composition

V

x πy

Error Correcting CodesError Correcting Codes

δC(w) = minx∈C{δ(w, x)}

Distance:

Message space={0,1}k

Code space={0,1}n

Encoding: E:{0,1}k→ {0,1}n, C={E(m): m in {0,1}k}

Rate = k/n, blowup = 1/rate

E

δ(x, y) = Pri∈[n][xi 6= yi]
δ(C) = minx6=y∈C{δ(x, y)}

Want Want ““goodgood”” code (large rate and distance) code (large rate and distance) s.ts.t..
SubSub--linear time for encoding linear time for encoding iithth bitbit

SubSub--linear distance estimationlinear distance estimation

SubSub--linear decoding of one messagelinear decoding of one message--bitbit

n bits

locally testable code (LTC)

locally decodable code (LDC)

Running time = o(n), typically poly(logn)

SubSub--linear coding algorithmslinear coding algorithms

Locally Testable CodeLocally Testable Code

Tester

corrupted codeword

Def: Implicit in [BFL+91], explicit in [Aro94; Spi95; FS95]

t(nt(n))==o(no(n)), think of , think of polylogpolylog nn

q(nq(n)=)=o(no(n)), think of , think of O(1)O(1)

Comp. : Comp. : ww ∈∈ CC ⇒⇒ Pr[TesterPr[Testerww=accept] = 1=accept] = 1

Sound.: Sound.: δδC C ((ww)>)>δδ00 ⇒⇒ Pr[TesterPr[Testerww=reject] > .99=reject] > .99

accept/reject

Locally Decodable CodeLocally Decodable Code

Decoder

corrupted codeword

Def: Implicit in [BFL+91; Sud92], explicit in [KT00]

f : {0,1}k→ {0,1} Supposedly
f (message)

Let Let FF be family of Boolean functions on be family of Boolean functions on kk bitsbits
FF is loc. is loc. decdec. from . from EE if if t(nt(n)), , q(nq(n)=)=o(no(n)) and and
for all for all ff in in FF,,
Comp.: Comp.: δδ((ww,,E(mE(m)))<)<δδ00 ⇒⇒ Pr[Dec.Pr[Dec.ww((ff)=)=f(mf(m))]] ≥≥ .99.99

Remark: No soundness requirementRemark: No soundness requirement

LTCsLTCs and and LDCsLDCs –– brief comparisonbrief comparison

Applications (other than PCPs and coding theory)Applications (other than PCPs and coding theory)
LTCsLTCs: Property testing : Property testing
LDCsLDCs: : DerandomizationDerandomization, Cryptography, Private , Cryptography, Private
Information RetrievalInformation Retrieval

Rate comparison for Rate comparison for q=O(1)q=O(1)
LTCsLTCs: : nn = = kk ·· polylogpolylog kk [BS05;Din06][BS05;Din06]

LDCsLDCs: : nn = = exp(exp(kkεε)) [BIK+02][BIK+02]

LTCsLTCs –– results results

Positive (constructions)Positive (constructions)
HadamardHadamard codes codes [BLR90; BCH+96][BLR90; BCH+96]
ReedReed--Muller codes Muller codes [BFL+91; ALM+92; AS97; [BFL+91; ALM+92; AS97;
RS97 RS97 ……]]
DerandomizedDerandomized HadamardHadamard/Reed/Reed--Muller testers Muller testers
[GS02; BSV+03; BGH+04; SW04; BS05; RM06][GS02; BSV+03; BGH+04; SW04; BS05; RM06]

Tensor codes Tensor codes [BS04; DSW06][BS04; DSW06]
Negative (lower bounds)Negative (lower bounds)

q=2q=2 [BGS03][BGS03]
LDPC expander codes LDPC expander codes [BHR03][BHR03]
Cyclic codes Cyclic codes [BSS05][BSS05]
TwoTwo--wise tensor wise tensor [Val05; CR05][Val05; CR05]
Very little knownVery little known……

LDCsLDCs -- resultsresults

Positive (lower bounds)Positive (lower bounds)
HadamardHadamard codes codes [BLR90][BLR90]
ReedReed--Muller codes Muller codes [BF90][BF90]
Improvements Improvements [Amb97; IK99; BI01; BIKR02][Amb97; IK99; BI01; BIKR02]

Negative (lower bounds)Negative (lower bounds)
[Man98; KT00; GKS+02; Oba02][Man98; KT00; GKS+02; Oba02]
Exponential lower bounds forExponential lower bounds for q=2q=2 [KdW03][KdW03]

Very little known Very little known ……

LTCsLTCs, , LDCsLDCs and PCP Blueprintand PCP Blueprint

Message space={0,1}k

Code space={0,1}n

E

Given Given xx as input, request as input, request E(yE(y)), where, where
EE is Locally testable is Locally testable
““InterestingInteresting”” FF is locally decodable from is locally decodable from EE

Use Use FF to locally test that to locally test that yy witnesses witnesses xx is in is in LL

Example: Example: HadamardHadamard--Walsh based PCPWalsh based PCP

E : {0, 1}k → {0, 1}2k

.0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

1
1
0
1

0
1
0
1
1
0
1
0
1
0
1
0
0
1
0
1

=

mE(m)

Given Given xx as input, request as input, request E(yE(y)), where, where
EE is Locally testable is Locally testable
““InterestingInteresting”” FF is locally decodable from is locally decodable from EE

Use Use FF to locally test that to locally test that yy witnesses witnesses xx is in is in LL

E is a LTC, with 3 queries [BLR90]

Every linear function is Loc. Dec. from E,
with 2 queries

Verifying x is in L can be reduced to
decoding a constant number of linear
functions [ALM+91]

Problem: rate...

Talk outlineTalk outline

Probabilistically checkable proofs (PCPs)Probabilistically checkable proofs (PCPs)
Definition and statement of resultsDefinition and statement of results
ApplicationsApplications

PCP building blocksPCP building blocks
SublinearSublinear coding theorycoding theory
PCPs of proximityPCPs of proximity
Soundness preservation/amplificationSoundness preservation/amplification

Proof Composition [AS91]Proof Composition [AS91]

Problems
If q(n) = O(1), s(n)=1/2, then l(n)=exp(n2)

If l(n)=poly(n), q(n)=O(1), then s(n)=1/n

If l(n)=poly(n), s(n)=1/2, then q(n)=polylog(n)

Solution
Proof composition

V

x y π

PCPs of Proximity/Assignment testers PCPs of Proximity/Assignment testers
[BGH+05; DR05][BGH+05; DR05]

Let L2 = {(x,y) : ML(x,y) = accept}

Let Lx = {y : ML(x,y) = accept}

A PCPP-verifier V verifies that y is close to Lx

x y π

V x’ hy,πi|QE [δ (hy,πi|Q, Lx0)]

If there exists a nonadaptive PCPP verifier V running in time
t(n), making q(n) quries to a proof of length l(n), such that:

We say

PCPs of Proximity/Assignment testers PCPs of Proximity/Assignment testers
[BGH+05; DR05][BGH+05; DR05]

x y π

x’

Completeness:y ∈ Lx ⇒ ∃π E [δ (hy,πi|Q, Lx0)] = 0
Robust Soundness: ∀π E [δ (hy,πi|Q, Lx0)] ≥ 0.99 · δ(y, Lx)

L2 ∈ PCPP
⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ q(n)

¯̄̄̄
¯ comp. = 1
sound. ≥ .99

⎤⎦¯
Definition:

V

Theorem [BS05; Din06]:

PCPs of Proximity/Assignment testers PCPs of Proximity/Assignment testers
[BGH+05; DR05][BGH+05; DR05]

Completeness:y ∈ Lx ⇒ ∃π E [δ (hy,πi|Q, Lx0)] = 0
Robust Soundness: ∀π E [δ (hy,πi|Q, Lx0)] ≥ 0.99 · δ(y, Lx)

If L ∈ NTIME(f(n)), then

L2 ∈ PCPP
⎡⎣ time ≤ fO(1)(n)
length ≤ f (n) · polylogf (n)
query ≤ O(1)

¯̄̄̄
¯̄ comp. = 1
sound. ≥ .99

⎤⎦

x y π

x’V

PCPPsPCPPs -- HistoryHistory
Holographic proofs Holographic proofs -- PCPPsPCPPs where assignment y is encoded. where assignment y is encoded.
[BFL+91] [BFL+91]
PCPP PCPP -- implicit in lowimplicit in low--degree tests degree tests [RS92; ALM+91][RS92; ALM+91]
PCPPsPCPPs -- special case of special case of ““PCP Spot CheckersPCP Spot Checkers”” [EKR99][EKR99]
PCPP PCPP –– extension of Property Testing extension of Property Testing [RS92; GGR96][RS92; GGR96]

PCPs of Proximity/Assignment testers PCPs of Proximity/Assignment testers
[BGH+05; DR05][BGH+05; DR05]

x y π

x’V

Applications of Applications of PCPPsPCPPs
PCPPsPCPPs yield PCPsyield PCPs
Simpler proof composition, essential inSimpler proof composition, essential in

Shorter PCPs Shorter PCPs [BGH+05; BS05; BGH+06][BGH+05; BS05; BGH+06]
PCPs via gap amplification PCPs via gap amplification [Din06][Din06]

CodingCoding
Locally Testable Codes Locally Testable Codes [GS02;BSV+03;BGH+05[GS02;BSV+03;BGH+05……]]
Relaxed Locally Decodable Codes Relaxed Locally Decodable Codes [BGH05+][BGH05+]

Property testingProperty testing
Every property is locally testable (with a little help)Every property is locally testable (with a little help)
Lower bounds for tolerant testing Lower bounds for tolerant testing [FF05][FF05]

PCPs of Proximity/Assignment testers PCPs of Proximity/Assignment testers
[BGH+05; DR05][BGH+05; DR05]

x y π

x’V

PCPP CompositionPCPP Composition

Completeness:

Soundness:

y ∈ Lx ⇒ ∃π E [δ (hy,πi|Q, Lx0)] = 0
∀π E [δ (hy,πi|Q, Lx0)] ≥ 0.99 · δ(y, Lx)

...

V

V

x y π

V x’ π0y’

Talk outlineTalk outline

Probabilistically checkable proofs (PCPs)Probabilistically checkable proofs (PCPs)
Definition and statement of resultsDefinition and statement of results
ApplicationsApplications

PCP building blocksPCP building blocks
SublinearSublinear coding theorycoding theory
PCPs of proximityPCPs of proximity
Soundness preservation/amplificationSoundness preservation/amplification

Putting it all togetherPutting it all together

Algebraic approachAlgebraic approach
Encode using Encode using LTCs/LDCsLTCs/LDCs based on polynomials, based on polynomials,
specifically, Reedspecifically, Reed--Solomon and ReedSolomon and Reed--Muller codesMuller codes

Large Large qq, large , large ss

PCPP Composition to reducePCPP Composition to reduce qq, while preserving , while preserving ss

ExpanderExpander--based approach based approach [Din06][Din06]

Constant Constant qq, small , small ss

RandomnessRandomness--efficient repetition to boost efficient repetition to boost ss (but (but qq also also
increases)increases)
Encode using simple, rateEncode using simple, rate--inefficient inefficient LTCs/LDCsLTCs/LDCs

PCPP Composition to reduce PCPP Composition to reduce qq, while preserving , while preserving ss

PCP via gap amplification [Din06]PCP via gap amplification [Din06]
Gap amplification: There exists Gap amplification: There exists cc>>00 s.ts.t. for . for s(ns(n))<<cc,,

NP ⊆ PCP
⎡⎣ time ≤ nO(1)
length ≤ nO(1)
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ 1/n

⎤⎦

PCP

⎡⎣ time ≤ O(t(n))
length ≤ O(l(n))
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ 2 · s(n)

⎤⎦
PCP

⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ s(n)

⎤⎦ ⊆

Apply gap amplification log n times…

⊆ PCP
⎡⎣ time ≤ nO(1)
length ≤ nO(1)
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ c

⎤⎦

Proof of PCP Theorem:

QED

PCP via gap amplification [Din06]PCP via gap amplification [Din06]

PCP

⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ s(n)

⎤⎦ ⊆
PCP

⎡⎣ time ≤ O(t(n))
length ≤ O(l(n))
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ 2 · s(n)

⎤⎦

Gap amplification: There exists Gap amplification: There exists cc>>00 s.ts.t. for . for s(ns(n))<<cc,,

Constraint graph
Vertices: Proof symbols
Edges: constraints over pair of queries
x ∈ L ⇒ All constraints can be satisfied
x ∉ L ⇒ At least s(n) frac. of constraints reject

Boosting soundness – 1st attempt
Query 100 edges (sequential repetition)
x ∈ L ⇒ all constraints can be satisfied
x ∉ L ⇒ at least 10s(n) frac. of constraints reject

Problem: q is large

PCP via gap amplification [Din06]PCP via gap amplification [Din06]
Gap amplification: There exists Gap amplification: There exists cc>>00 s.ts.t. for . for s(ns(n))<<cc,,

PCP

⎡⎣ time ≤ O(t(n))
length ≤ O(l(n))
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ 2 · s(n)

⎤⎦
PCP

⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ s(n)

⎤⎦ ⊆

PCP via gap amplification [Din06]PCP via gap amplification [Din06]
Gap amplification: There exists Gap amplification: There exists cc>>00 s.ts.t. for . for s(ns(n))<<cc,,

PCP

⎡⎣ time ≤ O(t(n))
length ≤ O(l(n))
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ 2 · s(n)

⎤⎦
PCP

⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ s(n)

⎤⎦ ⊆

Boosting soundness – 2nd attempt
Encode ass. to every 100-tuple of vertices using LDC/LTC
Pick 100 edges, make 2 queries to get ass. to endpoints
Use PCPPs to prove codewords satisfy all constraints
q=2, c=1, sound. > 9s(n)

Problems: (1) l=n100, (2) consistency

PCP via gap amplification [Din06]PCP via gap amplification [Din06]
Gap amplification: There exists Gap amplification: There exists cc>>00 s.ts.t. for . for s(ns(n))<<cc,,

PCP

⎡⎣ time ≤ O(t(n))
length ≤ O(l(n))
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ 2 · s(n)

⎤⎦
PCP

⎡⎣ time ≤ t(n)
length ≤ l(n)
query ≤ 2

¯̄̄̄
¯̄ comp. ≥ 1
sound. ≥ s(n)

⎤⎦ ⊆

Boosting soundness – 3rd (final) attempt
W.l.o.g. G is constant degree regular expander graph
Encode assignment to ball of radius 100 around every v
using LDC/LTC
Pick u,v at distance 150, query balls around u,v

Use PCPPs to prove balls agree and satisfy intersection
q=2, c=1, sound. > 4s(n), l=O(n) (deg(G)=O(1))
Problem: consistency. Solution: G is an expander… QED

Summing upSumming up

PCPs are fundamental computational objects PCPs are fundamental computational objects
used in:used in:

Hardness of approximationHardness of approximation
SuperSuper--efficient verification of proofsefficient verification of proofs

Main building blocks:Main building blocks:
Locally testable and decodable codesLocally testable and decodable codes
PCPP composition PCPP composition
Soundness amplification/preservation Soundness amplification/preservation

Open question:Open question:

NP ⊆ PCP
⎡⎣ time ≤ nO(1)
length ≤ n logO(1) n
query ≤ 3 bits

¯̄̄̄
¯̄ comp. ≥ 1− ²
sound. ≥ 1/2− ²

⎤⎦?

New insights into
Probabilistically Checkable

Proofs (PCPs)

Eli Ben-Sasson
Computer Science Department
Technion

WoLLIC `06, Stanford, July 2006

Thank you

	Talk outline
	PCP – Super-Efficient Proof Verification
	PCP – Super-Efficient Proof Verification
	PCP Theorems
	PCP Theorems
	PCPs and Hardness of approximation [FGL+91]
	PCPs and Hardness of approximation [FGL+91]
	PCPs and super-efficient verification [BFL+91]
	PCPs and super-efficient verification [BFL+91]
	PCP Blueprint
	Error Correcting Codes
	Sub-linear coding algorithms
	Locally Testable Code
	Locally Decodable Code
	LTCs and LDCs – brief comparison
	LTCs – results
	LDCs - results
	LTCs, LDCs and PCP Blueprint
	Example: Hadamard-Walsh based PCP
	Proof Composition [AS91]
	PCPs of Proximity/Assignment testers [BGH+05; DR05]
	PCPs of Proximity/Assignment testers [BGH+05; DR05]
	PCPs of Proximity/Assignment testers [BGH+05; DR05]
	PCPP Composition	
	Putting it all together
	PCP via gap amplification [Din06]
	Summing up

