
Logics with Explicit
Evidence

Melvin Fitting
City University of New York

New York City Logic Conference, May 2005WoLLIC July, 2005
Florianópolis, Brazil

1

The Pre-History

Give meaning to Intuitionistic Logic.

Do so in the spirit of the subject.

That is, keep it as constructive as you can.

2

Provability Semantics

BHK (Brouwer, Heyting, Kolmogorov)

What an intuitionist means by truth is
what a classical mathematician means

by provable.

3

In More Detail
1. A proof of X ∧ Y is a proof of X and a proof

of Y

2. A proof of X ∨ Y is a choice of one to prove,
together with a proof of the one chosen

3. A proof of X ⊃ Y is a construction
converting any proof of X into a proof of Y

4. A proof of ⊥ does not exist

1

4

Gödel Contributes
Provable has the following features,

on top of classical logic:

• BP ⊃ P

• B(P ⊃ Q) ⊃ (BP ⊃ BQ)

• BP ⊃ BBP

• Conclude BP from P

Of course, this is S4.

1

5

Intuitionistic logic embeds into this.
Translate every subformula X by BX.

Unfortunately, this abstract notion of
provable cannot be captured by
a provability formula, Bew, of
Peano arithmetic.

(Gödel 1933)

6

• Provability in arithmetic is captured by the
modal logic GL

• BUT

• Intuitionistic logic embeds into S4

• S4 captures our intuitions about
‘mathematical provability’

7

• Maybe S4 is not about provability in
arithmetic

• Maybe S4 is about explicit proofs

• 1938, but not known until rediscovered
independently

Gödel Again

8

LP – Logic of Proofs

Introduce a family of proof polynomials,
terms that are ‘modal like’

and are intended to represent
explicit proofs

(Artemov 1995)

9

Proof Polynomials
• variables, x, y, . . . , intended to range over

proofs

• constants, a, b, . . . , for axioms
(more generally, for obvious facts)

• proof checker, if t proves A then !t proves that
t proves A

• union, + joins two proofs together

• application, if s proves A ⊃ B and t proves
A then s · t proves B

10

Formulas

• Propositional letters are formulas

• ‘Falsehood’ is a formula

• If X is a formula and t is a proof polynomial
then t:X is a formula

• Build up using implication (with other
connectives defined, say)

11

The Axiom System

Axioms:

• all classical tautologies

• t:(X ⊃ Y) ⊃ (s:X ⊃ (t · s):Y)

• t:X ⊃ X

• t:X ⊃!t:t:X

• s:X ⊃ (s + t):X t:X ⊃ (s + t):X

12

Rules

• Modus Ponens

• c:X where X is an axiom
and c is a proof constant

13

Internalization
Derived Inference Rule:

X

p:X

For some proof polynomial p

In fact, p ‘reflects’ the proof of X

This corresponds to the
necessitation rule of S4

14

Sketch of Proof

By induction on length of
axiomatic derivation.

15

• A (an axiom)

• X X⊃Y

Y

•
c:A

(A an axiom)

• c:A

• u:X
t:(X ⊃ Y)
t:(X ⊃ Y) ⊃ (u:X ⊃ (t · u):Y)
u:X ⊃ (t · u):Y
(t · u):Y

• c:A
c:A ⊃!c:c:A
!c:c:A

16

A Very Simple Example

c:((P ∧Q) ⊃ P)

c:((P ∧Q) ⊃ P) ⊃
(x:(P ∧Q) ⊃ (c · x):P)

x:(P ∧Q) ⊃ (c · x):P

!c:c:((P ∧Q) ⊃ P)

d:[c:((P ∧Q) ⊃ P) ⊃
(x:(P ∧Q) ⊃ (c · x):P)]

(d·!c):(x:(P ∧Q) ⊃ (c · x):P)

17

The Full Version

If
s1:A1, . . . , sn:An, B1, . . . , Bk ! X

then for some proof polynomial t,

s1:A1, . . . , sn:An, x1:B1, . . . , xk:Bk !
t(s1, . . . , sn, x1, . . . , xk):X

18

Realization Theorem

Every LP theorem is an ‘analysis’ of an S4 theorem
and

every S4 theorem has an LP ‘analysis’.

19

LP Embeds in S4
Replace every proof polynomial by .

Every LP axiom becomes an S4 axiom.
Every LP rule application becomes one in S4.

An LP proof becomes an S4 proof.

An LP theorem becomes an S4 theorem.

This is the easy direction.

20

S4 embeds in LP
1. !(X ⊃ Y) ⊃ (!X ⊃ !Y) 1. x:(X ⊃ Y) ⊃ (y:X ⊃ (x · y):Y)

2. ![!(X ⊃ Y) ⊃ (!X ⊃ !Y)] 2. c:[x:(X ⊃ Y) ⊃ (y:X ⊃ (x · y):Y)]

3. ![!(X ⊃ Y) ⊃ (!X ⊃ !Y)] ⊃
[!!(X ⊃ Y) ⊃ !(!X ⊃ !Y)]

3. c:[x:(X ⊃ Y) ⊃ (y:X ⊃ (x · y):Y)] ⊃
[!x:x:(X ⊃ Y) ⊃ (c·!x):(y:X ⊃ (x · y):Y)]

4. !!(X ⊃ Y) ⊃ !(!X ⊃ !Y) 4. !x:x:(X ⊃ Y) ⊃ (c·!x):(y:X ⊃ (x · y):Y)

5. !(X ⊃ Y) ⊃ !!(X ⊃ Y) 5. x:(X ⊃ Y) ⊃!x:x:(X ⊃ Y)

6. !(X ⊃ Y) ⊃ !(!X ⊃ !Y) 6. x:(X ⊃ Y) ⊃ (c·!x):(y:X ⊃ (x · y):Y)

21

An Example Using +
1. !X ⊃ (!X ∨!Y)

2. !(!X ⊃ (!X ∨!Y))

3. !X ⊃ !!X

4. !!X ⊃ !(!X ∨!Y)

5. !X ⊃ !(!X ∨!Y)

6. !Y ⊃ (!X ∨!Y)

7. !(!Y ⊃ (!X ∨!Y))

8. !Y ⊃ !!Y

9. !!Y ⊃ !(!X ∨!Y)

10. !Y ⊃ !(!X ∨!Y)

11. (!X ∨!Y) ⊃ !(!X ∨!Y)

1. x:X ⊃ (x:X ∨ y:Y)

2. a:(x:X ⊃ (x:X ∨ y:Y))

3. x:X ⊃!x:x:X

4. !x:x:X ⊃ (a·!x):(x:X ∨ y:Y)

5. x:X ⊃ (a·!x):(x:X ∨ y:Y)

6. y:Y ⊃ (x:X ∨ y:Y)

7. b:(y:Y ⊃ (x:X ∨ y:Y))

8. y:Y ⊃!y:y:Y

9. !y:y:Y ⊃ (b·!y):(x:X ∨ y:Y)

10. y:Y ⊃ (b·!y):(x:X ∨ y:Y)

x:X ⊃ (a·!x + b·!y):(x:X ∨ y:Y)

y:Y ⊃ (a·!x + b·!y):(x:X ∨ y:Y)

11. (x:X ∨ y:Y) ⊃ (a·!x + b·!y):(x:X ∨ y:Y)

22

Realization Theorem
(Artemov, 1995)

LP realizes S4, as you just saw.

Negative  occurrences become variables.
Other occurrences are computed from them.

Original method of proof is constructive.
By induction on complexity of cut-free Gentzen proof,

use it to generate a realization.

23

A Simplified Example
to illustrate the proof

I’ll use tableaus instead of Gentzen systems.

Use signed formulas, TX, and FX

Branch closure if both TA and FA
or if T⊥

I’ll show where the last example came from.

24

Classical Rules

T X ∨ Y
T X | T Y

F X ∨ Y
F X
F Y

T X ⊃ Y
F X | T Y

F X ⊃ Y
T X
T Y

etc.

25

F

Modal Rules

T !X
T X

S
F !X

S!

F X

where S! = {T !Z | T !Z ∈ S}

The F !X rule is a branch modification rule.

26

S4 Proof
F (!A ∨!B) ⊃ !(!A ∨!B) 1.
T !A ∨!B 2.
F !(!A ∨!B) 3.

!
!

!
!!

"
"

"
""

T !A 4.
T !A 6.
F !A ∨!B 7.
F !A 8.
F !B 9.
F A 10.
T !A 11.
T A 12.

T !B 5.
T !B 13.
F !A ∨!B 14.
F !A 15.
F !B 16.
F B 17.
T !B 18.
T B 19.

27

Next Step

Label the ! operator involved in a T ! rule
application with a variable, and follow this
occurrence throughout the tableau.

Do this for each rule application.

28

F (x:A ∨!B) ⊃ !(!A ∨!B) 1.
T x:A ∨!B 2.
F !(!A ∨!B) 3.

!
!

!
!!

"
"

"
""

T x:A 4.
T x:A 6.
F !A ∨!B 7.
F !A 8.
F !B 9.
F A 10.
T x:A 11.
T A 12.

T !B 5.
T !B 13.
F !A ∨!B 14.
F !A 15.
F !B 16.
F B 17.
T !B 18.
T B 19.

F (x:A ∨ y:B) ⊃ !(!A ∨!B) 1.
T x:A ∨ y:B 2.
F !(!A ∨!B) 3.

!
!

!
!!

"
"

"
""

T x:A 4.
T x:A 6.
F !A ∨!B 7.
F !A 8.
F !B 9.
F A 10.
T x:A 11.
T A 12.

T y:B 5.
T y:B 13.
F !A ∨!B 14.
F !A 15.
F !B 16.
F B 17.
T y:B 18.
T B 19.

29

Then
Pick a lowest application of F !.

We went from {T !A1, . . . T !An, . . . , F !X}
to {T !A1, . . . T !An, F X}
Turn this over, and axiomatize. A proof of
(!A1 ∧ . . . ∧!An) ⊃ X yields a proof of
(!A1 ∧ . . . ∧!An) ⊃ !X.

Since the rule application was lowest, each !Ai
has been realized, and there is an LP proof of
(s1:A1 ∧ . . . ∧ sn:An) ⊃ X.

By Internalization, there is a t such that LP proves
(s1:A1 ∧ . . . ∧ sn:An) ⊃ t(s1, . . . , sn):X.

Use t(s1, . . . , sn) to realize ! in the F ! rule
application.

30

F (x:A ∨ y:B) ⊃ !(!A ∨!B) 1.
T x:A ∨ y:B 2.
F !(!A ∨!B) 3.

!
!

!
!!

"
"

"
""

T x:A 4.
T x:A 6.
F !A ∨!B 7.
F !A 8.
F !B 9.
F A 10.
T x:A 11.
T A 12.

T y:B 5.
T y:B 13.
F !A ∨!B 14.
F !A 15.
F !B 16.
F B 17.
T y:B 18.
T B 19.

Rule
application

31

Turn
x:A ⊃ A

into
x:A ⊃?:A.

In this case, just use x. (The actual internal-
ization algorithm produces something more com-
plex.) Fill this in throughout the tableau.

32

F (x:A ∨ y:B) ⊃ !(x:A ∨!B) 1.
T x:A ∨ y:B 2.
F !(x:A ∨!B) 3.

!
!

!
!!

"
"

"
""

T x:A 4.
T x:A 6.
F x:A ∨!B 7.
F x:A 8.
F !B 9.
F A 10.
T x:A 11.
T A 12.

T y:B 5.
T y:B 13.
F x:A ∨!B 14.
F x:A 15.
F !B 16.
F B 17.
T y:B 18.
T B 19.

33

Similarly on the right branch.

F (x:A ∨ y:B) ⊃ !(x:A ∨ y:B) 1.
T x:A ∨ y:B 2.
F !(x:A ∨ y:B) 3.

!
!

!
!!

"
"

"
""

T x:A 4.
T x:A 6.
F x:A ∨ y:B 7.
F x:A 8.
F y:B 9.
F A 10.
T x:A 11.
T A 12.

T y:B 5.
T y:B 13.
F x:A ∨ y:B 14.
F x:A 15.
F y:B 16.
F B 17.
T y:B 18.
T B 19.

34

Now look at rule application to 3, on left branch.

Originally F !(!A ∨!B) (3), T !A(4)
became T !A (6), F !A ∨!B (7).

With our replacements the problem is, solve for
? to derive

x:A ⊃?:(x:A ∨ y:B)

from
x:A ⊃ (x:A ∨ y:B)

35

The internalization algorithm gives

? = (c·!x)

where c is a proof constant for x:A ⊃ (x:A∨y:B)

But doing the same thing on the right branch
gives

(d·!y)

where d is a proof constant for y:B ⊃ (x:A∨y:B)

So we use (c·!x) + (d·!y).

36

F (x:A ∨ y:B) ⊃ ((c·!x) + (d·!y)):(x:A ∨ y:B) 1.
T x:A ∨ y:B 2.
F ((c·!x) + (d·!y)):(x:A ∨ y:B) 3.

!
!

!
!!

"
"

"
""

T x:A 4.
T x:A 6.
F x:A ∨ y:B 7.
F x:A 8.
F y:B 9.
F A 10.
T x:A 11.
T A 12.

T y:B 5.
T y:B 13.
F x:A ∨ y:B 14.
F x:A 15.
F y:B 16.
F B 17.
T y:B 18.
T B 19.

37

So, a realization for

(!A ∨!B) ⊃ !(!A ∨!B)

is

(x:A ∨ y:B) ⊃ ((c·!x) + (d·!y)):(x:A ∨ y:B)

38

Warning label:

This was a simplified example.
It gives the idea,

not the full proof.

39

Connection to
Arithmetic

(Artemov 1995)

Translate into the language of arithmetic.
Propositional letters become arithmetic sentences.

Proof polynomials become numbers.
Operation symbols become the corresponding operations

on Gödel numbers.
t:X becomes the arithmetic translate “t proves X”

X is a theorem of LP if and only if all translates are theorems
of Peano Arithmetic

40

Gödel’s Program
Completed

• Intuitionistic logic embeds in S4.

• S4 embeds in LP, intuitionistic truth becomes
informal provability.

• LP embeds in arithmetic, proof terms
become real proofs.

• The BHK idea has become concrete.

41

LP Complexity

Let’s begin with the familiar,
and work through to LP.

42

Classical

Logic Derivability Problem is
Classical Propositional Logic co-NP-complete

43

Intuitionistic

Logic Derivability Problem is
Classical Propositional Logic co-NP-complete

Intuitionistic Logic PSPACE-complete

44

Modal

Logic Derivability Problem is
Classical Propositional Logic co-NP-complete

Intuitionistic Logic PSPACE-complete
S4 PSPACE-complete

45

LP

Logic Derivability Problem is
Classical Propositional Logic co-NP-complete

Intuitionistic Logic PSPACE-complete
S4 PSPACE-complete

LP Π
p
2(-complete?)

46

The Constant
Specification Matters

Constant Specification Each Constant Derivability Problem
Proves for LPCS is

Full All axioms Πp
2 Kuznets, 2000

Schematically injective† One scheme Πp
2-complete Milnikel, 2005

Schematic Finite number of schemes Πp
2 Kuznets, 2000

Empty No axioms co-NP-complete folk result
Finite Finite number of axioms co-NP-complete folk result

Neither finite nor schematic decidable set of axioms may be undecidable Kuznets, 2004

† And axiomatically appropriate so that all axioms are evidenced.

47

And the LP family?
The solution of Gödel’s problem

was the start of a project,
not a finish.

Just as there is a family of modal logics,
and a family of substructural logics,

there is a family of LP logics.

48

Common Features
All LP logics have some common features:

• Structured proof terms, proof polynomials,
evidence terms.

• Internalization, so proofs using the logic have
counterparts within the logic.

• Embedding in some (multi-) modal logic.
Thus providing a detailed analysis of that
logic’s modal operator(s).

49

And Arithmetic?
The arithmetic completeness theorem
was an important motivation for LP.

A connection with arithmetic becomes
less important as we move further

from LP itself.

If we have it, fine, but if not, not.
Other motivations come in,

as you will see.

50

LP–
A Logic of Explicit Evidence

Think of LP as a logic of knowledge.
Evidence must be explicit.

A proof is one kind of evidence.
What if there are other kinds?

51

The Problem of
Logical Omniscience

In standard logics of knowledge:

Axiom:

K(X ⊃ Y) ⊃ (KX ⊃ KY)

Rule:
X

KX

52

• The axiom implies knowledge is closed
under consequence.

• The rule implies we know all logical truths,
including huge tautologies.

• K does not represent knowledge, but
something more like knowable.

53

A Solution – Explicit
Evidence

If all knowledge is knowledge for a reason,
the complexity of reasons provides
machinery to bound omniscience.

But, if LP is to be a logic,
and not just a tool,

we need a semantics.

Let’s use LP.

54

LP Semantics

Kripke-style
Fitting (2004),

based on an earlier semantics
Mkrtychev (1997).

55

Frames

A frame is a structure 〈G,R〉, where G is a
non-empty set of states, and R is a binary ac-
cessibility relation on G.

Accessibility is transitive and reflexive, so we
have S4 frames.

56

Possible Evidence

A proof polynomial counts as
possible evidence for some formulas,

but not for others, at states.

Possible evidence is not certain evidence.
Think of it as an expression of relevance.

57

Evidence Conditions
E is an evidence function on 〈G,R〉 if, for all

proof polynomials s and t, for all formulas X and
Y , and for all Γ, ∆ ∈ G:

1. Application (X ⊃ Y) ∈ E(Γ, s) and
X ∈ E(Γ, t) implies Y ∈ E(Γ, s · t).

2. Monotonicity ΓR∆ implies
E(Γ, t) ⊆ E(∆, t).

3. Proof Checker X ∈ E(Γ, t) implies
t:X ∈ E(Γ, !t).

4. Sum E(Γ, s) ∪ E(Γ, t) ⊆ E(Γ, s + t).

58

Weak Models
M = 〈G,R, E ,V〉 is a weak model. (V maps

propositional letters too sets of worlds.) Here are
the truth conditions:

1.M, Γ ! P for a propositional variable P pro-
vided Γ ∈ V(P).

2.M, Γ ! ⊥ never holds—written Γ %! ⊥.

3.M, Γ ! (X ⊃ Y) if and only if M, Γ %! X
or M, Γ ! Y .

4.M, Γ ! (t:X) if and only if X ∈ E(Γ, t) and,
for every ∆ ∈ G with ΓR∆, M, ∆ ! X.

59

Key Condition

Condition 4 intuitively says that
t:X is true at a state provided

X is potentially known,
and t serves as possible evidence for X

at that state.

60

Constant Specifications

A constant specification C maps proof con-
stants to sets of formulas. It is required that any
formula having a proof constant with respect to
C must be true at every possible world of every
weak LP model.

M = 〈G,R, E ,V〉 meets the constant spec-
ification C provided C(c) ⊆ E(Γ, c), for each
Γ ∈ G.

61

Weak Completeness

Pick a constant specification, and use these
constants in ‘necessitation’ rule applications.

X has an axiomatic proof
iff

X is valid in all weak models.

62

Fully Explanatory
A weak LP model M is Fully Explanatory

provided that, whenever M, ∆ ! X for every
∆ ∈ G such that ΓR∆, then for some proof
polynomial t we have M, Γ ! (t:X).

Intuitively, if X is knowable at a state, there is
a reason for X.

If M is a weak LP model, and if the Fully
Explanatory condition is also met, thenM is a
strong LP model.

63

Strong Completeness

If the constant specification provides
constants for exactly the axioms:

X is valid in all weak models
iff

X is valid in all strong models
iff

X has an axiomatic proof

64

The Semantics Applied

As usual in logic,
results may have both

semantic and proof-theoretic arguments.

Each provides its own insights.

65

The S4 Embedding

An S4 validity becomes an LP validity
on some replacement of  occurrences

by proof polynomials.

This also has a semantic proof.
(Fitting 2004)

66

The proof using cut-elimination provides
an algorithm.

The semantic proof provides an
analysis of the role of +.

It turns out there is a version of
the S4 embedding result that

does not use +, but
the translation is more complex.

67

Embedding without +

The formula ϕ is fixed for now.

A is any assignment of a proof polynomial vari-
able to each subformula of ϕ of the form !X
that is in a negative position (with different vari-
ables to different subformulas)

68

Define a map vA on subformulas of ϕ.

If P is an atomic subformula of ϕ,
vA(P) = {P}.
vA(X ⊃ Y) =
{X ′ ⊃ Y ′ | X ′ ∈ vA(X) and Y ′ ∈ vA(Y)}.

If !X is a negative subformula of ϕ,
vA(!X) = {x:X ′ | A(!X) = x

and X ′ ∈ vA(X)}.

If !X is a positive subformula of ϕ,
vA(!X) = {t:(X1 ∨ . . . ∨Xn) |
X1, . . . , Xn ∈ vA(X)
and t is any proof polynomial}.

69

For the strong canonical model without +:

1. If ψ is a positive subformula of ϕ andM, Γ !LP−¬vA(ψ) then M, Γ "!S4 ψ.

2. If ψ is a negative subformula of ϕ andM, Γ !LP−
vA(ψ) then M, Γ !S4 ψ.

70

Corollary If ϕ is a valid formula of S4 then
there are ϕ1, . . . , ϕn ∈ vA(ϕ) such that
ϕ1 ∨ . . . ∨ ϕn is strongly C-LP− valid.

The converse is also true.

71

Define a map wA (the Artemov embedding).

The definition is like vA except:
If !X is a positive subformula of ϕ,
wA(!X) = {t:X ′ | X ′ ∈ wA(X)

and t is any proof polynomial}

72

For every ψ that is a subformula of ϕ, and for
each ψ1, . . . , ψn ∈ vA(ψ), there is a substitution
σ and a formula ψ′ ∈ wA(ψ) such that:

1. If ψ is a positive subformula of ϕ,
(ψ1∨ . . .∨ψn)σ ⊃ ψ′ is strongly C-LP valid.

2. If ψ is a negative subformula of ϕ,
ψ′ ⊃ (ψ1∧ . . .∧ψn)σ is strongly C-LP valid.

The Artemov embedding theorem
is now a corollary.

73

Cut Elimination

Cut Elimination itself has
a semantic proof.

Show soundness of a Gentzen
(or tableau) system with cut.

Show completeness without cut.
(Renne 2004)

74

Tableau Rules
A tableau for F X is a tree, with F X at the
root, constructed using branch extension rules.

A tableau is closed if each branch is closed, and
a branch is closed if it contains T Z and F Z for
some formula Z, or T ⊥.

A proof of X is a closed tableau for F X.

75

Non-Branching Rules

F X ⊃ Y
T X
F X

T t:X
T X

F !t:(t:X)
F t:X

F (s + t):X
F s:X

F (s + t):X
F t:X

76

Branching Rules

T X ⊃ Y
F X T Y

F (t · s):Y
F t:X ⊃ Y F s:X

77

Constant Specification

Let C be a constant specification. I’ll say X has
an LP tableau proof using C if it has a proof using
the machinery above together with the additional
rule: a branch closes if it contains F c:Z where
Z ∈ C(c).

78

Satisfiable
Let C be a constant specification. A set S of
signed formulas is weakly C-LP satisfiable if there
is a weak LP modelM that meets C, and a pos-
sible world Γ of it at which all T signed members
of S are true and all F signed members are false.

M, Γ ! X for all T X ∈ S

M, Γ "! X for all F X ∈ S

79

Main Lemmas

If T is an LP tableau that is weakly C-LP satis-
fiable, and a branch extension rule is applied to
T to produce the tableau T ′, then T ′ is weakly
C-LP satisfiable.

If T is a closed tableau using C, then T is not
weakly C-LP satisfiable.

80

Soundness

Is now by the usual argument.

81

Tableau Consistency

Let C be a constant specification. Call a set S
C-tableau consistent if there is no closed tableau
for any finite subset of S, using C.

Lindenbaum-type Lemma: Tableau consistent sets
extend to maximal ones.

82

Model Construction
Construct a weak LP model candidate.

Let G be the collection of all maximal tableau
consistent sets.

For Γ, ∆ ∈ G, let ΓR∆ provided
{T t:X | T t:X ∈ Γ} ⊆ ∆ and
{F t:X | F t:X ∈ ∆} ⊆ Γ, for all proof polyno-
mials t and formulas X.

Let X ∈ E(Γ, t) provided F t:X /∈ Γ.

Let Γ ∈ V(P) provided T P ∈ Γ, for a proposi-
tional letter P .

This gives us a structure M = 〈G,R, E ,V〉.
83

Basic Properties

R is reflexive and transitive.

And E is an evidence function.

84

Truth Lemma

For each Γ ∈ G
T X ∈ Γ =⇒M, Γ ! X
F X ∈ Γ =⇒M, Γ #! X

85

Completeness

If X does not have a tableau proof, {F X} is
tableau consistent. A maximal extension of this
set will be a member of G at which X is false.

86

Direct LP Variations
Instead of having S4 behind the scenes,

one might have
K, T, D, K4

These are straightforward.

One might have S5.
This is a bit more complicated.

The connection with arithmetic goes away.
Current work of Eric Pacuit.

87

Explicit Plus
Implicit Knowledge

Combine a logic having explicit justifications
with a conventional logic of knowledge.

88

S4LP
Think of LP as a logic of knowledge

with explicit justifications.

Think of S4 as a Hintikka-style
logic of knowledge.

Combine them.
But remember, we may not have reasons

for all the things we know.

(Artemov & Nogina 2004)

89

S4LP Axioms

• The axioms and rules of LP

• The axioms and rules of S4

• The schema t:X ⊃ !X

(Artemov & Nogina 2004)

90

S4LP Semantics
Use weak LP semantics.

Understand  in the usual Hintikka way.
Sound and complete.

A cut-free Gentzen/tableau system
also exists.

(Artemov/Fitting 2004)

91

S4LPN

Add negative introspection to S4LP.
But how?

¬!X ⊃ !¬!X

¬(x:X) ⊃ y:¬(x:X)

¬(x:X) ⊃ !¬(x:X)

Too cold

Too hot

Just right

Soundness, completeness, internalization
(Artemov, Nogina 2005)

92

EBK-systems

Imagine a logic of knowledge
with multiple knowers (say n)
and also explicit knowledge.

What sort of introspection is allowed
to knowers?

Different logics result.

(Evidence Based Knowledge)

93

The Variety
Each knower has T knowledge

or S4 knowledge
or S5 knowledge

Logics are called
TnLP
S4nLP
S5nLP

t:X ⊃ KiX
Evidence is good for everybody

94

Semantics
A genuine hybrid.

Use a Kripke/Hintikka style model,
accessibility relations for each knower,

an accessibility relation for explicit justifications,
and an evidence function.

Individual knowers part behaves Hintikka-ish.
Explicit justification part behaves as in LP models.

95

Additional requirement:
each knower’s accessibility relation

is contained in the
explicit justification accessibility relation.

Thus individual accessibility relations are
reflexive, maybe also transitive, maybe also symmetric.

(Artemov 2005)

Soundness and completeness are provable.

Internalization is provable.

96

Common Knowledge

CX ≡ E(X ∧ CX)
where

EX ≡ (K1X ∧K2X ∧ . . . ∧KnX)

Well-known fixpoint formula:

Every explicit justification
acts like a common knowledge operator.

t:X ≡ E(X ∧ t:X)

97

This is current research,
explicit common knowledge

that can be resource-bounded
via complexity of
proof polynomials

98

The Forgetful Projection
Recall, LP embeds in S4 by forgetting details

each t becomes 

Introduce into multiple-knower logic
a “fool” operator J

Anything J knows, everybody knows.
(McCarthy 1979)

99

TnLP embeds in Tn + S4 (for J) + any fool knows

S5nLP embeds in S5n + S4 (for J) + any fool knows

S4nLP embeds in S4n + S4 (for J) + any fool knows

where any fool knows is
JX ⊃ (K1X ∧ . . . ∧KnX)

100

QLP
Quantified Logic of Proofs

If  is something like
there is a proof of X

why not permit quantification
and make this explicit?

(Fitting, work in progress)

101

For Another Talk

This will be discussed in my talk on Friday.

102

Thursday

Concluding

• Work is not ending, but beginning

• There are algorithms for extracting an LP
embedding of an S4 theorem, and now
efficient ones (Kuznetz)

103

• Concerning explicit reasons + multi-agents,
what about communication?

• For example, is there a good analysis of the
muddy children problem with explicit
reasons?

104

• With multi-agents, what about private
reasons as well as common reasons?

• For that matter, what about reasons for
believing, instead of knowing?

• What about defeasable reasons?

105

• What about...

• What about...

• It’s time to stop. Thank you.

106

