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Chapter 1

1.1-1 For parts (a) and (b)

o} =

2m ” 2 1 27
Ef=/ sin“tdt = / dt—r/ cos2tdt=n+0=m
9 0 2 Jo

4r 1 L 1 n

(c) Ef=/ sin’tdt:-f dt—-2-f cos2tdt=m+0=m
2r 2 2r 2m
27

27 1 27 1
(d) Ej= (2sin t)2 dt=4[-/ dt——/ cos 2tdt] =4[r +0] = 4x
0 2 0 2 0

1.1-2

1
_ 2 -4 310 __4
Ef4—/0(2t)dt—§t|_l—§

11-3 (a) E.=[J(1)%dt=2  Ey= [j(1)%dt+ [[(-1)%dt =2
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1 2
Eoiy = / (2)%dt = 4, Jm_y=/ (2)%dt = 4
1

Therefore Epyy = Ez + E,.

e ) r2n pry2 P ) 37/2 Y 2
(b)E, =/ (l)ldt+/ (-1)%dt = 2, E, =/ (1)'~’dt+/ (—1)"dt+/ (1)"dt+/ (-1)%dt = 27
¢] T 0 w/2 s 3

/2
/2 3m/2 2m R
Expy= / (2)%dt + / (0)%dt + / (~1)%dt = 4n
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/2 Jacs2
Similarly, we can show that E:_, = 4w Therefore E;+, = E- + E,.
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Sign change of a signal does not affect its power. Multiplication of a signal by a constant ¢ increases the power

by a factor 2.

1.1-5

1 T/2 T/2 n n ( )
1 1 3 Dbt e
Ps = lm;o_T/ F@O)F(t)dt = hm / DiD",e dt

-T/2 T/2 ko remm

The integrals of the cross-product terms (when k # r) are finite because the integrands are periodic signals
(made up of sinusoids). These terms, when divided by T — oo, yield zero. The remaining terms (k = r) yield

T/2 n
Py = lim —/ Z|Dk| dt = Zlel

T/2 k=m

1.1-6 (a) Power of a sinusoid of amplitude C is C?/2 [Eq. (1.5a)] regardless of its frequency (w # 0) and phase.

Therefore, in this case P = (10)?/2 = 50.

(b) Power of a sum of sinusoids is equal to the sum of the powers of the sinusoids [Eq. (1.5b)]. Therefore. in

this case P = (l—gﬁ + (—"23)—2- =178

(c) (10 + 2 sin 3¢) cos 10t = 10 cos 10t + sin 13t — sin 3t. Hence from Eq. (1.5b) P = Q—‘:,ﬁ +1+1=51

(d) 10cos 5t cos 10t = 5(cos 5t + cos 15¢. Hence from Eq. (1.5b) P = -(-5-223 + %ﬁ = 25.

() 10sin 5tcos 10f = 5(sin 15t — sin 5t. Hence from Eq. (1.5b) P = (O COETY

(F) e coswot = § [e?(@Fw0)t 4 2(@=“0)t] | Using the result in Prob. 1.1-5, we obtain P = (1/4) + (1/4) = 1/2.
1.3-1

L) =ft-1)+A({-1) fs(t)=ft-1)+ fi(t+1) fa(t) = f(t-0.5) + fr(t +0.5)

The signal fs(t) can be obtained by (i) delaying f(t) by 1 second (replace t with ¢ — 1, (ii) then time-expanding
by a factor 2 (replace t with ¢/2), (iii) then multiply with 1.5. Thus fs(t) = 1.5f(% —
1.3-2 All the signals are shown in Fig. S1.3-2.

I, I i

-024— _ "LS -2 t-> 0 6 9 13 —

i“ a [\ﬁsa i‘i 2 ./J\:QL‘%)

0 V5 3 t—> ° 1/14 30 30 48 t->
-1 -4

1.3-3 All the signals are shown in Fig. §1.3-3

4 £ (4D 24 F)

»
]
»
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hrs 3 t— o e t—=*

Fig. S1.3-3
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Fig. S1.4-1

1.4-1 All the signals are shown in Fig. S1.4-1.
1.4-2

fit) = 4@+ Dult + 1) — u(t)] + (-2t + 4)[u(t) — u(t — 2)] = 4(t + L)u(t + 1) — 6tu(t) + 3u(t) + (2t — 4)u(t — 2)

Fa(t) = 2[u(t) — u(t — 2)] + (2t — 8)[u(t — 2) — u(t — 4)] = t2u(t) — (t* — 2t + 8)u(t — 2) — (2t — 8)u(t — 4)
1.4-3

E~f=/ [—f(t)]2d¢=/ f2(t)dt = Ey, Ef(—t)'_-/ [f(—t)]zdt=/ fi(z)dx = E;

E,(,_T)=/ [f(t-—T)]zdt=/ f*(z)dz = Ey, E,(,,,)=/ [f(at)]zdt=i—/ fi(z)dz = Eg/a

oo —00

Ejtatoty = f [flat — ) de = 1 / 2)de = Eyfa, Eyage) = / f(t/a) dt = a / f(z)dt = aBy

{e =) (=]
Eafr) = / [af(®)dt = a2/ f3(t)dt = a®Ef
—o0 —o0
1.4-4 Using the fact that f(z)é(z) = f(0)é(x), we have

(a) 0 (b) 26(w) (c) 36(t) (d) —38(t—1) (e) 32536(w+3) (f) ké6(w) (use L’ Hépital’s rule)

1.4-5 In these problems remember that impulse §(z) is located at z = 0. Thus, an impulse §(¢t — 7) is located at 7 = ¢,
and so on.

(a) The impulse is located at 7 =t and f(7) at 7 =t is f(t). Therefore

f F(r)8(t - rydr = £(8)

(b) The impulse §(7) is at 7 =0 and f(t — 7) at 7 = 0 is f(t). Therefore

/ 5(r)f(t - 1) dr = £(8)

Using similar arguments, we obtain

(€)1 ()0 (e)e® ()5 (g) f(-1) (h) —¢

J@ - @T ‘ 1@ _
Py e e -1 ol 2. t —

Fig. S1.4-6
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-1 Gl)

1.4-6

1.4-7

1.4-8

1.4-9

Fig. S1.4-7

(a) Recall that the derivative of a function at the jump discontinuity is equal to an impulse of strength equal to
the amount of discontinnity. Hence. df /dt contaius impulses 46(t + 4) and 26(t — 2). In addition, the derivative
is —1 over the interval (—4, 0), and is 1 over the interval (0. 2). The derivative is zero for t < —4 and ¢t > 2.

The result is sketched in Fig. S1.4-6a.

(b)Using the procedure in part (a), we find d°f/dt? for the signal in Fig. P1.4-2a as shown in Fig. S1.4-6b.

(a) Recall that the area under an impulse of strength k is k. Over the interval 0 < ¢t < 1, we have

¢
y(t)=/1d.1:=t 0<t<1
0

Over the interval 0 < ¢t < 3, we have

1 t
y(t)=/ 1dx+/(—1)d.r=2—t 1<t<3
0o 1

At t = 3, the impulse (of strength unity) yields an additional term of unity. Thus,

1 3 t
y(t)=/ 1d1:+/ (—1)d;r+/ 6(z—3)dz=1+4+(-2)+1=0 t>3
0 1 3

—€

(b)
y(t):/[1—6(.t—1)—6(:1.‘—2)—6(1:—3)+--~]d1‘=tu(t)—u(t—l)—'u(t—2)-u(t—3)—-...
0

Changing the variable t to —z, we obtain

/m o(t)6(—t)dt = — /— o(—z)é(z)dz = / ¢(—z)é(z) dz = ¢(0)

oo

This shows that

/ ” o5y dt = / ~ 6(0)6(~t) dt = 6(0)

—00

Therefore
5(t) = 6(—t)
Letting at = z, we obtain (for a > 0)
*® 1 [ z 1
i _owpaa=1 [ _(8(z)dz = Z0(0)

Similarly for a < 0, we show that this integral is —§¢(o). Therefore

/_ _owslat)de = ho(0) = L / owe
Therefore
8(at) = Hlls(t)



1.4-10 (a)

/ $(t)¢(t)dt=_ SN, — / H(t)6(t) dt

o0 =00

=0 - / B(t)8(t) dt = —-5(0)

1.4-11 (a) s12 = £33 (b) e ¥ cos 3t = 0.5[e~ @+t 4 o=B=33  Therefore the frequencies are s1,2 = -3+ j3 (c)
Using the argument in (b), we find the frequencies s12 =2+ j3 (d) s = -2 (e) s = 2 (f) 5 = 5¢0t so that
g g
s =0. :

x-iz 3 |

.
» .
.

-3 o Oi—f —20' olg—

k- d3 -lade

Fig. S1.4-11

1.5-1 (a) f-(t) = 0.5[u(t) + u(=t)] = 0.5 and fo(t) = 0.5fu(t) — u(-1)}.
(b) fo(t) = 0.5[tu(t) — tu(—1)] = 0.5]¢| and fo(t) = 0.5[tu{t) + tu(—t)] = 0.5¢.
(¢) fe(t) = 0.5[sinwet u(t) + sin(—wot)u(—t)] = 0.5[sinwot u(t) — sinwot u(-t)]
and fo(t) = 0.5[sin wot u(t) — sin(-wot)u(—1)] = 0.5[sinwot u(t) + sinwot u(—t)] = 0.5sin wot.
(d) f.(t) = 0.5[cos wat u(t) + cos(—wot)u(—t)] = 0.5[cos wot u(t) + coswot u(—t)] = 0.5 cos wot
and fo(t) = 0.5[cos wot u(t) — cos(—wot)u(—t)] = 0.5[cos wot u(t) — coswot u{—t)].
(e) fo(t) = 0.5[sinwot -+ sin(—wot)] = 0 and fo(t) = 0.5[sinwot — sin(—wot)] = sinwot
(f) fo(t) = 0.5][cos wot + cos(—wot)] = coswot and fo(t) = 0.5[coswot — cos(—wot)] = 0

£ (@ f () :
e o S | ‘ e F
.___’U-.. l/:_ — e i o) .af.— [~
ol t- - -_—O t> -y Oltry ; io 4 >
2=
e |
— <al| t-»
(o] 0 t=w
ey ¥ % | ¥ % )
Fig. S1.5-1
1.6-1 If f(t) and y(t) are the input and output, respectively. of an ideal integrator, then
y(t) = fit)
and
t 0 ot t
y(t)=/ f(T)dT=/ f(r)d,—+/ J(r)dr = y(0) +/ f(r)dr
) -0 0 ~~ (4]
ZCro-input  \——
(9) zoro-tate

1.7-1 Ouly (b) Aand (h) are linear. All the remaining are nonlinear. This can be verified by using the procedure
discussed in Example 1.10. )

1.7-2 (a) The system is time-invariant because the input f(¢) yields the output y(t) = f(¢ — 2). Hence. if the input
is f(t — T), the output is f{t — T — 2) = y(t — T'), which makes the system time-invariant.
(b) The system is time-varying. The input f(t) vields the output y(t) = f(—t). Thus. the output is obtained
by changing the sign of ¢ in f(t). Therefore, when the input is f(t —T'). the output is f(~t-T) = f(=[t+T]) =
y(t + T). which represents the original output advanced by 7 (not delayed by T').
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1.7-3

1.7-4

1.7-5

(c) The system is time-varying. The input f(¢) yields the output y(t) = f(at), which is a scaled version of the
input. Thus, the output is obtained by replacing t in the input with at. Thus, if the input is f(t — T) (f(¢)
delayed by T'), the output is f(at — T) = f(a[t — f]), which is f(at) delayed by T'/a (not T'). Hence the system
is time-varying.

(d) The system is time-varying. The input f(¢) yields the output y(t) = tf(t). For the input f(t — T), the
output is tf(t — T'). which is not tf(t) delayed by T. Hence the system is time-varying.

(e) The system is time-varying. The output is a constant, given by the area under f(t) over the interval |t| < 5.
Now, if f(t) is delayed by T, the output. which is the area under the delayed f(t), is another constant. But this
output is not the same as the original output delayed by 7. Hence the system is time-varying.

(f) The system is time-invariant. The input f(t) yields the output y(t), which is the square of the second
derivative of f(t). If the input is delayed by T, the output is also delayed by T. Hence the system is time-
invariant.

We construct the table below from the first three rows of data. Because of the linearity property of the system,
we can multiply any row by a constant. We can also add (or subtract) any two rows. Let r; denote the jth row.

Row f(t) x1(0) z2(0) y(t)

T 0 1 -1 e~ tu(t)

T2 0 2 1 et (3t + 2)u(t)

r3 u(t) -1 -1 2u(t)

ra = 3(r1+72) 0 1 0 (t+ 1)e u(t)

rs = %(7'1 +r3) %u(t) 0 -1 (Fe™" + Du(t)

re = (Ta + 75) %u(t) 1 -1 (1.5e™t + te™" + 1)u(t)
r7 = 2(re + 1) u(t) 0 0 (e™t + 2te™t + 2)u(t)

In our case, the input f(t) = u(t +5) — u(t — 5). From r7 and the superposition and time-invariance property,
we have

y(t) = r7(t +5) — r7(t - 5)

= [e7*D 4 2(t +5)e ™ 4 2] u(t +5) = [e7¢7D) 4 2(t — 5)e™ ") 4 2] u(t - 5)
If the input is kf(t), the new output y(t) is

o(t) = A - 4
u(t) = (kf)*/ (k=) = kLFA(0)/ ()]

Hence the homogeneity is satisfied. Also

fimy=(f)*/(f1) and  f2—y2 = (f2)°/(f2)

But fi+f2— (fi+ f2)2/(fr + f2) # 1 +v2

From the hint it is clear that when v.(0) = 0, the capacitor may be removed, and the circuit behaves as shown
in Fig. S1.7-5. It is clearly zero-state linear. To show that it is zero-input nonlinear, consider the circuit with
f(t) = 0 (zero-input). The current y(t) has the same direction (shown by arrow) regardless of the polarity of v..
(because the input branch is a short). Thus the system is zero-input nonlinear.

SPRTEETL

Figure S1.7-5
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Figure S1.7-6

1.7-6 The solution is trivial. The input is a cmirent source. Hence, as far as the output y(t) is concerned, the circuit
behaves as shown in Fig. S1.7-6. The nonlinear elements are irrelevant in computing the output y(¢). Hence the
output #(t) satisfies the linearity conditions. Yet. the circuit is nonlinear because it contains nenlinear clements
and the outputs associated with nonlinear elements L and C wiil not satisfy linearity couditions.

1.7-7 (a) y(t) = f(t — 2). Thus, the output y(¢t) always starts after the input by 2 seconds (see Fig. S1.7-7a). Clearly,
the system is causal.

(b) y(t) = f(—t). The output y(t) is obtained by time inversion in the input. Thus, if the input starts at ¢ = 0.
the output starts before t = 0 (see Fig. S1.7-7b). Hence, the system is not causal.
(c) y(t) = f(at), a > 1. The output y(t) is obtained by time compression of the input by factor a. Hence, the
output can start before the input (see Fig. S1.7-7c), and the system is not causal.
(d) y(t) = f(at), a < 1. The output y(t) is obtained by time expansion of the input by factor 1/a. Hence, the
output can start before the input (see Fig. S1.7-7d), and the system is not causal.

NS YED sy
A

yit)

/l b} "'
(2] ’ + > 3 T T > - i _ft ) );'_;'
by a (@) o @)

Figure S1.7-7

1.7-8 (a) Invertible because the input can be obtained by taking the derivative of the output. Hence, the inverse
system equation is y(¢) = df /dt.
(b) The system y(t) = f(3t—6) = f(3[t — 2]) represents an operation of signal compression by factor 3, and then
time delay by 2 seconds. Hence, the input can be obtained from the output by first advancing the output by 2
seconds, and then time-expanding by factor 3. Hence, the inverse system equation is y(¢) = f (§ + 2). Although
the system is invertible, it is not realizable because it involves the operation of signal compression and signal
advancing (which makes it noncausal). However, if we can accept time delay, we can realize a noncausal system.
(c) Not invertible for even values of n, because the sign information is lost. However, the system is invertible
for odd values of n. The inverse system equation is y(t) = [f(¢)]*/".
(d) Not invertible because cosine is a multiple valued function, and cos™![f(t)] is not unique.

1.8-1 The loop equation for the circuit is

3(0) + Dya(t) = /O) or (D +3u(®) = £(1) M
Also
Din(t) = valt) = 11(0) = Fw2(6) @

Substitution of (2) in (1) yields

(+3)
D

1.8-2 The currents in the resistor, capacitor and inductor are 2y2(t), Dy2(¢t) and (2/D)y2(t), respectively. Therefore

y2(t) = f(t) or (D +3)y2(t) = Df(t) (3)

(D+2+2 Z)vat) = (1

or
(D* + 2D + 2)ya2(t) = Df(t) (1)

Also



1.8-3

y1(t) = Dya(t) or yoft) = %yl(t)

Substituting of (2) in (1) yields

2 <
2 +12)D—+—2m(t) =Df(t)
or
(D®-+2D + 20 (t) = D*f(t)

[gi(t) — qo(t)]At = ADR
or ' 1

h(t) = Z['h’(t) - qo(2)]
But

qo(t) = Rh(t)
Differentiation of (2) yields
dolt) = Rh(t) = 2 (as(t) - aof)]

and R R
(D+Z) o) = Zau(®)
or
R
(D + a)qo(t) = ag:(t) o=~
and a
w(t) = 57 ~ai(t)

substituting this in (1) yields

a D

bt = % (1= =2=) 0u(t) = ——ai(t)
A D+a A(D +a)

or .
(D +a)h(t) = -Zq,-(t)

(2)

(3)

(1)



Chapter 2

2.2-1

2.2-2

2.2-3

2.2-4

The characteristic polynomial is A2 + 5\ + 6. The characteristic equation is A2 +5A+6 = 0. Also A> 4+ 5\ +6 =
(X + 2)(X + 3). Therefore the characteristic roots are A\; = —2 and A2 = —3. The characteristic modes are e
and ¢~ Therefore

yo(t) = cre™ % + coe™

and

:l)o(t) = —2cle~2t - 3626_&

Setting ¢t = 0, and substituting initial conditions yo(0) = 2, 10(0) = —1 in this equation yields

ci1+e2=2 c1=39%
>
—2¢1 — 3¢c2 = -1 c2=-3

Therefore
yo(t) = 5™ — 373
The characteristic polynomial is A2 + 4\ + 4. The characteristic equation is A2+ 4A+4 = 0. Also A2+ 4\ +4 =

(A+2)2, so that the characteristic roots are —2 and —2 (repeated twice). The characteristic modes are e ~%* and
te~2t. Thercfore

yo(t) = cre” % 4 cpte™ 2
and
yo(t) = —2c1e % — 2cqte ™% 4 cpe*

Setting ¢ = 0 and substituting initial conditions yields

3= c1 =
=
—4 = —-2c1+c2 co =2

Therefore

yo(t) = (3 +2t)e™*
The characteristic polynomial is A(A+ 1) = A2+ . The characteristic equation is A(A+1) = 0. The characteristic
roots are 0 and —1. The characteristic modes are 1 and ¢~*. Therefore

yo(t) = 1+ c2e ™t
and

do(t) = —cze™

Setting t = 0, and substituting initial conditions yields

1=(.'1+L‘2} c1 =2
=

1= —c2 c2 =-—1
Therefore
yo(t) =2 - et
The characteristic polynomial is A2 + 9. The characteristic equation is_z\2 +9=0o0r (A\+33)(A-33)=0. The
characteristic roots are +53. The characteristic modes are ¢3! and e™7%. Therefore

yo(t) = ccos(3t + 0)

and
yo(t) = —3esin(3t + )

Setting t = 0, and substituting initial conditions yields

csinf = -2

0=ccosb ccosfd =0 c=
= =
6 = —3csinf 0=-m/2
Therefore



yo(t) = 2cos(3t — 12'-) = 2sin 3t

2.2-5 The characteristic polynomial is A% + 4\ + 13. The characteristic equation is A2 +4A+13 = Oor (A+2-33)(A+
2 + j3) = 0. The characteristic roots are —2 + j3. The characteristic modes are c;e{™2+73)t and cpe(~2-39)¢,
Therefore

yo(t) = ce™% cos(3t + 6)
and
Jo(t) = —2ce ™% cos(3t + 6) — 3ce~ sin(3t + 0)
Setting t = 0, and substituting initial conditions yields

5 =ccosf } ccosf =5 } c=10
=

15.98 = —2ccos @ — 3csinf csinf = —8.66
Therefore

yo(t) = 10e~% cos(3t — -;:)

2.2-6 The characteristic polynomial is A%(A + 1) or A® + A%, The characteristic equation is A2(A + 1) = 0. The
characteristic roots are 0, 0 and —1 (0 is repeated twice). Therefore

yo(t) =1 + cot + Cac—t
and

yo(t) = c2 — cae™"

go(t) = cae™"

Setting t = 0, and substituting initial conditions yields
4d=c;+c3 c1=5
3=c2—c3p = e2=2
-1=c3 c3=-—1
Therefore
yo(t) =5+2t — ™"

2.2-7 The characteristic polynomial is (A +1)(A\? 4+ 5 + 6). The characteristic equation is (A + 1)(A24+5X+6)=0or
(A +1)(A+2)(X + 3) = 0. The characteristic roots are —1, —2 and —3. The characteristic modes are ¢~t, ¢~ 2!
and ¢~3'. Therefore

and yo(t) = cre ™t 4+ coe”% 4 c;ge_at
Jo(t) = —c1e™" — 2c0e™ % = 3cze™
.170(’) = “l'_’-2 + 4(’.26—2"l + 9636_&
Setting t = 0, and substituting initial conditions yields
2=c1+c2+c3 c1=6
“l=-c1-2c2-3c3 ) = c2=-7
5=oc1+4c2 + 9c3 c3=3

Therefore
yo(t) = 6™t — Te™2t 4+ 3¢~

2.3-1 The characteristic equation is A% + 4A + 3 = (A + 1)(A + 3) = 0. The characteristic modes are ¢! and e~>.

Therefore
yn(t) = cre”" + cge ™
Un(t) = —cye” ! = 3(:2(’_3'
Setting t = 0, and substituting y(0) = 0, 5(0) = 1, we obtain
1
0=1¢e1 +c2 } a = 5
1= -C1 — 3C2 — l
2= -3

10



Therefore

ya(t) = 3(e™ — ™)

h(t) = [P(D)yn(t)ju(t) = [(D + 5)yn(t)]u(t) = [gn(t) + 5yn(t)]u(t) = (2¢7° — e )u(t)
2.3-2 The characteristic equation is A2 + 5\ +6 = (A +2)(A +3) = 0. and

Yn(t) = cre” 2 + o0

Un(t) = —2C1(’_2' - 3(’2(’_:3t

Setting ¢ = 0, and substituting y(0) = 0, (0) = 1, we obtain

O=c1+c2 ~ ca=1

1=-2c-3c2f ez =—1
Therefore

'.‘Iﬂ(t) = C’-—zt - C_st
and
[P(D)yn(t)]a(t) = [#n(t) + Tgnlt) + 1lyn(t)]u(t) = (e™** + e~ )u(t)

Hence

h(t) = ba6(t) + [P(D)yn()]u(t) = 6(t) + (¢ 7 + e )u(t)

2.3-3 The characteristic equation is A + 1 = 0 and

yn(t) = ce™!
In this case the initial condition is y2~1(0) = y.(0) = 1. Setting ¢t = 0, and using y.(0) = 1, we obtain ¢ = 1,
and
yn(t) = e’
P(D)yn(t) = [~9n(t) + yn(t)]u(t) = 2¢"u(?)
Hence

h(t) = bnb(t) + [P(D)yn(t)]u(t) = —6(t) + 2¢ ™ u(t)
2.3-4 The characteristic equation is A% + 6\ + 9 = (X + 3)% = 0. Therefore
yn(t) = (c1 + cat)e™
Un(t) = [-3(c1 + cat) + e2e ™

Setting t = 0, and substituting y»(0) = 1, y»(0) = 1, we obtain

O=c1 c1=0
=
1=-3c1+c2 c2=1

yn(t) = te™

and

Hence )
h(t) = [P(D)ya(t)]u(t) = [29n(t) + Yyn(t)]u(t) = (2 + 3t)e““u(z)

Ac = /”" c(t) dt
= / |;/ flr)g(t —7) d‘r] dt
=/°° I:/ce f(‘r)d'r] g(t—7)dt

=Af/ olt - 7) dt

oo

= AsA,
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This property cab be readily verified from Examples 2.7 and 2.8. For Example 2.6, we note that

o0
- 1
/ e tdt = -

Use of this result yields Ay =1, Ap = 0.5, and Ay, =1 —0.5=0.5 = AsAp For example 2.8, Ay = 2, A, = 1.5, and

1 1 22 4 1
Ac= [ —=(t+1)%dt+ | Ztdt+ | —=(t*-2t—8)dt
_ 6 , 3 , 6

-1

4 14
= - —_—=3=
9+1+9 AfAg

2.4-2
F(at) * g(at) = / f(ar)glat - 7)) dr

= %[: f(z)g(at — z)dz

1
. >
c(at) a>0

When a < 0, the limits of integration become from co to —oo, which is equivalent to the limits from —oco to oo
with a negative sign. Hence, f(at) * g(at) = ||c(at).

2.4-3 Let f(t)*g(t) = c(t). Using the time scaling property in Prob. 2.4-2 with a = —1, we have f(—t)*g(—t) = c(—t).
Now, if f(t) and g(t) are both even functions of ¢, then f(t) = f(—t) and g(—t) = g(t). Clearly c(t) = c(—t).
Using a parallel argument, we can show that if both functions are odd, ¢(t) = ¢(—t), indicating that c(t) is even.
But if one is odd and the other is even, c(t) = —c(—t), indicating that c(t) is odd.

2.4-4
t t
e~ u(t) * e_mu(t) = / T ) gy = e_bt/ eI 4r
0 0
_ t - - -
_ e bt oar| _ e bt [e(b_a)t 1= oot _ bt
b-—a o b—a a—-b
Because both functions are causal, their convolution is zero for t < 0. Therefore
- —bt
—at —bt e —e
u(t) e t)= | ———— Ju(t
e~ u(t) « e u(t) ( o )()
2.4-5 (i)

t

=t fort>0
0

t

u(t) *u(t) = / u(r)u(t — 7)dr = / dr=r1
0 0

=0 fort <0

Therefore
u(t) * u(t) = tu(t)

(ii) Because both functions are causal

t

t
c-atu.(t) * e_“tu,(t) = / e e~ t=T) gr — e—at/ dr
0

4]
=te % t>0

and
e u(t) * e u(t) = te T u(t)

(iii) Because both functions are causal

12



t
tu(t) * u(t) = / Tu(T)u(r — t)dr
0
The range of integration is 0 < 7 < t. Therefore 7 > 0 and 7 — ¢ > 0 so that u(r) = u(r — t) = 1 and

t tz
tu(t)*u(t):/ Tdr=—= t>0
o 2

and L
tu(t) x u(t) = Etzu(t)
2.4-6 (i)

¢
sintu(t) * u(t) = (/ sin T u(r)u(t — 7) d‘r) u(t)
0

Because 7 and ¢ — 7 are both nonnegative (when 0 < 7 < t), u(r) = u(t —7) = 1, and

sintu(t) * u(t) = (‘/t sin‘rdr) u(t) = (1 — cost)u(t)
0 .
(ii) Similarly .

costu(t) * u(t) = (/‘ cosrdr) u(t) = sintu(t)
0

2.4-7 In this problem, we use Table 2.1 to find the desired convolution.
(a) y(t) = h(t)* f(t) = e u(t) » u(t) = (1 — e )u(t)
(b) y(t) = h(t) * f(t) = e tu(t) » e tu(t) = te u(t)
() y(t) = e u(t) x e *u(t) = (™ — e *)u(t)
(d) y(t) = sin3tu(t) * e u(t) ,
Here we use pair 12 (Table 2.1) with a =0, 8 = 3, 6 = —90° and A = —1. This yields

¢ =tan™! [:—‘:’] = -108.4°

and

(cos 18.4°)e™* — cos(3t + 18.4°)

V10

0.9486¢ " — cos(3t + 18.4°)
= T u(t)

sin3tu(t) * e fu(t) =

u(t)

2.4-8 (a)

y(t) = (273 — e Yu(t) * u(t) = 273t u(t) * u(t) — e " 2u(t) * u(t)

_ [2(1 - 1- e"zt] ult)

3 2
= (l - ge“‘“ + %e"zt) u(t)
(b)

(2e'3t - e'zt)u(t) *e tu(t) = 2e‘3tu(t) * e tu(t) - e"%u(t) * e"tu(t)

_ |:2(C_t _ (3—3t) _ e—t _ e—2t:| u(t)

2 1
= (e — e~*)u(t)
(c)
y(t) = (207 — 72 )u(t) x e 2 tu(t) = 2e3tu(t) x e " ult) — e~ 2tu(t) e_2tu(t)v

_ [2(@‘2‘]—6_3t) _ te—zt] u(t)

=[(2 - t)e % — 273 u(t)

13



2.4-9

y(t) = (1 — 2t)e 2 u(t) x u(t) = e 2 u(t) * u(t) — 2te~2u(t) * u(t)

[(552)- G- g

= te"tu(t)

2.4-10 (a) For y(t) = 4e™2* cos 3t u(t) * u(t), We use pair 12 with a = 2, 8 =3, § = 0, A = 0. Therefore

2.4-11

¢ = tan"} ['73] = -56.31°

and

y(t) =

c0s(56.31°) — e ~%* cos(3t + 56.31°) u(t)
vVI+9

= \/—= [0.555 — e~ cos(3t + 56.31°)] u(t)
(b) For  y(t) = 4e~% cos 3tu(t) * e *u(t), we use pair 12 witha =2, 8= 3,0 =0, and A = —1. Therefore
¢ =tan"’ [213’] = —71.56°
and
c0s(71.56°)e ™t — e~ cos(3t + 71.56°)
t)y=4 t
y(t) [ 70 u(t)
= T/ﬁ [0.316e™* — &7 cos(3t + 71.56°)] u(t)
=4 [e - -—e 2 cos(3t + 71.56°)] u(t)
() y(t) = e tu(t) * e 2 u(t) = (e7F — e 2)u(t)

(b) e72t=30y (1) = eSe*u(t), and y(t) = e® [e'tu(t) * e"”u(t)] = (et — e 2)u(t)
(c) e 2u(t—3) = e Se 2=yt — 3). Now from the result in part (a) and the shift property of the convolution
[Eq. (2.34)):
y(t) = e™® [em"Duy(t) — 72N y(t - 3)
(d) f(t) = u(t) — u(t — 1). Now y;(t), the system response to u(t) is given by
y1(t) = e tu(t) * u(t) = (1 — e *)u(t)

The system response to u(t — 1) is y1(¢t — 1) because of time-invariance property. Therefore the response y(t) to
f(t) = u(t) — u(t — 1) is given by

(&) =y1(t) =yt = 1) = (1= e u(t) - [1 - e V(e - 1)

The response is shown in Fig. §2.4-11.

Fig. S2.4-11
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cutpy
?n(w?‘ . ﬁl_
+ 4 -
e <
C + > o t ==

Fig. S2.4-12

2.4-12
yit) = i—6(t) + ?,r"'u(i.)] * ("u(—t)
= —&(l) * etul —t) -+ 20" u(t) * etu(—t)
= —clu(=t) + fe™"u(t) + etu(—t)]
=" u(t)
2.4-13

1 |
m*lt(t):/_m mu(t-T)dT

Because w(t — 1) =1 for 7 < t and is 0 for 7 > ¢, we need integrate only up to r = ¢.

T24+1

-0

t
1 _ 1 U S T . | r
-t-m*u(t)_/ ———dr = tan Tl_w—tan t+5

Figure S2.4-13 shows ;,—1_‘_—1 and «(t) (the result of the convolution)

i
0 t— 291 t—>»
T) e/
£ /s P
o t ~T->

Fig. S2.4-13

2.4-14 For t < 2rr (see Fig. 52.4-14)

. .
P(t)=f(t)*g(t)=/sinrdr:l-—cost 0<t<2r
0

For t > 2m, the area of one cycle is zero and

ft)*g(t)y=0 t>2r and t<0

2
Ctd

ol v ar t—
Fig. S2.4-14
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2.4-15 For 0 < t < 2r (see Fig. S2.4-15a)

. t
f(t)*g(t)=/ sinTdr =1 — cost 0<t<2n
)
For 27 < t < 4rn (Fig. $2.4-15b)
f(t)*!l(t)‘—'/ sinTdr =cost —1 o <t < 4w
t—2m

For t > 4n (also for t < 0), f(t) * g(t) = 0. Figure S2.4-15¢ shows ¢(t).

Fig. S2.4-15

2.4-16 (a)
S5+t
r(t)=/ ABdr = AB 0<t<1
4+t
6
(-’(t)=/ ABdr = AB(2—-t) 1<t<?2
4+t
o+t
r.‘(t)=/ ABdr = AB(t+1) -1<t<0
4
c(t)=0 t>2 or t< -1
(b)
r'(t)=/ ABdr = AB(2-t) 0<t<2
3+t
5+t
('(t)=/ ABdr = AB(t + 2) -2<t<0
3
c(t)=0 for |t|>2
(c)
24t
c(t)=/ dr =3 t> -1
—14t
2+t
c(t)=/ dr=t+4 -1>t>-4
e(t)y=0 t< -4
(d)

3+t i
c(t) = / e Tdr=c¢ (1 -e3) = 095" t>0
t
34t .
= e Tdr=1-—¢"0G) =1_-.00498eF 0>t>-3
0
=0 t< -3

16
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(e)

=1+t 1 y -
C(t)-——/ ﬁd‘r=tan_ (t—1)+§ t<1

(F)

t
c(t)=/e‘*dr=1—e“ 0<t<3
0

t
c(t) = / e Tdr=e" P _ 7t t>3
-3

c(t)=0 t<o0

(g) This problem is more conveniently solved by inverting fi1(t) rather than f2(t)

t+1 1
c(t)=/ (T—t)dr=§ t>0
t+1 1
c(t)=/ (T—t)dr:i(l—tz) 0>t> -1
(1]

c(t)=0 for t>0

(h) fi(t) =€, | o)y =e™, filr)=e€", fat—7) =T

0 0
o(t) = / eTe Xt dr = e—m/ e dr = l[e_m —et 0<t<1
—1+4t —1+4t 3

¢ ¢
e(t) = / eTe Xt dr = e'zt/ e dr = l[et — et 0>t>-1
—14¢ —14t 3

c(t)=0 t< -2

2.4-17 Indicating the input and corresponding response graphically by an arrow, we have

f(t) — y(®)
f@=T)— yt-T) (by Time-invariance)
F@&) = ft—=T) — y(t) —y(t - T) (by linearity)

Therefore
.1 1
lim (f(2) - £(t = T)] — Jim —[y(®) ~ y(t - )]
The left-hand side is f(t) and the right-hand side is g(t). Therefore
f) — 9t
Next we recognize that

£(0) % ult) = / J(Fult = ) dr = / f(r)r )

This follows from the fact that integration is performed over the range —ooc < 7 < t, where 7 < t. Hence
u(t — 7) = 1. Now the response to f_w f(r)dris -

(£ () = u(t)] » h(t) = [f(t) x h()] * u(t) = y(¢) * u(?)
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2.4-18

2.4-19

2.4-20

2.4-21

2.5-1

But as shown in Eq. (1), y(¢) * u(t) is j y(7) dr. Therefore the response to input j f(r)dr is j y(r)dr.

Using the hints, we obtain

7(6) » 9() = lim, 2 1£(6) = £(¢ = T * 9(6) = (1)« Jim = [9(0) = g(¢ = T)] = Jim = [e(®) = (¢ = T)) = (®)

Successive applications of the above procedure yields
F) g™ (1) = ()

The system response to u(t) is g(t) and the response to step u(t — 7) is g(t — 7). The input f(¢) is made up of
step components. The step component at 7 has a height A f which can be expressed as

Af = fAT—- f(r)or

The step component at nAT has a height f(nRAT)A7 and it can be expressed as [f(nAT)ATIu(t — nAT). Tts
response Ay(t) is
Ay(t) = [f(naT)AT]g(t — nAT)

The total response due to all components is

y(t) = Alirrﬂo Z f(nAT)g(t — nAT)AT

n==—0o

- / F(r)alt - 7)dr = f(r) » o(r)

An element of length A7 at point nAr has a charge f(nA7)A7 (Fig. S2.4-20). The electric field due to this
charge at point z is

f(nAT)AT

AE= 4dre(z — nAT)?

The total field due to the charge along the entire length is

_f(nAT)AT
E(@) = hrrll.o _Z 4re(x — nAT)?

I (N
_/_mtlm,(a:— T)2 d f(z)

41re.r

| e

v

o| NAT z
o—2-NAT -»

Fig. S2.4-20

For an ideal delay of T secs., the impulse response is h(t) = §(t —T'). Hence, from Eq. (2.48) (using the sampling
property [Eq. (1.24b)]

H(s) = /‘°<> (r=T)e " dr =T

— 00

We can also obtain the same result using Eq. (2.49). Let the input to an ideal delay of T seconds be an everlasting
exponential e**. The output is e*¢~7). Hence, according to Eq. (2.49), H(s) = "1 /g%t = =7,

M4TA+12=(A+3)(A+4)
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2.5-2

2.5-3

The natural response is
yn(t) = K1e™ 3" + Kpe™*

vs(t) = H(0) = 5i& = §

For f(t) = u(t) = e®u(t), Q(0)

(a)

y(t) = Kie™® + Kae ™ + 1
y(t) = —3K1e™ ¥ — 4K

Setting t = 0 and substituting initial conditions, we obtain

0=K1+K2+é} Ki=3
1= —3K; — 4K; Ky=-1
and

y(t) = %6—3" — %e'“ +3 t>0
(b) F(t)=eult), yo(t)=H(-1)=5R =1

y(t) = Kle_st + Kze—“ + %e_t

§(t) = ~3K1e™% — 4Kpe™* — L™

Setting t = 0, and substituting initial conditions yields

0=Ki+ K2+ 3 } Ki=—3
1= 3K, —4K; — % Kp=-2
and
y(t) =27 — Ze7" 4 Lt t>0
(€) ft)=eu(t), ys(t)=H(-2)=0

y(t) = Kie™® + Koe ™
§(t) = —3K1e7% — 4Kqpe™

Setting ¢ = 0, and substituting initial conditions yields

0=K;+ K> Ki=1
1=-3K; —4K: Ko, =-1
and
yt)=e¥ -  t>0

A% 4+ 61425 = (\+3— j4)(A + 3 + j4) characteristic roots are —3 + j4

yn(t) = Ke " cos(4t + 0)
For f(t) =u(t), wys(t)=H(0)= £ so that
y(t) = Ke > cos(4t + 0) + &
y(t) = —3Ke % cos(4t + 0) — 4K e~ cos(4t + 0)

Setting t = 0, and substituting initial conditions yields

0=Kcost9+533

Kcosf =
=
2= -3Kcosf — 4K sinf

=3

25

s —d4l
Ksint = =55

K =0.427
=
6 =-106.3

and

y(t) = 0.427e >*cos(4t — 106.3°) + &  t>0

Characteristic polynomial is A% 4+ 4\ + 4 = (A + 2)2. The roots are —2 repeated twice.
yn(t) = (K1 + Kzt)e—zt
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(a) For f(t) = e Mu(t). - yo(t) = H(-3) = —2¢~3

y(t) = (K1 + Kat)e 2 — 2¢73
9(t) = —2(K1 + Kat)e 2 + Kae ™2 + 6%

Setting t = 0, and substituting initial conditions yields

=K1 -2 Ki=4
5=-2K1+K2+6 Ke=2%

and
y(t) = (F + Lt)e ™ — 273 ¢

(d)  f(t)=eTu(t), ys(t)=H(-1)e™* =0

v
=]

y(t) = (K1 + Kzt)e-zt
y(t) = ~2(K1 + Kat)e ?* + Kze ™%
Setting ¢t = 0, and substituting initial conditions yields

K . K; =
=-2K; + K2 Ko =

9
1
5

olg. #1e

and .
y(@) = (§+ 8™ t>0

2.5-4 - Because (A% + 2X) = A(A + 2), the characteristic roots are 0 and —2.
yn(t) =K1+ Kae 2
In this case f(t) = u(t). The input itself is a characteristic mode. Therefore
ya(t) = Bt
But y,(t) satisfied the system equation
(D +2D)ys(t) = (D + 1)y(t) = io(t) + 205(t) = £(2) + £(2)
Substituting f(t) = u(t) and y4(t) = Bt, we obtain
0+286=0+1 = p=1
Therefore yo(t) = 3t.
y(t) = K1+ Kae 2t + %t
§(t) = —2Kze™* 4+ 1
Setting t = 0, and substituting initial conditions yields
2=Ki+ K Ki=3
1=-2K,+1%

and
y(t) = %—%e_2t+%t t>0

2.5-5 the natural response y,(t) is found in Prob. 2.5-1:
yn(t) = Kie 3 4 Koe™*t
The input f(t) = e~3" is a characteristic mode. Therefore

vo(t) = Bte™™

Also yg(t) satisfies the system equation:

(D? + 7D + 12)ys(t) = (D + 2) f(¢)
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2.6-1

2.6-2

2.6-3

2.6-4

or

Go(t) + Tie(t) + 12y4(t) = f(t) + 2£(t)

Substituting f(t) = e ™3 and y4(t) = Bte ™ in this equation yields

(98t — 68)e ™" + 7(—38t + B)e > + 128te ™ = —3e 73t 4 2¢7
or . .
ﬁe_‘” =73 = B8=-1

Therefore

y(t) = Kie 3 4+ Ko™ —te™
g(t) = —3K1e™ 3" — 4Kae % 4+ 3te™ — ™

Setting t = 0, and substituting initial conditions yields

0=K,+ K2 Ki=2
1=-3K1-4K>—-1
and

y(t) = 2e73F — 274 — e t>0
=(2-t)e 3 — 2% t>0

(a) A2+8A+12=(A4+2)(A+6)

Both roots are in LHP. The system is asymptotically stable.

(b) AA24+3A+2)=A(A+1)(A+2)

Roots are 0, —1, —2. One root on imaginary axis and none in RHP. The system is marginally stable.
(e) N(A2+2)=A2(A+jiV2)(A - jV2)

Roots are 0 (repeated twice) and *j V2. Multiple roots on imaginary axis. The system is unstable.
(d) A+1DA2=62+5)=A+1)(A=-1)(A-5)

Roots are —1, 1 and 5. Two roots in RHP. The system is unstable."

(a) A+DA2+22+5)2=A+1)(A+1-32)%3(A+1+j2)2

Roots —1, —1 £ j2 (repeated twice) are all in LHP. The system is asymptotically stable.

(b) A+1)(A2+9)=A+1(A+373)(A=-33)

Roots are —1, £353. Two (simple) roots on imaginary axis, none in RHP. The system is marginally stable.

() (A+1)(A2+9)2=(A+1)(A+33)%()-j3)?

Roots are —1 and %33 repeated twice. Multiple roots on imaginary axis. The system is unstable.

d) P+ +9)A+9) = A+ = )(A +52)(A - j2)(A + 53)(A - 53)

The roots are +351, +52 and ;3. All roots are simple and on imaginary axis. None in RHP. The system is
marginally stable.

(a) Because u(t) = e®u(t), the characteristic root is 0.

(b) The root lies on the imaginary axis, and the system is marginally stable.

(€) [ hr(t)dt=o00

The system is BIBO unstable.

(d) The integral of §(¢) is u(t). The system response to é(t) is u(t). Clearly, the system is an ideal integrator.

Assume that a system exists that violates Eq. (2.57) and yet produces a bounded output for every bounded
input. The response at t =t is

v = [ heyse = ar
0
Cousider a bounded input f(t) such that at some instant t;

1 if h(r) >0

f(tl—T)z{—l if h(r) < 0

In this case
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h(7)f(t1 — 1) = |h(7)i

and

y(t) = / |h(7)| dT = o0
0

This violates the assumption.

2.7-1 (a) The time-constant (rise-time) of the system is T}, = 107>,
The rate of pulse communication < Tl;’- = 10° pulses/sec. The channel cannot transmit million pulses/second.
(b) The bandwidth of the channel is

1 5
B=—=

T 10° Hz

The channel can transmit audio signal of bandwidth 15 kHz readily.
2.7-2
1 1 4

Th= — = — = = 0.1 ms
=5 = 108 10 0.1ms

The received pulse width == (0.5 4 0.1) = 0.6 ms. Each pulse takes up 0.6 ms iuterval. The inaximum pulse rate
(to avoid interference between successive pulses) is

1
06 <103 = 1667 pulses/sec
2.7-3 Using Egs. (2.60) and (2.61) (a)

T, =Th=—-==10""

> =

(b) The bandwidth F. = 1/T}, = 1/T; = 10*.
(c) The pulse transmission rate is F. = 10* pulses/sec.
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Chapter 3

3.1-1
3.1-2

3.1-3

3.1-4

3.1-5

Trivial.

(a) In this case E. = fol dt =1, and

1 ! 1 [
c=-E:/o f(t):t(t)dt=T/0 tdt = 0.5

(b) Thus, f(t) =~ 0.5z(t), and the error e(t) =t — 0.5 over (0 < t < 1), and zero outside this interval. Also Ey
and E. (the energy of the error) are

1 1 1
Ef=/ f2(t)dt=/ t?dt =1/3 and Ee=/(t—0.5)2dt=1/12
0 0 (4]

The error (t — 0.5) is orthogonal to z(t) because

S|
/ (t-0.5)(1)dt=0
0

Note that E; = ¢2E; + E.. To explain these results in terms of vector concepts we observe from Fig. 3.1 that the
error vector e is orthogonal to the component cx. Because of this orthogonality, the length-square of f [energy
of f(t)] is equal to the sum of the square of the lengths of cx and e [sum of the energies of cz(t) and e(t)].

In this case Fy = fol fA(t)dt = fol t?dt = 1/3, and

1 1 1
=—/ z(t)f(t)dt=3/ tdt=1.5
E¢ 0 0

Thus, z(t) =~ 1.5f(t), and the error e(t) = z(t) — 1.5f(t) = 1 — 1.5¢ over (0 < t < 1), and zero outside this
interval. Also E. (the energy of the error) is E. = fol(l —1.5t)%2dt = 1/4.

(a) In this case E; = fol sin?2rtdt = 0.5, and

1 1
1 1 .
C-E_x/o f(t)x(t)dt—ﬁ[) tsin 2ntdt = —1/7

(b) Thus, f(t) = —(1/7)z(t), and the error e(t) = t + (1/m)sin 27t over (0 < ¢
interval. Also Ey and E. (the energy of the error) are

IN

1), and zero outside this

1 1 1
E,=/ fz(t)dt=/ t?dt =1/3 and Ee=/ [t — (1/x)sin 27t)* dt =
0 1] 0

-1
272

W=

The error [t + (1/7)sin 2nt] is orthogonal to z(t) because
1
/ sin 2nt[t + (1/7)sin 27t]dt =0
0

Note that Ef = ¢?E, + E.. To explain these results in terms of vector concepts we observe from Fig. 3.1 that
the error vector e is orthogonal to the component cx. Because of this orthogonality, the length of f [energy of
f(t)] is equal to the sum of the square of the lengths of cx and e [sum of the energies of cz(t) and e(t)].

(a) If z(t) and y(t) are orthogonal, then we



3.2-1

(1)

(3)

3.3-1

showed [see Eq. (3.22)] the energy of z(t) + y(t) is Ex + E,. We now find the energy of z(t) — y(t):

/ 12(t) — y()[?dt = / ()2 de + / w(0)[? dt — / 2(t)y" () dt - / = ()y(t) dt

- / T e dt + / )R dt (3.22)

The last result follows from the fact that because of orthogonality, the two integrals of the cross products
z(t)y*(t) and z*(t)y(t) are zero [see Eq. (3.20)]. Thus the energy of x(t) + y(t) is equal to that of z(t) — y(t) if
z(t) and y(t) are orthogonal.

(b) Using similar argument, we can show that the energy of ciz(t) + c2y(t) is equal to that of cix(t) — c2y(t) if
z(t) and y(t)

are orthogonal. This energy is given by |c1|2Ez + |c2|?Ey.

(c) If z(t) = z(¢) £ y(t), then

/ 7 le(t) £ y(0)P dt = / I / T Pt / Tzt de £ / eyt de

) —oc —oo —oo —oo

=E;+ Eyx (Ezy + Eyz)

We shall compute ¢, using Eq. (3.25) for each of the 4 cases. Let us first compute the energies of all the signals.
1
E;= / sin®2rtdt = 0.5
0

In the same way we find Ef, = Ey, = Ej, = Ey, = 0.5.
Using Eq. (3.25), the correlation coefficients for four cases are found as

1 1
1 : < — 1 H —si = —
m/c; sin 2wt sin 4ntdt =0 (2) m L (sin 27I't)( sin 2wt) dt 1

1 0.5 1
1 . _ 1 . _ . - -
7(—05—)(-0?)‘/0. 0.707sin 2wtdt =0 (4) m l;/(; 0.707 sin 2ntdt /0 0.707 sin 27t dt] 1414/‘1’

5
Signals z(t) and f2(t) provide the maximum protection against noise.

f1(2,-1), f2(—1,2), £3(0, =2), fa(1,2), £5(2,1), and f5(3.0). From the figure, we see that pairs (fs.fs), (f1, fs)
and (f2,f5) are orthogonal. We can verify this also analytically.

o)

X2
R4 |
i
e
AR
2

i

F

Fig. S3.3-1

f3- f6=(0x3)+(-2x0)=0
fi fa=(2x1)+(-1x2)=0
f2-f5=(—1X2)+(2X1)=0
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3.4-1

3.4-2

3.4-3

Fig. S3.4-2

We can show that the corresponding signal pairs are also orthogonal.

/ " O felt) dt = / [z2(8)][3z(8)] dt = 0

—0o0

/ T A faydt = / ~ [2za(t) - m2®)lfma(t) + 2z2(t)] dt = 0

-—00

o0 oo
/ fa(t) fs(t) dt = / [—z1(t) + 2z2(t)][2z1(¢) + z2(t)]dt =0
) —oo

In deriving these results, we used the fact that ff:o zidt = f_:o z3(t)dt = 1 and f:o:tl(t)zz(t) dt=10

Here Tp = 2, so that wo = 27/2 = «, and

oo
f(t)=ao+2ancosn1rt+bnsinn7rt —-1<t<1
n=1
where
1 1 _\n 1
ag = -1- t2dt = l, an=E t2cosnwtdt = 41 , bn = Z t*sinnwtdt =0
2/, 3 2/, mwn? 2 ),
Therefore -
1 4 (="
f(t)—§+;r_221 —;— cosnt -1<t<1
n=

Figure S3.4-1 shows f(t) = tZ for all ¢ and the corresponding Fourier series representing f(t) over (~1, 1).

Here Ty = 2, so that wo = 27/27 =1, and
oo
f(t)=ao+Zancosnt+bnsinnt -n<t<n
n=1
where
T T L —1\n+1
ao=-1— tdt =0, a,,=i tcosntdt =0, n=—2- tsinntdt=u-
2 f . 2m 2n f n
Therefore o
1
=2(=1)" ) =i —n<t<
@) =2(-1) zlnsmnt m<t<nw

Figure S3.4-2 shows f(t) =t for all ¢ and the corresponding Fourier series to represent f(t) over (=m, ).

(a) To =4, wo = 37% = %. Because of even symmetry, all sine terms are zero.
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f(t)=ao+ iancos (lelt)

n=1

ao = 0 (by inspection)
4 ! nmw 2 nw 4 nmw
an = - cos (-——-t) dt — cos (-——t) dt| = — sin —
4 o 2 1 2 nn 2

Therefore, the Fourier series for f(t) is

4 nt 1 3nt 1 ot 1 Tt
f(t) = = (cos7— §cosT+gcos-—2—— 7cosT+---)

Here b, = 0, and we allow C, to take negative values. Figure S3.4-3a shows the plot of Cy,.

(b) To = 107, wo = g.—:)’ = % Because of even symmetry, all the sine terms are zero.

ft)=ao+ ian cos (%t) + bn sin (Pgt)

n=1

ap = (by inspection)

1
5

2 i n 1 /5 . (n
an = 10—‘"/ cos ('gt) dt = 5—1r (;) sin (gt)

-

” 2 . (mr)
= —sin{ —

—x TN 5

us .
b = i%; / sin (%t) dt =0 (integrand is an odd function of t)

-

Here b, = 0, and we allow Cp to take negative values. Note that C, = a, forn =0, 1, 2, 3, ---. Figure S3.4-3b
shows the plot of C,,.

(c) To =27, wo = 1.

oo
flt)=ao+ Zan cosnt + by, sinnt with ag=0.5 (by inspection)

n=1

27 2r
an=l/ —t—-cosntdt=0, bn=l/ Lsinntdt:——l--
o 27 T Jo 27 ™

and
f(t)=05-— ! (sint+ 1sin2t-&—lsin3t-’r 1 sin4t + - - )
T 2 3 4"

=0.5+% [cos(tﬁ-%) + %cos(2t+ -721) +%cos(3t+g) +]
The reason for vanishing of the cosines terms is that when 0.5 (the dc component) is subtracted from f(t), the
remaining function has odd symmetry. Hence, the Fourier series would contain dc and sine terms only. Figure
S3.4-3c shows the plot of Cr, and 65..
(d) To =, wo = 2 and f(t) = 3t.
ap=0 (by inspection).
an=0 (n>0) because of odd symmetry.

n/4
bn;—-—/ itsin2ntdt=—2—(-—2—sin-ﬂ-—q-cosﬂ)
o T ™ \7mn 2 2
4 1 . 4 1 .
ft) = -7r—251n2t + ;r—sm4t ~ 9.2 sin 6t — 2—1r-sm8t + -
= %cos (2t— g) +%cos(4t— %) + %cos (6t+%) + %cos(8t+%) + -
Figure S3.4-3d shows the plot of Cy, and 6.
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| 2. c. 0.4}
CAT I\‘ G r azd || ]\ (&
| \\gr ;74 _J"I“M 7%__;_ [‘L 11y & —>
ol L \J_,’ Lo S~do- g ol g il Mew,  sa-t
GTOJ‘ pz. %
_[ I L1 [ ] ] I [ J ©)
L 2 % 45 6 we 123 456 wu
r
Ll & "tz
[ -# ‘# 2 4 I I [ 1%
g v é & [ (d.)
Iflr..'%“l L]
4 2 & 6 F /° 1 o
T
Cn 1,0
0:3 9" % 1 2r )

I T T«

0| 2T _ 4w 2T w -
3 3

- qo 3
é
o5 [™ bert
_ ul ? ()
M - é
a , ¥ ls,'l 7 w->
(] e
Fig. S3.4-3

(e) To = 3, wo = 277/3.

a 1 /l tdt !

0 = - = -

3 /o 6

1
an = g/o tcos%Tﬂtdt— o) 2[cos27sm +27rTnsin27rTn -1)
1
. 2nmw 2tn 2mn 27n
bn = 5/0 tsin —tdt = 523 [Sll’l 3 - 3 T]
Therefore Co = % and
C 3 2+ Am?n? 2 cos Zmn _ 4mn in 2mn and 6 tan™! %Tn cos % —sin 2_’:;2
n = - -_——— S n =
27202 9 3 3 3 cos 22 4 2mngip 21n _ ]
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(f) To = 6, wo = 7/3, ap = 0.5 (by inspection). Even symmetry; b, = 0.

/f(t
=§|:/0 coa—-dt+/(2—t)cos—3—tdt]

=5 [co% 2T _ cos @1]
T w2n? 3 3

6 2 ST 1 ks
f(t)—0.5+F(cosit—gcosn't+%cos 3 t+Ecos?t+-~)

Observe that even harmonics vanish. The reason is that if the dc (0.5) is subtracted from f(t), the resulting
function has half-wave symmetry. (See Prob. 3.4-7). Figure S3.4-3f shows the plot of Ch.

3.4-4 (a)
Here To = 7, and wo = 2T— 2. Therefore

fit)=ao+ z an cos 2nt + b, sin 2nt
n=1
To compute the coefficients, we shall use the interval —= to O for integration. Thus

1 (1]
ao = ;/ et/? dt = 0.504
-7

2 [° 2
an = _/ e*/? cos 2nt dt = 0.504 (——————)

T ) . 1+ 16n2
0
_ 2 t/2 . _ ( 8n )
b = - /_"e sin 2nt dt = —0.504 171602

Therefore

Co=a0=0504, Cn=+/al + b2 = 0.504 (71-:“5—2) , 0n=tan™ ('ab") =tan" 4n

f(t) = 0.504 + 0.504 Z cos (2nt + tan"' 4n)

V1 16n§

(b) This Fourier series is identical to that in Eq. (3.56a) with ¢ replaced by —t.
(c) If f(t) = Co+ Y Cn cos(nwot + 65), then

f(=t)=Co+ ) Cncos(—nwot +8,) = Co + Y _ Cn cos(nwot — 6n)

Thus, time inversion of a signal merely changes the sign of the phase 6,. Everything else remains unchanged.
Comparison of the above results in part (a) with those in Example 3.3 confirms this conclusion.

3.4-5 (a) Here To = n/2, and wo = 2" =4. Therefore
f(®)=ao+ Zan cos 4nt + b, sin 4nt

n=1

where
2 /2
a== / et dt = 0.504
™ Jo
/2
an=2 [ e cos 4ntdt = 0.504 (%)
7 Jo 1+ 16n
and
T/2
b= 4 e~'sin dntdt = 0.504 (——87—’——2)
T Jo 1+ 16n
Therefore '
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Co=ao=0504, Cn=+/a2+ b2 = 0.504 (7#) . 6, =—tan"'4n
n

(b) This Fourier series is identical to that in Eq. (3.56a) with ¢ replaced by 2t.
(c) If f(t) = Co+ 3 Cn cos(nwot + 6r), then

flat) =Co + Z Cr cos(n(awo)t + 65)

Thus, time scalitig by a factor a merely scales the fundamental frequency by the same factor a. Everything
else remains unchanged. If we time compress (or time expand) a periodic signal by a factor a, its fundamental
frequency increases by the same factor a (or decreases by the same factor a). Comparison of the results in part
(a) with those in Example 3.3 confirms this conclusion. This result applies equally well
3.4-6 (a) Here Ty = 2, and wo = 2= = 7. Also f(t) is an even function of t. Therefore
L=}

To
f(t) =a0+ Za,, cos nwt

where, by inspection ap = 0 and from Eq. (3.66b)

n even

n odd

a -3 1A(—2t~+—l)cosmrtdt—— 4 (cosnmt — 1)} = 0
=2 = T a2 o A

Therefore

8A 1 1 . 1
ft) = Py [cos wt + 5 cos 3nt + 55 cos 5wt + 19 08 71rt+---]

(b) This Fourier series is identical to that in Eq. (3.63) with t replaced by ¢t + 0.5.
(c) If f(t) = Co+ Y Cncos(nwot + 85), then

f+T)=Co+ Z Cr coslnwo(t + T) + 6,] = Co + E Chr cos[nwot + (6n + nwoT)]

Thus, time shifting by T merely increases the phase of the nth harmonic by nwoT.

3.4-7 (a) For half wave symmetry

fy=-f (s )
and
2 To 2 To/2 To
and an = — f(t) cosnwotdt = — / f(t) cos nwot dt + f(t) cos nwot dt
To Jo To J, To/2

Let £ =t — To/2 in the second integral. This gives

2 TO/2 T0/2 TO TO
An = — f(t) cos nwot dt + f (z + ——) €os nwo (:z: + —) dz
To | Jo o 2 2

2 To/2 To/2
== [/ f(t) cos nwot dt + / —f(z)[- cos nwoz] d:r]
To | J, |

4 To/2
== [/ f(t) cos nwet dt]
To | J,

In a similar way we can show that

4 To/2
bn = — / f(t) sinnwot dt
To J,

us

(b) (i) To =8, wo = Z, ao = 0 (by inspection). Half wave symmetry. Hence

47
4 2
4 nw 1 t nmw
gw [/0 f(t) COos Tt dt] = 5 [/0. 5 cos ‘4—t dt]

=#(cos%+%sin%—l) (n odd)

Qn

= — (—sin-—— - 1) (n odd)
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Therefore
{;,‘;, 22 -1) n=15913, -
an =

~_14_7(%+1) 11:3,7,11,15,"'

Similarly
2
1 t nmw 4 nt nmw nmw 4 nmw
= = —-sin —tdt = —— (sin — — — —_ ) = —— i _— .
bn 2/{; 3 sin— td 53 (%m 3 5 C0s 5 ) 2 sm( ) ) (n odd)
and
o0
nw . nr
ft)= Z ancos’Tt+bnSln—Z—t
n=1,3,5,---

(ii) To = 27, wo = 1, ap = 0 (by inspection). Half wave symmetry. Hence

oo

ft)= Z ancosnt + b, sinnt
n=1,3,5,---

o
/ e~t/1% cos nt dt
0
”

2 e—t/lo
== |—5———(-01 i d
p [n2+0‘01( 0 cosnt+nsmnt‘)]0 (n odd)

an =

]

2[ 7 o, ! 0.1

T n2+0.01( ) )_n2+0.01(' 1)

_ 2 (/10 _ 1) = 0.0465
107 (n2 + 0.01) n? + 0.01

and

2 ™
bn = —/ et/ sinnt dt
0

™

”

2 e~t/10 .
= ; [m(—ol sinnt — ncos nt)] . (n Odd)

_ 2n (e_,r/lo _ ) _ 1.461n
~ (n2+0.01) " n2+40.01

3.4-8 (a) Here, we need only cosine terms and wo = Z. Hence, we must construct a pulse such that it is an even

2
function of ¢, has a value t over the interval 0 < ¢t < 1, and repeats every 4 seconds as shown in Fig. S3.4-8a. We

selected the pulse width W = 2 seconds. But it can be anywhere from 2 to 4, and still satisfy these conditions.
Each value of W results in different series. Yet all of them converge to t over 0 to 1, and satisfy the other
requirements. Clearly, there are infinite number of Fourier series that will satisfy the given requirements. The
present choice yields

f(t) =a0+ iancos (%’—r) t
n=1

By inspection, we find ap = 1/4. Because of symmetry b, = 0 and

1
4
ot [ ialon(5)+ 5 (5)

(b) Here, we need only sine terms and wo = 2. Hence, we must construct a pulse with odd symmetry, which has
a value t over the interval 0 < ¢ < 1, and repeats every m seconds as shown in Fig. S3.4-8b. As in the case (a),
the pulse width can be anywhere from 1 to 7. For the present case

f@t) = Z br sin 2nt
n=1
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Because of odd symmetry, a, = 0 and

1
4 1 .
b = — / tsin2ntdt = -——2(sm 2n — 2ncos 2n)
T Jo ™
(c) Here, we need both sine and cosine terms and wo = 5. Hence, we must construct a pulse such that it has no

symmetry of any kind, has a value ¢ over the interval 0 < ¢t < 1, and repeats every 4 seconds as shown in Fig.
S3.4-8c. As usual, the pulse width can be have any value in the range 1 to 4.

f(t)—ao+Za,lcos( )t+bnsm (n27r)t

By inspection, ap = 1/8 and

2 ! nmw 2 nmw nt . (nw

an = Z/(; t cos Ttdt = n27r2 [COS (—2-) + TS]H (-—2—) - 1]
2 1 ar 2 . [nm nm nm

bn bl Z/O tsin Ttdt = ;L?ﬂ'—z [Sln (—2—) - '-2—COS (—5—)]

\ /\1/\ A ""/l-EHt Y I

VAV Ve T N\

Fig. $3.4-8

(d) Here, we need only cosine terms with wy = 1 and odd harmonics only. Hence, we must construct a pulse
such that it is an even function of ¢, has a value ¢ over the interval 0 < ¢ < 1, repeats every 27 seconds and has
half-wave symmetry as shown in Fig. S3.4-8d. Observe that the first half cycle (from 0 to 7) and the second
half cycle (from 7 to 27) are negatives of each other as required in half-wave symmetry. This will cause even
harmonics to vanish. The pulse has an even and half-wave symmetry. This yields

oo
fit)=ao+ Z an cosnt

n=1
n odd

By inspection, ap = 0. Because of even symmetry b, = 0. Because of half-wave symmetry (see Prob. 3.4-7),

4 [ [ T 2 2 . nr
an = — tcosntdt — (t — m)cosntdt| = —(cosnm — 1) + = sin — n odd

27 | Jo /2 mn? n 2 :
(e) Here, we need only sine terms with wo = m and odd harmonics only. Hence, we must construct a pulse such
that it is an odd function of ¢, has a value t over the interval 0 < t < 1, repeats every 4 seconds and has half-wave
symretry as shown in Fig. S3.4-8e. Observe that the first half cycle (from 0 to 2) and the second half cycle
(from 2 to 4) are negatives of each other as required in half-wave symmetry. This will cause even harmonics to
vanish. The pulse has an odd and half-wave symmetry. This yields
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oo
@)= Z b, sin 112_7rt
nn:c}d

By inspection, ap = 0. Because of odd symmetry a, = 0. Because of half-wave symmetry (see Prob. 3.4-7),

1 2
4 . nmw oy . T 8  nam
bn == Z/o tsm—2—tdt+-/1 (—t+2)sm —2—tdt=msln—2— n odd

(f) Here, we need both sine and cosine terms with wo = 1 and odd harmonics only. Hence, we must construct a
pulse such that it has half-wave symmetry, but neither odd nor even symmetry, has a value ¢t over the interval
0 <t <1, and repeats every 2m seconds as shown in Fig. S3.4-8f. Observe that the first half cycle from 0 to
w) and the second half cycle (from 7 to 27) are negatives of each other as required in half-wave symmetry. By
inspection, ap = 0. This yields

o0
f(6) = Z an cosnt + b, sinnt

n=1
n odd

Because of half-wave symmetry (see Prob. 3.4-7),

1 1
4 2
an=i tcosntdt:-g—(cosn+nsinn—l) bp = — tsinntdt = —(sinn — ncosn) n odd
27 Jo n2 27 Jo mn2

3.4-9
a b c d e f g h i
periodic? yes yes no yes no yes yes yes yes
wo 1 1 ks -71—0 % 1 2
period 2r  2rw 2 1407 8—3’5 2r o
3.4-10

oc
f(t) =ao+ Zan cos 2mnt + by, sin 27t (wo = 2—”)

n=1

1 1 1
ao=1/ f(t)dt:/ tdt = =
[s] 0 2

1
an = 2/ tcos2rntdt =0 n>1 (ninteger)
0

1
b = 2/ tsin2mntdt = -——1
o ™

Hence

pred

Figure S3.4-10
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ft)y =5+

3=

(sin 2nt + %sin 4nt + %sin 6nt + - - )

W=

sin 27wnt

N =

+

M
-

3 |-

n=1

If E.(N) is the energy of the error signal in the approximation using first N terms, then From Eq. (3.40)

1 1\ 1[/1\° 1)’ 1 :
Ee(N)=1/0 £ dt - [(§> +§[(;) +(§> +"'+((N—1)1r) H

(Note that E, =1/2forn=1,2,...and Eg =1)

4 12
1 1 1
—_ = = = o= e—— T 2
E.(2) 371 3.2 0.03267
1 1 1 1
Ee®) =337 57 ~ gz ~ 002
a1 1 1 1 1 .
Ee(4)= 3~ 7~ 573~ g5 — g3 = 0014378
3.4-11
f(t) = cozo(t) + caz1(t) + - - - + crz(t)
1
SinceE,, = / zp(t)dt =1
0
! 1
o= [ rmetya =}
o
! 1
cy = / f(t).’l}l(t) dt = —Z
0
Cz=C4=65=66=0
! 1
c3 = / ft)zs(t)dt = --g
0
! 1
= t dt = ——
o= [ st = -5
Hence
1 1 1 1
F(8) = 5z0(t) = 721 (t) = gz3(t) — per(t)
Also
! 1
/ fit)dt == and E,=1
o 3
If E.(N) is the energy of the error signal in the approximation using first N terms, then From Eq. (3.40)
1 9, 1
e == = = — =0.
Ee(l) = 3 - = 5 =0.0833
E (2)—l—p2—p2—l—00204
ATy T g T
1
E.(3) = 3 ca-cf-ci= To5 = 0.0052
1 2 2 2 2 1
e = - — —_ —_ —_— O = — = ), 0
E.(4) 3T a= oo 0.001302
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The Walsh Fourier series gives small error than the trigonometric Fourier series (in prob. 3.4-10) for the same
number of terms in the approximation.

3.4-12
f(t) = copo(t) + c1pr(t) + - - - + ¢;p;(t)
1!
Co=~2-/ f(t)dt=0 AISO (,’2=(;4=C6="'=0
-1
3 [t 3 7 [ 53 3 7
c1=§/_1tf(t)dt=—§ cs=§/_1tf(t)[§t —§t] dt = ¢
Hence

3 .7(5,5 3
f(t) = 2t+8(2t 2t>+

1
Also / f2(t)dt =2 and using Eq. (3.40)
-1

E.(1) =/f2(t)dt— %ci =92 - g =05

E.(2) = /f’(t) dt — %cf - ;cg =0.28125
(b) This is a scaled version (time-expansion by factor 2r) of the signal f(t) in pair a.

w=1(8) 2915 209

3.5-1 (a): To = 4,wo = w/2. Also Do = 0 (by inspection).

1 3
1 —; - 2
Dp=— eI/t gy eIt gy = 2 in BT n| >1
2m J_, 1 - L) 2

(b) To = 107, wo = 27/107 = 1/5

et ™ .

in 1 —jz 7 . . nm 1 . (nrm

= J St = —— ]St = —_— = —_— = — S —_—
@) = E D,e’5", where D, 107"[ e dt D ( 2j sin 5 ) — sm( 5 )

n=—oo

(c)
f(t) = Do + Z D.e’™,  where, by inspection Do =0.5
2 B . jus n>0
D, = L/ ‘Le’J"‘ dt = L, so that |D,| = —l—, and /D, = { 2
2m J, 2m 27n 27n = n<0
(d) To=1r,wo=2anan=0
= on 1 [ a4 -7 (2 ™ ™
f(t) = Z Dne’®™, where D, = —/ Sty = 21 (— sin — — cos ——-)
T aa ™ ™ \7n 2 2

n=-—00

(e) To = 3,wo = %

f(t) = Z D, ejzgﬂt, where D, = %/ te B gt = 4”3712 [e'ﬂ% (]2;1'71 + 1) — l]
0

n=o0
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TRITF G [F T we PETIIA J}"‘JJ.LP;L“ W
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: . (e
RN T “
-- -2 2 4‘ W ’g—
= D, | *f‘:bn

f1.l. ]“ ! -

=" LI I T P

,."8
Fig. S3.5-1
Therefore
3 4m3n? 2rn 4mn . 27n -1 271 cos 22 — sin 222
Du| = —— 2+ — 2¢08 —— — ——sin — d /D=1t 3 3 3
Dnl = g [\/ 9 3 3 o 3]8'“ n = ten cos 22 + 22 sin 292 ]

(f) To = 6, wo =7n/3 Do =0.5

st .
fey=05+ Y Dne™5

n=-—oo

-1 ) v 2 o : .
D, = 1 (t+2)e_'7"3_t dt + e dt + (—t+2)e"11"l dt| = 23 3 (cosM — cos -2173)
61/, 1 1 mn 3 3.
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3.5-2 In compact trigonometric form. all terms are of cosine form and amplitudes are positive. We can express f(t) as

f(t) =3+ 2cos <2t—%) + cos (3t—%) +-;-cos.(5t+-§——1r)

=3+2cos(2t—%)+cos(3t—%)+%cos(5t—2%)

From this expression we sketch the trigonometric Fourier spectra as shown in Fig. $3.5-2a. By inspection of
these spectra, we sketch the exponential Fourier spectra shown in Fig. $3.5-2b. From these exponential spectra,
we can now write the exponential Fourier series as

F(t) =34+ ®F) i) | %ej(St—i'-) + %e—ﬂsz—%) + _}icj(St-%E) + %e—j(st—ﬁm

1 12345 o>
{ ' = —e—
c‘a‘\ | I ~T/e
- T+Y -7'/2
] 12345 W-> - 2T
. £y

3
2
1
e+ 1 1 .1 ot S
~s 3 -1| 42345 r
&>
Fig. S3.5-2

3.5-3 (a) The exponential Fourier series can be expressed with coefficients in Polar form as
F(t) = (2V2e7™4)e ™% 4 20727t 4 3 4 267/ 2T 4 (212674

From this expression the exponential Spectra are sketched as shown in Fig. S3.5-3a.

(b) By inspection of the exponential spectra in Fig. $3.5-3a, we sketch the trigonometric spectra as shown in
Fig. $3.5-3b. From these spectra, we can write the compact trigonometric Fourier series as

f(t) = 3+4cos (t - g) +4v3 cos (3t _ %)

(c) The lowest frequency in the spectrum is 0 and the highest frequency is 3. Therefore the bandwidth is 3
rad/s or = Hz.

3.5-4 (a)

ft) = i Dpe™ot

n=-—oc

) oo oo
j‘.‘(t) — f(t _ T) - Z Dne_jnuo(t—T) — z (Dne—jnon)ejnuot — Z bnejnwot

n=-—00 n=-—oo n=-—oc
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Fig. S3.5-3

D, = Dne™ ™0 sothat |Dp|=|Dn|, and /D= LDn— jnweT

(b)
oo
f) =" D™
n=-—o00
o0

f®)=fat) = Y Dnemol®

n=-—oo
3.5-5 (a) From Exercise E3.6a
oo
f(t)=% %Z Cosn1rt -1<t<1

The power of f(t) is

Moreover, from Parseval’s theorem [Eq. (3.82)]
oc [e ]
c? 1 4(-1) 1 8 1 1 8 1
-2 L — —_— _—= = _—= =
P’_C"”Lzl:z () 2Z(w2n2> 9+1T4Zn4 9790 "5

(b) If the N-term Fourier series is denoted by z(t), then

z(t) =

_ n
+i ) cosnmt -1<t<1
w2 n?

The power P; is required to be 99% Py = 0.198. Therefore

N—-
8 1
—42 — = 0.198

For N =1, P, = 0.1111; for N = 2, P, = 0.19323, For N = 3, P, = 0.19837, which is greater than 0.198.
Thus, N = 3.

3.5-6 (a) From Exercise E3.6b

<DI'—'

fe <]
24, \n :
f(t)=7(—1) * E ;ll-smmrt —r<t<w
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3.5-7

3.6-1

The power of f(t) is
Py = =~ ' (At) dt = —
4 2 1 3

Moreover, from Parseval’s theorem [Eq. (3.82)]

(b) If the N-term Fourier series is denoted by z(t), then
2A al 1
= —— n+1 — 1 -
z(t) = - (-1) E nsmnﬂ't r<t<nmw

The power P; is required to be 0.90“%2 = 0.3A2. Therefore

For N = 1, P, = 0.2026A2%; for N = 2, P, = 0.25334%, for N = 5, P, = 0.29658A4% for N = 6, P, =
0.3022242%, which is greater than 0.342. Thus, N = 6.
The power of a rectified sine wave is the same as that of a sine wave, that is, 1 /2. Thus Py = 0.5. Let the

2N + 1 term truncated Fourier series be denoted by f (t). The power P; is required to be 0.9975P; = 0.49875.
Using the Fourier series coefficients in Exercise E3 10, we have

N
2_ 4 :
Pi= Y IDif*== Z 4 Ty = 049875

n=-—N n=—N

Direct calculations using the above equation gives P; = 4/7% = 0.4053 for N = 0 (only dc), P; = 0.49535 for
N =1 (3 terms), and P; = 0.49895 for N =2 (5 terms).

Thus, a 5-term Fourier series yields a signal whose power is 99.79% of the power of the rectified sine wave. The
power of the error in the approximation of f(t) by f(t) is only 0.21% of the signal power P.

Period Ty = 7, and wo = 2, and

N jw 0504
H(jw) = CoT13) 1750 and from Eq. (3.74) D, = T+ 74n
Therefore ) = D H(jnwp)e? ™0t = S 71.08n et
r - WS Z Jnwo E 1+ jdn)(—w? + 3 + j2w)

n=-—00 n=—
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Chapter 4

4.1-1

4.1-2

4.1-3

F(w) = /oo f(t)e 7t dt:/m f(t)coswtdt—j/w f(t)sinwt dt

If f(t) is an even function of ¢, f(¢)sinwt is an odd function of ¢, and the second integral vanishes. Moreover,
f(t) coswt is an even function of ¢, and the first integral is twice the integral over the interval 0 to co. Thus
when f(t) is even

F(w)=2/°°f(t)coswtdt (1)
0

Similar argument shows that when f(t) is odd

F(w) = -2j /oo f(t)sinwt dt (2)
0

If f(t) is also real (in addition to being even), the integral (1) is real. Moreover from (1)

F(-w) = 2/mf(t)coswtdt = F(w)
0

Hence F(w) is real and even function of w. Similar arguments can be used to prove the rest of the properties.

f(t) = ZLW /(x> F(w)e’™ dw = 511? /oo |F(w)]e?£F @) et gy,
- [ / VPG costut + 2P ()] o+ 5 / " IF(@)sinfot + LF(w) dw]

Since |F(w)| is an even function and ZF(w) is an odd function of w, the integrand in the second integral is an
odd function of w, and therefore vanishes. Moreover the integrand in the first integral is an even function of w,
and therefore

£t) = ;1; / |F(w)| coslwt + LF(w)] dw
0

Because f(t) = fo(t) + fe(t) and et = cos wt + jsin wt

F(w)=/ [fo(t)+f¢(t)]e"'”‘dt=/ [fo(t)+fe(t)]coswtdt—j/ [fo(t) + fe(t)]sinwt dt

—o0 —o0 —oo

Because fe(t)coswt and fo(t)sinwt are even functions and fo(t) coswt and fe(t)sinwt are odd functions of t,
these integrals [properties in Eqs. (B.43), p. 38| reduce to :

F(w)= 2/00 fe(t) coswt dt — 235 /‘00 fo(t) sinwt dt (1)
0 0

Also, from the results of Prob. 4.1-1, we have

F{fe(t)} = 2/00 fe(t)coswtdt and F{fo(t)} = -2j /‘°° fo(t) sinwt dt (2)
0 o

From Egs. (1) and (2), the desired result follows.



4.1-4 (a)

T T _ o—Gwta)T
F(w) = / e eI dt = / U g o Loe
0 0

jw+a
(b)
T T ) _ —(jw—a)T
F(w)=/ e‘"e”’“"dt:/ e~w=a) gt = L—f——-—
0 0 Jw —a
4.1-5 (a)
1 2 —je —;
—diw —iw 4 — 2e7IW — QeI
F(w)=/4e“dt+/ 2e It gt = N
0 1 Jw
(b)

° Tt 2
F(w) = / ——e¥tdt = / —e I dt = —[coswT + wrsinwr — 1]
T o T Tw

-T

This result could also be derived by observing that f(t) is an even function. Therefore from the result in Prob.

4.1-1
2 [7 2 .
F(w) = —/ tcoswtdt = —[coswT + wTsinwr — 1]
T Jo Tw
4.1-6 (a) _ _
1 [ e, 1 & 2.2 . “° (wdt? - 2)sinwot + 2wot cos wot
f(t)—ﬁ'/_wowe du)—i;w[~wt —2]wt+2—uo— 3
Fl) ,
2 R (w) Fy (0
1 - 4
— {+b= = 2
- [ ’ -\ o |
-2 - 2 2 o 2

Fig. 54.1-6b

(b) The derivation can be simplified by observing that F(w) can be expressed as a sum of two gate functions
F1(w) and F2(w) as shown in Fig. S4.1-6. Therefore

2 2 1 . .
ft)= 2—17r-/ [Fi(w) + F2(w))e’" dw = 51—1; {/ e dw +/ et dw} _Sin2ttsint
-2

—2 -1 it
4.1-7 (a)
1 /2 )
ft)= -——/ cosw e?* dw
2 —r/2
ejut . . /2
= m {jtcosw + smw}_ﬁr/2
T ow(1-t2) 2
(b)

1 n/2 1 n/2 n/2
fit)=— F(w)e* dw = — [/ F(w) cos wt dw +j/ F(w)sinwt dw]
2 —n/2 2w /2 —m/2

Because F(w) is even function, the second integral on the right-hand side vanishes. Also the integrand of the
first term is an even function. Therefore
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t(% 32 ree=L =g
hi—re_c.l 2—> AAMlﬁJ) i kd
-1 ¢ 1 £ -5¢ lo 5¢ w= cl @ i 14
C\\ t->
3 by = @
t xt
(> ‘ £
5TF lc'ﬂ' o2 O —= -5 I 57 +—
Fig. S4.2-1
1 [¥e 1 [costw + twsintw]“°
f(t):;A :J_(;COSthw=7r_wo [—_—t"’_]o

1 .
= =[cos wot + wot sinwpt — 1]
Twot”

4.2-1 Figure S4.2-1 shows the plots of various functions. The function in part (a) is a gate function centered at the
origin and of width 2.. The function in part (b) ca&ﬂ expressed as A (100 /3) This is a triangle pulse centered

at the origin and of w1dth 100/3. The function in part (c) is a gate function rect(£) delayed by 10. In other
words it is a gate pulse centered at t = 10 and of width 8. The function in part (d) is a sinc pulse centered
at the origin and the first zero occurring at %2 = , that is at w = 5. The function in part (e) is a sinc pulse
sinc(%) delayed by 10x. For the sinc pulse sinc(%), the first zero occurs at ¢ = =, that is at w = 57. Therefore
the function is a sinc pulse centered at w = 107 and its zeros spaced at intervals of 57 as shown in the fig.
S4.2-1e. The function in part (f) is a product of a gate pulse (centered at the origin) of width 107 and a sinc
pulse (also centered at the origin) with zeros spaced at intervals of 5. This results in the sinc pulse truncated

beyond the interval £5x (|t| > 57) as shown in Fig. f.

4.2-2
55 L5 . _ .
F(w) — / e—]wt dt = _f_e—]wt ,—[6-14.5‘“ _ 6—35.54‘)]
45 Jw 45 ¥
— 35 5
= e—.:[ejw/z —e ) = == [21 sin 2]
Jw Jjw
H w —JjSw
= sinc (— e’
)
4.2-3
1047 wt 1047
_1 et € _ 1 (1047t _§(10—m)t
ft)= G /10_” e dw = 37 Gw) o = Jorw [e e ]
j10t _
= ;21rw [2j sin 7t] = sinc(rt)e’ 1"
4.2-4 (a)

- _/ —Jwto ]..Jtdw / jw(t—to) dw
wo

sin wo(t — to) wo . ,
= ———— = —SINC t—t
ra— —sinclwo(t — to)]

Jw(t to)
T n)j (t ~ 1)

—wo

1 0 ) «o )
f(t)= — [/ je’t dw +/ —je’t dw]
27 —wo 0

0
Lejut

(b)

— 1 e]ut

“o 1 - coswot

—wo 2mt o mt
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4.3-1 (a)
u(t) <= né(w) + J%

N, e’
f(t) Flw)

Application of duality property yields
. 1
m6(t) + — <= 2nu(~w)
gt L
(A 27 f(—w)

F(t)

or
1 1

Application of Eq. (4.35) yields
1 1
5 [6(—” - ]—TFZ] — u(w)

But 6(t) is an even function, that is 6(—t) = 8(t), and

. _
3160 + 1) = u(w)

(b)
cos wot <= 3r[6(w + wo)ié(w - wo)l

F(w)

f(t)

Application of duality property yields
7[6(t + wo) + 6(t — wo)] <= 2m cos (—wow) = 2 cos (wow)
2mf(-w)

F(t)

Setting wp = T yields
6(t+T)+6(t—T) < 2cos Tw

(c)
sin wot <> ;7’1r[6(w + wo) — 6(w — wo)l

.

f(¢) F(w)

Application of duality property yields
jr6(t + wo) — 8(t — wo)] <= 27 sin(—wow) = —27 sin(wow)

27 f(—w)

F(t)

Setting wo = T yields
§(t+T)-6(t—T) < 2jsin Tw

4.3-2 Fig. (b) f1(t) = f(~t) and
Fi(w) = F(-w) = ‘%[e‘f‘“ + jwe ¥ — 1]

Fig. (c) f2(t) = f(t — 1) + f1(t = 1). Therefore

F3(w) = [F(w) + Fi(w)]e™ = [F(w) + F(-w)}e™

2e™I¥

== (cosw + wsinw — 1)

Fig. (d) fs(t) = f(t - 1)+ L1t + 1)

Fy(w) = F(w)e " + F(~w)e™
= ;1—[2 —2cosw] = ;}4—2 sin? 2 = sinc? (-2-)

[\
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Fig. () fa(t) = f(t — )+ fa(t+ 3), and

Fi(w) = F(w)e™ /% 4 F1(w)ejw/2
el _ /2
= T[e’ - jwe? = 1]+

1 LW . w
;—5[2;» sin 3] = sinc (3)
Fig. (f) fs(t) can be obtained in three steps: (i) time-expanding f(t) by a factor 2 (ii) then delaying it by 2

seconds, (iii) and multiplying it by 1.5 [we may interchange the sequence for steps (i) and (ii)]. The first step
(time-expansion by a factor 2) yields

[e™7% + jwe ™% = 1)

f (%) = 2F(2w) = Zl’—i(e.jz“’ - j2we’® — 1)

Second step of time delay of 2 secs. yields

t—2 1 gow o Gow qy—i2w L —j2w
f( 3 )<=> 2w2(c j2we l)e = 2w2(1 j2w—e )

The third step of multiplying the resulting signal by 1.5 yields

fo( =157 (52) = 22501 - 20 - %)

SN o~
N ;,/\\/ \ /\
© | AU ii‘.\\ ”\ o E\/ =T \_
’a \\‘/

sinT uwies 2 SV (=T Wi Cost yi 5 cos (t -L)uell )
(e
Fig. S4.3-3

4.3-3 (a)

f(t) = rect (t +7?/2) — rect (E_TT/E)

rect (%) <= T'sinc (%Z)

rect (#) <= T'sinc (-w—;-‘) eFiwT/2

and

F(w) = Tsinc (wz [74T/2 _ ¢=3wT/?

= 2jTsinc £) sin w_

(b) From Fig. S4.3-3b we verify that
f(t) = sintu(t) + sin(t — m)u(t — =)

Note that sin(t — 7)u(t — m) is sin t u(t) delayed by =. Now, sintu(t) < {6(w -1)-é6w+ 1)+ T_l—wg and
i ult — 6w — 1) — 6(c Ly
sin(t — m)u(t — ) <= {2], blw=-1)=68(w+1)]+ T e
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Therefore
) T 1 —Jjrw
F(w) = {Z[é(w -1)—6(w+1)] + T—_wz}(l +e ™)
Recall that f(z)6(z — o) = f(z0)6(z — xo). Therefore §(w + 1)(1 + ¢7™) =0, and

1
1—w?

F(w) = (14e77™)

(c) From Fig. S4.3-3c we verify that
f(t) = cost [u(t) —u (t - g—)] = cosrtu(t) —costu (t - %)
But sin(t — §) = — cost. Therefore

f(t) = costu(t) + sin (t— %)u (t— %)

Flw) = g[a(w —1) +6w+1)] + f% + {21],[5(w —1) = 8w+ )]+ 1 _1w2 } eI/

Also because f(z)6(z — zo) = f(x0)d(z — o),

Swt e ™2 = §(w+1)e™™? = £j5(w £ 1)
Therefore
jw e~ imw/2 1

_ _ . —jrw/2
Fw)= TR g —1_w2[_7w+e e

(d)

() = e u(t) — u(t — T)] = e~ "u(t) — e **u(t = T)
= ut) — e Tt Dyt - T)

1 _ e-aT e_juT - 1

jw+a Jw+a Jjw+a

F(w) = 1~ e~ (etI)T]

4.3-4 From time-shifting property

ft£T) & F(w)e*T

Therefore
fE+T)+ f(t = T) & Fw)e’T + F(w)e T = 2F(w) coswT

We can use this result to derive transforms of signals in Fig. P4.3-4.
(a) Here f(t) is a gate pulse as shown in Fig. S4.3-4a.

£(£) = rect (%) = 2sinc(w)
Also T = 3. The signal in Fig. P4.3-4a is f(t + 3) + f(t — 3), and

f(t+3)+ f(t — 3) < 4sinc(w) cos 3w

(b) Here f(t) is a triangular pulse shown in Fig. S4.3-4b. From the Table 4.1 (pair 19)

A (L) s sine? (@
f)y=4A (2) <= sinc (2)
Also T = 3. The signal in Fig. P4.3-4b is f(t + 3) + f(t — 3), and

FE+3)+ f(t—-3) = 2 sinc? (%) cos 3w
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L| F® 4 p FUEd N
1 1 (a) /I\ b

- "t =1
Fig. S4.3-4

4.3-5 Frequency-shifting property states that

f(t)e*0t = F(w F wo)

Therefore

£(t) sinwot = 21—j[f(t)ef“°‘ + f(t)e™I0t] = 2ij[F(w — wo) + F(w — wo)]

Time-shifting property states that

f(t£T) & Fw)e**T

Therefore

FE+T) - j(t=T) & Fw)e - F(w)e™ T = 2jF(w) sinwT

and
2ij[f(t +T) = f(t = T)] &> F(w)sinTw
The signal in Fig. P4.3-5 is f(t + 3) — f(t — 3) where

f(t) = rect (%) 4= 2sinc(w)

Therefore
f(t+3) = f(t — 3) <= 2j[2sinc(w)sin 3w] = 4j sinc(w) sin 3w
4 t
A (5
-T. o T +->

Gsmlﬁ-m—

S Y (a) D >
| ’ﬂ\ : ... | Fro) |
‘-{Jﬂ’ ‘ N ﬂ\/\‘)... : ‘.—\‘ — i
0 I HERE | U \l' 37 -(D -~ ; !D () —-
\ - -
\“P' ‘t"; Ffu,)_ _?Tr
(>
Fig. S4.3-6
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4.3-6

4.3-7

4.3-8

Fig. (a) The signal f(t) in this case is a triangle pulse A(ﬁ) (Fig. S4.3-6) 1nultiplied by cos 10t.
t
f)=a (-—) cos 10t
2

Also from Table 4.1 (pair 19) A(£) <= nsincz(%ﬁ) From the modulation property (4.41), it follows that

fir)=A4A (2%) cos 10t & —27‘: {Sinc2 [T—(‘&Z——w)] + sinc? [ﬂ%—lﬂ] }

The Fourier transform in this case is a real function and we need only the amplitude spectrum in this case as
shown in Fig. $4.3-6a.

Fig. (b) The signal f(t) here is the same as the signal in Fig. (a) delayed by 2. From time shifting property.
its Fourier transform is the same as in part (a) multiplied by e~3“(®*™_ Therefore

F(w) = % {Sinc2 [”—(“}2_—10)} + sinc? [_‘"(w ;’ 10)] } o2

The Fourier transform in this case is the same as that in part (a) multiplied by e™72™. This multiplying factor
represents a linear phase spectrum —27w. Thus we have an amplitude spectrum [same as in part (a)] as well as
a linear phase spectrum ZF(w) = —27w as shown in Fig. S4.3-6b. the amplitude spectrum in this case as shown
in Fig. S4.3-6b.

Note: In the above solution, we first multiplied the triangle pulse A(Et;) by cos 10t and then delayed the result
by 2x. This means the signal in Fig. (b) is expressed as A(t;;‘:”)cos 10(t — 2x).

We could have interchanged the operation in this particular case, that is, the triangle pulse A(# is first delayed
by 27 and then the result is multiplied by cos 10¢. In this alternate procedure, the signal in Fig. (b) is expressed
as A(%52%) cos 10t. .

This interchange of operation is permissible here only because the sinusoid cos 10t executes integral number of
cycles in the interval 2m. Because of this both the expressions are equivalent since cos 10(t — 27) = cos 10t.
Fig. (c) In this case the signal is identical to that in Fig. b, except that the basic pulse is rect(%ﬂ) instead of

a triangle pulse A(z=). Now

t
rect (—) < 27 sinc(mw)
27
Using the same argument as for part (b), we obtain

F(w) = n{sinc[r(w + 10)] + sinc[r(w — 10)]}e 72"

(a)
w—4 w+4
F(w)-rect-( 7 )+rect< 3 )
Also
1. w
;smc(t) < rect (5)
Therefore
flt) = %sinc(t) cos 4t
(b)
w+4 w-—4
F(“’)‘A( 1 )+A( 1 )
Also
1 r 2 w
—sinc (t) = A (4)
Therefore
f(t) = %sincz(t)cos 4t
(a)
eMu(t) &= - and u(t) <= 76(w) + ——1—
Jw—A w

If £(t) = eMu(t) * u(t), then
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Fw) = ( L \) (wﬁ(w)+—.1-)
Jw — Jjw

_ wé(w) 1
e [jw(jw - A)]

1
b

_1
= _§6(w) + [7‘% + o= ,\] because f(z)6(z) = f(0)6(z)

1 1 1

Taking the inverse transform of this equation yields

50) = 3 = Du(d)

(b) )
At Aot
e u(t) &= Jo and e *'u(t) &= o e
If £(t) = e**u(t) * e2tu(t), then
1 1 -1
A1—A2 A1—A2
F(w) = — - = - b
2 (w=A)(w —A2)  Jw—A1  jw-—A2
Therefore 1
1) = 555 (@M = u(d)
() 1 1
At Azt — -
e’u(t) = o and e % 'u(-t) <= o
If f(t) = e*tu(t) * e*?tu(—t), then
1 1
F(w) = -1 _ X=Xl 2=

(w = A1)(Gw — A2) ~ jw—A1  jw— A2
Therefore
1 At Aot
f@) = —[e" u(t) + e™* u(-1)]
A2 — A1

Note that because A2 > 0, the inverse transform of ju"_l,‘z is e*2tu(~t) and not —e*?*u(t). The Fourier transform
of the latter does not exist because Az > 0.
(d) .
e’\ltu(—t) = o and e*’tu(—t) = —jw v
If £(t) = e*tu(—t) x e*2tu(~t), then
1 e i reo

Flw) = Gw—A)0w = A2)  Jw—A  jw— A

Therefore 1
f) = m(em - e*)u(-t)

The remarks at the end of part (c) apply here also.

4.3-9 From the frequency convolution property, we obtain
1
£it) = gF(w) * F(w)

Because of the width property of the convolution, the width of F(w)* F(w) is twice the width of F(w). Repeated
application of this argument shows that the bandwidth of f"(t) is nB Hz (n times the bandwidth of f(t)).

4.3-10 (a)

0 T . )
F(w) = / e 7t dt — / e It dt = -_1[1 —cos wT] = 4 in? (f)
T o . jw w 2
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4.3-11

4.4-1

(b)

f(t) = rect (t +7T/2) — rect (t _7?/2)

and
F(w) = Tsinc (WT [79T/2 — 73T /2
= 2jTsinc (222:) sin —
_ g (1)
=3 sin 5
(c)
df
i §(t+T)—-26(t)+6(t—T)

The Fourier transform of this equation yields

jwF(w) = T =2+ 77T = _2[1 - cos wT] = —4sin® (ﬂ)

2
Therefore
_ ﬁ . 2 (wT)
F(w) = —sin” | -
* ; dF _d [T ;
— —Jjwt ol —Jjwt
F(w) = [_m f(t)e dt and = =0 /-m f(t)e dt

Changing the order of differentiation and integration yields

o [ muwern = [Cieroeta

Therefore -
. dF
—jtf(t) &=
(b)
e *u(t) <= -
Jjw+a
., —at d 1 - —j
jte™ u(t) = dw (jw+a) ~ (jw +a)?
and
te™tu(t) = 1
(jw + a)?
H =
(w) jw+1
(a)
1
Flw)= Jw +2
Y(w) = 1 1 1

Go+ Do +2) ju+l jwte2
y(t) = (e7F — e7*)u(t)
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(b)

1
Flw) = ju+1
1
Y =55 5e

(c)
1
Flw) ==
B -1 _ 12 1)2
Yw) = (jw+1)(w—-1) jw+1l jw-1
y(t) = %e—tu(t) + %etu(—t)
(d)
1
F(w) = mé(w) + ]—w
1 1
Y(w)= e l}ré(w) + 3(—;]
= m6(w) + 35(131_“7 | (because f(z)8(z) = £(0)8(z)]
1 1
=7r6(w)+]—_;— o Tl
y(t) = (1 — e u(t)
4.4-2 (a) .
F(w)= Tl and H(w) = o2
and .
Y(w) = -1 _1f1r
Y Go-2Gw+1) 3|jw+1 jw-2
Therefore
y(t) = % [e™tu(t) + e*u(~1)]
(b)
Flw) = — and  H(w) = —2
jw-—1 Jw —2
and ; 1 .
Y = oo DGe=2 " Jw-1 ju-2
Therefore

y(t) = [ — e*Ju(-t)]
4.4-3
Fi(w) = sinc(55555) and Fz(w)=1

Figure S4.4-3 shows F;(w), F2(w), Hi(w) and Ha(w). Now

Yi(w) = Fi(w)Hi(w)
Y2 (w) = Fa(w)Hz2(w)

The spectra Y3 (w) and Yz(w) are also shown in Fig. S4.4-3. Because y(t) = y1(t)y2(t), the frequency convolution
property yields Y (w) = Y3 (w) * Y2(w). From the width property of convolution, it follows that the bandwidth of
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Fig. S4.4-3

Y (w) is the sum of bandwidths of Y1(w) and Y2(w). Because the bandwidths of Y3(w) and Y2(w) are 10 kHz, 5
kHz, respectively, the bandwidth of Y (w) is 15 kHz.

4.4-4
H(w)=10"sinc(585) and P(w)=0.5x 107%sinc?*(z2%)

The two spectra are sketched in Fig. S4.4-4. It is clear that H(w) is much narrower than P(w), and we may
consider P(w) to be nearly constant of value P(0) = 107%/2 over the entire band of H(w). Hence,

Y (w) = P(w)H(w) = P(0)H(w) = 0.5 x 10" H(w) = y(t) = 0.5 x 107 %A(2)

Recall that h(t) is the unit impulse response of the system. Hence, the output y(t) is equal to the system
response to an input 0.5 x 107%5(w) = Aé(w).

ey | (L5708 Fleo

oo / ~

W > -2y ik ol _
:?_,xtcf'ﬂ—‘ (0> S‘meéﬂ’

Fig. S4.4-4

4.4-5
H(w) = 10" 3sinc (3855) and P(w)=0.5 sincz(%)

The two spectra are sketched in Fig. S4.4-5. It is clear that P(w) is much narrower than H(w), and we may
consider H(w) to be nearly constant of value H(0) = 1073 over the entire band of P(w). Hence,

Y (w) = P(w)H(w) = P(w)H(0) = 1073P(w) = y(t) = 10™p(¢)

Note that the dc gain of the system is k = H(0) = 10™3. Hence, the output is nearly kP(t).

4.4-6 Every signal can be expressed as a sum of even and odd components (see Sec. 1.5-2). Hence, h(t) can be
expressed as a sum of its even and odd components a

h(t) = he(t) + ho(t)
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4.5-1

4 o —N

Fig. S4.4-5

where h.(t) = $[h(t)u(t) + h(—t)u(—t)] and ho(t) = 3[R(t)u(t) — h(—t)u(—t)]. From these equations, we make
an important observation that

he(t) = ho(t)sgn (t) and ho(t) = he(t)sgn(t) (1)

provided that h(t) has no impulse at the origin. This result applies only if h(t) is causal. The graphical proof
of this result may be seen in Fig. 1.24.

Moreover, we have proved in Prob. 4.1-1 that the Fourier transform of a real and even signal is a real and even
function of w, and the Fourier transform of a real and odd signal is an imaginary odd function of w. Therefore.
if F(w) = R(w) + jX (w), then

he(t) <= R(w) and ho(t) &= i X (w) (2)

Applying the convolution property to Eq. (1), we obtain

Mw=%ﬂwpﬁ:l/ X®) 4,

T Jw—y
and
RPN | 2 1 [ Ry
iX(w)= 2"R(W)*J—.J— ;;/_oo;—_—ydy
or

X(w)=—%/dey

WY

H(w) = e~k g =it
Using pair 22 (Table 4.1) and time-shifting property, we get

) = e

h®)

Figure S4.5-1

This is noncausal. Hence the filter is unrealizable. Also

oo oo 2
In[H@)I , _ Ro?
_ w2 +1 w2+l

o0 -
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4.5-2

4.5-3

4.6-1

Hence the filter is noncausal and therefore unrealizable. Since h(t) is a Gaussian function delayed by to, it looks
as shown in the adjacent figure. Choosing to = 3v2k, h(0) = ¢4 = 0.011 or 1.1% of its peak value. Hence
to = 3V/2k is a reasonable choice to make the filter approximately realizable.

2 x 10°
@Z+100°

From pair 3, Table 4.1 and time-shifting property, we get

—Jjwto

H(w) =

h(t) = 6—105|z-e0|

The impulse response is noncausal, and the filter is unrealizable.

hi©

Y +t —

Figure S4.5-2

The exponential delays to 1.8% at 4 times constants. Hence to = 4/a = 4 x 10™° = 40us is a reasonable choice
to make this filter approximately realizable.

The unit impulse response is the inverse Fourier transform of H(w). Hence, we have

h(t) = (a) 0.5 rect ( (b) sinc %(10,0007t) (c)1

t
2 x 10—6)
All the three systems are noncausal (and, therefore, unrealizable) because all the three impulse responses start
before t = 0.
For (a), the impulse response is a rectangular pulse starting at t = —10~%. Hence, delaying the h(t) by 1 usecond
will make it realizable. This will not change anything in the system behavior except the time delay of 1 pisecond
in the system response.
For (b), the impulse response is a sinc square pulse, which extends all the way to —oo. Clearly, this system
cannot be made realizable with a finite time delay. The delay has to be infinite. However, because the sinc
square pulse decays rapidly (see Fig. 4.24d), we may truncate it at ¢t = 1074, and then delay the resulting h(t)
by 10™%. This makes the filter approximately realizable by allowing a time delay of 100 pseconds in the system
response. ’
For (c), the impulse response is 1, which never decays. Consequently, this filter cannot be realized with any
amount of delay.

oo 1 oo 2/ 2
E,:/ f2(t)dt = —/ e /7 dt
oo 2ro? |_

Letting £ = % and consequently dt = S=dz

Var 1

1 o > -z2/2
Ef= —— dz =
!~ ono? V2 /;we o 2W2r0 20
Also from pair 22 (Table 4.1)

D

Flw) = e~ W2
oo

1 [ 1 —o?w?
Ef=§-7F/ |F(W)I2du)=ﬂ e’ dw
—0o0

: - -1
Letting ow = = and consequently dw = mdﬂ?




4.6-2 Consider a signal

f(t) = sinc(kt) and F(w)= %rect(:—k)

oo 2 1 o ‘II’2 w 2
Ef=/ sinc” (kt) dt = E/—mﬁ [reCt (ﬁ)] dw

™ k ™
=2_k2/_kdw=E

If f3(t) <= A(w), then the output Y (w) = A(w)H(w), where H(w) is the lowpass filter transfer function (Fig.
S4.4-6). Because this filter band AF — 0, we may express it as an impulse function of area 4rAF. Thus,

4.6-3

H(w) ~ [4rAF]6(w) and Y (w)~ [47A(w)AF)6(w) = [47rA(0)Af]6(Q)
Here we used the property f(z)8(z) = f(0)6(z) [Eq. (1.23a)]. This yields
y(t) = 24(0)AF
Next, because f2(t) «= A(w), we have

Aw) = / T e tdr sothat A(0) = / " P de = By

Hence, y(t) = 2E;AF.

LT ROO)
~ TA% S0
ZQFAS- — A4y
] W > 2 (D>

Fig. S4.6-3

4.6-4 Recall that

fa(t) = % / ” Fa2(w)e™'dw and / ~ fi(t)e“ dt = Fi(-w)

Therefore

[ nonwa=g [0l mwewa
—o0 —o0 —oo
1 oo oo - 1
- jw - = _
= /sz(w)[/ fi(t)e? " dt] dw oy /Fl( w)F2(w) dw
- —o00
Interchanging the roles of fi(t) and f2(t) in the above development, we can show that

/°° f1(t) fa(t) dt = 517‘_-/” Fi(w)F2(—w) dw

4.6-5 Application of duality property [Eq. (4.31)] to pair 3 (Table 4.1) yields



The signal energy is given by
1 [T < _
Ef== [2me ™ |2 dw = 47 e~ gy = 2T
T Jo o a

The energy contained within the band (0 to W ) is
w 2w
Ew = 4#/ e gy = Z2[1 — e W]
o a

If Ew = 0.99Ey, then

0.366

e”2% = 0.01 rad/s = Hz

= W =

2.3025
a

4.7-1 (i) For m(t) = cos 1000t

Ppss.sc(t) = m(t) cos 10,000t = cos 1000t cos 10, 000¢

= -;—[cos 9000t + cos 11, 000t

LSB USB

(ii) For m(t) = 2 cos 1000t + cos 2000t

Ppss.sc (t) = m(t) cos 10,000t = [2 cos 1000t + cos 2000¢] cos 10, 000t
= cos 9000t + cos 11, 000¢ + %[cos 8000t + cos 12, 000¢]

= [cos 9000t + % cos 8000¢t] + [cos 11,000t + % cos 12,000t

~

LSB USB

(iii) For m(t) = cos 1000t cos 3000¢

¥Ypsa.sc (t) = m(t) cos 10,000t = %[cos 2000t + cos 4000¢] cos 10, 000t

%[cos 8000t + cos 12,000t] + -12-[cos 6000t + cos 14, 000¢]

1 1 ‘
= E@os 8000:6— cos 6000¢t] + 3 @os 12,000t + cos 14, 0005]

LSB USB

This information is summarized in a table below. Figure S4.7-1 shows various spectra.

M(wD Modulated sigual spectvym
(1 T T R D M | ol > 1 )
-1e02- 1 1600 -l ol -qcop - qQcoo (1,60

5 1111 .

=208 O3 2000 > K <9k - I K ) 0w > gH K IR T2k
DL |
e 1t 2 1.

“AK 0] 2k 4K -i9k <12K =8 —£IK o w —> < 8K 12K 4K

Fig. S4.7-1
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case | Baseband frequency

DSB frequency | LSB frequency | USB frequency

|

i 1000 9000 and 11,000 | 9000 [ 11,000 |
ii 1000 9000 and 11,000 | 9000 | 11,000 |
2000 8000 and 12,000 | 8000 [ 12,000 |

iii 2000 8000 and 12,000 | 8000 | 12,000 |
4000 6000 and 14.000 | 6000 [ 14,000 |

4.7-2 (a) The signal at point b is

fa(t) = m(t) cos® wet

= m(t) [

feose]

3 .
1 coswet + ~ cos 3wt

The term %m(t)cos wct is the desired modulated signal, whose spectrum is centered at +w.. The remaining
term %m(t)cos 3wt is the unwanted term, which represents the modulated signal with carrier frequency 3w.
with spectrum centered at +3w. as shown in Fig. S4.7-2. The bandpass filter centered at +w. allows to pass

the desired term 2m

desired with the output 2m(t) coswct.
(b) Figure S4.7-2 shows the spectra at points b and c.
(c) The minimum usable value of w, is 27 B in order to avoid spectral folding at dc.

(d)

m(t) cos® wet = Ln-z(t—) (1 + cos2wct]

N -

m(t) + %m(t) cos 2w.t

(t) cos wet, but suppresses the unwanted term %m(t)cos 3wct. Hence, this system works as

The signal at point b consists of the baseband signal 1m(t) and a modulated signal %m(t) cos 2w.t, which has a
carrier frequency 2wct, not the desired value w.t. Both the components will be suppressed by the filter, whose
center center frequency is w.. Hence, this system will not do the desired job. _
(e) The reader may verify that the identity for cos nw.t contains a term cosw.t when n is odd. This is not true
when n is even. Hence, the system works for a carrier cos™ wct only when n is odd.

a’r-@

Y

s

7y

j\df@

Fig. S4.7-2

ajc'_.-

o) —>

4.7-3 This signal is identical to that in Fig. 3.8a with period Ty (instead of 2r). We find the Fourier series for this

signal as

z(t)=-1-+-2- cosuct-—lcos 3wct+}-cos5wct+-~-
2w

Hence, y(t), the output of the multiplier is

v(®) = m(Ba() = mie) 3 + 2 (

3

5

cos wet — lcos Jwct + %cos 5w3t+~--)]

The bandpass filter suppresses the signals m(t) and m(t) cos nwct for all n # 1. Hence, the bandpass filter

output is

km(t) cos wct = %m(t) coS wct
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4.7-4 fo(t) = [A + m(t)] cos w.t. Hence,

fo(t) = [A + m(¢t)] cos® wet

= —;—[A +m(t)] + %—[A + m(t)] cos 2wt

The first term is a lowpass signal because its spectrum is centered at w = 0. The lowpass filter allows this term
to pass, but suppresses the second term, whose spectrum is centered at +£2w.. Hence the output of the lowpass
filter is

y(t) = A+ m(t)

When this signal is passed through a dc block, the dc term A is suppressed yielding the output m(t). This
shows that the system can demodulate AM signal regardless of the value of A. This is a synchronous or coherent

demodulation.
4.7-5
m 10
(a) p=0 T=7 =A=2
m 10
b =10=—=L2 =22 -
(b) p=10==2=—= =A4=10
—00="2_10 -
(c) ,u—2.0—A—A = A=5
—oo=Te _10 -
(d) p=oo=—F=— =2 A=0
This means that 4 = oo represents the DSB-SC case. Figure S4.7-5 shows various waveforms.
t5=~ -
kel i, Hze5 ﬂ
m’ﬁ[j H x A 50 ‘MH
JWUL
—5 N !

-5 Yy AN

R
!
<
—
—
N\
.
7
,g.
s "

Fig. S4.7-5

4.7-6 To generate a DSB-SC signal from m(t), we multiply m(t) with coswct. However, to generate the SSB signals
of the same relative magnitude, it is convenient to multiply m(¢t) with 2cosw.t. This also avoids the nuisance
of the fractions 1/2, and yields the DSB-SC spectrum M (w — w.) + M (w + w.). We suppress the USB spectrum
(above wc and below —w¢) to obtain the LSB spectrum. Similarly, to obtain the USB spectrum, we suppress
the LSB spectrum (between —w. and w.) from the DSB-SC spectrum. Figures S4.7-6 a, b and c¢ show the three
cases. v
(a)From Fig. a, we can express ¢, g5 (t) = cos 900t and ¢ ;g5 (t) = cos 1100t.

(b)From Fig. b, we can express ¢, 45 (t) = 2cos 700t + cos 900t and @,g5 (t) = cos 1100t + 2 cos 1300¢.
(c)From Fig. c, we can express ¢ ¢g(t) = 3[cos 400t + cos 600t] and ¢ 5 (t) = 1[cos 1400t + 2 cos 1600¢].
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In this case F, = 10 MHz, m, = 1 and mj, = 8000.

For FM ‘

AF = kgmp/2m = 2 x 10%/27 = 10° Hz. Also F. = 107. Hence, (Fi)max = 107 4+ 10° = 10.1 MHz. and
(F:)min = 107 — 10° = 9.9 MHz. The carrier frequency

increases linearly from 9.9 MHz to 10.1 MHz over a quarter (rising) cycle of duration a seconds. For the next a

seconds, when m(t) = 1, the carrier frequency remains at 10.1 MHz. Over the next quarter (the falling) cycle of
duration a, the carrier frequency decreases linearly from 10.1 MHz to 9.9 MHz., and over the last quarter cycle,

when m(t) = —1, the carrier frequency remains at 9.9 MHz. This cycles repeats periodically with the period 4a
seconds as shown in Fig. S4.8-1a.
For PM

AF = kpmy/2r = 507 x 8000/27 = 2 x 10° Hz. Also F. = 10”. Hence, (Fi)max = 107 + 2 x 10° = 10.2 MHz.
and (F:)min = 107 — 2 x 10° = 9.8 MHz. Figure 54.8-1b shows m(t). We conclude that the frequency remains at
10.2 MHz over the (rising) quarter cycle, where m(t) = 8000. For the next a seconds, m(t) = 0, and the carrier
frequency remains at 10 MHz. Over the next a seconds, where m(t) = —8000, the carrier frequency remains at
9.8 MHz. Over the last quarter cycle m(t) = 0 again, and the carrier frequency remains at 10 MHz. This cycles
repeats periodically with the period 4a seconds as shown in Fig. S4.8-1.

In this case e = 1 MHz, mp = 1 and mj, = 2000.

For FM

AF = kgmp/2m = 20,0007/27 = 10* Hz. Also F. = 1 MHz. Hence, (Fi)max = 10° + 10* = 1.01 MHz. and
(F:)min = 10% — 10% = 0.99 MHz. The carrier frequency rises linearly from 0.99 MHz to 1.01 MHz over the cycle

(over the interval — 102— lct< E';—J). Then instantaneously, the carrier frequency falls to 0.99 MHz and starts
rising linearly to 10.01 MHz over the next cycle. The cycle repeats periodically with period 10~2 as shown in
Fig. S4.8-2a.

For PM

Here, because m(t) has jump discontinuities, we shall use a direct approach. For convenience, we select the

origin for m(t) as shown in Fig. S4.8-2. Over the interval %3- to lg-s-, we can express the message signal as
m(t) = 2000t. Hence,
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¢pu (t) = cos [27.'(10)6t + %m(t)]
= cos [27r(10)6t+ %‘200012]
= cos [27(10)°t + 10007t] = cos [27 (10° + 500) ¢]
At the discontinuity, the amount of jump is mgq = 2. Hence, the phase discontinuity is k,mq = 7. Therefore,
the carrier frequency is constant throughout at 108 4+ 500 Hz. But at the points of discontinuities, there is a
phase discontinuity of 7 radians as shown in Fig. S4.8-2b. In this case, we must maintain k, < 7 because there

is a discontinuity of the amount 2. For k, > w, the phase discontinuity will be higher than 27 giving rise to
ambiguity in demodulation.

4.8-3 In this case ky = 1000r and k, = 1. For

m(t) = 2 cos 100t + 18 cos 20007t and m(t) = —200 sin 100t — 36,0007 sin 20007t

Therefore m, = 20 and mj = 36,0007 + 200. Also the baseband signal bandwidth B = 20007 /27 = 1 kHaz.

For FM: AF = ksm,/2r = 10,000, and Brm = 2(AF + B) = 2(20,000 + 1000) = 42 kHz.
For PM: AF = k,m),/2r = 18,000 + 2 Hz, and Bpy = 2(AF + B) = 2(18,031.83 + 1000) = 38.06366 kHz.

4.8-4 ., (t) =10 cos(wct + 0.1 sin 20007¢). Here, the baseband signal bandwidth B = 20007 /2r = 1000 Hz. Also,

wi(t) = we + 2007 cos 2000t
Therefore, Aw = 2007 and AF = 100 Hz and Bem = 2(AF + B) = 2(100 + 1000) = 2.2 kHz.

4.8-5 .\, (t) =5 cos(wct + 20 sin 10007t + 10 sin 20007¢).
Here, the baseband signal bandwidth B = 20007 /27 = 1000 Hz. Also,

wi(t) = we + 20,0007 cos 1000wt + 20,0007 cos 2000wt

Therefore, Aw = 20, 0007 + 20, 0007 = 40,0007 and AF = 20 kHz and Bgm = 2(AF + B) = 2(20,000+1000) =
42 kHz.



Chapter 5

5.1-1 The bandwidths of fi(t) and fa2(t) are 100 kHz and 150 kHz, respectively. Therefore the Nyquist sampling rates
for fi(t) is 200 kHz and for f2(t) is 300 kHz.
Also f1*(t) & £ Fi(w) * Fi(w), and from the width property of convolution the bandwidth of f12(¢) is twice
the bandwidth of fi(t) and that of f23(t) is three times the bandwidth of f2(t) (se also Prob. 4.3-10). Similarly
the bandwidth of f1(t)f2(t) is the sum of the bandwidth of fi(t) and f2(t). Therefore the Nyquist rate for f;2(¢)
is 400 kHz. for f23(t) is 900 kHz, for fi(t)f2(t) is 500 kHz.

5.1-2 (a)
sinc(1007t) <= 0.01A(38=)

The bandwidth of this signal is 200 7 rad/s or 100 Hz. The Nyquist rate is 200 Hz (samples/sec)
(b) The Nyquist rate is 200 Hz, the same as in (a), because multiplication of a signal by a constant does not
change its bandwidth. ’

(c)

sinc(1007t) + 3sinc®(60mt) <= 0.01 rect(385-) + 515 Alz57)

The bandwidth of rect(535;) is 50 Hz and that of A(55%5=) is 60 Hz. The bandwidth of the sum is the higher of

the two, that is, 60 Hz. The Nyquist sampling rate is 120 Hz.
(d)

sinc(50mt) <= 0.02 rect(35:)

sinc(100mt) <=> 0.01rect(555=-)

The two signals have bandwidths 25 Hz and 50 Hz respectively. The spectrum of the product of two signals is
1/27 times the convolution of their spectra. From width property of the convolution, the width of the convoluted
signal is the sum of the widths of the signals convolved. Therefore, the bandwidth of sinc(50wt)sinc(1007t) is
25 + 50 = 75 Hz. The Nyquist rate is 150 Hz.

5.1-3
The spectrum of f(t) = sinc(200xt) is F(w) = 0.005rect(3%=). The bandwidth of this signal is 100 Hz (200x
rad/s). Consequently, the Nyquist rate is 200 Hz, that is, we must sample the signal at a rate no less than 200
samples/second.
Recall that the sampled signal spectrum consists of (1/7T)F(w) = %ops rect(z35;) repeating periodically with
period equal to the sampling frequency F, Hz. We present this information in the following Table for three sampling
rates: Fs = 150 Hz (undersampling), 200 Hz (Nyquist rate), and 300 Hz (oversampling).

———
sampling frequency F, | sampling interval T +F(w) | comments |
150 Hz 0.006667 0.75rect (335 ) | Undersampling |
200 Hz 0.005 rect (g%5=) | Nyquist Rate |
300 Hz 0.003334 1.5rect (g85=) | Oversampling |

The spectra of F(w) for the three cases are shown in Fig. $5.1-3. In the first case, we cannot recover f(t)
from the sampled signal because of overlapping cycles, which makes it impossible to identify F(w) from the
corresponding F(w). In the second and the third case, the repeating spectra do not overlap, and it is possible to
recover F(w) from F(w) using a lowpass filter of bandwidth 100 Hz. In the last case the spectrum F(w) = 0 over
the band between 100 and 200 Hz. Hence to recoveéOF (w), we may use a practical lowpass filter with gradual
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cutoff between 100 and 200 Hz. The output in the second case is f(t), and in the third case is 1.5f(¢). The
output spectra in the three cases are shown in Fig. S5.1-3.

(a) When the input to this filter is §(¢), the output of the summer is §(t) — §(t — T'). This acts as the input to
the integrator. And, h(t), the output of the integrator is:
t ¢ T
h(t) = / [6(r) = 8(r = T))dr = u(t) — u(t — T) = rect ( T 2 )
0
The impulse response h(t) is shown in Fig. S5.1-4a.
(b) The transfer function of this circuit is:
H(w) = Tsinc % e IwT/2
and
|Hw)|=T sinc(%)l

The amplitude response of the filter is shown in Fig. S5.1-4b. Observe that the filter is a lowpass filter of
bandwidth 27 /T rad/s or 1/T Hz.

The impulse response of the circuit is a rectangular pulse. When a sampled signal is applied at the input, .each
sample generates a rectangular pulse at the output, proportional to the corresponding sample value. Hence the
output is a staircase approximation of the input as shown in Fig. S$5.1-4c.

T ——
c“‘T“ ST
i :r\(au‘(
1 ) . { D] T .
TN ' -
- - B 2 4T 6 T
T t» -y [ W w A t-
T T
Figure S5.1-4
(a) Figure S5.1-5a shows the signal reconstruction from its samples using the first-order hold circuit. Each

sample generates a triangle of width 2T and centered at the sampling instant. The height of the triangle is equal
to the sample value. The resulting signal consists of straight line segments joining the sample tops.
(b) The transfer function of this circuit is:

H(w) = F{h(t)} = F {A (%)} = Tsinc? (“’TT)

Because H(w) is positive for all w, it also represents the amplitude response. Fig. S$5.1-5b shows the impulse
response h(t) = A(Zz). The corresponding amplitude response H(w) and the ideal amplitude response (lowpass)
required for signal reconstruction is shown in Fig. S5.1-5c.

(c) A minimum of T secs delay is required to make h(t) causal (realizable). Such a delay would cause the
reconstructed signal in Fig. S5.1-5a to be delayed by T secs.

(d) When the input to the first filter is 6(t), then as shown in Prob. 5.1-4, its output is a rectangular pulse
p(t) = u(t) — u(t — T) shown in Fig. S5.1-4a. This pulse p(t) is applied to the input of the second identical filter.
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The output of the summer of the second filter is p(t) — p(t — T) = u(t) — 2u(t — T) + u(t — 2T), which is a; plied
to the integrator. The output h(t) of the integrator is the area under p(t) — p(t — T). which, as

h(t) = / [w(r) = 2u(r = T) + u(r — 2T))dr = tu(t) — 2(t — TYu(t — T) + (t — 2T)u(t — 2T) = A (t—‘T—T)
0

shown in Fig. S5.1-5b.

sonst cueted ¢ ("t signal

A \ e £
S\ﬂv‘a A . 1 h(
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Figure S5.1-5
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Figure S5.1-6

5.1-6 The signal f(t) = sinc(200xt) is sampled by a rectangular pulse sequence pr(t) whose period is 4 ms so that the
fundamental frequency (which is also the sampling frequency) is 250 Hz. Hence, w, = 500w. The Fourier series
for pr(t) is given by

(=]
pr(t) = Co + ZC,; cos nwst

n=1
Use of Egs. (3.66) yields Co = 3, Cnp = < sin (955), that is,
Co=02 C;=0374, C2=0303, C3=0.202, C4=0093, Cs5=0,---

Consequently

F(t) = f(t)pr(t) = 0.2 f(t) + 0.374f(t) cos 500t + 0.303 f(¢) cos 10007t + 0.202 f(t) cos 1500t + - - -

and

F(w) =0.2 F(w) + 0.187 [F(w — 5007) + F(w + 5007)]
+0.151 [F(w — 10007) + F(w + 10007)]
+0.101 [F(w — 15007) + F(w + 15007)] + - - -

In the present case F(w) = 0.005 rect(z5=). The spectrum F(w) is shown in Fig. $5.1-6. Observe that the
spectrum consists of F(w) repeating periodically at the interval of 500x rad/s (250 Hz). Hence, there is no
overlap between cycles, and F(w) can be recovered by using an ideal lowpass filter of bandwidth 100 Hz. An
ideal lowpass filter of unit gain (and bandwidth 100 Hz) will allow the first term on the he right-side of the
above equation to pass fully and suppress all the other terms. Hence the output y(t) is

y(t) = 0.2 f(¢)
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Because the spectrum F(w) has a zero value in the band from 100 to 150 Hz, we cau use an ideal lowpass filter
of bandwidth B Hz where 100 < B < 150. But if B > 150 Hz, the filter will pick up the unwanted spectral
components from the next cycle, and the output will be distorted.

The signal f(t), when sampled by an impulse train, results in the sampled signal f(t)ér(t) (as shown in Fig. 5.1d).
If this signal is transmitted through a filter (Fig. S5.1-7a) whose impulse response is h(t) = p(t) = rect (6%25)’
then each impulse in the input will generate a pulse p(t), resulting in the desired sampled signal shown in Fig.
P5.1-7. Moreover, the spectrum of the impulse train f(t)6r(t) is % > o F(w — nw,). Hence, the output of

the filter in Fig. S5.1-7a is e

F(w) = H(w) |:% Z Flw- nws)]

n=-—0o0

where H(w) = P(w) = 0.025sinc (§), the Fourier transform of rect (5¢5z). Figure S5.1-7b shows this spectrum
consisting of the repeating spectrum F'(w) multiplied by H(w) = 0.025sinc (§5). Thus, each cycle is somewhat
distorted.

To recover the signal f(t) from the flat top samples, we reverse the process in Fig. S5.1-7a. First, we pass
the sampled signal through a filter with transfer function 1/H (w). This will yield the signal sampled by impulse
train. Now we pass this signal through an ideal lowpass filter of bandwidth B Hz to obtain f(t).

(a) The bandwidth is 15 kHz. The Nyquist rate is 30 kHz.

(b) 65536 = 2'®, so that 16 binary digits are needed to encode each sample.
(c) 30000 x 16 = 480000 bits/s.

(d) 44100 x 16 = 705600 bits/s.

(a) The Nyquist rate is 2 x 4.5 x 10® = 9 MHz. The actual sampling rate = 1.2 x 9 = 10.8 MHz.
(b) 1024 = 2%, so that 10 bits or binary pulses are needed to encode each sample.
(c) 10.8 x 10° x 10 = 108 x 10° or 108 Mbits/s.

Assume a signal f(t) that is simultaneously timelimited and bandlimited. Let F(w) = 0 for |w| > 27 B. Therefore
F(w)rect(32%7) = F(w) for B’ > B. Therefore from the time-convolution property (4.42)

f(t) = f(t) * [2B'sinc(2rB't)]
= 2B’ f(t) * sinc(27B't)

Because f(t) is timelimited. f(t) = 0 for |t| > T. But f(t) is equal to convolution of f(t) with sinc(27B’t) which
is not timelimited. It is impossible to obtain a time-limited signal from the convolution of a time-limited signal
with a non-timelimited signal.

T'=7 = 20000 ~ °0%°
_To _20x107%
No=7 =%5ox10-s ~ %



5.2-2

5.2-3

5.2-4

Since No must be a power of 2, we choose Ng = 512. Also T = 50us, and Tg = NoT = 512 x 50us = 25.6ms,
Fo = 1/To = 39.0625 Hz. Since f(t) is of 10 ms duration, we need zero padding over 15.6 s.
Alternatively, we could also have used

20 x 1073 .
T = e 39.0625 pus
This gives To = 20 ms, F, = 50 Hz. And
Fs = 1_ 25600Hz
s T -
There are also other possibilities of reducing T as well as increasing the frequency resolution
. i
g 2 N
e Y
-7 “ [ . i
S 16 24 3z ,
Figure S5.2-2
For the signal f(t),
1 1 1 1
To =4, TS —=c— ==
0 25 - F. 3x2 6

Let us choose T = 1/8. Also To = 4. Therefore, No = To/T = 32. The signal f(t) repeats every 4 seconds
with samples every 1/8 second. The samples are T f(kT) = (1/8)f(k/8). Thus, the first sample is (at k = 0)
1 x (1/8) = 1/8. The 32 samples are (starting at k = 0)

173 5 1.3 11
8' 64’ 32’ 64’ 16’ 64’ 32" 64’
0,0,0

The samples of f(t) and g(t) are shown in Fig. $5.2-2.

f(t) = e tu(t) Fw) = o

(a) We take the folding frequency F, to be the frequency where |F(w)]| is 1% of its peak value, which happens
to be 1 (at w = 0). Hence,

|F(w)| ~ % =0.01 = w=27B =100

This yields B = 50/7, and T < 1/2B = 7/100. Let us round T to 0.03125, resulting in 32 samples per second.
The time constant of e™* is 1. For Ty, a reasonable choice is 5 to 6 time constants or more. Value of Tp = 5
or 6 results in No = 160 or 192, neither of which is a power of 2. Hence, we choose Tp = 8, resulting in
No = 32 x 8 = 256, which is a power of 2.

(b)
1

\/w2+1

We take the folding frequency F, to be the 99% energy frequency as explained in Example 4.16. From the
results in Example 4.16, (with a = 1) we have

1
F = -_ 1
|F(w)] oW

0.929" = tan™" % = W = 63.66a = 63.66 rad/sec.

This yields B = £ = 10.13 Hz. Also T < 1/2B = 0.04936. This results in the sampling rate % = 20.26 Ha.
Also Tp = 8 as explained in part (a). This yields No = 20.26 x 8 = 162.08, which is not a power of 2. Hence, we
choose the next higher value, that is No = 256, which yields T = 0.03125 and To = 8, the same as in part (a).

f(t)“t2+1

Application of duality property to pair 3 (Table 4.1) yields
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Following the approach of Prob. 5.2-2, we find that the peak value of | F(w)| = 2me~ 1l is 27 (occurring at w = 0).
Also, 2me™“l becomes 0.01 x 27 (1% of the peak value ) at w = In 100 = 4.605. Hence, B = 4.605/2m = 0.733
Hz, and T < 1/2B = 0.682. Also,

2

f(0)=2 and f(t) =

t>1

o~

Choose Tp (the duration of f(t)) to be the instant where f(t) is 1% of f(0).
_2 _ 2
T¢+1 100

This results in No = To/T = 10/0.682 = 14.66. We choose Np = 16, which is a power of 2. This yields T = 0.625
and Tp = 10.
(b) The energy of this signal is

f(To) = To ~ 10

Ef = %L 2m)ie ™ dw =2n
The energy within the band from w = 0 to W is given by

gr2 [V
Ew = — e 2 dw =2n(1 - e W)
2T

But Ew = 0.99E7 = 0.99 x 2r. Hence,

0.99(27) =2n(1— ™) = W =2.303

Hence, B = W/2r = 0.366 Hz. Thus, T < 1/2B = 1.366. Also, To = 10 as found in part (a). Hence,
No = To/T = 7.32. We select Ng = 8 (a power of 2), resulting in No = 8 and T = 1.25.

*.K
/ a 3 <+ +-=2
§ 14 3% J2 k—>
A 3K
R
’ A:mmh;
I ] 2 3 ; +->
' ' ' » K->
& 14 =24 3

Figure S5.2-5

5.2-5 The widths of f(t) and g(t) are 1 and 2 respectively. Hence the width of the convolved signal is 1 + 2 = 3. This
means we need to zero-pad f(t) for 2 secs. and g(t) for 1 sec., making To = 3 for both signals. Since T = 0.125

__3 _
T 0.125

No must be a power of 2. Choose No = 32. This permits us to adjust To to 4. Hence the final values are
T = 0.125 and Ty = 4. The samples of f(¢) and g(t) are shown in Fig. $5.2-5.

No 24
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Chapter 6

6.1-1 (a)
f(#) = u(t) —u(t-1)

1 o5t 1
F(s)=/ e™"dt = —-
[¢] § 0

1, s
=—="" =1
“e™" - 1]
1
=Z[l—e""
“[1-e7)
Note that the result is valid for all values of s; hence the region of convergence is the entire s-plane. The abscissa
of convergence is 0o = —00.
(b)

£(8) = te™tu(t)

o0 oo
F(s) =/ te te® dt=/ te” (D gt
0 0

—(9+1)t
— oo
= ——( +1)2[ (s+ 1)t —1]g
_ 1
T (s+1)2

provided that e~(*+1* = 0 or Re (s + 1) > 0. Hence the abscissa of convergence is Re (s) > —1 or o9 > —1.

(c)
f(t) = tcoswot u(t)
(o o]
F(s) = / t coswote ™™ dt
= % { [te(on—s)t + tc—(on-*-s)t] }
1 1
== Re (s
2 [ “w? +jw0)2] 2 (s)>0
- S - wo
T (824 wd)?
(d)

F(8) = (€% = 2¢7")u(t)

e ] o0
ete ™t dt — 2/ e"te b dt
0

{o =] o0
e (" Dtg 9 / et gy
0

12

s—2 s+1

il 1
o~— o—
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We get the first term only if Re s > 2, and we get the second term only if Re (s) > —1. Both conditions will be
satisfied if Re (s) > 2 or o9 > 2. Hence:

1 2
F = e e —_—
(s) s Rl for o9 > 2

(e)

f(t) = coswit coswat u(t) = [% cos(wi + wa)t + %cos(wl - uz)t] u(t)

F(s)

Il

1 [ 1 [
2 / cos(wi +wa)te™ dt + 5 / cos(wi — wa)te "t dt
0 2 /s

1 s s
T2 [52 + (w1 + wa)? + 52 + (w1 —wg)z]

provided that Re (s) > 0.

(f)
f(t) = cosh(at)u(t)
e -
F(s) == [/ e®e ™t dt +/ e e dt]
2 /o 0
o0 (= <]
-1 {/ e‘("“"dt+/ e (stalt dt]
21Jo - Jo
s
=73 Re s > |a|
(2)
f(t) = sinh(at)u(t)
l oo o0
F(s)= 3 U e~ g —/ e~k dt]
2 /o 0
a
= Re s > |a|
(h)

f(t) = e~ cos(5t + 8)u(t)

_ % [e—2t+j(5t+6) +e-2t—j(5t+8)]

_ lejee—-(z—js)t " _;_e-—joe—(2+j5)t

2

) _ 1 ;e 1 1 _jo 1
Hence  F(s) = ge (s+2—j5)+2e (s+2+j5
This is valid if Re (s) > —2 for both terms; hence

(s +2)cosd — 5sind

Flo)=—Fno

6.1-2 (a)
1
_1 —s -s
= s—z(l—e —se” )
0

—st

1
F(s) =/ te™*tdt = < (-st—-1)
0 .

s

(b)

T —st ™ —7s

—s . 1
F(s) = sinte "t dt = : (—ssint — cost)| = ite
o s2+1 o

s2+1
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()

't = s oo
F(S) =/ _P—tht+/ e-—-tc-—stdtz _/ te—.stdt+/ e—(.o+1)tdt
o € 1 ¢ Jo )
—ut 1 50
=2 (—st—1)| — 1 e (s+1)
es o StI1 1
L - —a 1 (.
zzs—g(l—e ® - se ‘)+s+le (x+1)
6.1-3 (a)
25+ 5 25+ 5 1 1
F S) = = =
(s) s2+55+6 (s+2)(s+3) s+2+s+3
F(@&) = (e +e™)u(t)
(b)
3s+5
FO = 77571
Here A=3,B=5,a=2,c=13,b=/13-4=3.
7= /LULE25-60 = 3018 ¢ =tan"'(}) =6.34°

f(t) = 3.018¢ % cos(3t + 6.34°)u(t)
(©)

(s+1)* _ (s+1)?
s2-5-6 (s+2)(s—23)

This is an improper fraction with b, = b2 = 1. Therefore

F(s) =

a b 0.2 3.2
Fo)=l+ s+ 3 =13 t73

F(t) = 8(t) + (3.2¢% — 0.2¢7*)u(t)

(d)

F(s) = ——— =
To find k set s = 1 on both sides to obtain

$=k+25+% = k=-125

and 12
125 25 125
Fo=-——F+7+2
f(t) = 1.25(—1 + 2t + e~ Z)u(t)
(e)

25 +1 _ -l _As+B
(s+1)(s2+2s+2)  s+1 s2+25+2"

F(s)=

Multiply both sides by s and let s — co. This yields

0=-1+4A4 = A=1

Setting s = 0 on both sides yields




In the second fraction, A=1,B=3,a=1l.c=2,b=/2-1=1.

2—-1

r= /5352 =V5  fg=tan"!(52) = -634°

f(t) = [—e™" + VBe "t cos(t — 63.4%)Ju(t)
(f)

s+ 2 2 k 1
s

F(s)zs(s+1)2 - +s+l_ (s+1)2

To compute k, multiply both sides by s and let s — oo. This yields

0=2+k+0 = k=-2

and
2 2 1
FO=S- 3 o7oe
(&) =[2— 2+ t)e Ju(t)
(g)

1 1 k1 k2 k3 1
F(s) = = _
O = GG+t s+1 s 2 T GrE T GroR  GToR

Multiplying both sides by s and let s — oo. This yields

0=14+Kk = k1 =-1

1 1 _ 1 + k2 + k3 1
(s+1)(s+2)% s+1 s+2 (s+2)2 (s+2)3 (s+2)4

Setting s = 0 and —3 on both sides yields

k K
s=1-4+82+8_-L1 — dky+2%3=-6
—3=—-3+1+ka—ks—1 = ka—ks=0
Solving these two equations simultaneously yields k2 = k3 = —1. Therefore
1 1 1 1 1
F(s) = - - - -
(s) s+1 s+2 (s+2)2 (s+2)8 (s+2)4
—t tz t3 -2t
f@&)=le —(l+t+?+€)e Ju(t)

Comment: This problem could be tackled in many ways. We could have used Eq. (B.64b), or after determining
first two coefficients by Heaviside method, we could have cleared fractions. Also instead of letting s = 0 and
—3, we could have selected any other set of values. However, in this case these values appear most suitable for
numerical work.

(h)
s+1 _(1/20) . & (1/2) As+ B

F(s)=s(s+2)2(sz+4s+5)— s s+2  (s+2)? s2+4s+5

Multiplying both sides by s and let s — oo yields

0=g5+k+A = k+A=-3%

Setting s = 1 and —1 yields

2 _ 1,k 1, At+B 2 —

E‘?ﬁ*‘ﬁ‘*‘ﬁ"’% = 20k+6A+6B=-5

0=-F16+k+é+__A2t§ = 20k-10A+10B=-9
Solving these three equations in k, A and B yields k = _%, A= % and B = —%. Therefore
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_1/20 /4 (W2  1_s-1

F _
(s) s s+2 (s+2)2 5's2+4s5+5

)
For the last fraction in parenthesis on the right-hand side A=1,B=-1,a=2,¢=5,b=+v5-4=1.

r=/3 =Vv10 g =tan"'(3) =71.56°

) =& — 31— 2t)e™ + L= cos(t + 71.56°)]u(t)
(i)

s3 k 1/4 As + B

F(s) = = _
(s) (s+1)%(s2+2s+5) s+1 (s+1)2 s2+2s+5

Multiply both sides by s and let s — oo to obtain
1=k+A
Setting s = 0 and 1 yields

0=k-1+2 = 20k+4B=5
k

- A+B -
%—E“Tlé'*‘ds_" = 16k+4A+4B=3
Solving these three equations in k, A and B yields k = :-i-, A= % and B = —%.
3/4 1/4 1, s-10
F(s) = / / )

Ts+1 (s+1)2 4's2+25+5
For the last fraction in parenthesis, A =1, B=-10,a=1,¢=5,b=vV5-1=2.

r= /310040 — 559 g =tan"'(1L) = 70°
. Therefore
F) =13 - $t)e™" + 22e " cos(2t + 70°)]u(t)
= [3(3 — t) + 1.3975 cos(2t + 70°)]e " u(t)
6.2-1 (a)
f(t) =u(t) —u(t-1)
and
F(s) = Llu(t)] - Llu(t - 1)]
1 _sl
=—-—e -
s s
=S(1-e7)
(b)
f@t) = e'(t—f)u(t -7)
1
F(s) = s+ lc
(c)
F(&) = e Mu(t) = e"etu(t)
Therefore F(s)=¢e" o]
(d)

ft)=etu(t—1)=eTe Tyt — 1)

Observe that e~ (*=7y(t — 7) is e~tu(t) delayed by 7. Therefore

P 1 ) —.v‘r_( 1 ) —(s+1)T
Fls)=e (s+l ¢ T\s+1/¢
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6.2-2

6.2-3

(e)

Therefore

()

fO) =teTu(t—71)=(t—r+7)e” Tyt — 1)
=e7 7 [(t - T)c—(t_r)u.(t - 1) +re” Tyt — -r)]

1 - T st

F(s) =e™ 7 G 1)28 + G l)e

_e_(“"*'l)T 1+ 7(s+ 1))
- (s +1)2

f(t) = sinwo(t — m)u(t — 7)

Note that this is sinwgt shifted by 7; hence

(=)

(h)

Therefore

(b)

(<)

Therefore

wo —sT
Fs)= (32 +wg) ¢

f(t) = sinwo(t — 7)u(t) = [sinwot cos woT — cos wot sin wor|u(t)

W COSWoT — sSsinwoT

F(s) =
(=) s2 4+ wd

f(t) = sinwotu(t — 7) = sinfwo(t — 7 + 7)]u(t — 7)

= coswoT sinfwo(t — 7)]u(t — ) + sinwoT cos[wo(t — 7)]u(t — 7)

F(s) = [COSon (ﬁ‘:&-) + sinwoT (sz_-iTg)] e T

F@&) =tlu(t) —u(t-1)] =tu(t) - (¢t — Du(t—1) —u(t — 1)

1 1 . 1 _
F(s):s—z—-;e -3¢

f(t) =sintu(t) +sin(t — 7) u(t — )

1 —ms

F) =t[u(t) —u(t —1)] + e u(t — 1)
=tu(t) = (t—Du(t—1) —u(t—1) + e e Dyt - 1)

e—s

1 -3 —s
F(s)=s—2(1—e — se )+e(s—+17

_ (25 +5)e2

D -2
Flo) = 335,46 ~ F0e

It is clear that f(t) = f(t — 2).
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2545 _ 245 _ 1 1
s2+55+6 (s+2)(s+3) s+2 s5+3

F@) = (e + e )ult)
f(t) = f(t-2) = [e727D 4 30Dyt - 2)

F(s) =

(b)
- S —3s 2 _ ,— 38
F(S)—sz+2$+2e +32+25+2—F1(s)c + Fa(s)
where
\ s A=1,B=0,a=1,e=2,b=1
Fi(s) = 57573 -1
s2+25+2 r=+2,0=tan"!(1) = v/4
f1(t) = V2e "t cos(t + I)
Fa(s) = -sz_+—§_.'s—+—3 and f2(t) = 2¢ " *sint
Also
f(t) = fi(t = 3) + f2(t)
=2 D cos(t -3 + Dult - 3) + 2¢~"sint u(t)
(c)
_ (e)e? 3
F(s) = s2—-25+5 * s2-25+5
B 1 sy 3
_632—23+56 s2—-2s+5
=eFi(s)e™ + Fa(s)
where )
Fi(s)= ———— and fi(t) = e'sin2tu(t)
! s2 — 25 + 2 ! 2" 7
3 3 ¢ .
Fz(s) = m and fz(t) = 56 sm2tu(t)
Therefore
f(t) =efi(t = 1) + fa(t)
= -g-e(t"l) sin2(t — u(t —1) + %etsin2t u(t)
(d)
e e 41 s . -2 [ 1 ]
= ——— 1) | —————
Fls) s2+3s+2 (€ +e™™ +1) s24+3s+2
. -3 -2 __1___ _ __i_]
=(e""+e +1)[s+1 T2
F(s)=(e™" +e 2 +1)F(s)
where k
Fls)= —— -1 and f(&) = (7 — e PYu(t)
s+1 s+2 ’
Moreover

£(0) = f(t = 1)+ f(t - 2) + f(©)
=[e ¢V — 72Dyt — 1) + [emD — 72Dyt - 2) + (e7F — e F)u(t)
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6.2-4 (a)
g(t) = f(t) + f(t — To) + f(t — 2To) + - -

and
G(s) = F(s) + F(s)e-sTo + F(s)e‘z“'TO .
= F(s){1 47T 4 BT 4 o~ |
=1 _Féilro le™T°| < lor Res >0
(b)
o= s s-2) st r= oo
_ _F(s) _1 1—¢ %
G(S) - 1 —e—8s - s <l —e“s-")
6.2-5 Pair 2
t 1 )
u(t) = / §(1)dr &= -(1) = -
0- s s
Pair 3

t

1,1 1

. tu(t) = A_ U(T)dT A ;(;) = ;2-

Pair 4: Use successive integration of tu(t)

Pair 5: From frequency-shifting (6.33), we have

At
u

(t)@.i_

1
u(t){:’; and e P

Pair 6: Because

1 At l
t = —= d t) = ——0s
u(t) 7 an te™ u(t) G
Pair 7: Apply the same argument to t%u(t), t3u(t), ..., and so on.
Pair 8a:
1 e | —jbe 1 1 1 _ s
cosbtu(t)—z(e +e )u(t)¢=>2 s—jb+s+jb =T

Pair 8b: Same way as the pair 8a.
Pair 9a: Application of the frequency-shift property (6.33) to pair 8a cosbt u(t) <= ;337 yields

s+a

—at t
e”* cosbtu(t) < ——_(s+a)2+b2

Pair 9b: Similar to the pair 9a.
Pairs 10a and 10b: Recognize that

re~% cos (bt + 8) = re”**[cos 0 cos bt — sin sin bt]
Now use results in pairs 9a and 9b to obtain pair 10a. Pair 10b is equivalent to pair 10a.
6.2-6 (a) (i)

df
X =6()- 6t~ 2)

sF(s)=1-¢7%
F(s) = %(1 — e
(ii)

daf
E—5(t—2)—6(t—4)

sF(s)=e ™2 —¢7*

F(S) = %(6-23 _ 6—43)
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(b)

%f{ = u(t) — 3u(t — 2) + 2u(t - 3)

1 3 .
sF(s)= - — 272 4 Ze—‘” [f(07) =0}
S S S
F(s) = ;15(1 —3e7% 4 20739
6.3-1 (a)
2 ) 1
(s"+3s+2)Y(s) = s(-;)
1 1 1
Y = = —_
(s) s24+3s+2 s+1 s+2
y(t) = (e™" = e7*)u(t)
(b)
(s2Y (s) — 25 — 1) + 4(sY (s) — 2) + 4Y(s) = (s + 1)%
or s
(s* + 45+ 4)Y(s) = 2s + 10
and
Y(s)= 25710 _ 25410 2 6
T s24+45+4 (s+2)2 s+2  (s+2)?2
y(t) = (2+ 6t)e "> u(t)
(c)
(2Y(s) = 5 = 1) + 6(s¥ (5) = 1) + 25¥ (s) = (s +2) 2> = 25 + 2
or
2
(sz+63+25)}"(s)=s+32+% = w
and
2 —
Y (s) = s°+ 328+ 50 =g+ s+ 20
s(s2+6s+25) s s2+6s+25

y(t) = [2 + 5.836e ™ cos(4t — 99.86°)]u(t)

6.3-2 (a) All initial conditions are zero. The zero-input response is zero. The entire response found in Prob. 6.3-2a is
zero-state response, that is

Yas(t) = (€7 — e™*)u(t)
Y=i(t) =0

(b) The Laplace transform of the differential equation is

(s2Y (s) — 25 — 1) + 4(sY (s) — 2) + 4Y (s) = (s + 1);-}i
or )

(*+4s+4)Y(s) - (2s+9) =1
or
2 —
(s°+45+4)Y(s) =25+9+_1
i.c.terms  input
: 2s+9 1
Y(s) _52+4s+{+32+4s+{

~ v
zero-input zcro-state

2 5 1

=s+2+(s+2)2+(s+2)2
——— N’

zero-input zero-state

_ -2t —2t
y(t) = (2+5t)e "+ te

zcro-input zcro-state
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(c) The Laplace transform of the equation is

(s2¥(s) =5 — 1) + 6(s¥(s) — 1) + 25V (s) = 25 + 20
S
or
2 ‘ 50
(s2+6s+25)V(s) = s+7 +25+ =
N S
ic. terms ~—
input
Y(s) = s+ 7 25s + 50 _
82 +65+25  s(s?+6s+25)
zm-o?;put zcro-:tatc‘
s+ 7 2 —2s+ 13

= (.sz+63+25)+(; + 32+6$+25)
y(t) = [V2e % cos(4t — T)] + [2 + 5.15de ™" cos(4t — 112.83°))]

g

zcro-input z=ro-state

6.3-3 (a) Laplace transform of the two equations yields

(s +3)Yi(s) — 2Ya(s) = .1;
=2Y1(s) + (25 +4)Y2(s) =0

Using Cramer’s rule, we obtain

iy —S*2_____s¥2 L2 13 16
W T (s 55+4) s(s+1)(s+4) s s+1 s+4
Ya(s) = L = 1 /4 173  1/12

s(s2 + 55+ 4) .<>'(s—{—1)(s+4):= s s+1 s+4

and

yi(t) = (5 — de™ — Le™*)u(t)

1
3
vao(t) = (5 — 3e7" + Fe™)u(t)

If H1(s) and H2(s) are the transfer functions relating y; () and y2(t), respectively to the input f(t), thus

s+ 2 1
Hilo) = Gsera = PO = msra

(b) The Laplace transform of the equations are

(s+2)Yi(s) — (s +1)Y2(s) =0
—(s+1)Yi(s) + (2s+ 1)Yz(s) =0

Application of Cramer’s rule yields

Yis) = L _ s+1 _1 0724 0276
W = 5(s?+3s+1) s(s+0382)(s+2618) s s+0382 s+2618
Ya(s) = ——S*2 _ _ s+ 2 _2 1894 0.1056
T S(s2+3s+1) s(s+0382)(s+2618) s s+0382 s+2.618
s+1 s+2
Hy(s) = s2+3s+1 and - Ha(s) = s24+3s+1

y1(t) = (1 — 0.724¢ 79382 _ 0.276e 2618 )y (¢)
ya(t) = (2 — 1.894e ~0382* _ 0.1056¢ 2618 )y(t)

6.3-4 At t = 07, the inductor current y;(0) = 4 and the capacitor voltage is 16 volts. After ¢t = 0, the loop equations
are
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d d
2ZUL _ 9fY2 | 50 (t) — dya(t) = 40

dt dt
dy1 dy2 '
=2—— —4y1(t) + 2== + 4yo(t) + y2(r)dr =0
dt dt -
If
\ - dy1 _
y1(t) <> Yi(s), —d_t— =sYi(s) — 4
d
y2(t) <= Ya(s), -d‘JtE = sYa(s)

16
s

/ y2(7) dr = %Yz(s) +

Laplace transform of the loop equations are
40
2(sY1(s) — 4) — 2sYa(s) + 5Y1(s) — 4Ya(s) = -
‘ 1
—2(sY1(s) — 4) — 4Y1(s) + 2sYa(s) + 4Ya(s) + ;Yz(s) + 13_6 =0
Or
40
(25 +5)Y1(s) — (25 + 4)Ya2(s) =8 + <
16

(25 +OYi(s) + (25 + 4+ 2 )¥a(s) = ~8 °

Cramer’s rule yields

4(6s®+13s+5) 8 165 + 28
Yi(s) = s((s2 +3s+ 2.5)) - + s2 4+ 3:+ 2.5
vi(t) = [8 + 17.89¢ ™ cos(£ ~ 26.56°)]u(t)
20(s +2)
(s2+3s+2.5)

y2(t) = 20v2e ™% cos(§ — Z)u(t)

Ya(s) =

5543 35247945 3u42
6.3-5 (a) 52+]‘.918+24 (b) 33+v6.sz—slls+6 (c) s(: +4)

6.3-6 (a)
d’y | .dy _df
Et?+3'd—t+8y(t) = E+5f(t)
(b) 3 2 2f f
d’y dy dy _d f_
p7e +8dt2 +5dt + Ty(t) = 72 +3dt +5f(t)
(c) . )
d d d dj
Ztt—g - 2% +5y(t) = 5# + 7d—€ +2£(¢)
6.3-7 (a) (i) F(s) = 335 and
Y(s) = s+5 s+5 3 3 2

(s+3)(s2+55+6) (s+2)(s+3)2 s+2 s+3 (s—3)2
y(t) = (372 — 373 — 2te3)u(t)

@) Fs) = 54

s+5 _3/2 2 1/2
(s+2)(s+3)(s+4)  s+2 s+3 (s+4)
y(t) = %e"n —2e7% 4 %e_“u(t)

Y(s) =
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(iii) The input here is the input in (ii) delayed by 5 secs. Therefore F(s) = ﬁe‘s"‘
s+5 s (B2 _ 2 /2| s

(s+2)(s+3)(s+4) Tis+2 s+3 7 (s+4)

y(t) = %e_z(t-s) — 2e7378) 4 1—4t=9))y (4 — 5)

Y(s) =

(iv) The input here is equal to the input in (ii) multiplied by ¢?® because e 4¢3 = ¢2%¢~%. Therefore the

output is equal to the output in (i) multiplied by e2°
y(t) = e®[Fe™ — 27 + Je ()

(v) The input here is equal to the input in (iii) multiplied by e~2° hecause e ~*tu(t — 5) = ¢ 20 "4t =%)y (¢t — 5).
Therefore

U(t) - e—20[%e—2(t-—5) _ 26—3(t—5) + %6—4(t—5)]u(t —5

(b) (D*+2D +5)y(t) = (2D + 3)f(t)

6.3-8 (a) F(s)=1

£

10(2s + 3) __§+ —6s+8
s(s2+2s+5) s 8242545

y(t) = [6 4 9.22¢ 7 cos(2t — 130.6°)]u(t)

Y(s) =

(b)  f(t) =u(t—5) and F(s) = L7

Y(s) = —23 _5,=[0.6 1 ( —6s+8 )]6_5,

s(s2+2s+5)e T+E s2+2s+5
y(t) = {6 +9.22¢ 7~ cos[2(t — 5) — 130.6°]}u(t — 5)

6.3-9 F(S) m

_ 1 _ 01 01(s—1) _ e 1 (1
Y(s) = TG TD s+l -9 and y(t) = (O.Ie 3\/16608 [3t+tan (3)]) u(t)

6.3-10 (a) Let H(s) be the system transfer function.
Y(s) = F(s)H(s)
Consider an input fi(t) = f(t). Then Fi(s) = sF(s). If the output is y1(t) and its transform is Yi(s), then
Yi1(s) = Fi(s)H(s) = sF(s)H(s) = sY (s)

This shows that y;(t) = dy/dt.

(b) Using similar argument we show that for the input fo f(7)dr, the output is f y(7) dr. Because u(t) is an
integral of §(¢), the unit step response is the integral of the unit impulse response h(t)

S

©

o+

‘%”@ E@F X
Fig. S6.4-1
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5

EE

Fig. S6.4-2
S 2 s 1
1
(] Vo) =4 @ 1%
s ==
Fig. S6.4-4 '

6.4-1 Figure S6.4-1 shows the transformed network. The loop equations are

1 1 1
1+ ;)Yl(s) - ;Y2(3) = Gre

—§Y1(3) Fls+1+ -;-)Yz(s) =0

£ -1 Yl(s)}_[ms]
Sl fhen [Yz(s) 1 oo

Yals) = 1 1 1
(s) = (3+1)2(s2+25+2) (s+1)2 s2+2s+2
vo(t) = y2(t) = (te™" — 2e*sint)u(t)

or

Cramer’s rule yields

6.4-2 Before the switch is opened, the inductor current is 5A, that is y(0) = 5. Figure S6.4-2b shows the transformed
circuit for ¢t > 0 with initial condition generator. The current Y (s) is given by

_(10/s)+5 _ 5s+10 _5[3 2
Yl =507 —s(3s+2)_§[s s+(2/3)]

y(t) = (5 - Re™*/P)u(y)

6.4-3 The impedance seen by the source f(t) is

Z(s) = Ls(1/Cs) Ls _ Lswg?
T Ls+(1/Cs) LCs?+1 5% +wp?

The current Y (s) is given by

F(s) _ s +wo?
YO =25 TwogF( )

(a)
As
52 + w2’

A
F(s)= Y(s) = Tod? and y(t) = I

(b)
Awo Y(s)

A
Tt o and y(t) = L_wou(t)

F(s)=
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Fig. S6.4-5

6.4-4 At t =0, the steady-state values of currents y, and y2 is y1(0) = 2, y2(0) = 1.
Figure 56.4-4 shows the transformed circuit for ¢ > 0 with initial condition generators. The loop equations are

(s + 2)Yi(s) — yZS)_z+9
=Yi(s) + (s +2)Ya(s) =1
Cramer’s rule yields
Y()_2sz+lls+12_é_ 3/2  1/2
! s(s+1)(s+3)_s s+1 s+3
Yals) = s2+4s+6 2 3/2  1/2
23 s(s+1)(s+3) s s+1 s+3

yi(t) = (4— 3™ - Le™)u(t)
y2(t) = (2— 3™ + ‘ e *)u(t)

6.4-5 The current in the 2H inductor at ¢ = 0 is 10A. The transformed circuit with initial condition generators is
shown in Figure S6.4-5 for ¢t > 0.

Yi(s) = 0420 20s+10 _20[ s+05

! —3s+%+1 32+s+1 s |[s2+ 43
Here A=1,B=05a=3c=131b=¥1

r=,/8 =1168 = tan~' (&) = -31.1°

y1(t) = 2(1.168)e™*/® cos(¥E t — 31.1°)u(t)
= 7.787¢™"/® cos(¥Ht — 31.1°)u(t)

The voltage v,(t) across the switch is

_ 1 _ 82 +1, 20s+10 20 (s% +1)(s +0.5)
Vi(s) = (s+ )Y (s) = ( o) =5 L+ ])

20 32 1 -8s+1
el T e T S A S
3 [ S +632+1/3s+1/3]

205(t) + [10 + 9.045¢ /6 cos( L ¢ — 152.2°)]u(t)

I

]

vs(t)

6.4-6 Figure S6.4-6 shows the transformed circuit with mutually coupled inductor replaced by their equivalents (see
Fig. 6.14b). The loop equations are

(s + 1)Yi(s) = 25Ya(s) = %

—2sY1(s) + (4s +1)Y2(s) =0

Cramer’s rule yields
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e

‘a
0

Fig. S6.4-6

/S : \/g

. , A .
| DS
.'_ Vp(s’ = _4~' 38 T s
<+3 S 3
> ] b : A

s
2. L -
s |5 |13
Fig. S6.4-7
40
() = 5503
and

vo(t) = y2(t) = 40e~*/5u(t)

6.4-7 Figure S6.4-7 shows the transformed circuit with parallel form of initial condition generators. The admittance
W (s) seen by the source is

2
W(s) = _153__*_5_*_4= s“+4s+13
The voltage across terminals ab is
Ves(s) = I(s) _ $+3  3s+1
T W) T Zrdstls — 2445+ 13
Also
3s+1
Vi -
ols) = V""(s) 2(s2 + 4s + 13)
and

vo(t) = 1.716e ™% cos(3t + 29°)u(t)

Y(s) 1 2

(---.f—4 A VA
5
s ! | s
b
Fig. S6.4-8

6.4-8 The capacitor voltage at t = 0 is 10 volts. "The inductor current is zero. The transformed circuit with initial
condition generators is shown for ¢ > 0 in Fig. S6.4-8.
To determine the current Y (s), we determine Z,5(s), the impedance seen across terminals ab:

1 3s+8
Z“"(s)—H( 1 )—4s+11
2+
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90
Also Y(s) = ?——"'3—%—
i (4;4-11

90(4s + 11)
352 + 28s + 55
30(4s -+ 11)
s2 + %s + %
_ 30(4s +11)
(s+2.8)(s +6.53)
_ 161 121.61
s+28 s+4+6.53

and  y(t) = [121.61e7%%3 — 1.61e > u(t)

[}
—

R | | s
. AMA- —e , s
1 F(s)l ) +
E( K ‘\‘/’(s) R Vils) KV(s)
Cs ’ - - -
(ad (®

Fig. S6.4-9

6.4-9 Figure S6.4-9 shows the transformed circuit (with noninverting op amp replaced by its equivalent as shown in
Fig. 6.16) from Fig. S6.4-9a

1 1 Ka 1
7 = s) = —_— —_— = = —
Vo(s) = KVils) = KeoR+ 5o F(s) = 5 a= g5
Therefore
_ Ka 1 . R
His)=77 o=g5 K=1+%

Similarly for the circuit in Fig. P6.4-9b, we can show (see Fig. S6.4-9)

Ks
H(s) = s+a
5
AL ! %
I (s
‘ ,T [ Wr
1 I“IQ_ 6 s & n i +
s V(s = Yes)
F) X

- * ;

6.4-10 Figure $6.4-10 shows the transformed circuit. The op amp input voltage is Vz(s) ~ 0. The loop equations are

Fig. $6.4-10

1(s) + (2 + DINs) - Fa(s)) = F(s)

~2(s) + (C + D) - B(s)] = 0
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Cramer’s rule yields

(s +6) __ss+9)
Il(s) - 52 + 835 + 12F(S), 12(3) - 52 + 8s + 12

1 -3
Y(s) = =5lli(s) = Ia(s)] = mF(S)

The transfer function

H{s) = — 5
R S T
6.4-11 (a)
652 + 3s + 10
Y K = e————
(s) s(2s2 + 6s + 5)
y(0%) = lim sY(s) =3
§—0C
y(oo) = lin})sY(s) =2
(b)

63 + 35+ 10
(s +1)(2s%2 + 65 + 5)
y(0%) = lim sY(s) =3
S$—00

Y(s) =

y(oo) = lirr(x)sY(s) =0

2 200

Fis)

Figure S6.5-1

6.5-1 (a) The loop equations are
4l — 2I = F(s)

=21 +6I,=0
Cramer’s rule yields
2 1
L(s) = 55 F(s) = 75 F(s)

and
Y(s) = 2Ix(s) = -;—F(s)

Therefore H(s) = £ not §.

(b)

4, - 212 = F(s)
-2I; +400[>, =0
Cramer’s rule yields
Ia(s) = === F(s)
2= 1596

Y (s) = 2007a(s) = —20 1

mF(S) = mF(s)
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CANONIC AL
FORM
YGs)

|

(‘as‘eade/‘e‘""”

F(s) e H

Fig. S6.6-1

In this case H(s) is very close to 1/4. This is because the second ladder section causes a negligible load on the
first. The Cascade rule applies only when the successive subsystems do not load the preceding subsystems.

6.5-2 To determine the impulse response of either system, we apply f(¢t) = 6(¢) at the input. The output y(t) is, by
definition, the impulse response. .
For series connection (Fig. 6.18b), if we apply f(t) = 6(t) at the input, the output of Hi(s) is h1(t). This signal
is applied to the input of Hz(s) with impulse response h2(t). Hence, the output of H2(s) is h(t) = h1(t) * ha(2).
For parallel connection (Fig. 6.18c), if we apply f(t) = 8(t) at the input, the outputs of H1(s) and Hz(s) are
hi(t) and ha(t), and the output of the summer is h(t) = hi1(t) + h2(?).

6.6-1

H(s) = 82 4+ 2s _( s )(s+2)( 1 )_—1/6_ 3/2 . 8/3
T3 4+8s2+19s+12 \s+1/\s+3/\s+4/) s+1 s+3 s+4

b333 + b2$2 + bi1s + bo

Also H(s) = s3 +azs?+ai1s+ao

with ap =12, a; = 19, a2 = 8, and bo =0, by = 2, by = 1. Figure S6.6-1 shows the canonical, series and
parallel realizations.
6.6-2 (a)

H(s) = 3s(s+2) 3s% + 6s (3s )( s+2 ) 3 6s+6

= = = — <+
(s+1)(s2+25+2) s3+3s2+4s+2 s+1 s+1 s2+25+2

$24+2s5+2
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Fig. S6.6-5 and S6.6-6

For the canonical form, we have ap = 2, a1 = 4, a2 = 3, and bo = 0, by = 6, bo = 3. Figure S6.6-2a
shows a canonical, cascade and parallel realizations. Note that the roots of s2 + 2s + 2 are complex. therefore,
the quadratic term must be realized directly.

(b)
2s -4 2s -4
H(s) = (s+2)(s2+4)  s3+2s2+4s+8
_ 2(s —2) _(3—2)( 2 )__ 1 45
T3 +2s2+4s+8 \s+2/\s2+4) 7 s+2 s2+4
For a canonical forms, we have ap = 8, a1 = 4, a2 = 2, and bo = —4, by = 2, b2 = 0, b3 = 0. Figure
$6.6-2b shows a canonical, cascade and parallel realizations.
6.6-3
H(s) = 2s+3 _ 0.45+ 0.6
5(s%+ 7s3 + 1652 +12s)  s%+ 753+ 1652+ 12s
_(l)( 1 )( 1 )(0.4s+0.6)__§i,-__ 3 N 5 . :
“\s/\s+2/\s+2 s+3 T s s+2 (s+2)2  s+3
Figure S6.6-3 shows a canonical, cascade and parallel realizations.
6.6-4
s(s+1)(s+2) s34+ 3524+ 2s _ 20 60 56

H(s) =

= =1- _
G5 (5+6)(5+8) 53+ 19s2 1 1185 + 240 515 546 s+8

For a canonical form ao = 24, a; = 118, a2 = 19, and bo = 0, by = 2, b = 3, b3 = 1. Figure 56.6-4
shows a canonical, cascade and parallel realizations.
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6.6-5

H(s) _ 53 _ S‘J
T s+ 1)2(s+2)(s+3)  s4+Ts3+ 1752+ 175+ 6

e Ly R e S o
= = — + + —_—
s+1/\s+1 s+2/)\s+3 s+2 s+3 s+1 (s+1)2

Figure S6.6-5 shows a canonical, cascade and parallel realizations.

6.6-6
3 3
H(s) = s _ s
(s+1)(s2+45+13) s3+5s2+17s+13
_( s ) s? _ 01  s*-09s+13 01  49s+117
T \s+1/)\s2+4s+13 s+1  s24+4s5+13 = s+1 s2+4s+13

Figure S6.6-6 shows a canonical, cascade and parallel realizations.
6.6-7 Application of eq. (6.69) to Fig. P6.6-7Ta yields

1

(s+a)? 1

Hq(s) = =

1( ) 1+(3_?_Z) (3+a)2+b2

Figure P6.6-7b is a feedback system with forward gain G(s) = s—j_a- and the loop gain (s:-ia)!' Therefore
1
S+a s+a

Ha(s) = sta =

1+ _____7(3:'-;) (s+a)2+0b2

The output in Fig. P6.6-Tc is the same of B — aA times the output of Fig. P6.6-7a and A times the output of
Fig. P6.6-7b. Therefore its transfer function is

H(s)=(B - aA)Hl(s) + AHs(s)

_ B-aA A(s +a)
T (s+a)24+b2 " (s+a)2+b2
As+ B

T GtazZtb?
6.6-8 These transfer functions are readily realized by using the arrangement in Fig. 6.30 by a proper choice of Z¢(s)

and Z(s).
(i) In Fig. S6.6-8a

L7

Cyrs 1 1
Z = i = = —
1(s) Ry + C#!_, Ct(s+a) @ RsCy
Z(s)=R
and
H(s)=-Zf(s) —_ k 1 1

— k= —, =
- Z(s)  s+a RC; T E;Cy
Choose R = 10,000, Ry = 20,000 and Cy = 10~°. This yields k = 10 and a = 5. Therefore

-10
H(s) = P

(ii) This is same as (i) followed by an amplifier of gain —1 as shown in Fig. 56.6-8b.
(iii) For the first stage in Fig. S6.6-8c (see Exercise E6.11, Fig. 6.34b),

1 1
Zs(s) = Ct(s+a) “= R;Cy
1 1
= — h= —
2 =567 T E®e
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and

=_Zls) O sb
His) = Z(s) Cf(s+a)

Choose C = Cy = 107%, R = 5000, R; = 2000. This yields

s+ 2
s+ 5

H(s)= -(32=)

This is followed by an op amp of gain —1 as shown in Fig. 56.6-8c. This yields

s+2

H(s) =

s+35

Feh

@)

9
U

Fig. 56.6-8

6.6-9 One realization is given in Fig. $6.6-8c. For the other realization, we express H(s) as

s+ 2 1 3

H(3)=s+5= 8s+5

We realize H(s) as a parallel combination of Hy(s) = 1 and Hz(s) = —3/(s + 5) as shown in Fig. S6.6-9. The
second stage serves as a summer for which the inputs are the input and output of the first stage. Because the
summer has a gain —1, we need a third stage of gain —1 to obtain the desired transfer functions.

——lﬁ's[,- | lok ok
_.QA!‘..__ ITi
20K 'OK, . : 1ok A —

- - N .
333/ Lt M{"og x —"W‘J >

Fig. $6.6-9



$2X ()

F(s)

-

sX (s5)

F(s)

X (s)

Y(s)

F(s)

100 kQ l

100 kQ

6.6-10 The transfer function here is identical to H(s) in Example 6.20 with a minor difference. Hence the op amp circuit
in Fig. 6.32c can be used for our purpose with appropriate changes in the element values. The last summer

FFig. S6.6-11

input resistors now are };ﬂ kQ and 1—29 kQ instead of 50 k2 and 20 k2.

6.6-11 We follow the procedure in Example 6.20 with appropriate mod
bo = 2, by = 5, and bz = 1 (in Example 6.20, we have ao = 10, a1
b2 is nonzero here, we have one more feedforward connection. Figur

suitable realization.
6.7-1
(a) T(s)=

s2+4+3s+9 )
Hence from Fig. 6.39, PO =~ 17% and wnt, = 1.63 which yields ¢, = 0.526. Also

= wn=23,

20wn =3

(c)

= (=05

(b)

ifications. In this case ap = 13, a1 = 4, and
=4,and bp =5, by =2, and b2 = 0). Because
e $6.6-11 shows the development of the

o NPT o U 2_
ts—(wn—4/l'5-2'67 es—}%[l T(s)]=0 er—l%[l T(a1)]/s—3 e"—.};l.%[l T(s)]/s" =

(b) T(s) = —a

s2+3s+4

wn=2 Awn=3 = (=075



. Hencé from Fig. 6.39, PO =~ 3% and wnt, =~ 2.3 which yields ¢, = 1.15. Also

ty = C_:_ =4/15=2.67 e, = lixr(l)[-l -T(s)]=0 er= linb[l —T(s)]/s =075 ¢p= linb“ —T(s)])/s* =

95 o
© T6) = g, 7r00 =« =10 Zwn=10 = (=03

Hence from Fig. 6.39, PO ~ 17% and wnt, =~ 1.63 which yields ¢, = 0.163. Also

ty = C4 =4/5=08 e,= ]irr‘lj[l —T(s)] =005 e, = liné[l - T(s)]/s=00 ep= ]ixr})[l —T(s)]/s* = 00

n

6.7-2
K.
T(s)=K G = K1Ka
TOMITY K T s2+as+ K.
Totay T A

PO=¢"¢"/V1=¢* = 0,09 = ¢ = 0.608. Moreover,

=T =%=>w,.\/1—cz=>wn=5.04forc=0.608

t, =
P /1 -¢?
Thus
s?+2wns +wi=s"+as+ K2 = a=6.128, and Ko =254
The steady-state value of the output is given to be 2. But, the staedy-state value of the output is

Yoo = lim i F2
Yo = S S +as + K2

Thus, the parameters are K1 = 2, K2 = 254 and a = 6.128.

=K; =2

T
° Jd
p _
o -1 7] 6~

Figure S6.7-3

6.7-3 The transfer function of the inner loop is 1/(s+2). Hence, the open loop transfer function of this unity feedback
system is

K G2 K
G —_—— T = s(s+ =
(s) s(s+2) (s) 1+ -(—'frg-) 2+ 2s+ K

The characteristic roots are —1 + jv/K?2 — 1. The root locus is shown in Fig. $6.7-3.

Observe that for the characteristic polynomial s + 25 + K. (wn = 1 and w2 = K. But, t, = 4/Cwn = 4.
Hence, we cannot meet the settling time specification (¢, < 1), regardless of the value of K. We now find the
steady-state errors. This being a unity feedback system, we could use parameters Kp, K» and K.. We have

Kp=limG(s) =co K, = lim[sG(s)] = % Ko = lin:,[szG'(s)] =0
Hence,

I

1
= ep -1{—'1:00

x|

1
0 er—I—(v'
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6.7-4

6.7-5

We already observed that we cannot meet t, specification. We can satisfy e,. From Fig. 6.40, we conclude that
we cannot meet both ¢, < 0.3 and PO < 30%. We can meet one or the other, but not both.

(a) The open loop poles are at 0, —3 and —5. Hence, there are three root loci starting at 0, —3 and —5 (when
K = 0). Moreover, the segments 0 to —1 and —3 to —5 of the real axis are a part of the root locus. There is
only one open loop zero at —1. Hence. one locus will terminate at —1 (when K = oc). The other two branches
terminate at oo (when K = co) along asymptotes at angles kn/(n — m) = m/2 and 37/2. The centroid of the
asymptotes is 0 = (0 — 3 — 5+ 1)/2 = —3.5. The root locus is shown in Fig. S6.7-4a.

(b) The open loop poles are at 0, —3, —5 and —7. Hence, there are four root loci starting at 0, -3, —5 and —7
(when K = 0). Moreover, the entire real axis in the LHP, except two segments 0 to —3 and —5 to —7 are a part
of the root locus. There is only one open loop zero at —1. Hence, one locus will terminate at —1 (when K = o0).
The other three branches terminate at oo (when K = oo) along asymptotes at angles kv/(n — m) =n/3 and
and 57 /3. The centroid of the asymptotesis e = (0—3—-5—7+1)/3 = —4.67. The root locus is shown in Fig.
S6.7-4b.

(c) The open loop poles are at 0 —3. Hence, there are two root loci starting at 0 and —3 (when K = 0).
Moreover, the entire real axis in the LHP, except the segment from —3 to —5 is a part of the root locus. There
is only one open loop zero at —5. Hence, one locus will terminate at —5 (when K = o0). The other branch
terminate at oo (when K = oo) along asymptote at angles kn/(n — m) = m. The root locus is shown in Fig.
S6.7-4c.

(d) The open loop poles are at 0, —4 and —1 % j. Hence, there are four root loci starting at 0, —4 and -1+ j
(when K = 0). Moreover, the entire real axis, except the segment from —1 to —4 is a part of the root locus.
There is only one open loop zero at —1. Hence, one locus will terminate at —1 (when K = oo). The other three
branches termindte at oo (when K = oo) along asymptotes at angles kw/(n — m) = n/3, m and 5pi/3. The
centroid of the asymptotes is 0 = (0 —4—-1—-1+1)/3 = —1.67. The root locus is shown in Fig. S6.7-4d.

First, we draw the root locus for the system. The open loop poles are at 0 and —10. Hence, there are two root
loci starting at 0 and —10 (when K = 0). Moreover, this segment from 0 to —10 of the real axis is a part of the
root locus. There are no open loop zeros. Hence, both loci terminate at oo (for K = oo) along asymptotes at
angles kw/(n — m) = n/2 and 37/2. The centroid of the asymptotes is ¢ = (0 — 10)/2 = —5. The root locus is
shown in Fig. S6.7-5a. :

We now superimpose Fig. 6.40 on the root locus, and demarcate the region for PO < 16%, ¢, < 0.2 and t, < 0.5.
We find that we can meet PO and t, specifications, but not ¢, because for t, < 0.5, the roots must be to the left
of —8. In our case, both the roots are always to the right of —5 for all K. Hence, we cannot satisfy ¢ condition
for any value of K. '

We also need e; = 0 and e, < 0.06. This is a unity feedback system with G(s) = K/s(s + 10). Hence, K, = 00
and K, = K/10. Also e, =1/(1 + Kp) =0 and e, = 1/K, = 10/K. Thus, we can satisfy both the steady-state
specifications by choosing K > 600. But, as we saw, we cannot satisfy ¢, requirement for any value of K.

To obtain ts < 0.5, the root locus must be to the left of —8, whereas our root locus is to the left of —5. Hence,
to meet the t, requirement, we must shift the locus to the left by using compensation. An easy solution would
be to cancel the pole at —10 and place another pole at somewhere to the left of —16. Let us select the new pole
at —20. This is clearly a lead compensator with transfer function

s+ 10
s+20

The new open loop transfer function is G(s) = K/s(s + 20), and the centroid of the corresponding root locus
is at —10 as shown in Fig. S6.7-5b. We superimpose this root locus on Fig. 6.40 and observe that all the
specifications can be oversatisfied as long as K is large enough so that the roots are not on the real axis. This
can be readily obtained from a computer generated root locus, or we can compute it as follow. The closed-loop
transfer function is

Ge(s) =

K
T(S) — s(s+20) — K
K 2
1+7—”+2O) s2+20s + K

The characteristic polynomial is s? + 20s + K. The characteristic roots [poles of T'(s)] are —10 % jvK — 100.
This shows that the plot emerges from real axis at K = 100. Hence, we should choose K > 100. To find the
exact value, we shall consider the stead-state errors. In this case, Kp = oo, and K, = K/20. Hence, e, = 0
and e, = 20/K < 0.06. This yields K > 333.34. Let us now verify the transient parameters. The roots are
—10 £ j1/333.34 — 100 = —10 + j15.27. For these pole values, it is clear from Fig. 6.40 that all the parameters
PO, t, and t, are within specifications.

Alternately, we can compute all the transient parameters as follows. The characteristic polynomial is s%4+20s +
K = 5% + 2Cwns + w2. Hence, w, = VK, and (wn = 10. Thus, VK¢ = 10 and ¢ = 10/VK. Now

PO = ¢"/V1=¢ —016 = (¢=0.504
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Also

VK(=0504VK =10 = K =393.67

Moreover, t. = 4/Cw, = 0.4. For K = 393.67, we meet all the transient specifications. Also ¢y = 0 and
¢, = 20/K = 0.0508. Thus, we meet all the specifications for K = 393.67. Actually, any value of K in the range
333.34 < K < 393.67 will satisfy all the conditions.

6.8-1 (a) Let f1(t) = f(t)u(t) = etu(t) and fa(t) = f(t)u(—t) = u(-—t). Then F(s) has a region of convergence o > 1.
And Fy(s) has a region o < 0. Hence there is no common region of convergence for F(s) = Fi(s) + Fa(s).
(b) f1(t) = e™"u(t), and Fi(s) = g converges for ¢ > —1. Also f2(t) = u(—t), and Fz(s) = —2 converges for
o < 0. Therefore, the strip of convergence is

-1<o0<0

A _sf'r{P rf

L eonvemenc
A '

Figure S6.8-1b

(c)
1 et } ast — oo if Res>0

—e
t2+1 ast — —co if Res <0

Hence the convergence occurs at ¢ = 0 (jw-axis)

(d)
1

+ et

ORE

1 ast — oo if Re s > —1
—s't_»O}

1+et ast — —co if Res <0

Hence the region of convergence is —1 < ¢ < 0

(e)
F(t) = e

_ as t — oo for any value of s
—kt* —st

e e - 0}

as t — —oo for any value of s

Hence the region of convergence is the entire s-plane.
6.8-2 (a)
fO) = e =e"tu(t) + efu(=t) = Au(t) + f2(t)

Fi(s) = 1 o>-1
—t 1
fa(=t)=e ‘u(t) and Fa(-s)= porcy
and F(s) = 1 o<1
—-s+1
1 1 -2

-l<ox1

Hence: F(s) = Fi(s) + Fa(s) = P + mpara il s
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(b)
) = e eost = e teostu(t) +efcostu(—t) = fi(t) + f2(t)

s+ 1 s+1
H §) = ——— 2 (—8) = ————
ence Fi(s) GFDZT1 and Fa(—s) GriE el o<1
s+ 1 s—1 4 — 252
F(s) = Fi(- s) = - = —
(5) = Fi(s) + F2(s) GFUPFT GoPrl <4 l<o<1
(c)
1

ft) = etu(t) + *tu(—t); Fi(s) = - i oc>1 and Fi(-s)= ——

1
-s+2

Fa(s) = o< 2.

1

—(s—l)(s—2) l<o<2

Hence F(s) = Fi(s) + Fa(s) =

() »

f(t)‘.z ) _ {e for t>0
1 for t<0

o> -1

() =e"u(t), fa(t) =u(-t). Hence Fi(s)= s j— 1

, F2(3)=T o< 0

® |-

and Fo(—s) =

1 1 -1
dh o F = eeeee— - = ——— -1
and hence (s) ST 5 s6FD <o<0

()
i) =1 for t>0

— tu(—t) —

ft)=c {fg(t) =et for t<0

Fi(s) = 1 c>0
s

o<1

Fa(—s) = s% Fa(s) =

and hence: F(s)=%—s—i-—l=s(s_—_ll) 0<oxl1

(£)
f(t) = coswotu(t) + efu(—t) = f1(t) + fa(t)

8

- o>0
s?2 +w?

Fi(s) =

1 1
s+ 1’ -

and Fp(—s) =

—(s+ wd)

—_— 1
(s —1)(s2 +wd) 0<o<

F(s) = Fi(s) + Fa(s) =

6.8-3 (a)
2s+5
(s+2)(s+3)

1 + 1
s+2 s+3

F(s) = ~-3<o< -2

-3<o0< -2

The pole —2 lies to the right, and the pole —3 lies to the left of the region of convergence; hence the first term
represents causal and the second term represents anticausal signal:

f(t) = e *u(t) — e *u(~t)
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6.8-4

(b)

_ 25 -3 .
F(S)—m 2<o<3

1 1
__.s—2+—s—3 2<m <3

The pole at —2 lies to thz left and that at 3 lies to the right of the region of convergence; hence

f(t) = emu(t) - cstu(—-t)

(c)
2s+3
F(s) = ————— > -1
®=Ginery
1
= -1
s+1+s+2 o>

Both poles lie to the left of the region of convergence, and

Ft) = (e + e *u(t)

(d)
25+ 3
= )
Fo) =oinern °F
1 1
= Fitiyz <P

Both poles lie to the right of the region of convergence, and hence:

Ft) = —(e™ + e *)u(-t)

(e)
N 352 - 2517
F(s)_(.9+1)(s+3)(s—5) —l<o<s
1 1 1
= + +

s+1 s+3 s-5

The poles —1 and —3 lie to the left of the region of convergence, whereas the pole 5 lies to the right:

F(t) = (et + e 3H)u(t) — e u(—t)

2s2-2-6 _ 1 1 _ 2
(s+D(s-1)(s+2) s+1 s—1 s+2

(a) Re s > 1: All poles to the left of the region of convergence. Therefore
(&)= (e —e' +2e7F)u(t)
(b) Re s < —2: All poles to the right of the region of convergence. Therefore
ft) = (—e"t + ¢ — 267 )u(~t)

(c) —1 < Re s < 1: Poles ~1 and —2 to the left and pole 1 to the right of the region of convergence. Therefore

F(t) = (7t + 27 )u(t) + etu(~t)

(d) -2 < Re s < —1: Poles —1 and 1 are to the right and pole —2 is to the left of the region of convergence.
Therefore

F(t) = 2e 72 u(t) + [—e~t + efu(-t)
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6.8-5 (a)

_Lt 1
t) =e 2 = —
f(t) = , H(s) 7 °>-1
1 1 1 1
And F(s) = [ _ - -
n )= 5035~ 7703 2<9<3
1 1 1 1 1
hence: Y(s) = H(s)F(s) = — . 2
() = H{s)F(s) s+1[s+0.5 s—O.S] 25793
-2 2 2 2
Y(s) = 3 - 3
e o AL Sy
4 2
-3 2 b 1 1
— 3 _ 3 - =
s+1 5505 5-05 3 <7<3

The poles —1 and —0.5, which are to the left of the strip of convergence, yield the causal signal, and the pole
0.5, which is to the right of the strip of convergence, yields the anticausal signal. Hence

y(t) = (—%e_t + 2e_t/2) u(t) + %et/zu(—t)

(b) )
f(t) = etu(t) + e*u(~t)
1 1 .
F(s)_s—l—s—2 l<o<2
_ -1
T (s-D(s-2)
And H(s) = 1 o> -1
Ts+1
-1
Hence: Y(s) = H(s)F(s) = IS l<o<2
_-1/6 12 1/3
Y(.s)—s+1+s_1 P l1<o<?2
Hence  y(t) = (—fe™" + Le’) u(t) + Le*u(-t)
(c)
F(t) = e 2u(t) + e~ 4u(-t)
_ 1 1 _ -1 _ l l
P = 55 " 5502 ~ 51 05)(s 7025 3<9<%
Also H(s) = L o>-1
) T os+1
1
. = — 4 P ot
Hence:  ¥(s) = H()F(s) = ooy s 7 0.8 7 0.25) 3 <7<
2 4
—4 2 -
— 3 _ 3 —- = et
T5H1 5705 54025 2 <7<
. t _t
and y(t) = (—%e_ + 2e'2) u(t) + %e du(-t)
(d)

F() = e®u(t) + eu(~t) = f1(t) + f2(t)
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-2
-1
Fa(s) = o<1
s—1
and H(s)—--—l- o> -1
T s 41

In this case. there is no region of convergence that is common to Fi(s) and Fz(s). However, each of Fi(s) and
F>(s) have a region of convergence that is common to H(s). Hence the output can be computed by finding the
system response to fi(t) and fa(t) separately, and then adding these two components. This means we need not
worry about the common region of convergence for Fy(s) and F(s). Thus:

Y (s) = Yi(s) + Ya(s) where

1

Y1(5)=F1(S)H(S)= m o> 2

1 1
=3 4 _3 o> 2

s+1 s5-2
Observe that both the poles (—1 and 2) are to tle left of the region of convergence, hence both terms are causal,

and:

vi(t) = (—3e7" + 3e*) u(t)

-1
Y2(S)=F2(S)H(S)= W—-—l) -l<ox<1
1 1
— 2 _ 2 -1 1
s+1 51 o<

The poles —1 and 1 are to the left and the right, respectively, of the strip of convergence. Hence the first term
yields causal signal and the second yields anticausal signal. Hence

Therefore y(t) = y1(t) + y2(t) = (de™* + $e*) u(t) + Je'u(-t)

(e) , ,
f(t) = e"qu(t) + e”2u(-t) = f(t) + f2(t)

F(s) = Fi(s) + Fa(s)

1
where F1(s) = m a> —Z
-1 1
Rals) = 5753 7<73
H(S) = .S_:-]T oc>-1

Here also, we have no common region of convergence, for Fi(s) and F2(s) as in part d. Let Y (s) = Y1(s) + Yz2(s)

where:

1 1
Yi(8) = IO 0.25) 7>"3

4 4

_ 3 3 _:
=531 75702 7>y
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-1
L Py Ty S A
2 2 1
= - —l<o< -3

s+ 1 s+ 0.5

t
and y2(t) = 2 u(t) + 27 2u(—t)

t t
Hence y(t) = y1(t) + y2(t) = (%e" + %,;‘Z) u(t) + 2~ 2u(—t)

(f) .
F&) = e u(t) + e Hu(—t) = fi(t) + fa(t)

F(s) = Fi(s) + Fa(s)

where

s+ 2
1

— -1
s+ 1 o>

In this case, there is a common region of convergence for F;(s) and H(s), but there is no region of convergence
common to F3(s) and H(s). Hence the output y;(t) will be finite but y2(¢) will be oco.
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Chapter 7

7.1-1

Jjw + 2 _ Jw +2
(Gw)2+5jw+4 (4 —-w?) + jow

\H (jw)| = w?+4 _ w?+4
J A-—wd)2+ (5w)2  V wd+1702+ 16

Sw
4—w2)

H(jw) =

LH(jw) = tan‘l(‘-"z-) — tan™}(

(a) f(t) = 5cos(2t + 30°). Here w = 2 and

|H(j2)] = 4/ =
LH(jw) = tan™! —tan"!(c0) = 45° — 90° = —45
y(t) = 532 cos(2t + 30° — 45°) = V2 cos(2t — 15°)

¥z
5

o

(b) f(t) = 10sin(2t + 45°)
y(t) = 10(2)sin(2t + 45° - 45°) = 2VZsin 2t
(c) f(t) = 10cos(3t + 40°). Here w = 3

|H(jw)| = ,/2—15% =0.228 and (/H(j3)=56.31° —108.43° = —52.12°

Therefore
y(t) = 10(0.228) cos(3t + 40° — 52.12°) = 2.28 cos(3t — 12.12°)

7.1-2
B oy jw+3
HGw) = 2553y
vVw? +9 1w _1,w
. \ = - = - — — —
|H (jw)] vy and /H(jw) = tan (3) tan (2)

(a) f(t) = 10u(t) = 107 u(t). Here w = 0 and H(j0) = 1. Therefore

y(t) =1 x 106’ u(t) = 10u(t)

(b) f(t) = cos(2t + 60°) u(t). Here w = 2
|H(j2)| = ¥ and (H(j2) = 33.69° — 90° = —56.31°
8

Therefore
y(t) = Y2 cos(2t + 60° — 56.31°)u(t) = Y22 cos(2t + 3.69°)u(t)

(c) fF(t) = sin(3t — 45°)u(t) Here w = 3 and
|H(j3)| = ¥ and LH(j3) =45 — 112.62° = —67.62°

Therefore
y(t) = LB sin(3t — 45° — 67.62%)u(t) = I sin(3t — 112.62°)u(t)

(d) £() = e**u(t)
y(t) = H(53)e’™ = |H(53)|/ P £HOy (1) = YIRIBOT Ny )
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7.1-3

7.2-1

—(jw-10) 10 — jw
Jw+10 10 + jw

[w? + 100
H(1y = ———
[H (jw)] — 100~

LH(jw) = tan_l(—l%) — tan~(

H(jw) =

w -1, W
Yy=_92¢ fhadl
10’ an™(5)

(a) f(t) = I
y(t) = H(jw)e!"t = IH(jUJ)|eJ[m+AH(jw>] = oJlwt=2tan™(w/10)]
(b) f(t) = cos(wt + 6)
y(t) = coslwt + 6 — 2tan""(55)]

(c) f(t) = cost. Here w = 1

[H(G1| =1
LH(jw) = —2tan—1(-lL0) = -11.42°
y(t) = cos(t — 11.42°)

(d) f(t) =sin2t. Here w = 2
|H(j2)] =1

LH(j2) = -2tan”! (&) = —22.62°
y(t) = sin(2t — 22.62°)

(e) f(t) = cos10t. Here w = 10
[H(510)| =1

LH(j10) = —2tan"'(33) = —90°
y(t) = cos(10t — 90°) = sin 10¢

(f) f(t) = cos100t. Here w = 100
|H(5100)| =1

LH(j100) = —2tan™"(1%0) = —168.58°
y(t) = cos(100t — 168.58°)

(a) The transfer function can be expressed as

100 s(t5 +1) —25 s(ifs +1)
2x20(5+1)(g+1) TE+D(5+1)

H(s) =

The amplitude response: The horizontal axis where the asymptotes begin is 2.5, which is 7.96 db. We draw the
asymptotes at w = 1 (20 dB/dec.), 2 (-20 dB/dec.), 20 (-20 dB/dec.), and 100 (20 dB/dec.) as shown in Fig.
S7.2-1a. The corrections are applied at various points as discussed in Examples 7.3 and 7.4. to obtain the Bode
plot for amplitude response. We follow the similar procedure for phase response.

(b) The transfer function can be expressed as

10)(20(?’6'*‘1)(-2-%-'-1)_ (_1'26+1)(_2%+1)

HO =00 — (@ +1) 2 si(ag + 1)

The amplitude response: The horizontal axis where the asymptotes begin is 2, which is 6 db. Asymptotes start
at w =1 (-40 dB/dec.), 10 (20 dB/dec.), 20 (20 dB/dec.), and 100 (-20 dB/dec.). The corrections are applied
at various points as discussed in Examples 7.3 and 7.4. to obtain the Bode plot.

(c) The transfer function can be expressed as
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7.2-2

7.3-1

7.4-1

7.4-2

10x200 (F5+D)(g5+D _ 1 (F+D(E+1)

H(s) =
) = 500 1000 (5 + ?(rgeg + 1)~ 200 (35 ¥ V(i + D

The amplitude response: The horizontal axis where the asymptotes begin is 1/200, which is —46 db. Asymptotes
start at w = 10 (20 dB/dec.), 20 (-40 dB/dec.). 200 (20 dB/dec.), and 1000 (-20 dB/dec.). The corrections are
applied at various points as discussed in Examples 7.3 and 7.4. to obtain the Bode plot.

(a) The transfer function can be expressed as

1 52

H(s) = — -
16 (2 +1)(35 + 3 +1)

The amplitude response: The horizontal axis where the asymptotes begin is 1/16, which is -24 dB. Asymptotes
start at w = 1 (40 dB/dec.), 1 (-20 dB/dec.), 4 (-40 dB/dec.). The corrections are applied at various points as
discussed in Examples 7.3 and 7.4. to obtain the Bode plot.
(b) The transfer function can be expressed as

1 s

H(s) = — =

100 (% +1)({55 +0.1414s + 1)

The amplitude response: The horizontal axis where the asymptotes begin is 1/100, which is -40 dB. Asymptotes
start at w = 1 (20 dB/dec.), 1 (-20 dB/dec.). 10 (-40 dB/dec.). The corrections are applied at various points as
discussed in Examples 7.3 and 7.4. to obtain the Bode plot.

(c) The transfer function can be expressed as

10 &5+1

H(s) = —
)= 100 s(&5 +0.1414s + 1)

The amplitude response: The horizontal axis where the asymptotes begin is 1/10, which is -20 dB. Asymptotes
start at w = 1 (-20 dB/dec.), 10 (20 dB/dec.), 10 (-40 dB/dec.). The corrections are applied at various points
as discussed in Examples 7.3 and 7.4. to obtain the Bode plot.

(a) In this case,

. We . We
() Jw + we H Gw)l w? + wé

The dc gain is H(0) = 1 and the gain at w = w, is 1/v/2, which is —3 dB below the dc gain. Hence, the 3-dB
bandwidth is w.. Also the dc gain is unity. Hence, the gain-bandwidth product is we.
We could derive this result indirectly as follows. The system is a lowpass filter with a single pole at w = we.
The dc gain is H(0) = 1 (0 dB). Because, there is a single pole at w. (and no zeros), there is only one asymptote
starting at w = w. (at a rate -20 dB/dec.). The break point is w., where there is a correction of —3 dB. Hence,
the amplitude response at w. is 3 dB below 0 dB (the dc gain). Thus, the 3-dB bandwidth of this filter is wc.
(b) The transfer function of this system is

G(s)  _ _Svee _ _ we
1+G(s)H(s) 1+ Do " 5+ 10w

H(s) =

We use the same argument as in part (a) to deduce that the dc gain is 0.1 and the 3-dB bandwidth is 10w..
Hence, the gain-bandwidth product is wc.
(c) The transfer function of this system is

H(s) = G(s) _ T _ We
T 1-G(s)H(s)  1-— Qe T s+0.1w.

We use the same argument as in part (a) to deduce that the dc gain is 10 and the 3-dB bandwidth is 0.1w..
Hence, the gain-bandwidth product is we.

We plot the poles —1 £ j7 and 1 % ;7 in the s-plane. To find response at some frequency w, we connect all
the poles and zeros to the point jw as shown in Fig. S7.4-1. Note that the product of distances from the zeros
is equal to the product of the distances from the poles for all values of w. Therefore |H(jw)| = 1. Graphical
argument shows that ZH (jw) (sum of the angles from the zeros— sum of the angles from poles) starts at zero
for w = 0 and then reduces continuously (becomes negative) as w increases. As w — o0, ZH(w) — —2=.

(a) If r and d are the distances of the zero and pole, respectively from jw, then the amplitude response |H (jw)|
is the ratio r/d corresponding to jw. This ratio is 0.5 for w = 0. Therefore, the dc gain is 0.5. Also the ratio
r/d = 1 for w = co. Thus, the gain is unity at w = oo. Also the angles of the line segments connecting the zero
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Fig. S7.4-1

7.4-3

7.5-1

Fig. S7.4-2

and pole to the point jw are both zero for w = 0, and are both =/2 for w = co. Therefore ZH(jw) =0atw =0
and w = oo. In between the angle is positive as shown in Fig. S7.4-2a.

(b) In this case the ratio r/d is 2 for w = 0. Therefore, the dc gain is 2. Also the ratio r/d = 1 for w = oo.
Thus, the gain is unity at w = co. Also the angles of the line segments connecting the zero and pole to the point
jw are both zero for w = 0, and are both 7/2 for w = oo. Therefore ZH(jw) = 0 at w = 0 and w = co. In
between the angle is negative as shown in Fig. S7.4-2b.

The poles are at —a + j10. Moreover zero gain at w = 0 and w = oo requires that there be a single zero at s = 0.
This clearly causes the gain to be zero at w = 0. Also because there is one excess pole over zero, the gain for
large values of w is 1/w, which approaches 0 as w — co. therefore, the suitable transfer function is

S S

H) = G a0 ta=710) ~ 57+ 2as + (100 7 a2)

The amplitude response is high in the vicinity of w = 10 provided a is small. Smaller the a, more pronounced
the gain in the vicinity of w = 10. For a = 0, the gain at w = 10 is co.

The normalized third-order Butterworth filter transfer function poles are sx = eI™%(2k + 2) for k = 1, 2, and
3. Hence s; = e/2™/3 = —0.5 + j0.866, sz == /™ = —1, and s3 = ¢?*™/3 = —0.5 — ;j0.866. Therefore

1 1

M) = o3 1)(s + 0.5 — j0.866)(s + 0.5 + j0.866)  s° + 252 + 25 + 1

For w. = 100, the scaled transfer function is obtained by replacing s with s/100, and hence,

H(s) = ; - 1
- s 3 s 2 s -
o5+ 25 215 +1 s3 + 200s2 + 20, 000s + 106

We can verify this result using Table 7.1 (or 7.2). For n = 3, we find from Table 7.1

1

H(s) = 3+252+25+1

The frequency response can be found directly from Eq. (7.31) with w. = 100 and n» = 3. Hence,

lH('w)I = __.10_6_.
RV T
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7.5-2

7.5-3

7.6-1

7.6-2

7.6-3

7.6-4

(a) Here, G, = —0.5 dB, Gy = —20 dB, w, = 100, w, = 200. From Eq. (7.39), we obtain n = 4.8321, which is
rounded up to a value n = 5. To oversatisfy stopband requirement, we use Eq. (7.40)to obtain w. = 123.412.
To oversatisfy passband requirement, we use Eq. (7.41)to obtain w. = 126.32.

(b) Here, ép = -0.1 dB, G, = —-60 dB, w, = 1000, w, = 2000. From Eq. (7.39), we obtain n = 12.678, which
is rounded up to a value n = 13. To oversatisfy stopband requirement. we use Eq. (7.40)to obtain w. = 1155.6.
To oversatisfy passband requirement, we use Eq. (7.41)to obtain w. = 1175.6.

(c) We are given (3',, = -3dB, G, = -50 dB, wp = we, wy = Jwe.

Here, we start with assuming w. = 1. This gives w, = 1 and wy = 3. From Eq. (7.39), we obtain n = 5.2419,
which is rounded up to a value n = 6. To oversatisfv stopband requirement, we use Eq. (7.40)to obtain w. = 1.
Thus. w, = w.. To oversatisfy passband requirement, we use Eq. (7.41)to obtain w. = 1.1494. Hence, in this
case, we should choose w. to be 1.1494 times the given value of w..

Here, G, = -3 dB, G, = —14 dB, w, = 100,000, w, = 150,000. From Eq. (7.39), we obtain n = 3.931,
which is rounded up to a value n = 4. Using Eq. (7.40), we obtain w. = 100,060. The fourth-order normalized
Butterworth transfer function (see Table 7.1) is

H(s) = !
VT §4 4261353 + 3.41452 + 2.613s5 + 1

The desired transfer function is obtained by replacing s with s/w. in H(s). Using w. = 100, 060, we obtain

H(s) = 1.002 x 10%
T s 4 (2.613)105s3 + (3.418)101952 + (2.613)10%55 + (1.002)102°
We need to find a 3rd-order Chebychev filter with w, = 100 and # = 3 dB. This gives ¢ = /1093 — 1 = 0.9976.
We use Eq. 97.51) to find the poles of the normalized Cheby filter. we have z = % sinh™!() = 1 sinh~!(1.0024) =

0.2943. Now from Eq. (7.51), we compute the three poles (for k = 1, 2, 3) as s; = —0.2986, s2.3 = —0.1493 +
70.9038. Hence,

0.2506
~ (s + 0.2986)(s + 0.1493 + j0.9038)(s + 0.1493 — j0.9038)
_ 0.2506

T s34 0.5972s2 + 0.9283s + 0.2506

H(s)

To obtain H(s). we replace s with s/100, to obtain

250, 600
s3 + 59.725% + 9283s + 250, 600

H(s) =

Here, G, = —1 (7 = 1) dB, G, = —22 dB, wp = 100, w, = 200. From Eq. (7.49b), we obtain n = 2.9599. which
is rounded up to a value n = 3. Using Table 7.4 (for # = 1), we obtain the normalized Cheby transfer function
as

0.4913
s3 4 0.9883s2 + 1.238s + 0.4913

H(s) =
The desired transfer function is obtained by replacing s with s/w, in H(s). Using wp = 100, we obtain

(4.913)10°
53 + 98.83s2 + 12380s + 491300

H(s) =

Here, G, = —2 (7 = 2) dB, Gy = —25 dB, wp = 10, ws = 15. From Eq. (7.49b), we obtain n = 3.9873, which is
rounded up to a value n = 4. Also, in this case, K = ao/(107/?°) = a¢/1.2589. Using Table 7.4 (for # = 2), we
obtain the normalized Cheby transfer function

0.2058/1,2589

H(s) = 7770716957 + 1.95657 + 0.51685 © 0.2058

The desired transfer function is obtained by replacing s with s/wp in H(s). Using w, = 10, we obtain

1634
s4 4+ 7.162s3 + 125.652 + 516.8s + 2058

H(s) =
Here, G, = —3 (7 = 3) dB, G, = —50 dB, wp = we, wy = 3we.

105



7.7-1

7.7-2

7.7-3

7.7-4

As in Prob. 7.5-2c, we assume w. = 1. This results in w, = 1 and w, = 3. _From Eq. (7.49b), we obtain
n = 3.6602. which is rounded up to a value n = 4. Also, in this case, K,, = ao/IO"/20 = ap/1.4125. Using Table
7.4 (for 7 = 3), we obtain the normalized Cheby transfer function

0.177/1.4125
54+ 0.5816s3 + 1.169s2 + 0.4048s + 0.177

The desired transfer function is obtained by replacing s with s/w. in H(s).

H(s) =

0.1253w3

H(s) = ‘ ,
() = T770.5816w.5% + 1.160w25% + 04048075 1 017703

Here.‘ G’,, = -1 dB, C;‘s = —20 dB, wp = 20. w, = 10. The prototype lowpass filter specifications are G‘,, = -1
dB, Gs = —~20dB, wp =1, w, = 2. Use of Eq. (7.39) yields n = 4.9997, which is rounded up to n = 5. Also use
of Eq. (7.40) yields w. = 1.2341. From Table 7.1, n = 5 yields '

1
s% + 3.23654 + 5.23653 + 5.2365% + 3.2365 + 1

We now substitute s with s/w. = s/1.2341 in H(s) to obtain the prototype lowpass filter transfer function H,(s).

H(s) =

2.863
s% + 3.99454 + 7.975s% + 9.84252 + 7.5705s + 2.863

The desired highpass transfer function is obtained by replacing s with wp/s = 20/s in Hp(s).

Hp(s) =

SS

H(s) = s5 + 52.4454 + 1375.0653 + 22284.3252 + 223192s + 1117708.7

Here, dp = —1(+ = 1) dB, G, = —22 dB, wp = 20, wy = 10. The prototype lowpass filter specifications are
Gp=-1(#=1)dB, G, = -22 dB, w, = 1, ws = 2. Use of Eq. (7.49b) yields n = 2.9599, which is rounded up
to n = 3. From Table 7.4, n = 3 yields the Cheby prototype lowpass transfer function

0.4913
s34+ 0.9883s2 + 1.238s + 0.4193

The desired highpass transfer function is obtained by replacing s with w,/s = 20/s in Hp(s).

Hp(s) =

SJ

s3 + 59.05s% + 942.81s + 19079.42

Here, G, = —3 dB, G, = —17 dB, wp, = 100, wp, = 250, ws, = 40, wy, = 500.

Use of Eq. (7.56) yields w,, = 3.9 and ws, = 3. The smaller of the two is 3. Hence, ws = 3. To find the lowpass
prototype transfer function, we use wp = 1, wy = 3, Gp = -3, G, = —17. Use of Eq. (7.39) yields n = 1.7745,
which is rounded up to n = 2. Also use of Eq. (7.40) yields w. = 1.0012. From Table 7.1, n = 2 yields

H(s) =

1
s2+1414s+1

We now substitute s with s/w. = s/1.0012 in H(s) to obtain the prototype lowpass filter transfer function H,(s).

H(s) =

1.0024
s2 4+ 1.4157s + 1.0024

Hp(s) =

According to Eq. (7.57), the desired highpass transfer function is obtained by replacing s with T'(s) = ﬁ%}fg’—f@
in Hp(s).

(2.255)10%s*
54+ 212.453 + 7255052 + (5.31)108s + (6.25)108

Here, Gp = —1 (7 = 1) dB, G, = —17 dB, wp, = 100, wp, = 250, w,, = 40, w,, = 500.

Use of Eq. (7.56) yields ws, = 3.9 and ws, = 3. The smaller of the two is 3. Hence, ws; = 3. To find the lowpass
prototype transfer function, we use wp, = 1, ws =3, 7 =1, G, = —17. Use of Eq. (7.49b) yields n = 1.8803,
which is rounded up to n = 2. Also, in this case, K, = ao/(107/%°) = a¢/1.122. Using Table 7.4 (for # = 1), we
obtain the prototype Cheby transfer function

H(s) =

1.1025/1.122 0.9826

o(s) = 53 T008s + 1.1025 — 52+ 1,098 + 1.1025

According to Eq. (7.57), the desired highpass transfer function is obtained by replacing s with T(s) = ’&132%9—0
in Hp(s).
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(2.25)10%s
s% + 164.7s3 + 7481752 + 41175005 + (6.25)108

H(s) =

7.7-5 Here, Gp = —3 dB, G, = —24 dB, wp, = 20, wp, = 60, w,, = 30, w,, = 38.

Use of Eq. (7.60) yields w,, = 4 and ws;, = 6.2295. The smaller of the two is 4. Hence. ws = 4. To find the
lowpass prototype transfer function, we use wp = 1, wy, = 4, Gp = =3, G, = —24. Use of Eq. (7.39) yields
n = 1.9934, which is rounded up to n = 2. Also use of Eq. (7.40) yields w. = 1.0012. From Table 7.1, n = 2

yields

1
s2+ 14145+ 1

We now substitute s with s/w; = 5/1.0012 in H(s) to obtain the prototype lowpass filter transfer function Hp(s).

H(s) =

1.002
s2 +1.4157s + 1.002

Hp(s) =

According to Eq. (7.61), the desired bandstop transfer function is obtained by replacing s with T'(s) = %

in Hp(s).

(s + 1200)?
s% + 56.53s3 + 399.8s2 + (6.7824)10%s + (1.44)106

H(s) =
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Chapter 8

8.2-1

8.2-2

8.2-3

8.2-4

8.2-5

8.2-6

8.2-7

8.2-8

By (e 2R

y, % 1
(2] 0.5 f'64g7 -

»

Fig. S8.2-1

(a) 7O = (0.6065)*, (b)e®* = (1.6487),
(c)e—_nrk — (e—-]ﬂ')k = (__l)lvsY (d) eJnlc = (ejvr)k = (_l)lc
Figure S8.2-1 shows locations of A and v in each case.

(a)e—(lﬂw)k = (e~ le™Im)k = (_%)" (b)e—(l—jr)k = (e~lei™)k = (_%)k
(c) c(l*'j")f = (ee?™)* = (—e)F (d)e(l‘j’")‘c = (ee M)k = (—e)k‘ ,
(e) e~ (1HiF)k = (¢ml)kpmigh = (%-)k[cos 5k —jsin $k] (f) e(1=I5)k = (elyk eIk = eF[cos Tk — jsin Sk

(a) Periodic because Q/2m = 1/4, rational. Using Eq. (8.9b), we find that No = m(27/Q) = m(4) is an integer
for the smallest m = 1. Hence No = 4. (b)Aperiodic because Q/27 = 1/sqrt2n, not rational.
(c) Aperiodic because 2/2r = 1/4x, not rational. (d) Periodic because 2/27 = 1/6, rational.

(a) Periodic because £2/2m = 3/10, rational. Using Eq. (8.9b), we find that No = m(27/Q) = m(10/3) is an
integer for the smallest m = 3. Hence No = 10.

(b) Periodic because /27 = 2/5, rational. Using the argument in part (a), we obtain No = 5.

(a) All the three sinusoids are periodic with periods 10, 4, and 5, respectively. Because 2(10) = 5(4) = 4(5) = 20.
the period is 20. This is because we can fit exactly 2, 5, and 4 cycles of the three sinusoids in a period 20.

(a) Q5 = 0.8m, |Qf] = 0.87
(b)Qy = 1.2 — 27 = —0.87, |Qf| = 0.87 (c) Ny = 6.9 — 27 = 0.6168, || = 0.6168
(d) Qf =3.7n —4r = —0.3m, || = 0.37 (e) Ny =22.97 — 227 = 0.97, || = 0.97

Because 1.47 = 2w — 0.6, cos(1.4rk + §) = cos(—0.6wk + §) = cos(0.67mk — %). Also

cos(0.6rk + 1) = cos 0.6k cos — — sin 0.67k sin = = -@ cos 0.6mk — lsin 0.6k
- 6 6 6 2 2
Similarly
™ T Lom 1 V3
cos(0.6wk — -§) = cos 0.6mk cos 3 + sin 0.6k sin 3 = 3008 0.6k + - sin 0.6mk

Therefore,
cos(0.6mk + %) + V3cos(1.4mk + %) = V3 cos 0.6rk + sin 0.6wk = 2 cos( 0.6wk — %)

(a) ej(8.27rk+0)—j87rk = ej(0.27rk+0)
(b) cJ41rk—]41rk - e]Ok =1

(c) e—j1.95k+j21rlc = e_,'4,333k
—j10.7rk+j12mk _ _jl.37k
(d) e =e
oc (=]
- 2 _ 2_ (0.64)= — (0.64)° _
Ey = }3:(0.8) = ;(0-64> = S = 7mns

Rest is trivial. The energy of —f[k] is E; = 2.7778, and the energy of cf(k] is c2Ey = 2.7778¢%.
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8.2-9
(@) Er = (3)2+2(2)> +2(1)* =19 (b) Ef = (3)2+2(2)2 + 2(1)*> = 19
(c) Ef =2(3)% +2(6)° +2(9)% =252 (d) Ef = 2(2)% + 2(4)? = 40

8.2-10 (a) P; = limn—co 307 ‘N+1 >N N(1)2k =1 (b) Pf = limy_—no 50— 2N+1 Z (-1)%* =1
(¢) Pr=limy—co 35+ Zo =0.5 (d) Pf = limN—oo 3777 Zo (-1)* =05
. 2 2 2
(e) No=g§-=6- Pr =33 (cos[Zk + Z { +02+(—‘/T§) +(—§) +O‘+(§) ]:0.5

8.2-11 (a) Py = §[(3)* +2(2)* +2(1)3] = L2 (b) Pr = L[2(1)2+2(2)2 +2(3)* =
8.2-12 (a) In the following discussion, let -‘,2\,—’; = Q. Because De’*%* is periodic with period No

No—1

Pf:TVl;Z'DeJQOk2=NL§_

(b)
No—1|Ng—1 No—1 [Ng-—1 No—1
P D,e Jrﬂok =_ D, Jk D —Jmﬂok
=g 5 oo s B[S e B o]

Interchanging the order of summation yields

No—1Ng—1 No—1
J(r—m)Qoh
=g 3 3 bk 3 ]
r=0 m=0 k=0

From Eq. (5.43) in Appendix 5.1, the sum inside the parenthesis is Ng when r = m, and is zero otherwise. Hence

Ng-—1

Ps= E lDr|2

=0
8.3-1 In the present case, F, = 1/T = 2 MHz. Therefore Eq. (8.21) yields
2x 10% =0+2x10°

Hence, the reduced frequency is 0 (dc).
8.3-2 For the sinusoid 10cos(117t + %), the samples sinusoid, obtained by replacing t with kT = 0.1k, is

97 T 9 T
10 cos (iﬁ"’” 6) = 10cos [(Qﬂ—ﬁ)k+g] = 10cos (———lﬁrk+ 6) 10(‘0'5(10 k— E)

For the sinusoid 5 cos(297t — %), the samples sinusoid (obtained by replacing ¢ with kT = 0.1k) is

29 ™ 9 T T
5cos(ﬁ7rk——g)—5cos [(2w+ﬁ)k—g]—5coa(m E)

8.3-3 (a) In this case, T = 1/4000. Hence, the sampled signal, which is obtained by replacing t with kT = k/4000, is

10 cos Z-r-k+ V2sin -3—1rk+ 2 cos (5lk+ 1) =10cos =k + V2sin 3—7rk + 2 cos (ﬂk+ 1)
2 4 4 4 2 4
—1000¢%k+\/2‘9m k+2cos(3;rk—%)

We can combine the last 2 terms by using a suitable trigonometric identity as follows:

\/Esing—”k+2cos(3’rk— -) = VZsin STk + 2cos STk cos & + 2sin Ok sin &
4 1 4 4 4 1
2sin 13411:.+ V2 cos :i}k-{— \/Esin%lk

= 2V2sin §4£Ic + V2cos %Tﬂ-k. = V10 cos (%:—r-k - ].107)
The frequency 57 /4 has been reduced to 3w/4. this indicates aliasing.
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(b) The highest frequency in the signal is w = 50007 or 2500 Hz. Hence. the maximum value of T that can be
used without aliasing is T = 1/(2 x 2500) = 1/5000.

8.3-4 In this case, F, = 1/107* = 10,000. Use of Eq. (8.21) vields

(i) 1500 = 1500 + 0 x 10,000 = |Ff| = 1500

(ii) 8500 = —1500 + 1 x 10,000 = |F¢| = 1500
(iii) 10,000 = 0 + 1 x 10, 000 = |Ff| =0

(iv) 11,500 = 1500 + I x 10,000 == |F| = 1500
(v) 32,000 = 2000 + 3 x 10,000 = |Ff| = 2000
(vi) 9600 = 600 + 9 x 10,000 = |Ff| = 600

8.4-1 Figure S8.4-1 shows all the signals

£I-K1 or FLR,F . e lreT /T\
Al L T
- -4 -2 49[ 1 o - 6 9 2
> _
2 I £13K1
14 2 k=

8.4-2 Figure S8.4-2 shows all the signals

. 19 kT fLrred . 7 ql‘ LRG3 TI

I

Fig. S8.4-2

8.4-3 Figure S8.4-3 shows all the signals

8.4-4 (a) flk] = (k+ 3) (ulk + 3] — ulk]) + (=k + 3) (u[k] — u[k — 4])
(b) flk] =k (ulk] — ulk — 4]) + (=K +6) (ulk - 4] — u[k - 7))
(c) fIk] =k (ulk + 3] — ulk — 4]) (d) fk] = =2k (ulk + 2] — u[k]) + 2k (u[k] — u[k — 3])
In all four cases, f[k] may be represented by several other (slightly different) expressions. For instance, in case
(a), we may also use f[k] = (k + 3) (u[k + 3] — u[k — 1]) + (—k + 3) (u[k — 1] — u[k — 4]) . Moreover because
flk] = 0 at k = £3, u[k + 3] and ulk — 4] may be replaced with u[k + 2] and u[k — 3|, respectively. Similar
observations apply to other cases also.

8.45 Efpeom = T2 |flk—m]® = X°__ Iflrll” = Ey.

8.4-6 (a) is trivial. (b) Py_x) = imN oo 5r7 I ope_n (K] = imy—co gxiry Sovw |£ )12 = Py
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8.5-1

8.5-2

8.5-3

L4 -

23 4%4567%

R-=
Fig. S8.4-3
(€) Prpm) = oo 357 3y [/l = mll® = limy—oe ooy 32,78 1 1]% = Py
(d) Pes = limN—oo 3557 Z:I:—N AfIK)1? = 2Py
Because y[k] = y[k — 1] + f[k],
vlk] —ylk — 1] = f[K]

Realization of this equation is shown in Fig. 88.5-1. If there were a sales tax of 10%, the difference equation
becomes

ylk] =ylk — 1)+ 11f7[(k]  and  ylk] - ylk —1] = 1.1f[]

The svstem realization would be the same except there is a multiplier of 1.1 at the input.

Y EK]

_-f'f'_" ] {T) 2

7 ’ A
Y [K’_‘] !{____ DL‘\fa\/‘

Fig. $8.5-1

The net growth rate of the native population is 3.3 - 1.3 = 2% per year. Assuming the immigrants enter at a
uniform rate throughout the year, their birth and death rate will be (3.3/2)% and (1.3/2)%, respectively of the
immigrants at the end of the year. The population p[k] at the beginning of the kth year is p[k — 1] plus the
net increase in the native population plus i[k — 1], the immigrants entering during (k — 1)st year plus the net
increase in the immigrant population for the year (k — 1).

plk] = plk ~ 1] + 23523 plk — 1]+ ifk ~ 1] + L[k — 1]
= 1.02p[k — 1] + 1.01i[k — 1]

plk] — 1.02p[k — 1] = 1.014[k — 1]

or

plk + 1] — 1.02p{k] = 1.01i[k]

The area under f(t) from 0 to kT is y(kT). Similarly, the area from 0 to (k — 1)T is y[(k — 1)T]. But this area
is equal to T f[(k — 1)T] (in the limit T — 0). Now, using the notation y{k] to denote y(kT), etc., it follows that
(assuming T to be small)

ylk| —ylk —1] = Tf[k - 1]

If the input is u(t), then f[k} = u[k]. The equation is y{k] — y[k — 1] = T u[k ~ 1]. Setting & = 0 in this equation
and using the fact that y[—1] = 0, we obtain y[0] = 0. Setting k = 1 and using the fact that y[0] = 0, we obtain
y[1] = T. Continuing this way, we obtain y[k] = kT ulk].

When the integrator equation is y[k] — y[k — 1] = T f|k], a similar argument shows that y[0] = T, y[1] = 2T, and
in general y[k] = (k + 1)T = kT ulk] + T ulk].
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8.5-4

The realization is shown in Fig. S8.5-4.

A

-

-’k
fIR]

ylk] = ${fIk] + Flk = 1] + flk — 2] + f[k — 3] + flk — 4]}

£lek-13 JLEY| £[R-33
D_elay . Delay A: Delay \7 Delay]
e T T T £Ik-4
Fig. S8.5-4
8.5-5  The node equation at the kth node is iy + iz + i3 = 0, or
o[k — 1}]2— vkl |, olk+1] = vlk] _ %{%} o

Therefore

or

that is

a(vlk — 1]+ vlk + 1] — 2v[k]) — v[k) =0

olk +1] - (2+%)v[k]+v[k—l]=0

o[k +2] - (2+ %) olk + 1) + v[k] = 0
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Chapter 9

9.1-1

9.1-3

(2)

ylk + 1] = 0.5yk] (1)
Setting A = —1 and substituting y[—1] = 10, yields

y[0] = 0.5(10) = 5
Setting k = 0, and substituting y[0] = 5, yields

y[l] = 0.5(5) = 2.5
Setting k = 1 in (1), and substituting y[1] = 2.5, yields

y[2] = 0.5(2.5) = 1.25
(b)
ylk + 1] = —2y[k] + flk + 1] (2)
Setting k = —1, and substituting y(—1] = 0, f[0] = 1, yields

y0]=0+1=1
Setting k = 0, and substituting y[0] = 1, f[1] = 1, yields

yll=-2()+L=-2+21=-1632
Setting k = 1 in (1). and substituting y[1] = =2 + %, f[2] = &, yields

yl2 =-2(-2+ 1)+ 5 =4-2+ 5 =3399
y[k] = 0.6y[k — 1] + 0.16[k — 2]
Setting k = 0, and substituting y[—1] = —25, y[-2] = 0, yields

y[0] = 0.6(—25) + 0.16(0) = —15
Setting k = 1, and substituting y[—1] = 0, y[0] = —15, yields

y[1] = 0.6(—15) + 0.16(—25) = —13
Setting k = 2, and substituting y[1] = —13, y[0] = --15, yields

y[2] = 0.6(—13) + 0.16(—15) = —10.2

This equation can be expressed as

ylk +2] = —3ylk + 1] - F5ylk] + fk + 2]
Setting k = —2, and substituting y[—1] = y[-2] = 0, f[0] = 100, yields

y[0] = —1(0) — $(0) + 100 = 100
Setting k = —1, and substituting y[—1] = 0, y[0] = 100, f[1] = 100, yields

y(1] = —3(100) — 5£(0) +100 = 75
Setting k = 0, and substituting y[0] = 100, y[1] = 75, f[2] = 100, yields

y[2] = —3(75) — $5(100) + 100 = 75
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9.1-4

ylk +2] = =3ylk + 1] - 2y[k] + flk + 2] + 3f[k + 1] + 3f[k]
Setting k = —2, and substituting y[-1] = 3, y[-2] = 2, f[-1] = f[-2] = 0, f[0] = 1, yields
y[0] = —=3(3) — 2(2) + 1 + 3(0) + 3(0) = —12
Setting k = —1, and substituting y[0] = —12, y[-1] = 3. f[-1] =0, f[0] = 1, f[1] = 3. yields

y[1] = =3(—-12) — 2(3) + 3+ 3(1) + 3(0) = 36

Proceeding along same lines, we obtain

y[2] = —3(36) — 2(—12) + 9 + 3(3) + 3(1) = —63
9.1-5
ylk] = =2ylk — 1] — y[k — 2] + 2f[k] - f[k - 1]
Setting k = 0, and substituting y[—1] = 2, y[-2] = 3, f[0] = 1, f[-1] = 0, yields
yl0] =-2(2)-3+2(1)-0= -5
Setting k = 1, and substituting y[0] = -5, y[-1] = 2, f[0] = 1, f[1] = 3, yields
y[1] = —2(-5) — (2) +2(3) — 1 = 7.667
Setting k = 2, and substituting y[1] = 7.667, y[0] = -5, f[1] = 1, f[2] = &, yields
y[2] = —2(7.667) — (=5) + 2(3) — 3 = —5.445
9.2-1
(E*+3E+2)ylk] =0
The characteristic equation is 7% + 3y 4+ 2 = (y 4+ 1)(y + 2) = 0. Therefore
ylk] = e1(~1)* + c2(-2)*
Setting k = —1 and —2 and substituting initial conditions yields
0=—01—%C2 =2
==
l=c1+ c2 cg=—4
ylk] =2(-1)* —4(-2)* k20
9.2-2
(E®+2E +1)yk] =0
The characteristic equation is v2 + 2y + 1 = (y + 1)2 = 0.
ylk] = (c1 + cak)(—-1)*
Setting k = —1 and —2 and substituting initial conditions yields
1=-c14+c2 cp=-3
=
1=(:1—2cz cg=—2
ylk] = -3 + 26)(-1)"
9.2-3

(E®* —2E +2)ylk] =0
The characteristic equation is ¥2 — 2y + 2 = (y — 1 — j1)(y — 1 4 j1) = 0. The roots are 1 + j1 = v/2e¥7™/4,

ylk] = c(V2)* cos(Zk +6)
Setting £ = —1 and —2 and substituting initial conditions yields

1= Zscos(—F +6) = %(%cosﬂ+ 7153in0)

0= Zcos(—75 +6) = 5sind
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9.2-4

9.3-1

9.3-2

Solution of these two simultaneous equations yields

rcos&:‘z} c=

csinf =0 = 6:==0

y[k] = 2(V2)* cos(Zk)

v(k +2) — 250k + 1) + v(k) =0
The auxiliary conditions are v(0) = 100. v(N) = 0.
(E* - 2.5E + 1)v[k] =0
The characteristic equation is v2 — 2.5y +1 = (¥ =05)(y—-2)=0.
k k
v(k) = c1(0.5)" + c2(2)
Setting £ = 0 and N, and substituting v(0) = 100, v(N) = 0, yields
N
100 = c1 + 2 Cl=§ﬁ%
0 =c1(0.5)N +c2(2)V = 100(0.5)~
= c1(V.0) c2 Ccy = (O_S)-N_—%N'

vk = 2w 27 (05)" - (05)Y(2)*]  k=0,1,...,N

(E + 2)y[k] = f[K]
The characteristic equation is v + 2 = 0. The characteristic root is —2. Also ap = 2, bg = 1. Therefore
hk} = 26[k] + c(~2)
We need one value of h[k] to determine c. This is determined by iterative solution of
(E + 2)h[k] = (k]
or
hlk + 1] + 2h[k] = 5[k
Setting k = —1, and substituting A[—1] = §[~1] = 0, yields
R[0]=0
Setting £ = 0 in Eq. (1) and using h[0] = 0 yields

0=

[N

+c = c=-

[N

Therefore

hik] = 36[k] — 3(=2)"ulk]
The characteristic root is —2, bp = 0, ag = 2. Therefore

hlk] = c(—2)*

We need one value of hlk] to determine ¢. This is done by solving iteratively

hlk + 1] + 2h[k] = 6[k +.1]
Setting k = —1, and substituting h[—1] = 0, §[0] = 1, yields

0] =1

Setting k£ = 0 in Eq. (1) and using h[0] = 0 yields

—
Il
o

and

hik] = (=2)"ulk]
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9.3-3 Characteristic equation is -72 -6y +9=(y - 3)2 =0. Also ag = 9, bg = 0. Therefore
hlk] = (c1 + cok)3*ulk] (1)
We need two values of h[k] to determine ¢; and ¢z. This is found from iterative solution of
(E® = 6E + 9)h[k] = Eé[k]

or

hlk + 2] — 6h[k + 1] + 9h[k] = 6[k + 1] “(2)
Also h[—1] = h[-2] = §[-1] = 0 and 6[0] = 1. Setting k = —2 in (2) yields

h0] -~ 6(0) +9(0) =0 == h[0] =0
Setting k = —1 in (2) yields

h(1]-6(0)+9(0) =1 == &h[l]=1
Setting k = 0 and 1 in Eq. (1) and substituting h[0] = 0, k1] = 1 yields

=c c1=0
=4 1
1=3(c1 +c2) c2=3

and
hik] = $k(3)*ulk]
9.3-4
(E® = 6E + 25)y[k] = (2E® — 4E) f[K]
The characteristic roots are 5¢%7%-92% by = 0. Therefore
hlk] = c(5)* cos(0.923k + 6)ul[k] (1)

We need two values of hlk] to determine c and ¢. This is done by solving iteratively

h(k] — 6hlk — 1] + 25h[k ~ 2] = 26[k] — 48[k — 1] (2)
Setting k = 0 yields

h[0] — 6(0) +25(0) = 2(1) —4(0) => h[0] =2

Setting k =1 in (2) yields

h(1) — 6(2) +25(0) = 2(0) —4 == h[1] =8
Setting k = 0, 1 in (1) and substituting A[0] = 2, h[1] = 8 yields

2 = ccosf
8 = 5¢¢0s(0.923 + 6) = 3.017ccos § — 3.987csin 0

Solution of these two equations yields

ccosf =2 c = 2.061
csinf = —0.4931 0 = —0.244rad
and
h[k] = 2.061(5)* cos(0.923k — 0.244)ul(k]
9.3-5 (a)
E™ylk] = (bnE™ + bur1 E™™' + -+ + bo) f[K]
or

ylk] = bu flk] + ba-1flk = 1] + -+ + bof[k — n]
When f[k] = 6[k]., y[k] = h[k]. Therefore
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hlk] = bré[k] + bp_16[k — 1] + - - - + bob[k — n]
(b) Here n =3, by =3, b2 = =5, by = 0, bp = —2. Therefore
hlk] = 36[k] — 56k — 1] — 26[k — 3]

9.4-1

ylk] = e *ulk] « (=2)%ulk] = () ulk] = (—2)%uk]

eyt _(_g)k+1 . —(k &
=4 Zl7a)(+2 —ulk] = 55 [e krl) (—2)* ulk]

9.4-2

y[k] = e "ulk] * {38[k] - $(~2)"u(k]}
e ulk] « 6[k] = (2)*ulk] * §(~2)*ulk]

—k 1/e)k+1_(_)k+1
e *ulk] - —L[—]L—-< L2) (1/.=.)(+2 ulk]

e™* - mmirmle ) - (<2** fulk)

I
—— Nl e
(ST

il

9.4-3

ylk] = (3)**2ulk] = [(2)* + 3(=5)"Tu(k]
= 9[(3)*u[k] * (2)*u[k] + 3(3)*u[k] * (—5) u[k]]
=9[(’32‘+;:g_f+1 3(J)"+13—£5 5)“’1} [k]

= 9[L(3)F — ()% — 3(~5)*"ulk]

9.4-4

ylk] = (3) Fulk] * 3k(2)*ulk]
= 3(3)*ulk] * k(2)*ulk]
= 3528510 - (@ + (F2)k(@) ulk]
= 18((3)™* — (2)* + 5k(2)"]ulk]

| ylk] = (3)* cos(Zk — 0.5)ulk] * (2)*u[k]
R=[(3)%+(2)% - 2(3)(2)(0.5)]"? = V7

¢ = tan™ [%ﬁg] = 1.761rad

and

ylk] = J={(3)**" cos[§ (k + 1) — 2.261] — (2)**" cos(2.261) }ulk]
= 2={(3)""" cos[5 (k + 1) — 2.261] + 0.637(2)*** }ulk]
9.4-6 the characteristic root is —2. Therefore
yolk] = c(-2)"
Setting k = —1 and substituting y[—1] = 10, yields

10 = - = c=-20

olo

Thérefore
wlk] = -20(-2)* k>0

For this system h[k], the unit impulse response is found in Prob. 9.3-2 to be

Rlk] = (-2)*u[k]
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9.4-7

9.4-8

The zero-state response is
ylk] = e Fulk] * (=2)%u[k]
This is found in Prob. 9.4-1 to be

ylk] = 527 le™*Y — (=2)%ulk]
= 257(3(e) 7 + 2(=2)*Julk]

= [#a @7 + 2= ulk

Total Response = yolk] + y[k]

= [~20(=2)* + 52 () ™* + 5255 (~2)*Julk]

= 5o (—(38e + 20)(—2)* + (e) *Julk]
(a)
ylk] = 2u[k] * (0.5)"u[k]
= 20O k] = 3125 - (0.5)Fulk]
(b)

FIk] =257 Vuk] = 27%2%u[k] = L2*ulk]
From the result in part (a), it follows that
ylk] = 332571 — (0.5)*ulk] = H[27" - (0.5) Julk]
(¢)
Flk] = 2Fulk — 2] = 4{2 Dy [k — 2]}

Note that 2(*~?y[k — 2] is the same as the input 2*u[k] in part (a) delayed by 2 units. Therefore from the shift
property of the convolution, its response will be the same as in part (a) delayed by 2 units. The input here is
4{2(+=Dy[k — 2]}. Therefore

ylk] = 42257177 — (0.5 ZJufk - 2] = 27 - (0.5)*VJulk — 2]
The equation describing this situation is [see Eq. (8.20b)]
(E —a)ylk] = Ef[k] a=1+r=101

The initial condition y[—1] = 0. Hence there is only zero-state component. The input is 500u(k] — 15006(k — 4]
because at k = 4, instead of depositing the usual $500, she withdraws $1000.
To find h[k], we solve iteratively

(E — a)hlk] = Eé[k]
or
hik + 1] — ah[k] = 6k + 1]
Setting k = —1 and substituting h[—1] = 0, §[0] = 1, yields
hl0] =1
Also, the characteristic root is a and bp = 0. Therefore
hik] = ca*ulk]
Setting k = 0 and substituting h[0] = 1 yields

l1=c¢
Therefore
hik] = (a)*ulk] = (1.01)*u[k]
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The (zero-state) response is

ylk] = (1.01)"u[k] * f[]

= (1.01)*u[k] * {500u[k] — 15008[k — 4]}
500(1.01)*u[k] * u[k] — 1500(1.01)* ~*u[k — 4]
= 290 [(1.01)**! — 1]ufk] — 1500(1.01)* *ulk — 4]
= 50000[(1.01)*** — 1]u[k] — 1500(1.01)**u[k — 4]

9.4-9 This problem is identical to the savings account problem with negative initial deposit (loan). If M is the initial
loan, then y[0] = —M. If y[k] is the loan balance, then [see Eq. (8.25b)]

ylk + 1] — aylk] = flk + 1] a=1+r

(E — a)y[k] = Ef[k]

The characteristic root is a, and the impulse response for this system is found in Prob. 9.4-8 to be

hlk] = a*ulk]

This problem can be solved in two ways. )

First method: We may consider the loan of M dollars as an a negative input —M§[k]. The monthly payment of
P starting at k = 1 also is an input. Thus the total input is f[k] = —M[k]+ Pu[k— 1] with zero initial conditions.
Because u[k] = d[k]+u[k—1], we can express the input in a more convenient form as f[k] = —(M + P)d[k]+ Pulk].
The loan balance (response) y[k] is

ylk] = hik] * f[k]
a*ulk] x {—(M + P)é[k] + Pulk|}
—(M + P)a*u[k] + Pa*ulk] * u[k]

—(M + P)a*ulk] + P [3’:1_—"11] ulk]

. . aF 1
—Ma u[k] - P l: - —a—:—l—] u[k:]

k ak -1
{—Ma +P{a_1]}u[k]

Also a =1+ and a — 1 = r where 7 is the interest rate per dollar per month. At k = N, the loan balance is
zero. Therefore

Il

N—
y[N]:—MGN+P[a p 1] =0

or

T(ZN

=2 M
P=—7—

Second method: In this approach, the initial condition is y[0] = —M, and the input is flk] = Pul[k — 1]
because the monthly payment of P starts at k = 1. The characteristic root is a, and The zero-input response is

vo[k] = caFulk]

Setting k = 0, and substituting yo[0] = —M, yields ¢ = —M and

yolk] = —Maku[k]

The zero-state response ylk] is
y[k] = h[k] * fk] = hlk] * Pulk — 1] = Pa*u[k] * ul[k — 1]
Here we use shift property of convolution. If we let

z[k] = a*ulk] * ulk] = [252 u[k]

a—1

The shift property yields
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a* -1
Paku[k]*u[k—l]-::z[k—l]zp[a_l

] ulk — 1]

The total balance is yo[k] + y[k]

k

yolk] + y[k] = —Ma*ulk] + P [”{‘1 _‘11] ulk = 1)

For k > 1, ulk] = u[k — 1] = 1. Therefore

k _ .
Loan balance = —Ma* + P [‘; 11] k>1

which confirms the result obtained by the first method. From here on the procedure is identical to that of the

first method.
9.4-10 We use the result in Prob. 9.4-9. In this problem r = 0.015, a = 1.015, P = 500, M = 10000. Therefore

(1.015)7(0.015)
00 = 100002 "2/
or 500 =1 (1.015)N —1

(1.015)~ = 1.42857

N In(1.015) = In(1.42857)
_ In(1.42857)

= —— = 23.
n(1015) _ 22956

Hence N = 23 payments are needed. The residual balance (remainder) at the 23rd payment is

y[23] = —10000(1.015)% + 500[ L2107 =11 — _471.2

R=0 P T ¢larks P
“.llfi[j |1 1 ‘yroJ=4 4"
46 » &
k=1 - JL]i]L]1]L]-.. . 2[ |
cee Jajaf1]2f2] yriz=2 A o
0l 1 2 34 5 R R
(e
' -t m m+t
i’& m& J ¢
Lj1]~.-|1]O]O L
T ekl L8-04-q-¢
’v-'|ﬁ|1|1|i 1 1 3[0],' ///,
| ~
1]1}--.]1]lo]o-- - Pr Ina:
o dfafa]aaae]  yraq- |
) jLiJ L 1 23 .. m-' h*

(b‘ D)
Fig. $9.4-11

9.4-11 (a) The two strips corresponding to u[k] and u[k] (after inversion) are shown in the figure $9.4-11a for no shift
(k = 0) and for one shift (k = 1). We see that if c[k] = u[k] * u[k] then

e0]=1, ¢l]=2, ¢[2J=3, c[8]=4, c[4 =5 c[5]=6,---,clk]=k+1

Hence
ulk] * ulk] = (k + 1)ulk]
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__ [ ZE#]5

R=0 cfofe Jefaln oo 5 '
srel=io BRRE R
. . (2

- O‘ 23‘*5 o m

k= | INODOEOnD 1
YL11275 [5

bk==-1 [oli]2[3[4][5 £ 2 ol 12345067

HARNODONL | IRE R—>

Yr-1J=15

Fig. $9.4-12
(b) The appropriate strips for the two functions ulk] — u[k — m] and u[k] are shown in Fig. $9.4-11b. The
upper strip corresponding to u[k] — u[k — | has first m slots with value 1 and all the remaining slots have valne
0. The lower (inverted) strip corresponding to u[k] has all slot values of 1. From this figure it follows that
c0] =1, ¢[1]=2, ¢2]=3,---,¢cfm—-1=m
cml=cm+1]=.---=m
Hence clk] = (k+ Dulk] = (k = m + 1)ufk — m]
9.4-12 From Fig. S9.4-12 we observe that

ko ylk]

0 0+1+2+3+4+5=15 ylk] =0 k=6
1 1+24+34+44+5=15

2 24+3+4+5=14 ylk] =15 k<0
3 3+44+5=12

4 4+5=9

5 5

6 0

9.4-13 From Fig. $9.4-13, we observe the following values for y[k]:

k ylk] k ylk]

0 5x5+95x5=250 +11 O0x0+5x4=20
£1 5x4+0=20 +12 0x0+45x3=15
+2 5x3+0=15 #13  0x0+45x2=10
+3 5x2+0=10 +14 0x0+5x1=5
+4 5x14+0=5 : +15 0x0+0x0=0
+5 5x0+4+0=0 +16 0

+9 0x04+0x0=0 +18 0

+10 O0x0+5x1=5

Observe that
ykl=0 5<[k<9 and |k|>15

-10 -5 0
4 (5 ¢ 50
“GOI2.345_0000000005“32100""‘
~Tololbloloolzlolololaolololololslololddolel - -
k=0 Y[kI=-50 . ” ]] “
’ Il 11] Iff‘-. ) [fr. -

-5 -io

Fig. S9.4-13

121

k>



9.4-14 (a) From Fig. $9.4-13. we observe the following values of ylk):

k0 +1 +2 +3 +4 +5 46 =+7
yk] 76 5 4 3 2 1 o0

k| > 7

(b) The answer is identical to that of (a). This is because when we lay the tapes f[rn] and g[—m] together, the

situation is identical to that in (a).

-4 o “4
+ <+ Y
"fOltf‘ll‘Oo"'h=0 ‘
coJofrjrfufrfrjeltfolo]t Y[e]=T 7 yled
RERN
/.,0 .

ol T Joo]+¢ R=
olojufv]tfefift]r|ol:s yLI=G ]
-"OItGIIIIOO"”‘Q=" _nTI ;:“-4]-51
ot lelolo]s< < 41-1J= 6 -7 -4 =2 0 6

Fig. S9.4-14
9.4.15. (a)
=h[0]
12=h[1] +h[0] = h[1]=12-8=4
14 = h2] + h[1] + A[0] = R[2] = 2
15 = h[3] + h[2] + h[1] + h[0] => A[3] =1
15.5 = h[4] + h[3] + h[2] + h[1] + h[0] => h[4] = 0.5
15.75 = h[5] + h[4] + h[3] + h[2] + h[1] + R[0] => h[5] = 0.25
(b)
100 1 0
H=|2 1 0|=H'=|-2 1 0
4 2 1 0 -2
1.0 o0 1 :
f=H'y=|-2 1 of |73|=]1/3
0 -2 1] [43/9 1/9

Hence the input sequence is: (1,1/3,1/9, - )
9.4-16

\IT'

9.4-17 When the input to a unit delay is everlasting exponential z*, the output is also everlasting exponential z*~!.

Hence, according to Eq. (9.58) H|[z] = z57/2* = 1/2.
9.5-1

(E +2)ylk] = Ef[K]

The characteristic equation is v+ 2 = 0, and the characteristic root is —2. Therefore

ya(t) = B(-2)"

For flk] = e ®u[k] = r* with r = ¢!

- -k -1 —k -
volkl = HleT'le™ = fre™ = zlse

ylk] = B(-2)* + z5e™* k>0

122



at k= 0 1 2

3
0 (2]
/' tAasta

o 4
7 b/—
/Z/?;ﬁo’g
45060 0

/1‘-/5000

IFA 5000
X3 h 5000
2./3/-;5000

1245000
12345 o000

Fig. S9.4-16

ﬂ-hl*r-‘-l-xp.r-xpe-hl*

Setting k = 0, and substituting y[0] = 1 yields

2e

= B=g35

1-B+29+1

and

ylk] = 2e_'_1[2e( 2) +e” ] k>0

9.5-2
ylk] + 2ylk — 1] = flk - 1] &
We solve this equation iteratively to obtain y[0]. Setting k = 0, and substituting y[—1] = 0, f[-1] = 0, we get
y[0]+2(0)=0 = y[0]=0
The system equation can be expressed as
(E + 2)y[k] = f[K]
The characteristic root is —2. Therefore
ynlk] = B(-2)*F
For flk] = e *ulk] = rFulk] with r = ¢71,
yolk] = H[r]rk = H[e"l]e"'c = e..ll_e_ze“'C = E-C‘f—'_ie'k
Therefore
ylk] = B(-2)* + 5257 k>0
Setting k£ = 0 and substituting y[0] = 0 yields
0=B+3%7 = B=33
and
ylk] = 5551 (=2)" +¢7* k20
9.5-3

(E? + 3E + 2)y[k] = (E® + 3E + 3) f[K]
The characteristic equation is v2 + 3y + 2 = (v + 1)(y + 2) = 0. Therefore
yn[M] = B1(=1)" + Ba(-2)"
For f[k] = 3*
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yslk] = H[3]3k _ (1}!2+3(32+:}.~‘k _ (_2_1_)3lc

T (3)<+3(3)+2" 20
The total response

ylk] = Bi(-1)* + B2(-2)" + ($)3* k>0

(a) Setting k = 0, 1, and substituting y[0] = 1, y[1] = 3, yields

L

1=Bl+32+g—é B, = -
3=—-31—232+% B>

1

ni—

ph = -3 (DF DT H R k20

(b) We solve system equation iteratively to find y[0] and y[1]. We are given y[—1] = y[-2] = 1. System equation
is

ylk + 2] + 3ylk + 1] + 2ylk] = flk + 2] + 3f[k + 1] + 3f[k]
Setting k = —2. we obtain
y[0] +3(1) + 2(1) = (3)° + 3(0) +3(0) == y[0]=—-4
Setting k = —1, we obtain
y[1] +3[-4 +2(1) = (3)' +3(3)° +3(0) == y[1]=16
Also
_ k gk 21 k
y[k] = B1(—1)" + B2(—2)" + %5(3) k>0
Setting k = 1, 2, and substituting y[0] = —4, y[1] = 16, yields
—4=31+Bz+% Bl=14—1
16=-B; - 2B, + 8
and

ylk] = B(-1* - (-2 + LE)* k>0

9.5-4
Y42y +1=(y+1)?% =0
The roots are —1 repeated twice.
yalk] = (B1 + B2k)(~1)*
Also the system equation is (E2 4 2E + 1)y[k] = (2E% — E)f[k], and f[k] = (%)". Therefore
yolk] = HZB™ = %)™ *20
The total response
ylk] = (Br+ B2k)(-1)* - £(3)™* k>0
Setting k = 0, 1, and substituting y[0] = 2, y[1] = —1,—3, yields
2=B1- 15 } B,=%
—%§=—-(B1+Bz)—%8- Bz=%
ylkl = (B +HEDE - 5@ k20
9.5-5

2 =4 40.16 = (y - 0.2)(y - 0.8)
The roots are 0.2 and 0.8.
ynlk] = B1(0.2)> + B2(0.8)*

Because the input is a mode
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yolk] = ck(0.2)*

But y,[k] satisfies the system equation, that is,

yolk + 2] — yolk + 1] +0.16y0 (k] = f[k + 1]

and
ek +2)(0.2)52 — ¢(k +1)(0.2)*™! +0.16ck(0.2)* = (0.2)F*?
This yields
—-0.12¢(0.2)* = 0.2(0.2)*
Therefore
c=-3
and
yslk] = —$k(0.2)"
y[k] = B1(0.2)* + B2(0.8)* — $k(0.2)* k>0

Setting £ = 0, 1, and substituting initial conditions y(0] = 1, y[1] = 2, yields
1= B+ B } By =-=28
2=102B: +08B; —

ylk] = —2(0.2)* + 2(0.8)* -~ $(0.2* k>0
9.5-6
ylk + 2] — y[k + 1] + 0.16y[k] = flk + 1]

We solve this equation iteratively for f[k] = cos(ZE + %) y[=1] = y[-2] = 0, to find y[0] and y[1]. Remember
also that f(k] =0 for k < 0.
Setting k = —2 in the equation yields

y[0] —0+0.16(0) =0 = y[0]=0
Setting & = —1 in the equation yields

y[1] - 0+0.16(0) =cos F =0.5 = y[1]=05

Therefore y[0] = 0 and y[1] = 0.5. For the input f[k] = cos(Z& + %).
yolk] = ccos(%" +3+9)
But ye[k] satisfies the system equation, that is,

volk +2] = yolk + 1] + 0.16y[k] = flk + 1]

or
ccos[5(k+2)+ § + @] — ccos[5(k+ 1) + & + ¢] + 0.16ccos(Fk + § + ¢) = cos[F(k+1) + §]
or
—ccos(ZE + 5 + ¢) + csin(ZE + £ + ¢) + 0.16ccos(ZE + Z+0)=cos(5k+5+ %)
or
1.306ccos(%E +  + ¢ — 2.27) = cos(ZE + § + %)
Therefore
1.306c =1 = ¢=0.765
$—-22T=% = ¢=2384=-244rad

Therefore



9.6-1

9.6-2

9.6-3

ys(k] = 0.765 cos(3E + 5 — 2.44)
= 0.765 cos( 3£ — 1.393)

y[k] = B1(0.2)* + B2(0.8)* + 0.765 cos(ZE — 1.393)
Setting k = 0, 1, and substituting y[0] = 0, y[1] = 0.5, yields

0= B: + B2 +0.1354 B, =0.241
0.5=10.2B1 + 0.8B2 + 0.753 By = -0.377

y[k] = 0.241(0.2)* — 0.377(0.8)* + 0.765 cos(Zk — 1.393)
(a)
2 4+0.6y - 1.6 = (y —0.2)(y +0.8)

Roots are 0.2 and —0.8. Both are inside the unit circle. The system is asymptotically stable.
(b)
P+ DG+ = (- +iD+ - B+ F+ 2D

Roots are £j1, —% + 1—‘-2/3 = e*Im/3,
All the roots are simple and on unit circle. The system is marginally stable.

(c)
(v-1*(v+3)

Roots are 1 (repeated twice) and —0.5. Repeated root on unit circle. The system is unstable.

(d)
v2+2740.96 = (v + 0.8)(y +1.2)

Roots are —0.8 and —1.2. One root (—1.2) is outside the the unit circle. The system is unstable.
(e)
(¢ =DET+D =+ D = Dy + 3Dy = 51)

Roots are +1, +51. All the roots are simple and on unit circle. The system is marginally stable.

Assume that a system exists that violates (9.61), and yet produces bounded output for every bounded input.
The system response at k = k1 is

ylkal = Y himlflks — m]

m=0
Consider a bounded input f[k] such that
flks = m] 1 if  hlm]>0
-—m|=
! -1 if h[m]<0
In this case
h[m]f(k1 — m] = |h[m]|
and
ylka] = Y Ihim]| = 0o
m=0
This violates the assumption.

For a marginally stable system h[k] does not decay. For large k, it is either constant or oscillates with constant
amplitude. Clearly ;

Y Ihlm]| = 0o

m=0

The system is BIBO unstable.

126



Chapter 10

10.1-1

10.1-2

SIAEIN e
ol 4 2 34

Fig. $10.1-1

fIk] = 4cos2.4nk + 2sin 3.27k

= 4cos0.4rk + 2sin1.27k
— 2[ej0.47vk + e—j0.41rlc] + %[ejl.}rr‘; _ e—j1421rk']

— 2ej0A41rk + 2e—j0.41rk + (:](1.21rlc—-1r/2) + e—j(l.21rk—1r/2)

The fundamental Qo = 0.47 and Np = %% = 5. Note also that.

—jl.2mk _ eJO.ka

—jo.drk 1.6k
e7I04mk = oI16TE  and e

Therefore
f[/\.] — 26]0.4#1»' + 2ej1.61rk + e](lﬂﬂk—ﬂ'/?) + ej(0.81rk:+1r/2)

We have first, second, third and fourth harmonics with coefficients

Di=D2=2 Dy=-j Ds=j
|ID1| = |D2| =2 |D3|=|Da|=1
(Dy=(D2=0 AD3=—% and LD4=§

The spectrum is shown in Fig. S10.1-1.

Fig. $10.1-2

flk] = cos 2.2k cos 3.3mk = %[cos 5.5mk + cos 1.1mk]

= 1lcos 1.5wk + cos 1.1mk]
%[ejl.Svrk 4+ e~iLETE | ilimk e—jl,lnk]
- _%[ejl.&rk +ej0.57rk+ejl.11rk +ej0.97rk]

The fundamental frequency Qo = 0.1 and No = é—’; = 20. There are only 5th, 9th, 11th and 15th harmonies
with coefficients

Ds=Do=Dy=Dis=3%
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Fig. $10.1-3

All the coefficients are real (phases zero). The spectrum is shown in Fig. S10.1-2.
10.1-3

f[k] = 2cos3.2m(k — 3) = 2cos(3.2rk — 9.67) = 2cos(1.27k + 0.47)
= I(12Tk0am) | —j(1.27k+0.47)

2 ¢ —
— p](].-ﬂ'k‘+0.4ﬂ’) +(’7(0.S1rk 0.47)

The fundamental frequency Qo = 0.47 and Ng = ;‘;—’; = 5. Only 2nd, and 3rd harmonics are present.

D2} =|D3| =1 ZDz=—-04r (D3= —9.6r =0.4n

The spectrum is shown in Fig. $S10.1-3.

r5¢ D!
41
/3 1 I LR
'/6 1 ’ .
Ol1 2345 vr— 12345 >

Fig. S10.1-4

10.1-4 To compute coefficients D,. we use Eq. (10.13) where summation is performed over any interval Ng. We choose
this interval to be —No/2, (No/2) — 1 (for even Npg). Therefore

(No/2)-1

D, = NAO Z f[k]e—JTnok

k=-Np/2

In the present case No = 6, Qg = 12\,—’; = %, and

2
D=3 ) flkle 3t

k=-3

We have f[0] =3, f[+1] =2, f[+2] =1, and f[+3] = 0. Therefore

D, = é[3 +2(eF 4 eI 4 (F 4+ c‘jz&r")}

= %[3 + 4cos(§r) + 2cos(¥r)]
Do=3 Di=% Dy=0 Ds=} Da=0 Ds=2

Here, the spectrum is real. Hence, |D,| = D, and /D, = 0.

10.1-5 In this case Ng = 12 and Qg = 5

fol=0 f]=1 fl-1]=-1 f2]=2 f[-2]=-2
fBl=3 f[-3]=-3 f[x4]= f[£5]= f[+6]=0

Therefore



10.1-6

10.1-7

10.1-8

10.2-1

5

1 —JjrEk

T= e— E

Dr 12 Z kle

1 Tr i g - 1r — hu P X

=1—5[e TIET 76T 4 2(e 1% )+ 3(e ST _ % )]
—j . or

= —5[2 sin(§7) + 4sin(§r) + 651n(§1~)]

Here, the spectrum is imaginary. Hence, |D,| = ﬁ|2 sin(§r) + 4sin(§r) + 6sin(37)| and LD, = - 3.

Here, the period is Ng and Qo = 27w /Np. Using Eq. (10.9), we obtain

1 No—1 Ng-—1
k_—jrQok —jrey
'D,‘=———E ae"n°= E (ae™7™%)
No
k=0

This is a geometric progression, whose sum is found from Sec. B.7-4 as

1 gMNoe=i™No _ 1 aMo —1 . — i€ N, —ir2
Dy = — , = because e 7TON0 — o TITET =
T No ae-imf0 —1 No(ae'JTQO -1)
Therefore
alNo _ aNo _ oo 4 tan=1 —asin }
No(ae=i"% —1) ~ No(acos rQo — jasin Qo — 1) ~ No(vaZ— 2acos r{lo +1 _ . acos rfdo — 1
D, | Lo,

This problem is identical to the analog case analyzed in Sec. 3.1-3 [Eq. (3.19)]. all that is needed is to replace
F(t), z(t), e(t) with f[k], z[k], e[k] and the integral with summation in that derivation.

Because |f[k]|? = f[k]f*[k], using Eq. (10.8), we obtain

) No—1|Ng-1 2 No—1 [No—1 No-1
— JrQk — Jﬂok Z —Jmﬂok
= = r= m=

Interchanging the order of summation yields

Ng-1Np-1 No-1
P 3 ok [z
r=0 m=0 k=0

From Eq. (5.43) in Appendix 5.1, the sum inside the parenthesis is No when r = m, and is zero otherwise. Hence

No-1 No—1
Pr= 3 Z Sk =" D2
r=0
(a)
. F(Q) = Z S[kle ™™ = 1
k=—o00
(b)
F(Q) = Z 8lk — kole™9* = o—i%ko
k=-o00
[F(Q)l=1  LF(Q)=—0k
- ()



10.2-2

R

o ulk+1]
. -le
L 5[k-k-] : ]
il | 11t
o' Rg e R
LR\ } FCSV)\
Y - e
LFCIV)
-
o TT N
Fig. $10.2-1
oo B oo . (ae—jﬂ)oo _ ( —jQ)
F(Q) - ;ake ik _ k=1(ae ]Q)l\. - — _(116
0 — ae 9% a a

T2 -1 e_q (cosQ — a) + jsinQ

2 LF(w) = —tan™! (
\/(1+a2)—2acosQ :

IF(Q)] sinQ) )

cos) —a

Obhserve that )
a _ ae %
ei?—a 1—qge i

F(Q) =

Comparison of this equation with Eq. (10.37) shows that F(Q) in the present case is ae ™ times the F(Q) for
aku[k]. Clearly, the amplitude spectrum in this case is a times that in Fig. 10.4b. Moreover, the angle spectrum
in the present case is equal to —2 plus that in Fig. 10.4c. This is shown in Fig. $S10.2-1a.

(d)

_ oo _jQ)k B (ae—jn)oo _ (ae—jﬂ)—l _ ej?ﬂ
F@) kz__l(ae - ae~i% —1 " a(e’? —a)
1 -1 sin
F(Q) = —————— (F(Q) =20 -t (—)
F (@) av1+ a? —2acosQ 4F@) an cosQ —a

Observe that

eI?9 e-’n/a
F@) = a(e’? —a)  1—ae—i%

Comparison of this equation with Eq. (10.37) shows that F(Q) in the present case is 1e™7% times the F(Q)
for a*u[k]. Clearly, the amplitude spectrum in this case is 1/a times that in Fig. 10.4b. Moreover, the angle
spectrum in the present case is equal to 2 plus that in Fig. 10.4c. This is shown in Fig. S10.2-1b.

(a)
F(S)) — Z f[k]e—]nk = 3 + 2(e—JQ + e]ﬂ) + (6-129 + c]29)
k=-3
=3+ 4cosQ + 2cos 202

(b)
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6
F(Q) = Zf[k]e""‘n =TI L 277 4 Sefjm + 2e7740 4 750
k=0 )

= ¢TIIR(I2N | I 4 (D oIV | 3]
= ¢ 733 4 4cos Q + 2cos 29
(c)

3
F(Q) = > flkle™*® =3e77% = 3¢77 4+ 67727 — 67727 + 9777 — 9077
k=-3 .
= 6[sin Q + 2sin 2Q + 3sin 3Q)]

(d)

2
F(Q) = Z f[k]e—JkQ = 2e 7 4 2679 4 47920 | 4,720

k=-2
= 4cos 2 + 8cos 202
10.2-3
_ 1 kD
flk] = 2 . F(Q)e?™*dQ
/2 )
-1 A (9) ¢ 40 (1)
2r —/2 T

Instead of evaluating this integral directly, we use the fact that the inverse Fourier transform of A(%) is given
by sinc (%) (Pair 20, Table 4.1). This means

/2 )
1 AN (ﬁ) et dw = lsinc 2 (lt)
2n —n/2 T 4 4

Now setting w = Q and t = k in this equation , we find the integral in Eq. (1) as

flkl = %sinc2 (I&E)
10.3-1 (a)
£ (k] = a*u[k] — a*u [k — 10] = a*u [k] — a'%a*%u [k — 10]
Now
k 1
a“u (k] = T2
k=10 1 —j100
a u [k - 10] = me J
and
1 10_—510Q
f[k]@m(l—a e’ )

(b) This function is the gate pulse in Example 10.5 delayed by k = 4. Therefore
_ sin (4‘59) —jan

F@) = sin (0.50)
10.3-2 (a)
- 1
a“ulk] = T a5a
d 1 ae™ 79

.k N _
ka®u [k] A o & - (1= aci0)?
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and o
& 1+ age™
(k+1)a"ulk] <= - ae—jﬂ)2
(b)

f k] = a* cos Qoku k] = % [akej'cno + ake*jm"] u [K]

1 1 1
F(@) =3 [1 T ge—@=ag) T 1T ae—j(9+no)]
_ 1-ae 7% cos
T 1-2ae-%cos Qo + a2e—720

I £ A PlR] Ly
ﬁ:’\ggchj ‘i/ '\ 4

’ 4

o & ;r"g‘.'!"‘] | Tr\-‘at_ﬂ_‘_t_a_. L"q"ﬁ/ ! , Q’ ry 5
of 2 4 k> (@ ol R~ L(@) Ak

A A A

2 n RYMLCE /M 2% JL->

Fig. $§10.4-1

10.4-1 (a)

n/2 )
A (9) % 40

/2

s

flk] = % / F(Q)e’*da = 51; /
2

-

We can find f[k] by direct integration as in Example 10.6. We may also use a short cut by recognizing that
A(Q2/m) = 0 for |Q] > 7/2; and the limits of integration in the inverse Fourier integral may as well be from —oo
to co. Such a change makes this integral the inverse Fourier transform of A(2/7). This is found from Table 4.1
(with @ =w and k = ¢) to be

flk] = %sincz (”Tk)
This signal is sketched in Fig. S10.4-1a. (b) The signal f(2k] is f[k] time-compressed by a factor 2 as shown
in Fig. 510.4-1b. We have f[2k] = 2sinc®(ZF). To find F($2), we use Eq. (10.55) with T = 1, and fe(t) =
$sinc®(Zt). From Table 4.1, we find Fe(w) = 2A(42), and from Eq. (5.4), Fo(w) = 3 3. A(¥52). Therefore
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F(Q) =F(Q) = 13, A(8522) as shown in Fig. $10.4-1d. This spectrum is identical to F(Q) in Fig. P10.4-1
frequency expanded by a factor 2 (and multiplied by a constant 1/2).

Using the same argument, we find f[4k] = %sinc:’(wk). This signal is zero for all values of k£ # 0 as shown in
Fig. S10.4-1c. In this case it is trivial to find F(Q) = Y f[kle™’™ = 1/4. Thus the spectrum F() in this
case is a constant 1/4 as shown in Fig. S10.4-1e. This spectrum is identical to F(Q2) in Fig. P10.4-1 frequency
expanded by a factor 4 (and multiplied by a constant 1/4).

(c) The signal f(k/2] is f[k] time-expanded by a factor 2. This signal has alternate samples missing as shown
in Fig. S10.4-1f. Using ideal interpolation, we fill in the inissing samples to obtain the interpolated function
filk] = %sincz(-"s—") as shown in Fig. S10.4-1g. Using the argument in part (b), we find F;(Q) = QA(%) as
shown in Fig. S10.4-1h.

10.5-1

P Q 1 ejﬂ
)= 1+0.5e—72 ~ i 405

eI® (e"Q + 0.32)
(e7? + 0.5) (e7? + 0.8) (e72 + 0.2)
Y (Q) e’ +0.32
eI T (392 +0.5) (e/? 4 0.8) (€72 + 0.2)
2 8/3 2/3
TeT105 7408 9402
eI 8§  ei® 9 &I

Y(Q)=F(Q)H(Q) =

e +05 3e+08  3e+02
y[k] = [2(—0.5)“ - %(-o.s)" + %(—0.2)"] u k]

Y(Q) =2

10.5-2

k JjQ
fw=5(5) amd PO =550

1 e’ (e’ - 0.5)

3 (ci? —1/3)(e?? + 0.5)(eI? - 1)

- 05 _1 [ 03 08 0.5 ]
(77— 1/3)(e7 +0.5)(e’? —1) ~ 3 |e/?~1/3 eI2+0.5 -1

03— _gs_" +05 e’”
T _1/3 e 405 -1

k
T16 (%) - 115(—0.5)" + %] ulk]

Y(Q) = F(QH(Q) =

10.5-3

ejﬂ 2ejﬂ

TET_08 &9-2

ej2f2 261’20

eI = 0.5) (3% — 0.8) (eI — 0.5) (57 — 2)
. -5/3 8/3 2/3 8/3
T e 05 e_08  e—05 eit-2
- 8/3 8/3
T e 05 08 eift-2

9 8 % 8 %
e 05  3e9-08 3e-2

v = [~ 09"+ § 08| ulkl + 3 @*ul- (k+ 1)

Y (@)=F@H@)=

+

Y (w) =

10.6-1 We construct the 3-point periodic extension of f[k] as

3,.3.,2/3,3,23,3,2, -
~
k=0
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10.6-2

The values of f[k] at & = 0, 1, and 2 are 3, 2, and 3 respectively. We use these values to compute the DFT.
This problem is now identical to Example 10.8, which is already solved in the text. The DFT is given by

Fo =8, F1 = ej-g', Fr = e 7%

The DTFT of this signal is

1
FQ) = Y flkle™™ =3/ +3+ 27"
k=-1
Observe that F(0) = 8, F(z") = 0.5+ j0.866 = ¢’™/® = F|. Similarly F(3) =0.5 - j0.866 = e7Im/8 = By

(b) Recall that the No-point DFT of f[k] characterizes the No-periodic extension of f[k] and not just the f[k].
Because the 3-point periodic extension of this signal is identical to the 3-point periodic extension of the signal
in Fig. 10.11a, the DFTs of the two signals are identical. This does not mean that the DTFTs of the two signals
are identical. All it says is that the two DTFTs are identical at the Ny sample points. We may verify from the
fact that the DTFT of the signal in Fig. 10.11a is

FQ) = Z Flkle ™I = 3 4 277 4 37920
k=0
Observe that F(0) =8, F(%F) = 0.5 + j0.866 = /™/® = Fy. Similarly F(4) = 0.5 - j0.866 = e™/"/® = F,.
(c) To find the 8-point DFT of this signal, we pad 5 zeros. The 8-periodic extension of this padded signal is

3.3 ,200000,3,3,2,0, -
N~
k=0

To compute 8-point DFT, we select the 8 values starting from k = 0. These are 3, 2, 0, 0, 0, 0, 0, 3. The
8-point DFT is

Fr= if[k]e—f"%" =34277"F 4377 F
k=0
This yields
Fy =8, F1 =6.5355 + j0.707, F2 =3+ j, F3 = —0.5355 + j0.707, Fy = -2, F5 = —0.5355 — j0.707,
Fe =3 — j, Fr =6.5355 — j0.707

This is a 4-point signal starting at & = 0. The four points are 1, 2, 2, 1. Also Q¢ = n/2. Hence, the 4-point
DFT is

3
F.= Zf[k]e_jr”ir'k =1+2777F 427" 4 T F
k=0
This yields
Fo=6, 1 =-1—-j, F=0, F3=-14j

For 8-point DFT, we pad 4 zeros to f[k]. This yields the 8-point sequence 1, 2, 2, 1, 0, 0, 0, 0. Also,
Qo = 27 /8 = w /4. Hence,

Fr= if{k]e'jr%k =e 7% 427 F 427 F 417"

k=0
This yields
Fo =6, F1 = -1.707 — j4.1213, F2 = —1 — j, F3 = 0.2929 — j0.1213, F; =0, F5 = 0.2929 + ;0.1213,
Fe = -1+ j, Fr =1.707 + j4.1213
(b) \

F(Q) = Z Flkle™ =14 26770 + 2¢772 4 7700

k=0
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10.6-3

10.6-4

10.6-5

For the 4-point case, Qo = 7/2, and the DFT is
F.=F (r%) =142/ 4 2e7ITT 4 TION/2

Substitution of r = 0, 1, 2, 3 yields the same DFT values found earlier.
For the 8-point case, Qo = 7 /4, and the DFT is

F. = F(77T/2) =1 +2€—]1-1r/4 +2@—jr1r/2+e—jr37r/4

Substitution of r = 0, 1, 2, 3, 4, 5, 6, 7 yields the same DFT values found earlier.

In this case No = 1 and Q¢ = 2x. Hence, the DFT is a single-point given by Fo = f[0]e° = f[0] = 1. Also
F(Q) = f[0le™° = f[0] = 1. Thus F(f2) is constant for all Q. The DFT is a sample of this F(2) at w = 0,
which is 1.

(b) The signal §{k — m] is also a single-point signal. The one-point periodic extension of this signal is a signal
fnglk] = 1 for all k. Hence we pick its value at k = 0 (which is 1) to compute a single-point DFT. Thus,
Fo =1 x¢® = 1. This is identical to the DFT of §[k].

(c) In this case, we pad Ng — 1 zeros. and the zero-padded signal is 1, 0, 0, 0,---, 0, 0. Hence,
No—1 '
Fr= Z flkle ™% = 1404040 --- +0=1 forallr
k=0

The No-point DFT is a set of Np uniform samples of F(f2) over the frequency interval of 2x. But F(Q2) =1 for
all Q. Hence, all the Ny samples (the DFT) are 1.

(a)
No-1 Nog-—-1
F, = Z f[k]e—irnok - z e~k
k=0 k=0
This is a geometrical progression whose sum is derived in Eq. (5.43) as Ng for r = 0, and is zero for all other
values of r. Thus, Fo = Nopand F, =0forr=1, 2,3, ---, Ngo—1. Also
Np-1 No-1 e-iNon -1

FQ) =) fle™™ =" %= e
k=0 k=0

Observe that (using L’Hopital rule) F(0) = No. But

—irNoffs _ A
F (r2—7r) = f———_—i-—l- =0 for all 7 # 0 because e 72" =1
No e-JT‘ﬁ’o' -1

(b) It is clear that the DFT is taking all the samples where F(2) = 0 with the exception of the sample at
Q = 0. Clearly, the DFT in this case is a poor description of F(2). The situation can be remedied by taking
more samples. This can be done by padding zeros to f[k]. We should add at least No number of zeros to get a
fair idea of F(2) from the DFT.

This is a 5-point signal that does not start at k = 0. The 5-point periodic extension of this signal is

4,2, 0,2, 4,4,2,0, 2, 4, ---. The five points starting at k = 0 are 0, 2, 4, 4, 2. Also Qo = 27/5. Hence,
k=0
the 5-point DFT is
4 . .
Fr = Zf[k]e—"?k =207 % L ge I 4 4e T 427 F

k=0

This yields
Fo =12, F, = -5.2361, F; = —0.7639, F3 = —0.7639, F4y = —5.2361

For 8-point DFT, we pad 3 zeros to f[k] and then take the 8-point periodic extension, whose first cycle yields
0,2 4,0,0,0, 4, 2. Also, Q9 = 27/8 = n/4. Hence,

7
Fr= z:f[k}e'j'ﬁr"c =2e7"% 4467 F 44 4277 F
k=0
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10.6-6

This yields

Fo=12, F, =2.8284, Fo = -8, F3 = —2.8284, F, =4, Fs = —2.8284, Fs¢ = —8, F7 = 2.8284,

(b)

2
F(@) = Z f[k]"—_]nk = 4e7%? 4 267 4 2077 4+ 4772 = 4cos Q + 8cos 20
k=-2

For the 5-point case, Qo = 27/5, and the DFT is
F,. = 4cos(2nr/5) + 8 cos(4nr/5)

Substitution of » =0, 1, 2, 3, 4 yields the same 4-point DFT values found earlier.
For the 8-point case, Q¢ = 7/4, and the DFT is

F,. = 4cos(nr/4) + 8 cos(nr/2)

Substitution of r =0, 1, 2, ---, 7 yields the same 8-point DFT found earlier.

(a) Figure S10.6-6a shows the graphical construct required for circular convolution. The outer circle is rotated
clockwise, one unit at a time, and then the corresponding f and g values are multiplied and the products added
to yield ¢[0] = 7, ¢[1] =9, c[2] =11, ¢[3] = 9.

(b) Figure S10.6-6b shows the sliding tape construct required for linear convolution. The lower strip is advanced,
one unit at a time, and then the corresponding f and g values are multiplied and the products added to yield
cl0)=0,c[1] =2, c[2] =5, c[3] =9, c[4] =7, ¢[5] =7, c[6] =6.

(c) In this case Ny = Ny = 4. Hence each sequence should be padded with 7 — 4 = 3 zeros. Figure S10.6-6¢
shows the graphical construct required for circular convolution using the 7-point padded f and g sequences. The
outer circle is rotated clockwise, one unit at a time, and then the corresponding f and g values are multiplied

. and the products added to yield c[0] = 0, ¢[1] = 2, ¢[2] =5, ¢[3] =9, c[4] =7, ¢[5] = 7, c[6] = 6. which is

identical to the answer in part (b).
(d) The Periodic Convolution by DFT For this purpose, we need Fx and Gk for unpadded f[k] and g[k].
Both signals are 4-point sequences, that is Ng = 4 and Qg = 7/2, and

3
F, = Zf{k]e-jr’ék = e=IF 4 267" 4 3eITF
k=0

Hence
Fo=14+2+3=6 F1i=—-j—-2+43j=-243j2, Fo=-142-3=-2, F3=j-2—-3j3=-2-32

and
3

Gr= Zg[k]e—j'%'c =2+e 7 F 4 e 427 F
k=0

Hence, Ho=3+2+1+1=7and
Go=2+14142=6,G1=2-j-1+j2=144G2=2-14+1-2=0,G3=2+j-1-2j=1-j
From these values, we compute C, = F,G, as

Cop=36,Ci=-4,C2=0,C3=-4
The IDFT of C, is given by

3
k= 33 Cre"E =

r=0

[36 —47Fk _ 4ej;fk]

N

From this equation, we obtain ¢[0] =7, ¢[1] =9, ¢[2] =11, ¢[3] =9
(e) The Linear Convolution by DFT We repeat the procedure in part (d) using padded sequences. In this
case No = 7 and Qo = 2n /7, and
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6
Fr= 3 Fe T HE = o H gt ¥ g
k=0

where flk] = [0, 1, 2. 3, 0, 0, 0]. Substitution of the values of f[k] in the preceding equation for F, yields

F, =[6, —2.5245-34.0333, —0.154+;2.2383, —0.3216—31.795, —0.3216+;1.795, —0.154—52.2383, —2.5245+354.0333}
Also o
Gr= S ke = g 4 o | | g

k=0

where glk] = {2. 1, 1, 2, 0, 0, 0]. Substitution of these values in the preceding equation for G, yields
Gr =6, 0.599—;2.6245, 2.12345+;1.0226, 1.2775—31.6019, 1.2775+;1.6019, 2.12345— 51.0226, 0.599+ ;2.6245]

From these values, we compute Cr = F,.G, as

Cr = [36, —12.098+34.2094, —2.616+ 54.5956, 3.2862—;1.778, 3.2862+;1.778, —2.616—;j4.55956, —12.098 — j4.2094]

The IDFT of C; is given by
6
= 1 irdEk
k] = 3 Y cCre
r=0
In this equation we substitute the values of C, found earlier to obtain

clk] =10, 2,5 9,7, 7, 6]

[3]=2]3] 3/2]3 [3[2]3 3[=]2 [3/2 B}
NEE N8 [t]2]3 =3/ " Tilzlzl
Y©) =9 Yoy = 12 ye2)=16 vy @E=F y/u)= 3

1 2 o 4 ) © 3 2 3
3r2 4 ,DBD c
3 2°
o < O 3 i ) 4 K { 5

Y=g Y =12 YR =le Y®=F VD=3

Fig. S10.6-7

10.6-7 (i) We find the response by linear convolution using the sliding tape method. The two tapes are shown in fig.
S10.6-7a. We advance the lower tape one unit at a time, multiply the corresponding f and h values and add.
This yields y[0] = 9, y(1] = 12, y[2] = 16, y(3] = 8 y[4] = 3. All the remaining values are 0.
(ii) To obtain the correct answer by circular convolution, we must pad f[k] with N; — 1 = 3 zeros and g[k]
with Ny — 1 = 2 zeros, resulting in 6-point sequences (3, 2, 3, 0, 0, 0] and [3, 2, 1, 1, 0, 0]. Figure S10.6-
7b shows the graphical construct required for circular convolution. The outer circle is rotated clockwise, one
unit at a time, and then the corresponding f and g values are multiplied and the products added to yield
y[0] =9, y[1] = 12, y[2] = 16, y[3] = 8, y[4] = 3. The sequence repeats periodically.
(iii) For the use of DFT, we use the padded sequences in part (ii). In this case No = 5, Qo = 27/5, and

4
F= Z f[k]e-jrzs‘zk = 3e~ITH L 9 I L 3.7

k=0
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Hence,

Fo=3+2+3=8 F =23854¢771% - 9854706283y = 98547705283 [, = 3.854¢71:2506
Also :

4
He =Y hlkle "5k =367 % 49077 4 o~
k=0

Hence,
Ho=3+2+1=6, Hy =3.7537e77%7%2 H; = 1.7058¢ 7771320 g, — 1.7058¢7%13%0 H, = 3.7537,707252

Fromn these values, we compute Y,. = F,.H, as
Yo =48, V) = 14.467¢ 7118 v, = 4.8685¢704%3 v; = 4.8685. 7704983y, — 14.467, ! %818

The IDFT of Y, is given by

4
ylk] = % doy, Ik

r=0

From this equation, we obtain y(0] =9, y{1] = 12, y[2] = 16, y[3] = 8, y[4] = 3. All the remaining values are 0.

([>T 23] [ER] ERL EEL.,. =3
v [ [2d3) L => i Plzf3] [ ]2 ]3] s fo-(2] naneg

Vo) = 2 Y=g Y& YET  Y(H=5 W(5)=3

(=) O

\ 2 ot \ o r
P) = O
l °Q"'3° ( _Jthack b3 /e
2L
o e o 3 s 2% 2 ' + / !

ZOLR: ye)z 14 YD~ Y5 YH)-3

Y(o) = 3

Fig. S10.6-8

10.6-8 (i) We find the response by linear convolution using the sliding tape method. The two tapes are shown in fig.
510.6-8a. We advance the lower tape one unit at a time, multiply the corresponding f and h values and add.
This yields y[0] = 3, y[1] =8, y[2] = 14, y[3] =9, y[4] =5, y[5) = 3. All the remaining values are 0.
(ii) To obtain the correct answer by circular convolution, we must pad f[k] with N, — 1 = 3 zeros and glk]
with Ny — 1 = 2 zeros, resulting in 6-point sequences [1, 2, 3, 0, 0, 0] and [3, 2, 1, 1, 0, 0]. Figure S10.6-
8b shows the graphical construct required for circular convolution. The outer circle is rotated clockwise, one
unit at a time, and then the corresponding f and g values are multiplied and the products added to yield
y[0] =3, y[1] =8, y[2] = 14, y[3] =9, y[4] = 5, y[5] = 3. The sequence repeats periodically.
(iii) For the use of DFT, we use the padded sequences in part (ii). In this case Ng = 6, Qo = 7/3, and

5
Fo=Y " flkle 8% = 1+2e797% + 3¢~ F

k=0

Hence, Fo=1+2+3 =6 and

_j%t

1-jv3 . —1-jV3 1-j5/3
y P35 = 3

Fi=1+2"7% 43¢ =1+2
Similarly, we find F = i?—‘/ﬁ, F3=2 F4= ':3-‘:2"'3/—5 and F5 = L8¥3 25\/5 .
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and
5
H-= Zh[k]e_”%k =3+2 7% e H T
k=0
Hence, Ho=3+2+1+4+1=7and

l—j\/§+—1—j\/§_l_5—j3\/§

Hi=3+2"78F+c7% _1=3
1 + 2e¢ +e +2 2 ) 2

Similarly, we find Hz = 322, H3 =1, Hy = 3¥3 and Hs = S3Y8
From these values, we compute Y, = F.H, as

Yo =42, Y1 = —10—j7V3. Y2 = =3+ j2V3, Y3 =2, Ya= -3 - j2V3, Ys = —10 + j7V3
The IDFT of Y, is given by

5

y[k] = é z }/Tejr'g'k

=0

1 x 2r o _ ar . .
=3 [42 + (=10 = j7V3)e/ 3% 4+ (=3 + j2v3)e? T* 4 269 4 (=3 — j2V3)e? T + (=10 + j7V3)e 5 k]

From this equation, we obtain
y[0] = 3, y[1] =8, y[2] = 14, y[3] =9, y[4] =5, y[5] = 3. All the remaining values are 0.

oueHaP an? add methsd aden'd(: A save memacf

Date 1 [-2]3fo]-1]a] - Lil-23jol-(2)

-podded [T-23[c) | o] 1-2]3]
S boeks EEEE)] BleliZ]

outhut bloek, [Tzl
‘—P | m o J.sgrd DEEE!
outpul [a]-2]a[é[-2[>[3) [2[2z[e[2[3)

Fig. 10.6-9

10.6-9 The output y[k] is a linear convolution of f{k] and hlk]. We can readily obtain the linear convolutlon of f[k]
and hlk] as y[k] = {2, -2,2,6, -2, 2,4}
Overlap and Add Method
We shall use L = 3 for the block convolution. In this case M = 2. Hence, we need to break the input sequence
in blocks of 3 digits and pad each block with M — 1 =1 zero. Thus, the first block is f1[k] = {1, -2, 3, 0}, and
the second block is f2[k] = {0, —1, 2, 0}. We convolve each of these blocks with h[k] = {2, 2}, which becomes
hlk] = {2, 2, 0, 0} after padding by L — 1 = 2 zeros.
We may perform circular convolution of the two blocks fi[k] = {1,-2,3,0} and f2[k] = {0,—1,2,0} with the
padded impulse response hlk] = {2,2,0,0}. The reader may verify that this yields y1[k] = {2,-2,2,6} and
y2[k] = {0,-2,2,4}. The two output blocks are added as shown in Fig. S10.6-9 to obtain the final output
ylk] = {2,-2,2,6,—2,2,4}. We may also obtain this result using DFT procedure described below.
In this case No = 4, and Q¢ = 7/2. The DFTs F; and H, of the zero-padded sequences f[k] and h[k] are given

by
2 1
F. = Zf[k]e'jr%k and H,= Eh[k]e"’rfk
k=0 k=0
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Also Y, = F.H,. We compute the values of F,, H,, and Y, using these equations for each block:
For the first block,

Fr=1-2e77%" 4 3¢, ,=2+2"%" and Y, =F.H,

Also

= ; 3
( 0+ Yiel? k + Yzeﬂrk + YgeJ 2 k)

.hl»—'

3
1Tk
=g v
r=0

Substituting r = 0, 1, 2, 3, we obtain

»klr-a

Fo=2 Fi=-2(1+3j) F2=6 F3=2(—1-j)
Ho=4 Hi=2(1-3) Hy=0 Hiz =2(1 + j)
Yo=38 Y1 =38 Yo=0 Y3 = —38
y[0] =2 y(1] = -2 y[2] =2 y[3] =6

We use the same procedure for the second block to obtain
Fr=—e7%" 4277 and H,=2+277%"

Substituting r = 0, 1, 2, 3, we obtain

Fo = Fi=-2+43 F,=3 F3=-2-3j
Ho=4 Hy =2(1-73) H2=0 Hs =2(1+7)
Yo=4 Yi=2(-14j3) Ya=0 Ys = 2(~1 — j3)
y[o] = y[1] = -2 y[2] =2 y[3] =4

The fourth point of the first output block overlaps with the first point of the second output block. Hence, adding
the two overlapping output blocks yields the total output as 2, -2, 2, 6, —2, 2, --- as shown in Fig. S10.6-9.

Overlap and Save Method

In this case, we augment the first block with 0 as its first digit. Hence, the first input blocks is 0, 1, —2, 3. For
the second block, the first digit is the augmented digit, whose value is identical to the last digit of the first block.
Thus, the second block is 3,0, —1, 2. It can be readily verified that the Circular convolution of each of these two
input blocks with the padded impulse response hlk] = {2, 2, 0, 0} results in output blocks y1 (k] = {6,2, -2, 2}
and y2[k] = {10,6,—2,2}. The two blocks are added (after discarding the first M — 1 = 1 digit of each output
block as shown in Fig. S10.6-9. the final result is y[k] = {2, -2, 2, 6, -2, 2,...}.

We may also obtain this result using DFT procedure that follows.

Substituting the appropriate values of f[k], h[k], and Y, in the equations found in the first part, we obtain the
first output block as {0, 2, —2, 2}, and the second output block as {6, 6, —2, 2}. When we discard the first
point in both the output blocks, the saved data sequence is {2, -2, 2, 6, -2, 2,...}

We can readily verify that the linear convolution of the input sequence f[k] = {1, -2, 3, 0, -1, 2,...} with
hlk] = {2, 2} is indeed {2, -2, 2, 6, =2, 2,...}.

10.6-10 In this case Fo = Fy = F; = Fi4 = Fi5 = 1. All other F,. = 0. Also 2o = §. Hence

flk] = ZF ITER = —16- (1 L LIk Lk +ejls%k)

= % (1+ Pk LWL Lk +e—j'§k)
= % [1 +2cos (%k) +2cos (%k)]
From the above equation, we obtain Fo = 0.3125, F; = 0.2664, F; = 0.1508, F3 = 0.0219, F3 = —0.0625, -
From Eq. 10.45
flk] = %sinc (If-)

Hence Fp = 0.25, F; = 0.2251, F> = 0.1591, F3 =0.075, F4 =0, --.

These values differ slightly from those obtained from the 16-point DFT because of aliasing. This is because the
IDFT is a periodic extension of f[k] with a period 16. In this case, f[k] has infinite duration, and the cycles
overlap. Hence, the resulting periodic extension in the first cycle is no longer f[k], but £[k] which is the aliased
version of f[k] resulting from the overlap of various cycles. Longer the No, smaller the overlap, and closer the
IDFT to f[k].
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Chapter 11

11.1-1

11.1-2

(a)
F[Z]=i7’°‘1 "‘-li(l)k (1)
5 z
k= k=1
[ 2 3
S LT (1) (1) ]
YLz z z
1T 2 3
== —1+<1+1+(l) +(1) +)]
7| z z z
1 1 1
(b)
F[Z]: Zz—k=z-m+z—(m+1)+z—(m+2)+.”
k=m
=z_m|:1+l+i2+-'-]
z oz
_-m 1 _ z
- 1-1) 7 2m(z-1)
(c)
N ,koN~ L2
Flz] = "k —Zk'(z)
k=0 k=0
Recall that
> 1
_ k
e’—ZHz
k=0
Therefore
Flz)=e"?
(d)
oo oo
- 1 k_—k _ 1 (lna)’c
F[z]—g-ﬁ(lna)z —Z;E .

From the result in part (c) it follows that

F[Z] = elna/z = (eln'a)l/z - al/z

(a)
FIR = @ M ulk = 1]+ ()" ulk] = 42)* " ulk — 1] + 1(e)*u k]
Therefore
4 1 =z
Fld=m=+er—
(b)
FIK] = ky*ulk — 1] = ky*u [k] — 0 = ky"u [K]

Therefore
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Flz] = —2

(c)
Flkl = [(2)_'c cos "T"] ulk — 1] = (2)7* cos ZEu [k] — & [K]
Therefore
Fle] = z(z — 0.25) . _ _025(z—-1)
T 220524025 T 22-0.524+0.25

(d) Because k(k —1)(k—2) =0 for k=0, 1, and 2

Flk] = k(k=1)(k —2)2"Bulk = m] = k(k — 1)(k — 2)(2)*2u [k]
k=0, 1, or 2. Therefore
FIK) = @) 73{k(k — 1)(k — 2)2"u [K]}

and
-3 31232 ] _ 62
Fle=(2)7° [(2_2)4] = Gooe
11.1-3 (a)
Flz] _ z—4 2 1
. (z-2)(z=3) z-2 z-3
F[:]=2z—2_z:3
FIEL = [2(2)° = (3)*] u k]
(b)
Flz] _ z2—4 _=2/3 1 1/3
z  2(z—-2)(z-3) =z z—2 z-3
2 z 1 =z
Fll=-3+7=%3"37=3
FK =280k + [@* - 3] ulh
(<)
Flz] _ e”2 -2 __ 1 1
2z (z—-e2)(2-2) z-e2 z-2
Fll= == -7=3
fIK) = [e7%* - 2*] u k]
(d)
Flz _ 2z +3 _52 1 92
z (-1D(z-2)(z—-3) 2z-1 z2-2 2z-3
F[z]—é 272 +?- z
T2z-1 z-2 22-3
Fll =[5 -72" + $(3)*] u[K]
(e)

Fls) 52422 3 k 4

z (z+l)(z—2)2—z+1+z—-2 (z—-2)2

Multiply both sides by z and let z — oo. This yields

0=3+k+0 = k=-3
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z .z z
F[:]=32+l —'):—2+4(z~2)2
u

FIR] ="[3(=1)% = 3(2)* + 2k(2)*] u [&]

()
F [z] 1.4z +0.08 1 k 2

> (:-02)(2-082 :-02 :-08 (:-08)2

Multiply both sides by = and let z — oo. This yields
0=14+k = k=-1

r4 z z
z-02 z-08 +2(z-o.s)2

f k] = [(0.2)% - (0.8)* + $K(0.8)*] u[k]

Flz] =

(g) We use pair 12c with A =1, B = -2, a = —0.5, |v| = 1. Therefore

r=vV4=2 pf=cosH (%) =12 0=ta.n_l(71§)=§

£kl =2(1)" cos(ZE + F)u k] = 2cos(ZE + Z)u (k]
(h)

Az + B
224+ 0.6z +25

Flz] _ 222-032+0.25
2 2(22+062+0.25)

1
-+
z
Multiply both sides by z and let z — co. This yields

2=1+A = A=1
Setting z = 1 on both sides yields

1.95 __ 1+B —_
=1+ = B=-09
Flo=1+ 2(z = 0.9)

22+ 0.6z +0.25
For the second fraction on right side, we use pair 12c with A =1, B = —0.9, 2 = 0.3, and |y| = 0.5. This yields

r=V10 B=cosT'(x)=2214 =tan"'(}2)=1249
£ [k] = 6[k] + V10(0.5)* cos(2.214k + 1.249)u [k]

Flz] _ 2(3z — 23) =2 + Az+ B
z  (2-1)(22-6z+25) z-1' z22—-6z+25

Multiply both sides by z and let z — oo. This yields
0=-2+A= A=2
Set z = 0 on both sides to obtain
i =2+ £ = B=-4
z 2(2z — 4)

F[Z]=-2+z—1+zz—6z+25

For the second fraction on the right-hand side, we use pair 12¢ with A =2, B = —4, a = -3, and || = 5.

r=¥I  g=cosT}(3)=0927 0=tan"}(F)=-025
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FIK] = [—2 + Y (5)% cos(0.927k — 0.25)] u k]

@)
Flz] 3.83z +11.34 1 Az + B

z (z=2)(s2=524+25) z-2 z22-5z+25

Multiply both sides by z and let = — co. This yields

=1+A4= A=-1
Setting = = 0 on both sides yields

11.34 __ 1 B —
=5 — —3t = = B =6.383

z z(—z + 6.83)

Flel= =+ 35,7

For the second fraction on right-hand side, use pair 12c with A = —1, B = 6.83, a = —2.5, and |y| = 5.

r=v2 pB=cosT}05) =% f=tan™(=28) =3

F k] = [(2)* + V2(5)* cos(§k — 3F)] u [k]

(k)

z —2:2 4+ 82—
Flef _2(=2248:-7) _ 1 b k2
z (z-1)(z—2)3 z—-1 z-2 (z2-2)2 (z-2)3

Multiply both sides by z and let 2 — oo. This yields

—2=1+4k = k; =-3

Set z = 0 on both sides to obtain

— 3 k
0=-1+35+2 -

N
X
N
I
|
—

z

z z z z
F[z]_z—1_3z—2_(z—-2)2 (z-2)3

Flkl=[1-3(2)" - £@)* + 1k(k - 1)(2)*] u [k]

[

+

11.1-4 Long division of 22% 4+ 1322 + z by 2% + 722 + 22 + 1 yields
1. 4
F[-]—2—;+;+---

Therefore f[0] = 2, f[1] = -1, f[2] = 4.

11.1-5
] — vz
Fled = 22— 2yz 4+ 72
Long division yields
2 3
i =2 X x
2% — 2yz + 42 z+2(z) +3(z) +
Therefore f [0] = 0» f [l] =7, f [2] = 2723 f [3] = 373a ] and
£ k) = ky*u k]
11.2-1
flk]=ulk] - ulk —m]
__Z  _ -m_2Z _1-z"
F[Z]—z—l S R T
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11.2-2
flkl=6[k—1]+26k—-2]+36(k—3]+465k—4] +36k —5|+ 265k —6]+6[k -7
Therefore

2 3 4 3 2 1
ctEtEtatEtEtE
2542254320 4423 +322+ 2241
L7

Fl:] =

Alternate Method:

fI) = h{uk] —ulk -5} + (—k+8){ulk =5 — ulk — 9]}
= ku (k] — 2ku [k — 5] + ku [k — 9] + 8u [k — 5] — 8u [k — 9]
=kulk] = 2{(k = 5)ulk = 5]+ 5ulk = 5]} + (k — 9)u [k — 9] + 9u [k — 9] + 8u [k — 5] — 8u [k — 9]
= kulk] —2(k - 5)ulk — 5]+ (k- Qulk — 9] — 2u[k — 5] + u[k — 9]

Therefore

z _ 2z + z _ 2z + z
(z=1)2 25(z-1)2  29(z-1)2 25(z—1) 29(z-1)

: [z9—2z4+1—224(z—1)+(z—1)]

Flz] =
= SGo1e
1

=m[38—224+1]

Reader may verify that the two answers are identical.

11.2-3 (a)
f K] = K3y u k]

Repeated application of Eq. (11.22) to v*u [k] &= %= yields

7z
(z=7)2
3z +7)
(z=9)3

(b) In the above result, letting v = 1 yields k%ulk] < é%} Application of Eq. (11.22) to this result yields

kv u (k] <

K vFu (k] <=

Kulk] = —2-L [z(z + 1)] _2(z%+4:+1)
“dz

(z-1)3 (z—-1)*
(c)
F k] = a*{u[k] - u[k — m]}
=a*u[k] — a™a*"™u [k — m)
Fld= 2o - == 2o 1= (2)7]
(d)

flkl=ke ™ ulk —m] = (k —m + m)e 2, ™ ™)y [k — m]

=e 2™k —m)e 2™y [k — m] + me e 2"y [k — m]

-2
F [Z] - e—2mzz_i_e__zzvz—2 + me—2m (~ —ze~2) z—z
—-2m
e 1 .
= —_—-:(z — e_2)2 [;3(1 - m) + mz]

11.2-4 Pair2:

ulk] =6k + 680k —1]+6[k—2]+6[k—3]+--
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1 1 1
Il[k]<§1+z+z—2+g+'”—l_%

Repeated application of Eq. (11.22) to pair 2 yields pair 3, 4, and 5.
Application of Eq. (11.21) to pair 2 yields pair 7. and application of time-delay (11.16a) to pair 7 yields pair 6.
Repeated application of Eq. (11.22) to pair 7 yields pair 8 and 9.

ylk+1] —~vylk]l = f[k+1]

11.3-1
with y [0] = =ML, f k] = Pu[k - 1]
P
Fle) = z—1
y[k] &= Y [2] ylk+1] & zY [z] + Mz
The z-transform of the system equation is
2Y 2]+ Mz —~Y [z] = zP:zl
Pz
(z—'y)Y[z]——I\/I-{—z_l
and
—-Mz Pz
Y|[z] =
= z=vy (z=7)(=-1)
Y[z]_—h[+ P _—1\4+P 11
2 z—v (z-(z-1) z—v ~y-1lz—-v 2z-1
P z z
zl = — z —
Yzl A[.z—'yni-'y—1|:z—'y z—l]
r=vy-1

vl = [-ay + B

The loan balance is zero for k£ = N, that is, y [N] = 0. Setting kK = N in the above equation we obtain

yIN] = [-py™ 4 2220 =

This yields

The z-transform of the equation yields
2Y [2] = z 4+ 2Y [z] = zF [2] — zf(0)

11.3-2
flkl=ee ™ ulk] and F[z= . _ez —, flo]=e
Therefore
ez? z(1 —e)(z — e ) + ez?
(z+2)Y[z]—z—ez+z_e_1— pop—
1 [e +1 e ]
z2+2 z-e!

Y[z] z+l-e!

z  (z42)(z—e"1)  2e+1
z z

(e+1)z+2+ez—e‘1]

z

ylk] = 527 [(e + 1)(=2)* + e~ * V] u k]

11.3-3 The system equation in delay form is
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2ylk] =3y k— 1 +y[k—2] =4f[k] - 3f [k — 1]
Also '

v s Y1 ulk-1 e 1Y ylk-2 =S¥+

z

IR = Flel = 5 k1] = — 5

The z-transform of the equation is

e 3 1 4z 3 4z -3
Wl = Yl gVl 1= 55 - -=535 = -0
or
1 4z — 3 3z -2.75
(2_ ~+}7)Y[“]"1+z~0.25" z—0.25
and

Y[z 2(3z — 2.75) 2(3z — 2.75) 5/2 1/3 4/3

s T @3 D(:-025)  2z-08)(z-1)(:-025) 2-1/2 z-1 z-025
ylk] =[5 +3(0.5)* - 4(0.25)"] u[k] = [+ 3(27" - @) u k]

11.3-4 For initial conditions y [0], y [1], we require equation in advance form:

2ylk+2]—3ylk+1]+yk] =4f[k+2] —3f [k +1]

Also
3 2 3 2 35
ylkl = Y[z] ylk+1] <=72Y[z]—§z y[k+2 =z Y[z]—-2-z -7
z 0.25z
f[k]@p[b]—m f[k+1]<=>zF[z]—z—m
and
Flh+2 e 2F =22 - bz = —— 2
- 4”7 16(z — 0.25)
The z-transform of the equation is
o2y - 3,233, _2] - =22
Z[QY[z} 37 42] 3[zY[z] 57 +Y[z]—z_0'25
or
2 ' _ z(32% 4+ 12.25z — 3.75)
(22° =32+ 1)Y [z] = (7= 0.25)
and
Y] 3:°+1225:-3.75  46/3  4/3  25/2
z  2(z-025)(z—-1)(2-05)  z—-1 z-025 2z-05
46 =2 4 z 25 =z

Y|[z] =

3z-1 32z2-025 22z-05
y k] = [4 - 4(0.25)* — 2(0.5)"] u[]

11.3-5 System equation in delay form is
dylk]+4y[k -1 +y[k-2]=flk-1]
Also
1 1
ylkj] =Y [] ylk-1] < :Y[z] y[k—2] = ;Y{z]+1

e 2 flk-1e 5 (-11=0)
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The z-transform of the system equation is

4 1
4Y[~]+'Z'Y[Z]+z—2Y[z.]+1—z—_—l

422 + 4241 2—
= Y=o
and
Y[z] 2(2-z2) _ z(2 - z) _ 1149  13/9 5/6
z 4(z-1)(224+2z+025) 4(z-1)(2+05)2 4|z—1 2405  (z+0.5)?
1{4 = 13 = 5 z
YE=gls7=1 " 9708 6(z+0.5)2]
y[k] = [§ - B(-0.5)* — £k(-0.5)"] u[k]

11.3-6 The system in delay form is
ylk] =3y lk -1 +2y[k - 2] = flk-1]

Also
ylk] =Y [2] y[k-1]<=>%l’[z]+2 y[k-2]<=>zl2y[z]+;+3
I = Fla flk=1] = 1F ]

F[z]=2i3

The z-transform of the system equation is

Y[z]—3EY[z]+2]+2[%Y{Z]+§+3] =;'i—3
(1-3+3) ==t =y

_ 972 6, 32

Y(z] _ -3z +12 -32+12
z—3

z —(z2—-3z+2)(z——3)=(z—l)(z—-2)(z—3)_z—1—z—2
9 =z 2 3 z
le]:fz—l_ z——2+§z—3

vkl = [3 - 6(2)* + 2(3)*] u[k]

11.3-7 The system equation in delay form is
ylkl =2y -1+ 2y[k - 2] = f[k - 2]

ylk] = Y] y[k—l]d:%)’[z]+l ylk—2) = -:—Z-Y[z]+%

Flk-2) < ;IEF[z] and Fls = —2

The z-transform of the difference equation is

Vil -2[2y i) +2[5Y )+ ] "'z_(zl—_l_)

2 _ 2 _
(2 z22z+2)y[z]= 22°—4z+3

z(z-1)
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Y [z] 2:2—4z43 1 z—1

z (:—1)(:2—2z+2)_z—1+22-—2z+2
z 2(z—-1)

:—1 22-2z+2

Y|[:] =

For the second fraction on the right-hand side, we use pair 12c with A =1, B = ~1, a = -1, |y|?> = 2. This
yields r=1,8 = %. and 6 = 0. Therefore

(k] = [1+ (V2)* cos(5k)] u[k]

11.3-8 The equation in advance form is

ylk+2l+2yk+1]+2y[k] = flk+ 1]+ 2f [K]

ykle= Y[z] ylk+1] = 2Y o] ylh+2] e Y [] -z
flk] < Flz] flk+1]<>2F[z]-z and FM:,.,Z

z—e

The z-transform of the difference equation is

2 -~
PV [ -z 42:Y [ 42V [e] = —— — 24 22 = 2(e +2)
. z—e€ z—e z—e
(2 +2:+2)Y 2] =z + 2(e+2) _ z2(2+2)
) z—e z—e
Therefore
Yl _ z+2 0318 | —0.3182 — 0.502
z _(3—(3)(z2+2z+2)—z—e 2242242
— z 2(0.318z + 0.502)
Y [2] = 0.318— e

For the second fraction on the right-hand side, we use pair 12c with A = 0.318, B = 0.502, a = 1, |y|> = 2 and

r =0.367 =cosTH(SF)=F  6=tan'(FHR) = 0525

y[k] = [0.318(e)* — 0.367(v2)* cos(3fk — 0.525)] u [k]

11.3-9
£ k] = ee*u [K] Flz] = —= -
622
Yiel=FEHE = 502608
Therefore
Y[z] _ ez _ 132 018 113
z  (z-¢€)(z+02)(2—-08) z2-e 2z+02 2z-08
z z
Y[2] = 02 1132—-08
y[k] = [1. 32(e) —-0186( 0.2)* — 1.13(0.8)*] u[k]
11.3-10
z(22 4+ 3)
Yl = FEH = 05
Therefore
Y(z] _ 2:+3 _ 52 T + 9/2
z (z-1(z-2)(2-3) z-1 z-2 z-3
Y[z]=§ i _ 7 % +9 z

2z-1 'z-2'"2z2-3
ylkl = [§ - 7(2)" + 3(3)  ulk]
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11.3-11 (a) f [k] = 4 *u[k] = (;)*u[k] so that F [z] = =1, and

62(5z — 1) _ 2(5z — 1)
z-3)(622-5z+1)  (z-3(z-3(-3)

Y[z]=F[]H[z] =

Therefore
Y[z] 5z — 1 _ 12 48 + 36
z (z—%)(z—%)(z—%) z—- % z—% z-1
Y[s) = 12— — 48— + 36—
-3 -3 73

y[k] = [12($)* — 48(3)" +36(3)*] u k]
=12[47F = 43) 7" +3(2) ] u k]

(b) Here the input is 4=~y [k — 2] which is identical to the input in part (a) delayed by 2 units. Therefore
the response will be the output in part (a) delayed by 2 units (time-invariance property). Therefore

yk] =12 [47%72 —43)~* " 4 3(2)"* D] u[k - 2]
(c) Here the input can be expressed as
£k =475 Pu k] = 16(4) Fu [K]
This input is 16 times the input in part (a). Therefore the response will be 16 times the output in part (a)

(linearity property). Therefore _
y[k] =192 [47% - 4(3)™* +3(2) ] u[k]

(d) Here the input can be expressed as
flR =47 k-2 = (47" Pulk -2

This input is 1—16 times the input in part (b). Therefore the response will be 1—16 times the output in part (b).

Therefore
yk] = 2[4 —4(3)" "D 4+ 3(2)"* D] u [k - 2]
11.3-12
_ _ z(2z-1)
Yiel=FEH = o—prr 16,703
Y{z] _ 2z -1 _ 5 __5(z-1)
z  (z2-1)(22-162z+08) z-1 22-162+08
I z(z —1)
Yid = 5z -1 5z2 -16z+08
For the second fraction on the right-hand side, we use pair 12c with A = 1, B = ~1, a = -08, v = 725,

|¥|? = 0.8. Therefore

r=1118 B=cos }(285)=0464 6 =tan"'($2) = 0.464

ylk] = [5 - 5(1.118) (725)" cos(0.464k + 0.464)] ulk]

g
= [5 - 5.5 (725-) cos(0.464k + 0.464)] (K]

11.3-13 (a) H[z]=%& (b) H[]= '2—:% (c) Hlz] = g7 (d) We convert the equat{'on to advanced
operator form. This yields (E? + 2E + 2)y[k] = (E + 2)f[k]. Hence, H[z] = 325

11.3-14 (a)
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22+32+3  224+3:+3

H{z]=z2+32+‘2—(z+l)(z+2)
Therefore
H[z] _ _2*+3:+43 _3/2 1 L2
z 2+ 1D(z+2) = 2+1 z+2
3 z 1 =z
HEl=3- 51 %a+s
Rkl = [§61K] = (D" + 3(=2)*] u k]
(b)
22—z 2(2:-1)
H[z]_z2+2z+l T (z+1)2
Therefore
Hlz) _22-1 - 2 3
z (z+1)27 z4+1 (2+1)2
r4 z
Hizl =2 —7) -3
(k] = [2(=1)* + 3k(-1)*] u k] = (2 + 3k)(~1)*u [k]
(c)
2+ 2z 2(z+2)
Hlz 2-2405 22-z2+405
Therefore

We use pair 12¢c with A =1, B=2,a=—0.5, |7/*=0.5, || = 7‘5, and

r=5099 B=cos T (0.5v5) =% 6=tan"'(F&2)=-1.373

k
h [k} = 5.099 (:}5) cos(§ — 1.373)u [K]

11.3-15 (a)
H[z] 1 -1 1
> G+02)(:-08) 2402 :-08
z z
Hlizl=-755+ 703
h (k] = [~(=0.2)* + (0.8)*] u [k]
(b)
Hls _ __ 2243 _12_ 72 3
z  2(z-2)(z-3) z z2-2 z-3
O
h{k] = [36 k] = 2(2)* +3(3)*] u[k]
()

Hz 2z -1 135 1.252
z 2(22-16z+08) 2 22-1.62+0.8

For the second fraction on the right-hand side, A =1.25, B=10,a = —08, |7]* =08, || = -‘%, and

r=2795 B=cos '(285) =0464 6 =tan"'(-2) = -1.107

h [k] = —1.256 [k] + 2.795( )" cos(0.464k — 1.107)u [k]
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11.4-1 (a)

?z2—1.8z 3z(z — 0.6) _( 32 )(2—0.6)

H ] = —z+016 (2-02)(z-08) \z-02/\z-08

F4

Parallel form: To realize parallel form, we could expand H [z] or H [z] /= into partial fractions. In our case:

B 2z —0.48
Hlz]=3+ (2 —0.2)(z — 0.8)
0.4 0.8
=02 T Z=038)

Hlz] =3+
Alternatively we could expand H [z] /z into partial fractions as:

H[z) _ 3(:-06) 2 L]
z  (2-02)(z—-08) z-02 z-0.8

and

z 2
Hle]=2—55+ 753

The realizations are shown in Fig. S11.4-1a.

(b)

5z +2.2 52422
(2+0.2)(24+08)  z22+2:+0.16

_( 1 )(5z+2.2)_ 2 A
“\z2402/\z+08/) z+4+02 " z+08

All the realizations are shown in Fig. S11.4-1b.

(<)

H(z] =

3.8z—-1.1
z3 —0.822% +0.37z — 0.05

H[:] =

For a cascade form, we express H [z] as:

1 3.8z~ 1.1
Hl = (z = 0.2) (z'-’ ~ 06z +o.25)

For a parallel form, we express H [z] as:

-2 22+ 3
Hlel= =05 * 506, 7025

All the realizations are shown in Fig. S11.4-1c.
11.4-2. Note: the complex conjugate poles must be realized together as a second order factor

(a) Cascade form:
z 1.6z -1.8
Hlz] = <z - 0.2) (z'*’ + z+0.5>

-2z 222 + 42
T 2-02 " 2242405

Hie] = z 222 + 1.3z + 0.96
A=\7+05)\2-08:+016

Parallel form:

(b) Cascade form:

Parallel form:

2z

Hlz = z+0.5+z——0.4+(z—0.4)2
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11.4-3.

4 ~4

. 9.2, .3 2 .
H[:]=2+%+g+%+i 2:°4+ 27 +08:"+2: 48
The realization of this transfer function is shown in Fig. S11.4-3. It can be explained in two ways. The
realization has 5 paths in parallel, and each path represents one term in the transfer function. The first path
(which bypasses all the delays) has transfer function 2. The second path (going through only one delay) has
transfer function 1/z. and so on. Alternately we observe that this transfer function has aqg = a; = a2 = a3 = 0.
and bg = 8. by = 2. b2 = 0.8, by = 1. by = 2. Therefore all the feedback coefficients are zero, and there are no
feedback paths. There are 4 feedforward paths with gains 8, 2, 0.8, 1, and 2 as shown in the realization.

=) >
r@ .
4 4 @ g
L X3

fit Yt

Figure S11.4-3

11.4-4
2 .3
22 + 23

4 5 6
i H[z] ==+ tatEts

W] -
~

This transfer function is similar to that in Prob. 11.4-3. Its realization is shown in Fig. S11.4-4.

&

Yk

2"

£Lk] 1
2 [ 2 (7

\ IR
1
ik

L. N N A
= | &

Y
-

Figure S11.4-4

11.6-1 In this case, Y[z] = F[z]G[z], where we use Table 12.1 to find F[z] = —%r and G[z] = —Z=r. Hence,

2
YH = e e
B 1 z T z
1 e T |z—eT ¢ T e
Therefore
1 _ _ '
ylk] = 7 [e KT _ T(2k+1)] ulk]

11.6-2 We can express E[z] as a sum of two signals; the input and the signal fed back. Thus

-E[z] = F[z] - GH|[z]E|z]

Hence
Elz] = ———— F[4]
T 1+ GH[Z]
and

156



11.6-3

11.7-1

Y[z = Gl:] E[:]
_ Gl

=1rcupn [ E

Therefore

Here. Y[z] (the output of the dotted sampler) has two components: (1) due to input F[z], and (2)the component
resulting from the feedback of Y[z]. Hence

Y[:] = FGlz] - GH[z]Y[Z]
and
c - _FGlzZ]
Vil = 1 GH

We cannot separate F(z| from FG[z]. Hence, it is not possible to write the z-transfer function relating y(k] to
flk]. Analysis and synthesis of such systems involving only one sampler, which is located in the feedback path
is little more difficult.

(a)
£ k] = (0.8)%u [k] + 2%u [~ (k + 1)]
—— ———
filk) f2ik]
z
8
fl[k]c’z—O.S |z2] >0
f2 (k] <= 22 2] < 2
Hence
F[v—;—L 08<|zl<2
T -08 z-2 ) “
-1.2z
= —_— . 2
22-282+1.6 0.8 <lzf <
(b)
F1[ZJ=Z_2 lz] > 2
Fz[z]=:i3 j2} < 3
Hence
Flz] = A 2< |zl <3
T a2 23
z(2z - 5)
22-5z+6 <lsl<
(c)
= z 2| > 0.8
F (2] 08 |z] >
-z
Falz] = z 0.9
2l z—-09 Il <



S0 1rsrory 08<lE<09
(d)
[(0-8)" +3(0.4) ] w [~ (k +1)] &= ( _—:(5).8 Tz EB 4) lz] < 0.4
_ _—4:(=-07) )
(z —0.4)(z — 0.8) |z2| < 0.4
(e)
[(0.8)" + 3(0.4)k] u[k] <= - _20.8. + zf’ﬁ 2> 0.8
___4:(:-07) )
“GoonG-o5 1>08
()

(0.8)%u [k] + 3(0.4)*u [~ (k + 1)]

The region of convergence for (0.8)*u [k] is || > 0.8. The region of convergence for (0.4)%u [—(k + 1)] is |z| < 0.4.
The common region does not exist. Hence the z-transform for this function does not exist.
11.7-2

Flz] e”? -2 _ 1 1
z (z—e2(z=2) z—-e2 z-2
and F[z]=—-z—— z

z—e2 z-2
(a) The region of convergence is |z| > 2. Both terms are causal. And
FIK) = (7 ~ 2%)u K]
(b) The region of convergence is =2 < |z| < 2. In this case the 1st term is causal and the second is anticausal.
FIKR) = e u k] + 25u [~ (k + 1))

(¢) The region of convergence is |z| < e™2. Both terms are anticausal in this case.

flk] = (—e™* + 2F)u [~ (k + 1)]

11.7-3 For causal signals, the region of convergence may be ignored. We shall consider it only for noncausal inputs
(2)

z2

T -z +02)(z-08)

Y [2] = F 2] H [2]

Modified partial fraction expansion of Y [z] yields

Y [2] = 0.477- = — — 0.068- :02 - 0.412- _20‘8
and
y [k] = [0.477¢* — 0.068(—0.2)* — 0.412(0.8)*] u [k]
(b)
Flz] = 2‘_32 2] < 2
H [2] i |z| > 0.8

T Z+02)(z-08)
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.2

YE = croocoose oy 08 <kl<?
and
v —2 _yn 2/3 0758
z  (z+402)(z-08)(z=2) 402 z-08 z-2
1 z 2z z
Therefore Y[:] =1iT702 + 3708 0.758: —3 08 < |z] <2
and  y[k] = [%(-o.zﬂ“ £ 208) u k] + 0.758(2) u [~ (& + 1]

(c) The input in this case is the sum of the inputs in parts a and b hence the response will be the sum of the
responses in part a and b.
11.7-4

£ k) = 25ulk] +u [~ (k +1)]
N o e, e
fi[k] falk]

There is no region of convergence common to Fj [z] and F2 [z]

HE= trone 0w

The region of convergence of H [z] is |z| > 0.8 (assuming a causal system). We should find the response to f1 [k]
and f; (k] separately.

52

niE= o tone ooy 12
The modified partial fractions of Y [z] yield

lel= L2 _2_ 2 =

B =-117503 ~ 37008 T 0742
and

1 k2 k k
i k] = [-ﬁ(-o.z) - 5(08)" +0.758(2) ]u[k]
Similarly
-25 =z 1 =z z
Veledl= 51t 57702 ThiTos 08 <lI<!
and
1 k k 25
y2 (k] = [6(-—0.2) +4(0.8) ] ulk] + U [=(k +1)]
and
5 10 25
k] = v [K] + v2 [k] = [6—6(-0.2)’° + (08" + 0.758(2)"] wlk] + (= (k+1)]
11.7-5 .
- 2
F[z]=z_62 lz] < e
and
Hlz d |z] > 0.8

T (Z+02)(z-08)

No common region of convergence for F [z] and H [z] exists. Hence

y[k] = o
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12.1-1 (a)

and

(b)

Therefore

and

(c)

and

and

12.1-2 (a)

LH [em] = tan~! (

Chapter 12

1 1
e’ =04 cosQ—0.4+ jsinQ

Z—-_lm and H [(‘J Q} =

1 1
(e = 0.4)(e=72—-0.4) ~ 1.16 — 0.8cos N

|t [ = HH" =

L
1.16 — 0.3cos 2
i _ _ -1 SiﬂQ
LH [c ] = —tan s _04
z 1
Hsl = 2—04 1-04z"!
; 1 1
d IS = —_— =
an H [L ] 1-04e—i2 1 -0.4cos Q— jsin Q
|H ['®]| = VHH" = L ! = .
L 1-04e-721—-0.4e7? /116 — 0.8cos ()
o _ . —1(_O.4sin Q )
LH [""] = - tan (1—0.4cosQ
322 - 18z
Hlz]= =
1= 77016

3¢ — 1,869 _ (3cos 2Q — 1.8cos Q) + j(3sin 202 — 1.8sin )

H [e ] c28 — 32 4+ 0.16 (cos 2Q — cos Q + 0.16) + j(sin 202 — sin Q)

|H [ejﬂ] |2 = 36272 _ 1 8¢72 3¢~ _ 1,870
T e Z it 1 0.16| |e-22 — -2 +0.16

_ 12.24 — 10.8 cos
T 2.0256 — 2.32 cos 2 + 0.32 cos 292

Therefore

|1 %) = | 12.24 — 10.8cos ]1/2
~ [2.0256 — 2.32 cos Q + 0.32 cos 29

3sinZQ—-1.SSinQ)_ _1(

sin 292 — sin )
3cos2Q2 — 1.8cos

cos 2§ — cos 2 +0.16

2

+:3

0.5 0.5 1
H[z]=1+—z—+ +—z-z‘+;

bl o

¢
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H [(,JQ] =1+0.56—1Q+2(,—2m+26—130+0.50—14x2 +C—an
=259 [‘)]2,5Q+0.5F‘j1 sn+2(,]o‘sn+0.50—11.sn+e-ﬂ.5n]

T =2e79%59 [2 cos % + L cos 382 4 cos TQ]

Therefore IH [v’”] | = l4 cos %Z + cos % + 2cos %

and LH [010] = -2.50

(b) Using the same procedure as in Prob. 5.45a, we obtain:

IH [em” = |4sin% +sin§2‘—2 +2sin%

and  ZH [/] = -2.5Q — /2.

12.1-3
z+0.8
Hls = z—-05
(a)
H [(:jg] _ 408 _ (cosQ24+0.8) + jsinQ
T =05 (cosQ--0.5) + jsinf2
iQ —js .
02 _ i - _ (CJ +0.8)(E +0.8) _ 164+ 1.6cos
|H [c ]l =H [e ] H [e ] T (32 -05)(e=7% - 0.5)  1.25 — cos
Yy LI _ -1 sinQ _ -1 sin 2
‘H {L ] = tan (cosQ+O.8) tan (cosQ —0.5)
(b) Q=05
7 [09] P = Leghecmion _ g 174
|H [e”*°] | = 2.86 _
LH [€’*®] = 0.2784 — 0.9037 = —0.6253 rad
Therefore
y [k] = 2.86 cos(0.5k — T — 0.6253) = 2.86 cos(0.5k — 1.6725)
12.1-4

Y [z] = F[z] H [¢]

For an input f [k] = ¢’ [k], pair 7 in Table 11.1 yields

Flz] = - _:,-g
and
. zH
Y[:]= },——_—%
Therefore if
= Plz] _ P|z]
Hl[:] = Q=] B z=m)z=72) (2 =)
then
] = zPz]
Y[z]= (z=m)(z=72) - (z = 1a)(z — /D)
and

161



12.1-5

12.2-1

Y [Z] - P [;]
z (z =)z =72) (2 = a)(z — e7?)
C1 2 Cn A

= + +oo- + ——
T r -2 =Y z- 9

The coefficient A on the right-hand side is given by

4 Pl
(Z - 71)(": - 72) e (Z - 7”)(: - (,JQ) z=elf?
= H[’:“zzpﬂl
=H [(’JQ]
Therefore
] — = iQ F4
¥ [-.]—;c,z_% +H [ ——
and

y (k] = Zcm* +H [ | ulk)

i=1

The sum on the right-hand side consists of n characteristic modes the system. For an asymptotically stable
system |vi| <1 (i=1,2,...,n) and the sum on the right-hand side vanishes as k — co. This sum is therefore
the transient component of the respouse. The last terms H [ejn] e’ which does not vanish as k — oo, is the
steady- state component of the response y,, [k]:

Yss [I\,] =H I:ejn] ()'jﬂk

() Fr = 3¢ = 2% = 10 kHa.

(b) Fy > 2F, = 100 kHz, T < # =10us.

Figure S12.2-1 shows a rough sketch of the amplitude and phase response of this filter. For the case (a), the
poles are in the vicinity of @ = 7. Therefore, the gain IH[ejQ]] is high in the vicinity of Q = 7 /4. In the case
(b), the poles are in the vicinity of = . therefore, the gain |H[e’?]| is high in the vicinity of Q = x. For case
(a), the phases of the two poles are equal and opposite at Q = 0. Hence £H [e’?] starts at 0 (for 2 = 0). As Q
increases, the angle due to both poles increase. Hence, £H [e’] increases in negative direction until it reaches
the value —27 at Q = m. For case (b), similar behavior is observed. Note that angle —27 is the same as 0.

e
e [#HLe 3

& “‘f[é} J‘

BT T ve—

| EELICE -
Fig. S12.2-1

12.2-2
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Figure S12.2-2
Figure 512.2-2a shows the realization, Fig. b shows the pole-zero configuration, and Fig. ¢ shows the amplitude

response of the filter. Observe that the pole at a is close to Q@ = 0. Hence, there is the highest gain at dc. There
is a zero at —1. which represents Q = w. Hence, the gain is zero at Q = 7. This is a lowpass filter.

i .
i) T+ cosQ+ 1+ jsinQ
H[(] ] K(‘-"m"‘a =K cos —a+jsinQ

2(1 4 cos §2)
1+ a2 —2acosQ

Lo . 2(1 + cos Q)
i —
|H[e ]|_AV 1.04 — 0.4 cos

|H[e’°)| = 2.5K

|H [e’%] | = K

For a =0.2

The dc gain is

For 3 dB bandwidth |[H[e’"]|? = 1|H[¢’°)|> = 3.125K2. Hence

2(1 + cos Q)

A2B5K2=K? | =T "7
3.12 K [l.O4—O.4cosQ

] = 2 =1.176

w _ 1176 _ 0187

Hence B = E; =5 = T_
12.2-3
T<-L =L o5
= 2B, _ 40000 H

Select T = 25us
Frequency 5000 Hz gives
Q= wTl =27 x 5000 x 25 x 107% = /4

Therefore frequency 5000 Hz corresponds to angles +m/4. We must place zeros at eTi™/4 . For fast recovery on
either side of 5000 Hz, we read poles at ae*'™/% where a < 1 and a ~ 1.

The transfer function is

(z — &™) (z — e=I™/4)
(z — aei™/4)(z — ae—i7/4)
_K(z2-V2:+1)

Hlzl=K

The constant K is chosen to have unity gainat w =0(Q=0)or z =/ =1. (H[1] = 1)

H[1]=M=1
14+ a2—-v2a
) 1+a®~V2a 2
K=———x"—=1707(1+0a* - V2a
=3 (I+a )
|1 [7] Iz K2 (7% — V227 4+ 1) (e7922 — /eI 4+ 1)

(€722 — /2aei® 4 a2)(e—722 — /2ae—I9 + a2)
2 4 — 4v/2 cos Q + 2 cos 29
(1 +a2)? — 2v/2a(1 + a2) cos N + 2a2 cos 20

=K
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12.2-4

12.4-1

12.5-1

12.5-2

I _ Ly L 1+% —2cos
IH [raJQHZ =H [e’n] H [(’—J”] = (e r)le - = oz e -1
: (e — ) (eI — 1) 1472—2rcos Q2
This shows that the amplitude response is constant (]H [cJQ” = 1) for all values of Q2. The filter is an allpass

filter. This result can be generalized exactly the same way for complex poles and zeros.
The frequency response of a digital filter is H[ef‘”'T]. Changing the sampling interval from T to aT will change
the frequency response to H[eJ“"T}. This is a frequency-scaled version of the original transfer function H[e7* 1],
Thus, changing the sampling interval T to aT compresses the frequency response by the factor a. Thus, changing
T from 50 us to 25 us will change the cutoff frequency of the filter from 10 kHz to 20 kHz. Similarly. changing
T from 50 us to 100 us will change the cutoff frequency of the filter from 10 klz to 5 kHz.
(a) :

s+ 20 _ 7s + 20 1 5/2
252+ T7s +10)  2(s+2)(s+5)  s+2 Py

H,(s) =

Using Table 12.1. we get

First we select T':

Ho(0)=1 andfor s> 5= Ha.(s)= -215-

and {Ho(jw)| =~ w>>5

i

We shall choose the filter bandwidth to be that frequency where

. . T = =7
|Ha(jwo)! is 1% of |Hq(0)}]. Hence EW—O—O.OI and wp = 350, = 355

Substituting this value of T in H|[z] yields

z + 5 z
z—-09822  2:-0.9561

H{[:] = 0.008976 [

] = 0.031416z [ z— 0.97474 ]

z2 — 1.9383z + 0.9391

1) Canonical realization:
Hs| = 0.0314162z% — 0.03062z
YT 22 -1.9383z + 0.9391

2) parallel realization:

H[Z] = 0.008976z  0.02244:
T 2-0.9822  z - 0.9561

The canonical and the parallel realizations are shown in Fig. S12.5-1.
Ha(s) = 15-715:-_1 Using Table 12.1, we get

ﬁTze‘T/ﬁsin (VTE)

Hlz] =
22 — 2ze~T/V2 cos (77"5) +e—V2T

We now select T

H.(0) =1 and for high s, Ha(s) = siz

and {Ha(jw)| ~ 'wl_z for high w

For negligible aliasing, we select the frequency wg to be that where
1
|Ha(jwo)! is 1% of |Ha(0)]. Hence —; =0.01. and wo=10
wo

and T =-—=n/10

wo
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Figure S12.5-3

Substitution of this value of T in H|z] yields

0.0784=
Hl:) = 22 — 1.5622z + 0.6413
12.5-3 For an ideal integrator
1
Ha(s) = ;
From Table 12.1, we find
_ Tz . jwTy _ TelwT
H[z]—z_1 and H[e ]_t—]“T:—l
Therefore,
|H 7] = ; z

‘\/(cosz -1)2+ sin2wT’

T

T VR0 = coswT)|
T

"~ 2|sin <L

] <
w
2

™
T
The ideal integrator amplitude response is

|Ha(jw)| =

1
w
The two response characteristics are shown in Fig. 512.5-3.
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12.5-4 (a) Because an oscillator output is basically a system output with no input. a system with zero-input response
of the form sin Qok (or cos(Qpk + #) with any value of 0). where Q0 = woT will serve as the desired oscillator.
A marginally stable systemn with impulse response of the above form is a candidate. From Table 12.1. pair 11b.

we see that a transfer function .
zsinwoT

H|z| = —
(=] 22 —2zcoswol + 1

has an impulse response (or zero-input response) of the form sin Qok (Qo = woT"). The period of the sinusoid is
To = 27/, and there are 10 samples in each cvcle. Therefore, the sampling interval T = To/10 = 7/5¢2. and
QoT = 7 /5. hence,

H|s| = :siu(%)
e ZQ—QCOS(%):-F].
0.5878=

T 221618z -1

This is one possible solution. By varying the phase in the impulse response, we could obtain variations of this
transfer function.

(b) Another approach is to consider an analog system with transfer function Ha(s) such that its impulse response
( or zero-input response) is of the form sinwot (or cos(wot + 8) for any value of ). From Table 6.1. pair 8b we
find

wo
Halo) = 03
Now using Table 12.1. we find the corresponding digital filter using impulse invariance method as

] Tz sinwoT
22 — 2zcoswoT + 1

Earlier we found that woT = 7/5. Because wo = 27(10,000) = 20,000, the period Ty = 10™%. There are 10
samples in each period. Hence the sampling interval T = 107>, and

0.58782

H[z] =107° 5———
=] 32 -1618z+1

This is identical to the answer in (a) except for an amplitude scaling by 10~°. Because. we did not specify

any awplitude requirement on the oscillator, different answers will differ by a constant multiplier. This is a

marginally stable system and will oscillate without input with the response of the form

h{k] = 10™%sin(0.27k)

This is a discrete sinusoid with 10 samples | cycle each. Sample is separated by 1075 second. Hence the duration
(period) of a cycle is 10 x 1075 = 1074 and the frequency of oscillator is 10* Hz or 10 kHz as desired.

The controller canonical form of realization is shown in Fig. S12.5-4. Note that the multiplier 107° is not
important in this realization, and hence is not shown in the figure. Also, there is no input to an oscillator.
Hence no explicit input terminal is shown.

—=— Y (k]

A /2 /2

.‘nég | [ (S—

Figure S12.5-4

12.5-5 (a) If g.(t) is the unit step response of the system H,(s) in Fig. 12.8b. Then g,(kT) should be the response of
H]|z] to the input u[k]. We can use this criterion to design a digital filter to realize a given Hqa(s). Consider the
filter

w{.‘
S+ we

Ha(s) =

The unit step respounse gq(t) is given by:
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-1 Ha(s) _ -1 we —r-! l_ L
ga(l)—ﬁ { S J =C [S(S"'Wc)] =L [S S+qu:]

Therefore ga(t) = (1 — ™" )u(t) ‘

and ga(kT) = (1 — e~ *T)ulk

Also, g[k]. the response of H|[z] to u[k] is given by:

olk] = 27 { = H

z—1

Since g[k] = ga(kT).

1 Hll = Z((1 - M ulk]

: z z(1 — e7T)
z—1 z—ewT = (3 -1)(z—e-wT)

1—e~weT

Therefore Hz] = p———

Using the above argument, we can generalize:

s =12z [c-l(—-—H“s(s))]
t=kT

(b) 3
For Ho(s) = —=
n.( ) S+ we
the unit step invariance method gives
1—-e T
H(z] = Pa——

(c) For an integrator, Hq(s) = 1/s, and L™'[H,)/s = tu(t), and

Hlz = 221 2pTufh)) = ——
z z—1
and r
jwT
H[e™ ] = -7
Hence,
H[e™T)| = z - - i<k
V/(coswT — 1)2+sin2wT’ |v/2(1 - coswT)|  2|sin*F|

The ideal integrator amplitude response is

. 1
[Ho(jw)| = =
w

Observe that this amplitude response is identical to that found by the impulse invariance method in Prob.
12.5-3. Hence, this amplitude response and the ideal integrator amplitude response are the same as those in Fig.
S12.5-3. The only difference between the answers obtained by these methods is that the phase response of the
step invariance response differs from that of the impulse invariance method by a constant %.

12.5-6 (a) For a differentiator

Hu(s)=s

The unit ramp response r(t) is given by

-1 a1
r(t) = LT'F(s)Ha(s) = L 1;2-(5) = u(t)
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Now we must design H[z] such that its response to input AT ulk] is u[k]. that is

Z[ulk]] = H[z]Z[kTulk]]

z Tz

;—:—]T:(—z-:—l—)z-H[Z] or H[Z]:

(b) For an integrator
H(s) = .1.
s

The unit ramp response r(t) is given by
a1 Y1 1,
7(t) =L (5—2 -s- = jz‘t ‘U(t)

Now we design H|[z] such that its response to kTu[k] is $k*T?u[k], that is
z {2k27%k)) = 3
5 ulk] ¢ = H[z]Z{kTulk]}
or

T?2(z2+1)  T:
2(z-1)3 ~ (z-1)2

H|[z]

Hence

12.5-7
k;

For  Ha(s) = 0 Hlz] = TZ kuz

-\ z—eMT

If X\i = @i + jBi, then eMT = ¢*Te?%T. When A; is in LHP, a; < 0 and |e*7| = ¢*7 < 1. Hence if ); is in
LHP, the corresponding pole of H|z] is within the unit circle. Clearly if H,(s) is stable, the corresponding H|[z|
is also stable.

12.6-1 (a) For an ideal differentiator Ho(s) = s, and

the bilinear transformation is s — % :;i Therefore,
22-1
d H[z] = =——
A =77

(b) Realization of this filter is shown in Fig. S12.6-1a. The
amplitude response of this filter is given by

N

and |H[e™T]] T

2(1 — coswT)
. 2(1 + coswT)
wT

tan —
2

e T _1 l

Nl N

(c)For ideal differentiator, H(s) = s, and |H(jw)| = w. Figure S12.6-1b shows the amplitude response of the
ideal and the bilinear differentiators.
(d) For audio signals the highest significant frequency is 20 kHz. Hence

1 1

T= 7%, = 3(z0000)

= 25us
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Figure S12.6-1

12.6-2 (a) For an ideal integrator, H(s) = 1/s, and the use bilinear transformation yields

and |H[™T]| = % |

=Tl
2

For an ideal integrator, H(s) = 1/s and |H (jw)| = 1/w. Figure S12.6-2 shows the amplitude response of the
ideal and the bilinear integrators.
(d) For audio signals the highest significant frequency is 20 kHz. Hence

A
a3 T/(2 2>

M (- D)

Figure S12.6-2

12.6-3 In this case, Gp = -2, G, = —11, w, = 1007w, w, = 200r and T = 1/500. Using Eq. (12.64a), we
compute the prewarped frequencies as wp’' = 0.3249, w," = 0.7265. Using Eq. (7.39), we obtain n = 1.8556,
which is rounded up to n = 2. To oversatisfy G, requirement (or to satisfy passband specs exactly), we use
Eq. (7.40) to obtain w.’ = 0.3938. Using Table 7.1, we obtain the normalized transfer function, then substitute
s/wc' for s to obtain the desired analog transfer function as

1 B 0.1551
(5m)? + V2(5555) +1 5% +0.5569s + 0.1551

Now using the bilinear transformation yields the desired digital transfer function as

Ho(s) =

0.09057(z + 1)?
—0.9871z + 0.3493

H[z] = Ha(*"”:_:} =
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12.6-4 In this case, 7 = 2. G, = —11, wp = 1007, w, = 2007 and T = 1/500. Using Eq. (12.64a), we compute
the prewarped frequencies as wp’ = 0.3249, w,’ = 0.7265. Using Eq. (7.49b), we obtain n = 1.5056. which is
rounded up to n = 2. For n = 2 and 7 = 2, we obtain from Table 7.4

Kn

H() = F758038s 708231

where, from Eq. (7.53)
a0 0.8230

= V1o /™  1.2589

= 0.6537

n

We now substitute s/wp’ for s to obtain the desired analog transfer function as

Kn 0.069

(5o525)2 + 0.8038(55g5) + 0.8230 52 + 0.2612s + 0.0869

Ho(s) =

Now using the bilinear transformation yields the desired digital transfer function as

0.0512(z + 1)
22 — 1.355z + 0.6125

H(s) = Ha(s)l o2y =

12.6-5 In this case, ép = -2,G, = —10, wp = 150w, wy = 100w and T = 1/400. Using Eq. (12.64a), we
compute the prewarped frequencies as wp’ = 0.6682, w,’ = 0.4142. Using Eq. (7.39), we obtain n = 2.8584.
which is rounded up to n = 3. We use Eq. (7.40) to obtain w.’ = 1.1185. Using Table 7.1, we obtain the
normalized transfer function, then substitute s/w.’ for s to obtain the desired analog transfer function as

_ 1 _ 1.3993
T ()it 2ArEs)it2AiE) + 1 s+ 2.236952 + 2.5019s + 1.3991

Ha(s)

Now use of the transformation in Eq. (12.66) yields the desired digital transfer function as

0.3203(z — 1)3
23 — 0.910222 + 0.55452z + 0.0979

H[Z] = Ha(3)|o.6682(:41) =
z—1

12.6-6 In this case. 7 = 2, G, = —10, wy = 1007, wp = 1507 and T = 1/400. Using Eq. (12.64a), we compute
the prewarped frequencies as w,’ = 0.4142, w,’ = 0.6682. Using Eq. (7.49b), we obtain n = 1.9323, which is
rounded up to n = 2. For n = 2 and 7 = 2, we obtain from Table 7.4

K,
M) = 77580385 + 08231
where, from Eq. (7.53)
oo 00 _ 08230 oo

V107720 ~ 1.2589

We now substitute wp’/s for s to obtain the desired analog transfer function as

0.6537 0.7943s2

Ha(s) = (TB582)2 1 (.8038(2582) 1 0.8230 s + 0.65265 + 0.5424

Now using the bilinear transformation yields the desired digital transfer function as

0.3619(z — 1)2
22 — 0.4169z + 0.4054

H[z) = Ha(s)l sz =

12.6-7 In this case, Gp = -2, G, = —12, wp, = 120, wp, = 300, ws, = 45, ws, = 450 and T = 1/1000.
Using Eq. (12.64a), we compute the prewarped frequencies as wp,’ = 0.0601, wp,’ = 0.1511, ws,” = 0.0225 and
ws,” = 0.2289. Using Eq. (7.39), we obtain n = 2.2113, which is rounded up to n = 3. We now compute the
lowpass prototype transfer function for ép =-2,G,=-12,n =2, wp = 1. We use Eq. (7.56) to compute
ws = 2.0778. Now use of Eq. (7.41) yields w.' = 1.3253. Using Table 7.1, we obtain the normalized transfer
function, then substitute s/w.’ for s to obtain the prototype analog transfer function as

1 2.3278

(1353)° + 2(13553)°) + 2(355s3) + 1 3 + 2650652 + 3.51285 + 2.3278

Hp(s) =

To use the transformation in Eq. (12.67a), we use Eq. (12.68) to compute

11.086(z% — 1.964z + 1)
22 -1

a=-09820, b=00902, Typlz]=
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To obtain the desired digital transfer function, we use the transformation

_ _ 0.001348(z% — 1)3
Hz) = H"(s)'s=ﬂ§$‘—f,‘+fﬂ‘ﬁl T 36— 5.42625 + 12.372z% — 151623 + 10.5422 — 3.945z + 0.6205

12.6-8 In this case, 7 = 2, G, = —12. wp, = 120, wpy, = 300, ws; = 45, w,, = 450 and T = 1/1000. Using
Eq. (12.64a), we compute the prewarped frequencies as wp,” = 0.0601, wy,” = 0.1511, w,,’ = 0.0225 and w,,’ =
0.2289. We also find w, = 2.0778 from Eq. (7.56). Using Eq. (7.49a), we obtain n = 1.6905, which is rounded
up to n = 2. We now compute the lowpass prototype transfer function for # = 2, G, = —12, n = 2, wp = 1.
Using Table 7.4, we obtain the normalized analog transfer function as

0.6538
s2 + 0.8038s + 0.8231

Note that H(s) is also the prototype transfer function Hp(s) because in the Chebyshev filters, w, = 1. To use
the transformation in Eq. (12.67a), we use Eq. (12.68) to compute

H(s) =

11.086(2% — 1.964z + 1)
22 -1

To obtain the desired digital transfer function, we use the transformation

a=-09820, b=00902, Teplz]=

0.004933(z2 — 1)2
Hlz] = Ho(o)l, _nosec? iossett) = 77377555 1 541522 = 3.5082 + 0.8656

12.6-9 In this case, 7 = 1, C, = —22, wp, = 40, wp, = 195, ws, = 80, wy, = 120 and T = 1/400. Using Eq.
(12.64a), we compute the prewarped frequencies as wp,” = 0.05, wp,’ = 0.2487, w,,’ = 0.1003 and w,,” = 0.1511.
We also find w, = 2.8878 from Eq. (7.56). Using Eq. (7.49a), we obtain n = 2.2634, which is rounded up to

n = 3. We now compute the lowpass prototype transfer function for 7 = 1, G, = -22,n =3, wp = 1. Using
Table 7.4, we obtain the normalized analog transfer function as
0.4913
H(s) =

s3 +0.9883s2 + 1.238s + 0.4913

Note that H(s) is also the prototype transfer function H,(s) because in the Chebyshev filters, wp, = 1. To use
the transformation in Eq. (12.67a), we use Eq. (12.68) to compute

0.1962(z% — 1)
22 — 0.9754z + 1

To obtain the desired digital transfer function, we use the transformation

=-0.9754, b=0.1962, Teplz] =

0.63(2% — 5.85225 + 14.4162* — 19.1272% + 14.4162% — 5.852z + 1)

Hls) = HP(S)h%%;j—;;’T T T 25 -4.998:5 + 10.52% — 11.8623 + 7.56522 — 2.5662 + 0.3575
12.6-10 1 K+
z - s
Because S-Kz-i-l = Z_K—s
where s = ¢ + jw. Hence
_K+4+o+jw _ [(K+0)2+w?
Sl i Vg

It is clear that: if o < 0= |z| < 1,0 > 0= |z| >1,and 0 =0 => |2| = L.
Hence the LHP and the RHP in the s-plane map into inside and outside, respectively, of the unit circle in the
z-plane and the jw-axis (Imaginary axis) in the s-plane maps into the unit circle in z-plane.
12.7-1 Similar to the example in the text.
12.7-2 .
2" +1
zﬂ

=142z""

H[z] =
The impulse response, the inverse z-transform of H|z], is given by
hlk] = 8[k] + 6k — n]

Fig. S12.7-2 shows the canonical realization of this filter.
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. F“ 2T/n

N delays

Figure S12.7-2

The frequency response is given by

HY =140
= e—%u(eltiﬂ + e-%‘—))

= 2.~ cos( )

The amplitude and phase response are illustrated in Fig. S12.7-2c and S12. 7 2d.
In this case, n = 14 and No = 15, Therefore F, =200 x 10° and T = # =5x107°

We use the impulse response in Eq. (12.83), delay it by (No — 1)/2 = 7 and then truncate it by a 15-point
window (over the interval 0 < k < 14) to make it causal. For the rectangular window,

hrlk] = %sinc (-’5(—'5{-—72) 0<k<14

These values are tabulated in the Table below.
(b) We multiply the values of from the above equation by the Hamming window function

wH[k] = 0.54 — 0.46 cos ( 2rk

nk
=0.54 - 0. s{— <k<
No—l) 0.54 046coq(7) 0<k<14

The following Table also shows hg|k] corresponding to the Hamming window.
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Rectangular Window Hamming Window
k hr(k] w k] hrlk]
0 -1/7r 0.08 -0.0114/7
1 0 0.1255 0
2 1/57 02532 0.0506/n
3 0 0.4376 0
4 -1/3rm 0.6424 —-0.2141/n
5 0 0.8268 0
6 1/n 0.9544 0.9544/~
7 1/2 1
8 1/m 0.9544 0.9544/w
9 0 0.8268 0
10 -1/3n 0.6424 -0.2141 /=
11 0 0.4376 0
12 1/5n 0.2532 0.0506/m
13 0 0.1255 0
14 -1/Tn 0.08 —0.0114/7

and
14
H[z] = Z hlk)z~*
k=0

12.8-2 In this case the highest frequency wxn = 1000 rad/s. Hence the maximum value of T is: Tmax = 7/1000. Let us
choose T = 1/500 = 2 ms. Using Eq. (12.81b), we obtain

/T )
hik] = l/ Ha(jw)e™* T duw
2w )T

Because of even symmetry of H,(jw) (see Prob. 4.1-1)

2 5007
hlk) = —— / H,(jw) cos kTw dw
10007 [,
; 1000 ) 1000
= — cos kTw dw = — sin kTw
5007 Jg00 Tk 800
_ sin2k —sin1.6k
- 7k

To make this response causal, we now delay this response by (No — 1)/2 = 5 and to obtain hg[k], we truncate
it beyond 0 < k < 10 to obtain

sin2(k — 5) — sin1.6(k — 5)
m(k —5)

hlk] = 0<k<10

and

10
H[z] = Zh[k]z'k

k=0

12.8-3 (a) The impulse response found in Example 12.11 is hlk] = -é— Si“,ﬂ’:"zz . We delay this response by (No—1)/2 = 2.5
units and then truncate it with the fifth-order von Han window. The delayed response is

_ 1sin|[(k - 2.5)x/2] 2k
= T ()
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The fifth-order von Hann window function is
wy (k] =0.5 [l — cos %:I 0<k<5

Hence von Hann window filter coefficients h.[k] are:

L 1sin[(k - 2.5)7/2] 27k .
hv[k]—zm(l—'COhT) OSIxS-)

Rectangular Window von Hann Window
k h [k} wy k] hy(k]

0 —0.09003 0 0

1 0.15 0.3455 0.05182

2 0.4501 0.9045 0.4071

3 0.4501 0.9045 0.4071

4 0.15 0.3455 0.05182

5 —0.09003 0 0

and hence:

5
H[e?*T] =) " hyfkle KT = e7729Tw [0.8142 cos ﬁ,} + 0.1036 cos 3“;T]
k=0

(b) For examnple 12.12 (differentiator)

__cos(k - 5)m
hlk] = & —5/T and
cos(k — 5)w 2km
olk] = 27 [ 1 — cos = <k<
hylk] 50k —5)T (1 cos 10) 0<k<10
Rectangular Window von Hann Window
k hR[k] "Un[k] hy [k]
0 1/5T 0 0
1 -1/4T 0.0955 0.0239/T
2 1/3T 0.3455 0.115/T
3 -1/2T 0.6545 0.327/T
4 1/T 0.9045 0.9/T
5 0 1 0
6 -1/T 0.9045 -09/T
7 1/2T 0.6545 0.327/T
8 -1/3T 0.3455 -0.115/T
9 1/4T 0.0955 0.0239/T
10 -1/5T 0 0

and

174



10
Ho[eT] =D ho[k]e?*T™

k=0
= ¢ I5Tw [%0.9 sin Tw — 0.327 sin 2Tw + 0.115 sin 3Tw — 0.0239 sin 4Tw]

12.8-4

Ho(jw)=1e7"?* = —j  0<w<n/T

=12 = 0>w>-n/T

and from Eq. 912.81b)
x/T

T

=§ o

h(k) Ha(jw)e’*T dw

/T

T 0 ) /T )
— [/ §e?“*T dw +/ —jedwkT dw]
21 \Jmsr o

1 0 k even
— (1 —cosmk) =
Tk 2 kodd

We delay this response by (Np — 1)/2 = 7 and then truncate it by a 15-point window to make it causal. For the
rectangular window, we have

0
1—cosm(k—7) k odd
halk] = n(k—17) ) - k ever
7k~ 1) .
Hence
s & . .
Hall=2 > —=*
k=0,2.4,
and
14 14
jwTy _2 1 ke _ 2 _—jtuT 1 (k=TT
Hele’™ ) =2 > k-—7° . k-7
£=0,2,4,6, - k=0,2,4,6, -
=2 it [(e-—ij _ Ty 4 _l_(e-j:}wT BT | _l_(e—jSNT — Ty 4 _l_(e—j'fuT _ ejm‘r)]
T 3 5 7
=——-:4—J-e‘j7‘”7 [sin wT + 1 sin3wT + 1 sin 5wT + ! sin 7wT]
T 3 5 7
Therefore

LHR[e™T) = —n/2 - TwT w>0
=7/2-TwT w<0

and

|Hp[e?T)| = % [sin WT + % sin3wT + é sin5wT + % sin 7wT]

Also the Hamming window function is

wy k] = 0.54 — 0.46 cos (—2{%)
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12.8-5

The corresponding Hamming filter transfer function is

_ 2 1 Tk -k
Hylz] = p Z 7 (0.54 - 0.46c’os T)z

=0,2,4
and
Hy[e*T) = ; e~ ™T Z (0 54 — 0.46 cos Tk)e_j(k'”“ﬂ'
k=0,2,4,-
=- je‘7‘“T(1.2152 sinwT + 0.2726 sin 3wT + 0.0644 sin 5wT + 0.00144 sin 7wT)
Therefore

|Hr[e“T]| = [1.2152sinwT + 0.2726 sin 3wT + 0.0644sin 5wT + 0.00144 sin 7w T

) -7/2—-TwT w>0
(HyleT] =
w/2-TwT w<0

In this case Npo = n+ 1 = 11. Hence, wp = 3’1' Moreover, Hy(jw) = jw. We multiply this spectrum by

=i NG T (to accomplish the delay of h[k]) and then take 11 uniform samples at the intervals of wo. Hence,
the samples are

. Ng—1
H, = jrwoe™ w0l = jr l—e—] iy r=0,1,2 34,5
and because of conjugate symmetry

107 (11—r)T
H.=Hp_, =—j(11 - r)— I r=6,7,8,9, 10

Thus, the 11 spectral samples are

0 j0.5712e 772856 j1.1424¢77%712  j1.7136¢ 78568 ;2.2848e 711424 ;2 856¢ 91428

T 1 T b T ) T ? T 2
—j2.856e71428  _j2 2848711424 _ 1 713673568 _;1.1424¢7%7'2  _;0.5712¢72:856
T ' T ’ T ’ T ’ T

The IDFT of these samples is
hlk] = z:HeJ"'ﬂ k=0,1,2 ---10

We may use IFFT to compute these values as
—-0.2885 0.3140 -0.3779 0.5282 -1.0137 0 1.0137 -0.5282 0.3779 -—-0.3140 0.2885
T ' T ° T ° T ° T ' T T ' T T ' T
Compare these values with those obtained in Example 12.11. Although the two sets are different, they are
comparable.




Chapter 13

13.1-1 (a)
y+10y+2y = f
1=y and zo=y=11=>>2Z2=7Yy

Choose:

L1 =2

&2 = —2z; — 1022 + f

-1 )

ji+2e4y+logy=f

In matrix form we get:

(b)

Let us choose: z; =y and r2=gy=1a

T =2
hence:
g = —2e"try — logz1 + f

It is easy to see that this set is nonlinear.

(c)
i+ o1(y)y+ o20v)y=f

Let z3=y and z;=7. Then

T = T2
&2 = —¢1(r1)T2 — P2(z1)21 + f

"Also in this case we are dealing with a nonlinear set, since ¢2(z1) and ¢1(z1) are not constants.

13.2-1 Writing the loop equations we get:

Figure S13.2-1
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f—IL—i‘z

f=x1+2i+3i2 where ig:T—m
and i = [ﬂ
2
Also we have: l‘(‘l St N -
2 2
Therefore Tr=f-x1—i2— 2z, =31 —Z2+ f (1)
We can also write:
i n _affmT1 -2 3, 3 3.
T2 =3i2 =3 [—5— —12] = :Z'f— 371~ 5%2 = 312
Hence g:&z = —%Il — 325+ gf
. 3 6 3
°r fmogmogmtsS (2)

Substituting equation (2) in equation (1) we obtain:

. 3 6 3 12 6 2
Ty = -=3r1+ f - [—51‘1 — 52 + gf] =-Fn + 572 + gf

MR

13.2-2 In the 1st loop, the current i; can be computed as:

2 » NN
N >4 +
iy - . - <

e 1 K‘Jr_-_f {% ySEY :{.5%} 1":’. . J

Figure S13.2-2

Hence the state equations are:

i

|0

ol

A ad 4

YV

1. .
f= —3-1,1+1:1 =11 = 3(f — 1)
We also have: (using node equation)

%1‘:1 =-2r1 —x2— 321+ 3f = —5z1 — 22+ 3f

Hence £ = —10z; — 2z2 + 6f ' (1)
Writing the equations in the rightmost loop we get:
T1=z2+%2 and I2==zx;— T2 (2)

Hence from (1) and (2) the state equations are found as:

:i‘l -10 -2 x) 6
T2 1 1] |z 0
The output equation is: y = &2 = 71 — z2

z1
or y=1|1 —1][ ]
z2
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Figure S13.2-3

respectively.
Writing the loop equations we get:

1,.
fi=x1 4+ 5[1‘1 — z2)

Here we use the fact that: £, = 7; and 2 = ip.

1. 1.
f2 = —5.7)2 — T2+ g['tl - -)72]

And thus: T1=—-5z1+x2+5f1
Tog=—-2r1—2r2+2f1—2f;

Hence the state equations are

L GG S

13.2-4 The loop equations yield:

Figure S13.2-4

with i = Ig and 11 =11+ 12 =21 + T2
f=2t14+z21+21 =221+ 282+ x1 + &) = 31 + &1 + 222

f=2i1+ 32+ 22 =221+ 282+ 22+ 12 =271 + 22+ 322

The last equation gives:

U TIOIE WU
2= 31 32-3

Substituting Z2 in the equation (1) we get:

. 5 2 5
1= -3 + 3%2 + §f

From (3) and (4) the state equations are obtained as:

%1 _ -3 3 z1 3
R I

And the output equations are: y; = r; and

13.2-3 Let’s choose the voltage across the capacitor and the current through the inductor as state variables =1 and a2,

)

(2)

©)

(4)



y2 =2 =1Iy = 27 1'r +lf
y2 2 =uI2 = 3.,1 3.,2 3

13.2-5
X,
v /
—A .
f 2% !
%
v -
Figure S13.2-5
We have:

Multiplying both sides of this equations by 2, we get:

211+2.i1=f—11+f—j;1

or 31 =-3zi+f+f
Hence T = —z1 + g + é
Thus the only state equation is:
o i
I =—-11+ 3 + 3

The output equation is: y = —z1 + f.
Note that although there are two capacitors, there is only one independent capacitor voltage, because the two
capacitors form a loop with the voltage source. In such a case the state equation contains the terms f as well
as f. Similar situation exists when inductors along with current source(s) for a cnt set.

13.2-6 Let us choose 1, z2 and z3 as the outputs of the subsystem shown in the figure:

Fs) 1 X Iy _Y(s)
wl| §+2 |z S+ | A&, -

!
X S+

Figure S13.2-6
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From the block diagram we obtain:

5z9 = &1 + 10z, = i, = —10x, + 5z2

L1 =I3+ I3 = I3=1T1— I3
w==ITo+ 29 => T2 = w — 2I2

Iy = —-2z2—x3+ f

From (1), (2) and (3) the state equations can be written as:

I -10 5 0 T
o= 0 -2 -1 z2 | +
I3 1 0 -1 T3
And the output equation is:
z1

y=z1=[1 0 0] |z

z3
13.2-7 From Fig. P13.2-7, it is easy to write the state equations as:
;i.‘]_ = /\11‘1
Iz = Aex2+ f1
T3 = A3z3 + f2
g4 = AaZa + f2
or
z1 At 0 0 O z1 0
T2 0 X O 0 2 1
= +
T3 0 0 X3 O 3 0
T4 0 0 0 X T4 0
The output equation is:
Y1 =121+ 22 7 1100
=
Y2 = T2 + I3 Y2 0110
13.2-8 364 10
s +
H(s) = 59—————
O =T

Controller canonical form:

We can write the state and output equations straightforward from the transfer function H(s).

Thus we get:

- O O

fi
f2

(1)
(2)

(3)



Figure S13.2-8a:observer canonical

Observer canonical form: Iu this case the block diagram can be drawn as shown in Fig. $6.10a.

hence: 1 = —-Tz14+x2+ 3f
T9 = —12x; + 10f

or

The output equation is:

The cascade form:

H(s) = 3s+10 _(3s+10)( 1 )
VTS24 75412 \ s+ 4 s+3

Hence we can write:

> 2 ;
= St+4 <)
F(?) | 2| 38+10 | A1 Y(_S) r‘_s_),_ % \

. S+3 SH4 ,
- S+4| =<,

Figure S13.2-8b: cascade and parallel

1 + 4xr; = 312 + 10z Iy = —4z1 — 922 + 1072+ 3f
e

U

y=z1=[1 0] I:'le'

T2

Zz=-3z2 + f

and

Parallel form:

2 N 1
s+4 s+3

f1=—4z1+ f 1 -4 0 T 1
ad M A I IR T
T2 =-3z1+ f T2 0 -3 T2 1

And the output equation is:

H(s) =

Iy
y=2z1+z2=[2 1]
z2
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13.2-9 (a)

H(s) = .45 - _ 4s
(s+1)(s+2)2 s3+5s2+8s+4
Controller canonical form:
1 0 1 0 z1 0
2| =1 0 0 1 z2 | + |0 f
iy -4 -8 —5] |3 1

And

y=[0 4 0]z

Observer canonical form:

Fig. S13.2-9a: observer canonical

In this case:

Ly = —5r1 + 22

Zo = —8z1+z3+4f

I3 = —I)
I -5 10 z1 0
2 =]1-8 0 1 z2 |+ |4 f
L3 -4 0 0 z3 0
And:
T1

y=x1=[1 0 0] Z2

I3

mo-(:5) (%) ()

Cascade form:

From the block diagram we have:

Fes)

s

S+

c4

Z;

S+2

As

St+2

Figure S13.:2-9a: cascade
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£y = =261+ x2 Ty = =211 + 12

T2+ 212 =423 = { 17 = —4x3 — 222 + 4f
zy3=-x3+ f ‘ T3 =—x3+ f
I -2 1 0 T 0
I2 | = 0 -2 —4 T2 | + | 4] f
Z3 0 0 -1 T3 1
Aund the output:
I

z3
Parallel form:
—4 4 8
H(s) = s+1 + s+2 + (s +2)2
i N Y
~s) - %] o >
—> A +
] NG __'—-— > 8
z Sr2 15 t2) z,
Figure S13.2-9a: parallel
We have:
Ty =~-11+ f
T2 = —2r2+x3
T3 = -2x3+ f
1 -1 0 0 T 1
2| = 0 -2 1 z2 | + |0 f
i3 0 0 -2 |zs 1
And the output is:
T

y=—4;21+8:1:2+41'3=[—4 8 4] T2
z3
(b)
SS+ 724125 2+ Ts2+12s
(s+1)3(s+2)  s4+553+9s2+Ts+2

H(s) =

Controller canonical form:
Straightforward from H(s), we have:

1':1 0 1 0 0 I 0
L2 0 0 1 0 T2 0
z3 0 0 0 1 T3 0
T4 -2 -7 -9 -5 T4 1



And the output is:

y=10

Observer canonical form:

12 7

We can write the state equation directly from H(s) as in the first canonical form.

T -5
2 -9
I3 B -7
T4 -2

And

1

o o ©

0 0
10
0 1
0 0

y=zr1=[1 0 0 0]

Cascade form:

s(s+3)(s+4) _

s+3

HE) = GG+ 10

-(

Cascade form: From the block diagram we obtain:

)

s+2

)

s+1

s+1

s+4
s+1

F(s) ) S

P

S+3

S+4

Y(s)

S+2 |2, | S+

X amn

Z3

oy

2,

S+

Figure S13.2-9b: cascade

T1 4+ x1 = T2+ 412

1= —-z1+4z2 — 22+ 223 — 224+ f

I2+x2=1T3+ 3T3 fog=—T2+3x3—23— 24+ f
==
T3 = —x3+ 4 z3=—z3— 24+ f
fa=—-2z4+ f ta=-2z4+ f
hence:
T1 -1 3 2 I 1
T2 0o -1 2 T2 1
I3 0 0 -1 z3 1
T4 0o o0 O T4 1
And
T
z2
y=z1=[1 0 0 0]
I3
Z4
Parallel form: we can rewrite H(s) as (after partial fraction expansion)
6 11 7 6
H(s) = -
(e) s+2 + s+1 + (s+1)2 (s+1)3
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1= -2+ f

I = —x2+ I3
Ty = —Ir3+ T4
tyg=—ry+f
L [ ¢}
S+2 | X, ?’\ Y(s)
Fes) I —Z
N 11 ~
S
1 | N A
7
SH [Ty, Lsel " L8t ] 2,

Figure $13.2-9b: parallel

From the block diagram, we have

r1 -2 0 0 0 I 1
I2 0 -2 1 0 T2 0
T3 0 0 -1 1 z3 0
I4 0 0 0 -1 T4 1
And the output can be written as:
y = 6z — 6x3 + Tr3 + 1124
or
Z1
2
y=[6 -6 7 11]
z3
T4
13.3-1
x = Ax + Bf
The solution of the state equation in the frequency domain is given by:
x(s) = ®(s)x(0) + ®(s)BF(s)
but in this case f(t) =0=> F(s) =0
hence: x(s) = ®(s)x(0) where ®(s) = (sI — A)™!
1 s 0 0 2
®(s) =(sI-A)” (sI-A)= -
0 s -1 -3

s =2
sI— A=

]=¢(3)=(31-A)“= [s+3
1 s+3 -1

2 1
s] s24+3s+2

-1 s
s§+3s+2 2 +39+42

543 2 s+3 2
®(s) [ 2+3s+2 s2+3s+2 ] [ (s+1)(s+2)  (s+1)(s+2) ]
s) = =

-1 .
G+ (s+2) (8+1)9(s+2)
And hence: x(s) = ®(s)x(0)

2(s+3)+2 2348
[ (s+1)(s+2) :I [ (s+1)(s+2) ]
x(s) = = =
—243 $—=2
(sq—l)is+2)

(s+1)(s+2)
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And finally:

\ m(f)} B { (6™t — de 2 )u(t) ]
X0 = [rz(t) T xe]= (—3e~t + 4e™2)u(t)
13.3-2

x(s) = ®(5)x(0) + ®(s)BF(s) = ®(s)[x(0) + BF(s)]

5+5 6 . - AL 1 s —6
(GI“A)= 1 s arl (S)-—(S — ) —m 1 s+5

s -6
(s+3)(s+2) (s+3)(s+2)

1 3+5
GH3)(s+2) (s+3)(s+2)

And hence:

; -6 100
PE=yTer=y (s+3)(3+2).l [5 + 7108 ]
4

x(s) = ®(s) [x(0) + BF(s)] = [ \ s
G F)+D |

—34.02 , 39.03 10725
|: 2 t 513 s'!+1o’]

17.01 13.01 _ 0
s+2 s+3 S2+10%

hence: x(t) = £L71(x(s))

z1(t) —34.02¢~2 + 39.03¢ 73 — 0.01 cos 100t]
§) = = -2t -3t
[ ] [ 17.01e~% — 13.01e

z2(t)

13.3-3
x(s) = ®(s)[x(0) + BF(s)]

s+ 2

(sI-A)= [ .

+
N

0 B s+1
1] and ®(s) = (sI - A)~! (s+1)(5+2) [ s+ 2]
0
1
S+1

|

= 1
|iz.s+1iis+2)

And thus:

1
s-];-Z 0 % _ 3(s+2)
x(s) = 1 1 1] 1 _
Zs+1)z s+2) s+1 si s+1 N 3+2) s+1

Hence:
o C[m®] [ G-3eTu® ]
x(t) = L7 (x(s)) = [zz(f)] - [(% — %t 4 %e'zt)u(t)_



13.3-4
x(s) = ®(s)[x(0) + BF(s)]

(I A) s+1 —1] 4o - A 1 s+ 2 1
s1 — = an s) = - = ————
¥ [ 0 542 (5= (sI = A) (s+1>(s+2>[ 0 s+1]

1 1
(p(s) _ [s+1 (s+1)(s+2) }
0 1

s+2

¢ sm=1""=r ;
o ()_[6@)]:’ M‘H

wo= [, )¢

sl gy el 4y
and: x(0) + BF(s) = |: ? ] { ’
3 3

1 1 2041
x(s) = ®(s)[x(0) + BF(s)] = [ T GG } [ ; ]
0 1 3
$+2
33—2 312
And hence:
(t) (1+4e™t — 3e™)u(2)
)= co (s = | ] - [ ]
x(t) (x(s) [a:z(t) 3e " 2u(t)
13.3-5

Y(s) = Cx(s) + DF(s) = C®(s)x(0) + [C®(s)B + D|F(s)]

—a=|"" as() = (1A = b [
(sT - )—[ 0 ]an (s) =(sI-A) —(s+1)(s+2)[-—2 s+3]

S

s 1 1
(s+1)(s+2) (s+1)(s+2) 3
®(s) = [ e } and  BF(s) = [ ]
- S+ .
(s+1)(3+2) (s+1)(s+2) 1

Since D =0 == Y (s) = C®(s)[x(0) + BF(s)]
2+ 1 2a41
So  x(0)+ BF(s) = [ . ] = [ ; ]

and
2341
o we | (22 _ [ whts
(s)[x(0) + BF(s)] = | _, .3 | ey,
G+ GFD(s+2) 0 s(a+1)(s+2
6T
8 S
Y(s) = C®(s)[x(0) + BF(s)] = [0 1] [ —2(29+1 ]
—4s -2 -1 1 3
YO = GG+ s P iHl e
y(t) = L7 [y(s)] = (-1 - 2e™ + 3¢ *)u(?)
13.3-6

y(s) = Cx(s) + DF(s) = C®(s)x(0) + [C®(s)B + D]F(s)
= C{®(s)[x(0) + BF(s)]} + DF(s)
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s-+1 -1 - 1
] and®(s) = (sI - A)7' = 0——— l:

s24+25+2

s+1 1
(sI——A)=l: ]
1 s+1

-1 s+ 1

=1 s+1
——————

s+1 1
Sei2s+2 s~+25+2
9 +254+2 5°+25+2

0 2
BF(s) = [ ) ] and x(0) + BF(s) = I:il}

El

s+1 1
GFDIFL )2 +1 2
=1 s+1 s+1
L (s+1)%+1 (s+1)%+1 ]

Hence ®(s)[x(0) + BF(s)]

[ 2041 s+l 252 435+1
(s+1)2+1 sl(s+1)2+1] S((s+1)2+1]

- —2__ (412 B 5241
L G+DZ+1 " s[(s+1)%+1] S[(s+D)2+1]

Fe 2 2
Ca(s)[x(0) + BF(s)] = [1 1] ®(s)[x(0) + BF(s)] = [28 sJ{r(::'fl)12++31}Jr 1]

Also: DF(s) =%
Hence 2 2
35 +3s+2 1 4s° + 55+ 4
Y(s) = C®(s)[x(0) + BF(s)] + DF(s) = TGT 1) ts= BT
4s°+55+4 _C  As+B
s(s2+25+2) s s2+25+2

Using partial fractions and clearing fractions we get:

Y(s) =

Y(s)'—2+ 2541 2, (s+1) 1
T s (s+1)24+12 7 s (s+1)2+12 (s+1)2+12

and y(t) = C_l[Y(s)] = (242 tcost — et sint)u(t)

H(;)_( 1 )(3s+10)_ 35+ 10
T \s+3 s+4 ) s2+Ts+12

This is the same transfer function as in Prob. 13.2-8, where the cascade form state equations were found to be

R I ENE

13.3-7

T
And y=z1=[1 0]
. - T2
In this case
- A s+4 -1 dd(s) = (s1 A)'l 1 s+3 1 ]
S1— = an s) = (s1 — = e
0 s+3 (s+3)(s+4) | 0 s+4

1 1

[ s+4 S+3)(s+4) :|
1

0 54+3

Also in our case:

3
C=[1 0] and B=[] and D=0



Hence

L =173 3(s+3)+1 35410
&(s)B = s+4  (s+3)(s+9) | tere | _ | G
0 1. 1 1 1

s+3 43 $+3

_ 3s+10
T (s+3)(s+4)

3s+10
And Co(s)B = (1 0] [(s+3)(8+4)]

-

5+

3s+10 H(s)

H : CQ = — =
ence (s)B s2+Ts+12

13.3-8
H(s)=C®(s)B+D

in Prob. 13.3-5 we have found ®(s). And

S 1 3
o(s)B |—<5+1><s+2) (s+1>(s+2)] [1] [—(~+1)<s+2)}
S = =

l_ —2 5+3 0 —2
(s+1)(s+2) (s+1)(s+2) (s+1)(s+2)
Hence 9
C¢(S)B = [1 O] Q(?)B = -(m and since D=0
-2
= )] = ———
H(s) = Co(s)B s2+3s+2
13.3-9 From Prob. 13.3-6,
s41 1 1
GInZri Groz+ | [O [CESLES
(I’(S)B = =1 s+1 = s+1
GFDIF1  (+1)2+1 1 (q_+1L)f-ﬁ
And:
1
s+1)2+1
Ce(s)B=(1 1]= [( t:)1+ } - (:-:'11):'_:1 - (s-::—)22+ 1
(s+1)4+1
And
s+ 2 s2+3s+4
H(s.) C%(s)B+D (s+1)2+l+ s2+2s5+2
13.3-10 In this case:
r-a=|" 7 4 )= (s1-A)yt=—L_[*T2!
S1— = an s)=1(sl— = —
1 s+2 ’ (s+12| -1 s

s+2 1
_ |’ (s+1) (.s+1)! }
- -1
(+1)2 (.!-:1)’

And:

-1 3

G2 (a+1)?

1 s+2
[0 1} [(-s+1)! (s+1)!]

10

s+2 1
+1 -+1!
@(s)B:[(’ S ; -
DT Gr?
2
1

1 1 s+2
1)2 (s+1
Co(s)B = |4 [(’t’ _1) ]
11 G+D)? DT
2s+1 S
(s+1) (s+1)2
and H(s)=C®(s)B+D= | &8 #47

1 1
s+1 s+1
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13.3-11 In the time domain. the solution x(t) is given by:
t
x(t) = ePx(0) + / eAUTIBE(r) dr
0
x(t) = ex(0) + A « Bf(t)
where:
A= LTH(sT - A)TY = £L7H(®(s))

From Prob. 13.3-1 we have found:

5+3 2 2 _ 1 2 _ 2

o(s) = (s+D)(s+2)  (s+D(+2) | | w41 s¥2 s+l s+2
" -1 s ) 41 -1, 2

(s+1)(s+2) (s+1)(s+2) s+1 s+2 s+1 s+2

A= L7 (@(s)) = [ o

—eTt 4 2¢7 %

2e~t— 72 2e7t_ 2%
—ef+te

femt = 2e=2 4 Demt — 2o~ 6ot — 42
eAtx(0) = = R
—2e "t 42—t 4 27 —3¢7t + 407

0

Also: Bf(t) = x0=0
1
(6e™t — 4e™)u(t)
hence: x(t) = [ ]
(—3e™t + de72)u(t)

which is the same thing as in Prob. 13.3-1.
13.3-12 From Prob. 13.3-2,

1 - 1 3 2

] =6 =2 4 3 —6 , 6
q)() ‘:(s+2)(s+3) (s+2)(s+3)} {S-PZ s+3  s+2 s+3:I
$) = =
s+5
G+2)(5+3)  (3+2)(3+3) s+3

1
5+2 ~ 343 s+2  s+3

i A (o) [-2e-2‘+3e-3‘ —6e-2‘+6e-3‘]
ence: e =L (P(s)) =

e—2t _ e-—3t 36—2t _ 26—3!
And:
Aty(0) [—me-?‘ +15e73 — 24e72 + 24e'3’] —34e~2% 4 393-3‘]
e x(0) = = ‘
52 — 5e~3t 4 12¢7% — g~ [ 17e™2 — 1373
1 sin 100¢
Also: Bf(t) = sin 100t =
: 0 0
At r—2e~2t x sin 100t + 3e~3¢ * sin 100¢
And e xBf(t) =
| 7%t xsin 100t — e 3t * sin 100¢
~ '_2!;;;' + 2colso%,00t + 3?.(-].;! _ 3c01301600t]
P 00 e—3t o0s 100
[+ — s — oot oo
" —0.02e~2t + 0.03¢ 3¢ — 0.01 cos 100:}
1 0.01e~2t — 0.01e~%
Hence:
Ar Ac —34.02¢ ™%t + 39¢~3t + 0.01 cos 100t
x(t) = e [x(0)] + e = Bf(t) = s
17.01e% — 13.0e~%
Hence
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(t) = e™x(0) + e™ « Bf {—34'026_” +39.03¢ 7% + 0.01 cos 100t]
X =ec¢ X +ec * =

17.01e72t — 13.01e~3¢

This is the same result as in Prob. 13.3-2.

13.3-13 From Prob. 13.3-3,
1
d)(g) - [ $+2 ] _ { s+2 ]
o1 1 1 1 1
(s+1)(5+2) 541 S¥L T S¥2 s+1

1 u(t)
Also: Bf(t) = !:0] u(t) = [ ]

™2 wu(t) ] [ (1 — e )u(t) ]

And AaBry) = |
B g — e ) T e 31— e

And hence:

r o 1 _1l,-2t
x(t) = e®x(0) + ¢ x BE(t) _t] + [ 22 ]

13.3-14 From Prob. 13.3-4,

1 1 1 1 1 1
®(s) = [s+1 G+ (s+2) [3-4-1 s+l s+2]
s 1

0 42 4

e=t et _ g2t
Hence: At = £7H(2(s)) = [ ]
0 e—2t

—t - -2 - -2
At e e”t—e%7m11 et — 2%
€ x(O) = =
0 e~ 2 2e2

Bi(0) = [1 1] [u(t)] _ [u(t) + 6(t)]
o 1) Lsw] 8(t)
e tru(t) +e Tt xb(t) +e Tt b(t) —e 6(t)]

e” 2« 6(t)
(l—et)4et+et— e—zz] [1 tet _e—2t}

And M« Bf(t) = [

-2t

e -2t

e

A« Bf(t) = [
As A et -2 +14+e P -2
And hence: x(t) =e" x(0) + ™ * Bf(t) = gt ”
e +e”
14+4e7t -3¢~
= 36—2t

13.3-15 From Prob. 13.3-5,

3 1 -1 2 1 1
GG GIGETD sTitIE A s
B(s) = = :

= s+3
(s+1)(s+2)  (s+1)(s+2)
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And y(t) is given by: y(t) = Cle™x(0) + e B * f(t)] + DE(t)

—eTt4 2 et
where: At = L7 (@(s)) = ,
—2e7t+ 27 20Tt

2 —2e7t 4 4o
And: eAtx(O) = M [ jl = [ ]
0 —2e7t + 47
1 —e "t 4272
0 —2e7t 4 2e7%

AL BE(L) = [ —e b4+ 27 } vult) = [ —e"txult) Fe H xult) ]

—2¢7t 4272 —2etxu(t) + 272 x u(t)
o=t _ o2t
N [—1 +2e7t - e"gt]

Since D =0 => y(t) = C[eA*x(0) + eA* + Bf(t)]

—2e7t +4e e"t—e7?
And: eAx(0) + e« Bf(t) = [ ] + [ ]

—de7t + 47 —14+2t—e™2
[ —e t 4 3e72 ]
T lm1-2emt 4 37
And hence:
_e—t + 38—2t

y(t)=[0 1]+ [ ] =(=1-2e"" + 3¢ *)u(t)

1—2et+3e"2

13.3-16
y(t) = Cle™x(0) + e™ » Bf(t)] + DE(t)

From Prob. 13.3-6 we have obtained:

s+;. 12
s+1 1 +1 1
¢(8)=|:(5 )i+ (s )+}

-1 s+41
(s+1)2+1  (s+1)%+1

e“tcost e tsint
Hence: e = L71(®(s) = [ ]

—e~tsint e fcost

. 2 2¢"tcost+ e tsint
eAtx(O) =Mt [ ] = [ ]

1 —2¢~tsint+ e tcost
0 e tsint

And: eMB = M [ =
1 e tcost

cos( & —o) et
e sint * u(t) —%— -7 cos(t — 5 — ¢)
] | =2 - meest-0)

And: M« Bf(t) = [
e tcost * u(t)

where: ¢ = tan™! ’Tl = —%. And hence:
1, 3.t 1t
5+ se ‘cost + ze” "sint
2 2 2
eA'x(0) + €™ « Bf(t) = [ ]
i+ 1etcost — de'sint
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And
y(t) = Cle™x(0) + ¢ « Bf(t)] + Df(t)
=[1 1][*x(0) + ™ « BE(t)] + u(t)

=[1+42c " cost — e “sint + 1Ju(t) = [2+ 2 cost — e "sint]u(t)

13.3-17
35 +10

H(s)= —25 77
(s) s24+T7s+12

From Eq. (13.65) we have:
h(t) = Co(t)B + D6(t)  where  ¢(t) = e

From Prob. 13.3-7 we obtained ®(s) as:

1 1
s_—. 34+3)(s 3
@@):[‘“ ‘*“””“’} B=[] C=[1 0] ad D=0
1

U
—at -3t _ _-—at
[ [ — €
hence: e = L7Y(B(s) = [ 0 st ]
e
3e—4t 4 =3t _ o=t e—3t 1 9p—4t
And: o(t)B = [ ey ] = [ o3t }

Since D=0, h(t)=Co¢(t)B=[1 0]¢(t)B

= (7% + 2™ )u(t)

13.3-18 From Prob. 13.3-6.

=1 s+1

.9+;. 1

(s+1)4+1 (s+1)<+1

®(s) = [ }
(s+1)2+1  (s+1)2+1

e tcost e tsint
—e"tsint e fcost

hence: o(t) = L7 (®(s)) = [

0 e tsint
#(t)B = ¢(t) [1] = [ }

e tcost
And: Co(t)B=[1 1]¢(t)B = (e *sint + e *cost)
And
h(t) = Co(t)B + 6(t) = 6(t) + (e *sint + e " cost)u(t)

13.3-19 From Prob. 13.3-10,

2s+1 S 2 1 1 _ 1
(s+1) G+1)2Z s+1 G+D?  s+1 G+1)2
—_ 4 4547 _ 1 3 4 3
é(s) = (.!+ls)! (s:-l)T = |\t T+ T err
s+2 1 1 1
:+1 s+1 1+ s+1 s+1

And hence: the unit inputs response h(t) is given by:

2¢t—tet et—tet
h(t) = L7 {H(s)} = | e " +3te™" de™' +3te™*

-t

8(t)+et e
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=[] =

The new state equation of the system is given by:

w=PAP 'w+ PB = Aw + Bf
0 [l -1] [0 1][0 l} [—1 —1]
P = = PA = =
1 0 -1 1 -1 -1 -1 -2
- I:—l —1] [1 —l] [—2 1]
PAP = =
-1 =2 1 0 -3 1
0 1 2 1
ww e[
-1 1 1 -1
=1 el L]
Hence = + f
wo -3 1 wo -1

Eigenvalues in the original system:
The eigenvalues are the roots of the characteristic equation, thus: in the original system:

s - .
|sI—A|=| =(+)s+1=s+s+1=0
1 s+1
—14+4
The roots are given by: S12 = __i;L§

In the transformed system, the characteristic equation is given by:

|sT — A =

s+2 -1 2 2
=(s+2)(s-1)+3=5"—-s5+25s-24+3=s5"+s+1
3 s—1

And the eigenvalues are given by:

-1+;V3
SL2= T

which are the same as in the original system.

13.4-2
I 0 1 1 0
= +1_ | f@®
T2 -2 -3 T2 2
(a) The characteristic equation is given by:

[sI-Al=0= =s(s+3)-2=s"+3s+2=(s+1)(s+2)=0

2
A1 = —1 and A2 = -2 are the eigenvalues. And

w =Px and w = PAP 'w + PBf = Aw + Bf
Hence we have to find P such that: PAP~! = A or AP = PA

[—1 0 ] [p11 PIZ] [Pu plz][o 1]
0 -2]Llpa p22 p21 p22) -2 -3
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— p11 = 2p12 = p11 = 2p12
p12 = 3p12 — 2p12

p1z2 = 3p12 — p11
== If we choose pi1 =2 then pi2=1

p21 = p22
And if pz1 =1 then p22=1

p22 = 3p22 — p21

2 1
Therefore P= |: }
1 1
w1 2 1 1 2r; + 2
and hence w = ] = { ] { ] = [ }
wa 1 1 2 r1 + x2

(b) y=Cx+ Df where D =0 =y = Cx.
we have w = Px => P~ !w = x = y = CP'w. hence:

e P PR N | I ) B
o | e P

13.4-3
0 1 0 0
x=10 0 1 |x+{0]Ff
0 -2 -3 1

The characteristic equation is given by:

s -1 0
|sT—A|=]0 s -1
0 2 s+3
=s{(s)(s+3)+2} = s(s°+3s+2)=s(s+1)(s+2)=0
Hence the eigenvalues are: A1 =0, A2 = —1 and A3 = 2. And
0o 0 O
A=|0 -1 0
0o 0 -2

In the transformed system we have: w = Px and w = PAP 'w+ PBf
We have to find P such that: PAP™! = A or AP = PA.

0 0 O P11 P12 P13 piu piz pa] O 1 O
0 -1 0 p21 P22 pas| =|pan p22 pa| |0 O 1
0 0 -2j |lpan ps2 P33 pa1 ps2 pa3] L0 -2 -3
(P21 =0 ps1=0 if p11 =2thenpia=1and p12=3
P11 = p13
P12 = 3p13
=> { P22 = 2p23 — p21 if pa3a=1, thenpz=2and p2z=1

P23 = 3p23 — P22 if  pa2=1thenpsz=1

2p32 = 2p33 — P31

- \ 2p33 = 3p3s — p32 = P33 = P32
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2 31 T wy
w=Px= 0 21 2 = wsy
0 1 1 T3 w3

13.4-4
y(t) = Cle®x(0) + ¢ « Bf(t)]

where: e™ = L7 (p(s))

0 0 s+ 2
:}.‘1 0 et 0 0
ot)=(sI-A)'=1 0 L ande® =10 e o0
0 0 ks 0 0 e 2
(1 et
And: eAtx(O) =M 2] = |2
1 e—Zt
1 et
AB=eM|1]| = |
1 | 2
et xu(t) (1 — e Hu(t)
and: M« B(t) = eM « Bu(t) = | e ¥ xu(t) | = 31 - e Mu(t)
e x u(t) (1 - e " )u(t)
et+1-e7t 1
Hence: eMx(0) + e x Bi(t) = 2e~% 4 i- %e“‘“ =3+ %c""”
2t 4 1o Lo-2t 14 1e-2

And finally: y(t) = Cle®*x(0) + e « Bf(t)] with C={1 3 1]

- -3, 1 1 o (5 1 g -3t
y(t)—(1+1+5e +2+2e )—(2+2e + Se )
13.5-1 (a) state equations: »
ES) [ s+a | [ |/® FOI [ sxa Y
St |Z4,| Sra | Z, St+a || S+b |2,

Fig. $13.5-1a and b

o+ bz =(a—-b)f => 22 = -bza+ (a—b)f

Ti+ary=xz2+ f => 1 = —ar1+z2+ f

1 Y P
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I1
the output is: y=zr1=[1 0] [ ]
r2

The characteristic equation is
s+a -1

|sI—A|=0=l
0 s+b

l:(s+a)(s+b)=0

A1 = —a and Az = —b are the eigenvalues.

we also have: w = Px and w = PAP " !w + PB{.
We are looking for P such that: PAP™' = A or AP = PA

1 et | P
0 —b] lpar po2 P21 P22 0 -b

— apii = —ap1

If P11 = (b — a) then pr2 =1
— bp21 = —ap21 == p21 =0
= p21 =0 and p22
—ap1i2 =p11 — bp12=0
can be anything; let’s take p22 =1
— bp22 = p21 — bpaz == p21 =0

b—a 1 I
And thus: w=Px =
0 1 Ta

Observability: the output in terms of w is: y = Cx = CP"!w = Cw.

1 -1 1 =1
where: Pl= 1 [ }:[b—a _a]

1 =1
b—a b—a

henc: C=CP'=][1 0][ .

1]=[b—:; 2L

We notice that in C, there is no column with all elements zeros, hence we conclude that the system is observable.
Controllability: In the new system (diagonalized form):

sro=[" [ 1)1

the 1st row in B is zero. We affirm that this system is not controllable.

(b) State equations:
I -6 0 T 1
NP M
z2 0 -—-ajlz 1

z]
and: y=z1 =1 0][ ]

z2

The matrix A is already in the diagonal form:

-b -a 0 -1 0
P=A= =>p-1=.1_=[ ]=[ b ]
0 -a ab 0 -b o -1
In the transformed system: w = PAP 'w + PBf = Aw + Bf.

Observability: .
- -3+ 0
E=cpP =1 0][ 0"

8=
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the second column in € vanishes. This system is not observable.
Controllability:

. -6 0
B=PB=[_ ][1 1]=[-b -a]
0 -—a

in B, there is no row with all elements zeros; hence this system is controllable.
13.6-1 (a) Time-domain method: the output ylk] is given by:

ylk] = CA*x[0] + CA*~'u[k — 1] » Bf[k] + Df[k]
The characteristic equation of A is:

A=2 0

|/\I—A|=| |=()\—1)(/\—-2)=0

-1 A-1

A1 =1 and A2 = 2 are the eigenvalues of A. Also:

. Bo 1 17711
A" = Gl + 51A where: [ ] = [ ] [ k]
B 1 2 2

IR R [N

S S S A P
_ 0 Ao B B 28-1 1

Hence: CA*=[0 1]A*=[2*-1 1]

hence:

And: 0
y=[k] = CA¥x(0) = CAF [1] = (2" - 1)u[k]

The zero-state component is given by:

vrlk] = CA*'ulk — 1] x Bf[k] + D f[K]

But
0 .
CA*ulk] *Bf[k] = [2* -1 1]ulk] [ ] = (k + 1)ulk]
ulk]

Hence

yf[lf:] = kulk — 1] + Df[k] = kulk — 1] + u[k] = (k + 1)ulk]

and  ylk] = yz[k] + yr[k] = (2% + K]ulk]

(b) Frequency-domain method: in this case:

Y(z) = C(I - z7'A) " x[0] 4+ [C(21 - A)"'B + D|F|z]

-1 -1 2 -1 z—2 -1
(- ') = 1-22 0 B 1-2 0 _[%= 0
I 1— 21 I R P | 1 z=1
z z

2 =0 =0
- (Z - 1)(2 - 2) % 1:2 - iz—liziz—zs zil

Also:
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1
[ z—2 0
1 1
z—1)(=-2) z—1

and C(I- z“lA)'1 = [(—z.ﬂ)zz_—g) z—if]

z2

C-:7'A)"x(0) = [=ht=n + 5] = ooy

Also
CEI-A)" = ==y =] and C(I-A)'B= —
Hence: C(zI-A)'B+D= 1 ip=_Ll_41=-_2
z—1 z - z—-1
flj=ulk] and F(2)= ?—_1
And hence:  (C(z1— A)"'B + D)F(z) = [Z z 1] - jzl)z
_ - -1 _ - _ 4 22
Y(z) = CI - z7'A)"'x(0) + [C(21 - A)™'B + D]F(z2) = CE ) + GoIe
Y(z) 1 z 2 1
z z—2+ (z-1)2 z—2+ (z-1)2
Y(z) = % + ‘(z-z—l)z
and  ylk] = 27 [Y(2)] = [2* + 1Ju[k] + (k + D)u[k]
= [25*! + klulk]
13.6-2 E +0.32
vk = grrErote’ ™

(a) In this case: \

_Y(z) 24032
HE) = FG) = Z+2+016

_ z+0.32 _ 0.2 0.8
T (2+02)(z2+08) z+02 2+08

(b) State and output equations for the controller canonical form: using the output of each delay as a state

variable we get:

z1[k + 1] = z2(k]
zalk + 1] = —0.16z, [k} — z2(k] + f[k]

First canonical form:
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yIkJ

3 A
f =z z A, 0,32 =
h < Aa J )
. - conieller aaner el
0.l

rve
Obse;uwnrieaf

ML

. a———

y

) 9

Yl kI
castad€_
= T
; & > .
1 = Yik
Ba G s Sl e S TR
(0.2 | parallel

Figure S13.6-2

zilk +1) 0 17 [z[K] 0
een] = Lose o) [ L]
z2lk + 1] -0.16 —1] | z2[k] 1

T [k] ]
z2(k]

output equation:
ylk] = 0.32z1[k] + z(k] = [0.32 1] [

State equatibns for the observer canonical form:

z1lk + 1) = —z1 [k] + z2[k] + f[K]

zalk + 1] = —0.1621[k] + 0.32f (K]
[zl[k+l]] _ [ -1 1] [zl[k]] .\ r 1 ]f[k]
zalk + 1] —-0.16 0] lzo(k]) L0.32

z1[k] ]
:I:z[k:] ]

The output equation is:

ylk] = z:[k] = [1 0] [
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y1£]

paralle)

FrxI

Seviea

Figure S13.6-3

State equations for the cascade realization:

ik +1] = —0.811[k] + :l'z[k]

z2[k + 1] = —0.2z2[k] + f[k]
[Z1[k+ 1]] _ [-—-0.8 1 ] [Il[k]] + [0] £
z2lk + 1] 0 -0.2 z2(k] 1

I [k]]
z2(k]

The output equation is:

ylk] = 0.32z1[k] — 0.8z, (k] + z2[k] = [-0.48 1] [

State equations for the parallel realization:

zl[k + 1] = —0.21:1[k] + f[k]

zalk + 1) = —0.8z2[k] + f[k]

[:L‘l[k+l]] _ [—0.2 0 ] [zl[k]] + [1] f1K]
z2(k + 1] 0 —0.8] [ z2[K] 1

The output equation is:

k
ylk] = 0.2z1 (k] + 0.822[k] = (0.2 0.8] [n[ 1]
z2[k]
13.6-3 e
ulk) = g —g /1K
(a)
Y(Z) _ _ 2(22 + 1) _ 222 42
F(z) =H(z) = po prapny-le- Srapey

2%+ _( z )(2z+1)
T (z-2)(z+3) \z-2 z2+3
z z
z—2+z+3
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(b) State and output equations for the controller canonical form:
ik +1] = .‘L‘g[k]

z2(k + 1] = 621 (k] — z2[k] + f[K]
o o M e M )
z2(k + 1] 6 —1] Lx2(k] 1

ylk] = ralk] + 20621(k] — zalk] + /4]

The output equation is:

= 12z [k] — 2z2[k] + 2f[K]

:El[k]
2flk
’ H]+ fIK]

Hence ylk] =12 -2] [
z2lk

State equations for the observer canonical form:

z1lk + 1) = —z1[k] + z2[k] + f[K]

z2(k + 1] = 6z, [K]
:L‘1[k+1] -1 1 Il{k] 1
Lz[k + 11] - [ 6 0] [zzlk]} ¥ [o] T

Il[k]
. ] + 2f[k]

z2k]

The output equation is:
ylk] = z1[k] + 2f[k] = [1 0] [
State equations for the cascade realization:

z1]k + 1] = —0.3z1[k] + 2z2[k] + f[K]

z2lk -+ 1] = 2xz2[k] + f[K]
T1lk - 1
vas| N I R WL
T2k + 1] 0 2] [z2[K] 1

ylk] = z1[k] - 6;1[k] + 4z2[k] + 2f([K]

The output equation is:

= —5z1[k] + 4z2[k] + 2f[k] =[5 4] [11[’6]] + 2flk]
z2(k]

State equations for the parallel realization:

z1[k + 1] = 2z1(k] + f[k]

zalk + 1] = —3z2(k] + f[k]
[zl[kw] _ [2 0 ] [“”‘1] ' H 1K)
zalk + 1) 0 -3] Lza2fk] 1

ylk] = 2z1[k] + fIK] + f[k] - 3z2[k]

The output equation is:

zl[k]] +2f[k]
(k]

I2lK

ylk] = (2 —31[
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