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Abstract

We present a new algorithm for illumination normaliza-
tion and uneven background correction in images, utiliz-
ing the recently proposed TV+L1 model: minimizing the
total variation of the output cartoon while subject to an L1-
norm fidelity term. We give intuitive proofs of its main ad-
vantages, including the well-known edge preserving capa-
bility, minimal signal distortion, and scale-dependent but
intensity-independent foreground extraction. We then pro-
pose a novel TV-based quotient image model (TVQI) for il-
lumination normalization, an important preprocessing for
face recognition under different lighting conditions. Us-
ing this model, we achieve 100% face recognition rate on
Yale face database B if the reference images are under good
lighting condition and 99.45% if not. These results, com-
pared to the average 65% recognition rate of the quotient
image model and the average 95% recognition rate of the
more recent self quotient image model, show a clear im-
provement. In addition, this model requires no training
data, no assumption on the light source, and no align-
ment between different images for illumination normaliza-
tion. We also present the results of the related applications
- uneven background correction for cDNA microarray films
and digital microscope images. We believe the proposed
works can serve important roles in the related fields.4

1. Introduction

Illumination is one of the most significant factors affect-
ing the appearance of an image. It often leads to diminished
structures or inhomogeneous intensities of the image due
to different albedos (texture) of the object surface and the
shadows cast from different light source directions. On the
other hand, uneven background, also known as background
bias, background intensity inhomogeneity, or nonuniform

4This paper is the result of the internship work of the first two authors
at Siemens Corporate Research during the Summer of 2004

background, is the problem that an ideal image f is cor-
rupted by an uneven background signal b so that the ob-
served image I = f +b. Recovering f from I is not an easy
task when b is non-uniform. In essence, both the varying il-
lumination and the uneven background are inhomogeneous
intensity patterns that are either multiplicative or additive.
In this paper, we propose total variation based image mod-
els to solve these two problems. We use face recognition
under different lighting conditions to evaluate the effective-
ness of our illumination normalization schemes, and use mi-
croarray and digital microscope images with apparent back-
ground bias to illustrate the ability of our proposed models
for scale-dependent additive background signal removal.

1.1. Illumination normalization

Illumination normalization is an important task in the
field of computer vision and pattern recognition. In real
world, one of the most important problems of illumina-
tion normalization is face recognition under varying illu-
mination. Face recognition has many applications, such
as public security, identity authentication, etc. It has been
proven both experimentally [1] and theoretically [27] that
the differences due to varying illumination is more signifi-
cant than the differences between individuals in face recog-
nition. Various methods have been proposed for face recog-
nition, including Eigenface [23], Fisherface[4], Probablistic
and Bayesian Matching [12], subspace LDA [28], Active
Shape Model and Active Appearance Model [10], LFA[15],
EBGM[25], and SVM[9]. Nevertheless, the performance of
most existing algorithms is highly sensitive to the variation
of illumination.

To attack the problem of face recognition under illu-
mination variation, several algorithms have also been pro-
posed. The Illumination Cone methods [5][7], spherical
harmonic based representations [16] [3] [26], and quotient
image based approaches [19] [18] [24] are proposed for this
purpose. However, not only the performances of most of the
methods are still far from ideal, many of these methods ei-
ther require assumptions of the light source or need a large



number of training sets, which are not considered practical
in real applications.

1.2. Uneven background correction

Uneven background is another important problem in the
field of image processing. The main difficulty of solving
this ill-posed inverse problem is to correct the background
without distorting the foreground signals. In this paper,
background bias correction for cDNA microarray slides and
digital microscope images are our motivating applications.
cDNA microarrays consist of tens of thousands of individ-
ual DNA sequences printed in parallel on a glass micro-
scope slide. They are designed to detect specific genes
and to measure their activities in tissue samples by mon-
itoring the differential hybridization of the two DNA or
RNA samples to the sequences on the array. On a mi-
croarray slide, the measured fluorescence intensity of a spot
is a combination of the image background intensities near
the spot and the intensities determined by the hybridization
level of the mRNA samples with the spotted DNA. Back-
ground correction is to identify the image background in-
tensities near cDNA spots and then quantify the extracted
foreground intensities. Other than microarray images, digi-
tal microscope images also suffer from uneven background
corruption, which leads to the nonuniform intensities in tar-
get specimen. Accurate uneven background correction can
not only facilitate the observation of the specimen, but also
improve the accuracy of further image analysis, such as seg-
mentation, quantification, etc.

In this paper, we propose to attack the two relevant prob-
lems by the total variation (TV) based image models. We
utilize the properties of the TV+L1 model [6] and show why
and how it can be adapted for uneven background correc-
tion. Starting from the TV+L1 model we propose the total
variation based quotient image (TVQI) model for illumina-
tion normalization. Extensive experimental evaluations are
conducted to illustrate the effectiveness and advantages of
our approach.

2. Methodology

We first introduce the total variation modes, especially
the TV+L1 model, followed by its property analysis. Based
on its properties and the needs in illumination normaliza-
tion, we propose the novel TVQI model later in this section.

In the TV-based framework, an image f is modelled as
the sum of image cartoon u and texture v, where f , u and
v are defined as functions (or flow fields) in appropriate
spaces. Cartoon contains background hues and important
boundaries as sharp edges. The rest of the image, which is
texture, is characterized by small-scale patterns. Since car-
toon u is more regular than texture v, we can obtain u from

image f by solving a variational problem:

min
∫

Ω

|∇u| + λ‖t(u, f)‖B , (1)

where
∫
Ω
|∇u| is the total variation of u over its support Ω,

‖t(u, f)‖B is some measure of the closeness between u and
f , and λ is a scalar weight parameter. The choice of the
measure ‖ · ‖B depends on applications.

The first use of this model was due to Rudin, Osher,
and Fatemi (ROF) [17] for image denoising where they use
‖t(u, f)‖B = ‖f − u‖L2 . The essential merit of total vari-
ation based image model is the edge-preserving property
[22]. A simple way to understand this property is to notice
the following. First, minimizing the regularization mea-
sure

∫ |∇u(x)|dx only tends to reduce the total variation
of u over its support, a value that is independent of edge
smoothness. Second, unless ‖t(u, f)‖B specifically pe-
nalizes sharp edges, minimizing a fidelity term ‖t(u, f)‖B

(e.g., L1 or L2-norm of f − u) generally tends to keep u
close to f , and thus, also keeps edges of f in u. Finally,
minimizing

∫ |∇u| + λ‖t(u, f)‖B , with λ sufficiently big,
will keep sharp edges. ROF uses the L2-norm, which penal-
izes big point-wise differences between f and u, so it aims
at removing small point-wise differences (like noise) from
f . Mainly due to this good edge-keeping property, the ROF
model has been generalized and modified in many ways in
the research communities. One of them uses the L1-norm
as the fidelity term [2, 14, 6].

2.1. A closer look at TV+L1 for additive signal de-
composition

Formally, the TV+L1 model is formulated as:

min
u

∫
Ω

|∇u(x)| + λ|f(x) − u(x)| dx. (2)

To solve (2), Goldfarb and Yin [8] casts (2) as a second-
order cone program and solves it using the modern interior-
point method. We analyze the properties of the TV+L1

model for the purpose of additive signal decomposition,
providing theoretical justification for our proposed applica-
tion of background correction in images. Intuitive proofs of
key properties are provided in the Appendix.

Just like the L2-norm, the L1-norm keeps u close to
f (but under a different measure), so the edge-preserving
property can be easily seen by following the similar argu-
ment for the ROF model . We give the TV+L1 analytical re-
sults of some easy problems in R

2. First, we would mention
that Chan and Esedoglu [6] proved that solving equation (2)
is equivalent to solving the following level-set-based geo-



Figure 1. Original image f and different level
of u when applying different (λ).

metrical problem:

minu

∫ +∞
−∞ Per ({x : u(x) > µ})

+λV ol({x : u(x) > µ} ⊕ {x : f(x) > µ}) dµ
(3)

where Per(·) is the perimeter function, V ol(·) is the vol-
ume function, and S1⊕S2 := (S1 \S2)∪ (S2 \S1), for any
sets S1 and S2. Using equation (3), we can prove the fol-
lowing geometric properties of the solution v(λ) = f−u(λ)
in (2):

• Suppose f = c11Br(y)(x), a function with the inten-
sity c1 in the disk centered at y and with radius r, and
the intensity 0 anywhere else. Then

v(λ) =




c11Br(y)(x) 0 ≤ λ < 2/r,

{s1Br(y)(x) : 0 ≤ s ≤ c1} λ = 2/r,

0 λ > 2/r.
(4)

By this property, when applying different values of λ, ob-
jects of different scales can be kept in u or v (c.f. figure 1).
Furthermore, we can extend this property to the following:

• Suppose f = c11Br1 (y)(x)+c21Br2 (y)(x), where 0 <
r2 < r1 and c1, c2 > 0.

v(λ) =




(c11Br1 (y) + c21Br2 (y))(x) λ < 2/r1,

c21Br2 (y)(x) 2/r1 < λ < 2/r2,

0 λ > 2/r2.
(5)

We give the proof of these two properties in the appendix.
We note that these properties can be further expanded to
c1, c2, . . . with radius r1, r2, r3, . . . , and also to any objects
with C2 boundaries. Figure 2 illustrates these properties.

Another property of the TV+L1 model we would men-
tion here is its minimal signal distortion. From (5), we know
that the signal of the disk is either kept in u or in v unless the
value of λ is exactly 2/r (this is negligible after discretiza-
tion). This means that the TV+L1 model is not likely to
separate an entire signal into both u and v, but only in one
of them. This is one of the intrinsic differences between
TV+L1 and TV+L2, and is also the reason why TV+L1 is
more geometrically interesting to our applications.

Figure 2. Additive signals with one included
in the other can be extracted one by one using
increasing values of (λ). s shows the intensi-
ties of the four shapes before addition.

To summarize, assuming a background bias of larger
scale than the foreground (E.g., uneven illumination field,
sensor bias, process distortion, etc.), a TV+L1-based signal
decomposition algorithm with an appropriate λ can remove
the background bias from the foreground signals, with tun-
able control based on scale, preservation of edges, and min-
imal signal distortion. Next, we show that these properties
can also be utilized for illumination normalization for face
recognition. Our proposed algorithm is an integration of the
quotient image concept [19] and the TV+L1 decomposition
scheme, and we call it the TVQI algorithm.

2.2. TVQI for illumination normalization

Although it has been shown that reflectance of an im-
age can be helpful for identification [13], it is less useful
for face recognition, where geometric features (i.e. shape,
size of eyes, nose, etc.) are more important to distinguish
different people. Hence, our goal is to acquire an illumi-
nation invariant face feature image for a group of images
of the same subject. Based on the previous discussion, the
cartoon u in the TV+L1 model keeps the large-scale back-
ground intensities and important boundaries of the original
image f and leaves, in v, the small scale signals, edges and
textures, which are the most important features. However,
the TV+L1 model has certain limitation if it is directly ap-
plied for normalizing illumination. That is, the signals of
intrinsic structures in the image are not normalized (cf. fig-
ure 3, (v)). For this reason, we propose the total variation
based quotient image (TVQI) model.

The intuition of the TVQI model is the Lambertian sur-
face model. According to the Lambertian model, the inten-
sity at the (x, y) position of an image f is defined as:

fx,y = Ax,yρx,y cos θx,y (6)

where A is the strength of the light source, ρ, the albedo
(texture) of the image, is the surface reflectance associated



Figure 3. f , u, and v of TV+L1 model. Weak
signal in v (the right hand side) is hardly ob-
served. H shows the intensity profile of the
horizontal line in f . v′ is the TVQI result.

Figure 4. Effect of different λ in TVQI method-
ology. 1st column: original image f ; even
columns: u using different values of λ, odd
columns: TVQI obtained by f /u.

with each point in the image, and θ is the angle between the
surface normal and the light source. (6) tells us that the in-
tensity of image point (x, y) is proportional to the strength
of the received light at this point. Therefore, the intensity
and the variance of the small-scale signals are proportional
to the intensity of the background in their vicinities. Figure
3 (H) illustrates this property (i.e. the signal variance un-
der strong light is much larger than that under weak light).
However, for recognition purpose, the small-scale signals
in the dark area must be amplified and all important small-
scale signals should have close amplification levels after il-
lumination normalization. For this purpose, we approxi-
mate the normalized image by v′

x,y = fx,y/ux,y for every
point (x, y) using the output u of the TV+L1 model. Since u
is large-scale background intensity of the input f , dividing
f by u gives an illumination normalized image, in which
small-scale signals are uniformly highlighted. Therefore,
we propose the TVQI model as:

u = arg min
u

∫
Ω

|∇u(x)| + λ|f(x) − u(x)| dx,

TV QI = v′ =
f

u
, (7)

where f is the original face image. Figure 3 (v′) shows the
result obtained by applying this model to f . The remaining
task is to choose an appropriate λ.

1. f1 ← input image

2. Remove noise in dark region: (+TVQI only)
f1 ← arg minu

�
Ω |∇u(x)| + λL2 ||f1(x) − u(x)||2L2

dx

3. Calculate the denominator :
u = arg minu

�
Ω |∇u(x)| + λL1 |f1(x) − u(x)| dx

4. Obtain the illumination normalized image:
(+)TV QI = v′

1 =
f1
u

5. Repeat 1 - 4 for other images f2, ..., fm, where m
is the total number of images.

6. Apply face recognition on v′
is of the original image fis.

Table 1. The (+)TVQI model.

Figure 5. The preprocessing effect of +TVQI

2.3. Selecting λ for face recognition

The choice of lambda is straightforward - it is inverse
proportional to signal scale. To extract circular pattern,
lambda is inverse proportional to the circle radius (4). In
the same way, we recommend the following lambda values
for different face sizes: 100x100 (pixels): 0.8; 200x200:
0.4; 400x400: 0.2. We want to emphasize that a single
lambda should work for all faces in the same size. All of
these mean an appropriate lambda can easily be selected by
using the recommended value, by a simple training process,
or even by investigation (cf. figure 4). This is because we
only need to find lambda for one face size.

2.4. +TVQI

In Figure 3, grainy noise can be seen on the right half
of v′. This is due to the division operation in the TVQI
model, which propagates small variations and noise in the
dark region of the image. One possible remedy is to use the
aforementioned TV+L2 model [17] with a larger λ (≥ 1)
as a preprocessing step for noise removal before applying
TVQI. We call the resulting combination the +TVQI algo-
rithm. Table 1 shows this algorithm. (TVQI is the same
except without step 2). Figure 5 illustrates the effect of
+TVQI. One can see clear quality improvement for a hu-
man observer. However, interestingly, after running our
face recognition algorithm, +TVQI has only similar per-
formance as TVQI (±0.05%). One explanation is that the
TV+L2 step destroys small signals while denosing. Another
possibility is that on our test dataset the TVQI algorithm
has already achieved a very high recognition rate (> 99%),



Figure 6. 10 subjects in Yale face database B.

leaving little room for improvement. Further investigation
of +TVQI on more difficult data is among our future efforts.
In the following sections, we only present evaluation results
for the TVQI algorithm.

2.5. L1 norm versus L2 norm

One may doubt that the TV+L2 model can also be com-
bined with the quotient image model in (7). We explain here
why the L1 norm is better for this task. Generally speak-
ing, the TV+L2 model is more suitable in denoising and the
TV+L1 model works much better in scale-based image de-
composition. The L2 term ‖ f − u ‖2 penalizes big f − u
values much more than small f−u values, so TV+L2 allows
most small point-wise values (like most noises) in f − u.
The L1 term | f − u |, however, penalizes the difference
between f and u in a linear way. The L1 term does not
favor noises but, when used with total variation, it makes
f − u contain nearly all signals with scale ≤ 1/λ w.r.t. the
G-norm and with their original amplification. In TVQI, the
main story is the objects in v are highlighted by the process
f/u = 1 + v/u. TV+L1 only includes small scale facial
components like mouth, nose, eyes, eyebrows, and wrinkles
in v. Therefore, the final comparison between two faces is
really made between the positions of the small-scale facial
parts in the two faces. This is a result by combining quotient
image and TV+L1. We cannot replace TV+L1 by TV+L2

because the v of TV+L2 does contain a small part of large-
scale image objects. It is feasible to first apply TV+L2 to
remove tiny noise before applying TV+L1 (c.f. +TVQI).
Although this makes figure 5 look more appealing, this can
hardly improve the recognition rate simply because TV+L2

always takes away some useful signal together with noise.

3. Experimental Results

In this section, we evaluate the proposed algorithms by
different experiments. Yale face database B is used for com-
paring the performance of illumination normalization capa-
bility of the TVQI model with other existing solutions. Real
cDNA microarray and digital microscope images are used
to validate the TV+L1 model for background correction.

3.1. TVQI illumination normalization results

The performance of illumination normalization is evalu-
ated according to the face recognition rate by the normal-

Figure 7. Illumination normalization effect
comparison.

ized correlation similarity measurement. There are many
other similarity measurements, including those for compar-
ing images subject to different scales, rotation, and other
transformations. However, we do not focus on these mea-
surements in this paper. Recognition is defined as matching
a query image y to a set of reference images T. y belongs
to one of the subjects in T but under unknown illumina-
tion. We name an image of subject x the ideal image if the
angle of the light source direction is 0. In all experiments,
the TVQI model is compared with three other existing so-
lutions, quotient image (QI) [19], quotient image relighting
(QIR) [18], and self-quotient image (SQI) [24]. Figure 7
shows some illumination normalization results by different
methods on the same input images.

3.1.1 Data preparation

The frontal face images of the 10 subjects in the Yale face
database B, each with 64 different illumination, are used for
evaluation. All images are roughly aligned between differ-
ent subjects and resized to 100 x 100. Images are cropped
so that only the face region of each image is used. Images
in the database are divided into 5 subsets based on the angle
of the the light source directions. The 5 subsets are: subset
1 (0◦ to 12◦), subset 2 (13◦ to 25◦), subset 3 (26◦ to 50◦),
subset 4 (51◦ to 77◦), subset 5 (above 78◦) [7]. Out of the
640 images (10 x 64), 7 corrupted images are discarded. As
a result, there are total 633 images: 70, 118, 118, 138, 189
images in subset 1 to 5, respectively. Figure 6 shows the
ideal images (angle of light source = 0◦) of the 10 subjects.



Figure 8. Recognition Rate (%) comparison
using (A) subset 1, and (B) only the ideal im-
age, as the reference images.

3.1.2 Using subset 1 as reference images

In the first experiment, 70 images Ik
j for subject k, k ∈

K = {1, . . . , 10} under illumination j in subset 1 is used
as the reference images. The recognition process is to find
the nearest neighbor Ik′

j′ of a given query image yl, where
l ∈ K. If l is equal to k′, the recognition is successful; oth-
erwise, it is failed. In the experiment, we use all the images
in subset 2 to 5 as the query images and evaluate the recog-
nition rate. Figure 8(A) compares the recognition rates of
different solutions. Recognition rate of the proposed TVQI
method achieves 100% in all cases. This validates the better
illumination normalization effect of TVQI.

3.1.3 Using only the ideal images as reference images

In the second experiment, instead of all the 70 images in
subset 1, we only use the 10 ideal images, one for each sub-
ject, as the reference images. Figure 8(B) shows the results.
The performance of both QI and QIR degrade heavily in
this experiment. The recognition rates of the TVQI model
remain 100%. This shows the robustness and consistency
of the TVQI model.

3.1.4 Using other subsets as reference images

In the last experiment, we tried a more challenging but
meaningful experiment which is rarely done in the litera-
ture. Instead of using the images in subset 1, we choose
images in all the other subsets (2 to 5) as reference images.
In real world, perfect reference images are not always avail-
able. A robust algorithm should perform well even with the
reference images under varying lighting conditions. Fig-
ure 9 compares the recognition results and table 2 shows
the average recognition rate (%). In figure 9, the label TX-
SubsetY in the horizontal axis denotes the query image is
from subset Y and the reference images is from subset X.
For each test TXi-SubsetYi, we use 10 images (one for each
subject) in subset Xi as the reference images for each round

Figure 9. Recognition Rate (%) comparison
when all different subsets are used as the ref-
erence images.

Methodolgy QI QIR SQI TV QI

average 47.27 69.44 94.95 99.45

Table 2. Average recognition Rate (%) com-
parison using images in all different subsets
as the reference images.

i, we then change another 10 images in subset Xi+1 as the
reference images for round i+1, and so on. For each round
i, all images in subset Yi are used as the query image one
by one to evaluate the recognition rate Ri. The final recog-
nition rate R = 1

N

∑N
i=1 Ri, where N is the round number.

The performance of all the other methods degrades when
the bad illuminated images (in subset 4 and subset 5) are
used as the reference images. In contrast, the recognition
rate of the TVQI method are always above 98.51% and av-
eraged at 99.45%. Hence, TVQI is proved experimentally
to be a very robust and consistent algorithm for illumination
invariant face recognition.

3.2. Background correction results

We have explained the reasons why TV+L1 can be used
for uneven background correction (2.1). In this section, we
use real cDNA microarray and digital microscope images
to show the capability of uneven background correction of
the TV+L1 model. Figure 10 shows a real microarray im-
age. For comparison, we use both the TV+L1 method and
the state-of-the-art method, morphological opening (MO)
[21], in the field of bioinformatics to estimate the back-
ground of the image. Specifically, morphological opening
applies a local minimum filter, which is an erosion process,



Figure 10. Background estimation on cDNA
microarray image, Left: original images. Mid-
dle: estimated backgrounds using MO. Right:
estimated backgrounds using TV+L1.

followed by a local maximum filter, which is a dilation pro-
cess, to estimate the background of the image. From the
first row of figure 10, the water stain at upper left corner
in the first image was estimated by morphological opening,
but the shape of the stain is smoothed. Instead, TV + L1

not only estimates the correct background but also keeps the
shape of the stain. This property can also be seen from the
second row of figure 10. Furthermore, we also apply it to
digital microscope images with apparent nonuniform back-
ground. Figure 11 shows some results of the microscope
images and the background corrected results by the TV+L1

model. The MO method used for comparison shows that re-
moving background bias without destroying the foreground
structures is not an easy task. The images are downloaded
from the Olympus web site [20].

4. Conclusion

In this paper, we propose the total variation quotient im-
age (TVQI) model for face recognition under varying illu-
mination and illustrate its effectiveness for illumination nor-
malization. The advantage of this method is that it requires
no training images, no assumption of the light source, and
no alignment between images for illumination normaliza-
tion. In addition, the recognition results of TVQI outper-
forms the existing solutions in a significant manner. The
experiment shows that our method can be used for iden-
tifying unknown faces even if the available reference face
images are not obtained under good lighting condition. Fur-
thermore, we also propose the use of the TV+L1 model as
a suitable tool for correcting intensity inhomogeneities in
image background. We demonstrate it using experiments
on real cDNA microarray and digital microscope images.
We believe the proposed works have significant contribu-
tion to computer vision, image processing, public security,
and other related fields.

Figure 11. Uneven background correction on
digital microscope images, 1st column: orig-
inal images. 2nd column: background cor-
rected images using MO. 3rd column: back-
ground corrected images using TV+L1.

Appendix

Proof of property (4):

Proof By assumption, f = c11Br(y)(x). Without loss of
generality, we assume c1 > 0. Clearly, solution u(x) of (2)
is bounded between 0 and c1, for all almost all x ∈ Ω. It
follows that (3) is simplified to:

minu

∫ c1

0
Per ({x : u(x) > µ})

+λV ol ({x : u(x) > µ} ⊕ {x : f(x) > µ}) dµ.
(8)

Since {x : f(x) > µ} ≡ Br(y) for µ ∈ (0, c1), S(µ) :=
{x : u(x) > µ} must solve the following geometry prob-
lem:

min
S

Per (S(µ)) + λV ol (S(µ) ⊕ Br(y)) , (9)

for almost all µ ∈ (0, c1). First, S(µ) ⊆ Br(y) holds be-
cause, otherwise, S̄(µ) := S(µ) ∩ Br(y) achieves lower
objective value than S(µ). Then, it follows that

V ol (S(µ) ⊕ Br(y)) = V ol (Br(y) \ S(µ)) . (10)

Therefore, to minimize (9) is to minimize the perimeter of
S while maximize its volume. By Isoperimetric Theorem,
S(µ) must be either empty or a disk. Let rS denote the
radius of S, it follows that rS = r if λ > 2/r, rS = 0 if
0 ≤ λ < 2/r, and rS ∈ {0, r} if λ = 2/r. Property (4)
follows from relationship v = f − u. �

Proof of property (5):

Proof Clearly, (3) can be simplified to:

minu∈BV (Ω) (
∫ c1

0
+

∫ c1+c2

c1
)Per ({x : u(x) > µ})

+λV ol ({x : u(x) > µ} ⊕ {x : f(x) > µ}) dµ.
(11)



Since, for µ ∈ (0, c1), {x : f(x) > µ} ≡ Br1(y), and for
µ ∈ (c1, c1 + c2), {x : f(x) > µ} ≡ Br2(y), this problem
can be simplified as:

minu∈BV (Ω)

∫ c1

0
Per ({x : u(x) > µ})
+λV ol ({x : u(x) > µ} ⊕ Br1(y)) dµ

+
∫ c1+c2

c1
Per ({x : u(x) > µ})
+λV ol ({x : u(x) > µ} ⊕ Br2(y)) dµ.

(12)
It follows from Property (4) that

1. when λ < 2/r1, {x : u(x) > µ} = ∅, for µ ∈ (0, c1 +
c2), minimizes both parts of (12);

2. when 2/r1 < λ < 2/r2, {x : u(x) > µ} = Br1(y),
for µ ∈ (0, c1), minimizes the first integral and {x :
u(x) > µ} = ∅, for µ ∈ (c1, c1 + c2), minimizes the
second integral;

3. when λ > 2/r2, {x : u(x) > µ} = Br1(y), for µ ∈
(0, c1), minimizes the first integral and {x : u(x) >
µ} = Br2(y), for µ ∈ (c1, c1 + c2), minimizes the
second integral.

Noting that v = f − u, the solutions given in Property (5)
imply the optimal {x : u(x) > µ}’s listed above. �
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