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Abstract Many statistical techniques have been proposed to predict fault-proneness of
program modules in software engineering. Choosing the “best” candidate among many
available models involves performance assessment and detailed comparison, but these
comparisons are not simple due to the applicability of varying performance measures.
Classifying a software module as fault-prone implies the application of some verification
activities, thus adding to the development cost. Misclassifying a module as fault free carries
the risk of system failure, also associated with cost implications. Methodologies for precise
evaluation of fault prediction models should be at the core of empirical software
engineering research, but have attracted sporadic attention. In this paper, we overview
model evaluation techniques. In addition to many techniques that have been used in
software engineering studies before, we introduce and discuss the merits of cost curves.
Using the data from a public repository, our study demonstrates the strengths and
weaknesses of performance evaluation techniques and points to a conclusion that the
selection of the “best” model cannot be made without considering project cost character-
istics, which are specific in each development environment.

Keywords Fault-prediction models . Model evaluation . Predictive models in software
engineering . Empirical studies

1 Introduction

Early detection of fault-prone software components enables verification experts to
concentrate their time and resources on the problem areas of the system under development.
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The ability of software quality models to accurately identify critical components allows for
the application of focused verification activities ranging from manual inspection to testing,
static and dynamic analysis, and automated formal analysis methods. Software quality
models, thus, help ensure the reliability of the delivered products. It has become imperative
to develop and apply good software quality models early in the software development life
cycle, especially in large-scale development efforts.

Most fault prediction techniques rely on historical data. Experiments suggest that a
module currently under development is fault-prone if it has the same or similar properties,
measured by software metrics, as a faulty module that has been developed or released
earlier in the same environment (Khoshgoftaar et al. 1997). Therefore, historical
information helps us to predict fault-proneness. Many modeling techniques have been
proposed for and applied to software quality prediction. Some of these techniques, logistic
regression (Basili et al. 1996) for example, aim to use domain-specific knowledge to
establish the input (software metrics) output (software fault-proneness) relationship. Some
techniques, such as classification trees (Gokhale and Lyu 1997; Khoshgoftaar and Seliya
2002; Selby and Porter 1988), neural networks (Khoshgoftaar and Lanning 1995), and
genetic algorithms (Azar et al. 2002), try to examine the available large-size datasets to
recognize patterns and form generalizations. Some utilize a single model to predict fault-
proneness; others are based on ensemble learning by building a collection of models from a
single training dataset (Guo et al. 2004; Ma 2007).

A wide range of classification algorithms has been applied to different data sets.
Different experimental setups result in a limited ability to comprehend algorithm’s strengths
and weaknesses. A modeling methodology is good if it is able to perform well on all data
sets, or at least most of them. Recently, several software engineering data repositories
become publicly available (Metrics Data Program NASA IV&V facility, http://mdp.ivv.
nasa.gov/). Therefore, these data sets can be used to validate and compare the proposed
predictive models. In order to identify reliable classification algorithms, Challagulla et al.
recommended trying a set of different predictive models (Challagulla et al. 2005). Guo et
al. (2004) suggested building a toolbox for software quality engineers which includes
“good” prediction performers (Guo et al. 2004). But choosing the “best” model among
many available ones involves model performance assessment and evaluation. In order to
simplify model comparison, we should use appropriate and consistent performance
measures.

Model performance comparison received attention in the software engineering literature
(El-Emam et al. 2001). Nevertheless, empirical studies continue to apply different
performance measures. Consequently, such studies do not encourage cross comparison
with the results of work performed elsewhere. Many studies use inadequate performance
metrics, those that do not reveal sufficient level of details for future comparison. For these
reasons, the objectives of this paper include:

1) A survey of commonly used model performance metrics and a discussion of their
merits,

2) An introduction of cost curves, a new model evaluation technique in software
engineering, and

3) A comparison of model evaluation techniques and a guide to their selection.

We believe that our findings and recommendations have a potential to enhance statistical
validity of future experiments and, ultimately, further the state of practice in fault prediction
modeling.
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1.1 Experimental Set-up

We use NASA MDP datasets (Metrics Data Program NASA IV&V facility, http://mdp.ivv.
nasa.gov/), listed in Table 1, to illustrate problems in model evaluation. The metrics in these
datasets describe projects which vary in size and complexity, programming languages,
development processes, etc. When reporting a fault prediction modeling experiment, it is
important to describe the characteristics of the datasets. Each data set contains twenty-one
software metrics, which describe product’s size, complexity and some structural properties
(Metrics Data Program NASA IV&V facility, http://mdp.ivv.nasa.gov/). A detailed
description of some of the intrinsic characteristics of NASA MDP projects is provided in
Appendix A.

In the illustrative examples, we use six well known classification algorithms. To
remind the reader, our goal is to demonstrate the strengths and drawbacks of specific
performance measures, rather than identifying the “best” algorithm. For this reason, the
choice of classifiers is orthogonal with respect to the intended contributions. The six
classifiers we selected are Random Forest, Naïve Bayes, Bagging, J48, Logistic
Regression and IBk. These algorithms represent a broad range of machine learning
approaches. Recent studies indicate that these classifiers provide better than average
performance in software fault prediction (Menzies et al. 2007). A brief description of these
algorithms is offered in Appendix B. All reported experiments utilize classifier
implementations from a well-known software package WEKA (Witten and Frank 2005).
All performance measurements are always generated by tenfold cross-validation of
classification.

The rest of this paper is organized as follows. The numeric evaluation metrics are
discussed in Section 2. The graphical summarization methods are described in Section 3.
Statistical inferences are often required to compare classifiers. Statistical testing techniques
that compare predictive models are the subject of Section 4. Section 5 describes two fault
prediction experiments in detail and demonstrates that evaluation measures frequently result
in contradicting conclusions. For this reason, Section 6 summarizes the guidelines for the
selection of model evaluation techniques in practice. We conclude the paper with a
summary in Section 7.

Table 1 Characteristics of projects from NASA MDP (Metrics Data Program NASA IV&V facility, http://
mdp.ivv.nasa.gov/), used in our experiments

Project Language Number of
modules

Faulty (%) Description

KC1 C++ 2,109 15 Storage management, receiving/processing
ground data

KC2 C++ 523 21 Science data processing
KC4 Perl 125 48 Storage management for ground data
JM1 C 10,885 19 Real-time prediction ground system
PC1 C 1,109 7 Flight software for earth orbiting satellite
PC5 C++ 17,186 3 A safety enhancement upgrade system for cockpit
CM1 C 498 10 A NASA spacecraft instrument
MC2 C++ 161 32 A video guidance system
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2 Evaluation of Predictive Models: Numerical Indices

Numerical performance evaluation indices are the most common in the software
engineering literature. This section surveys them and describes their individual strengths
and shortcomings.

2.1 Overall Accuracy and Error Rate

The overall accuracy measures the chance of correctly predicting the fault proneness of
individual modules. It ignores the data distribution and cost information. Therefore, it can
be a misleading criterion as faulty modules are likely to represent a minority of the modules
in the dataset (see Table 1).

Table 2 lists the overall accuracy and the detection rates of faulty modules (denoted as
PD, defined in the next section) for four projects: PC1, KC1, KC2 and JM1. The
disadvantage of overall accuracy as a performance evaluation metric is obvious. For every
project in Table 2, the highest overall accuracy is accompanied with the lowest detection
rate in the fault-prone class. In software engineering, a lower detection rate of faulty
modules means many faulty modules would be classified as fault-free. Once released, the
faults could lead to serious field failures. The cost implications associated with the inability
to detect most failure-prone modules prior to deployment could be enormous. Therefore,
when evaluating models for software quality prediction, we cannot (and should not) rely on
the overall accuracy (or overall error rate, computed as 1- overall_accuracy) only.

2.2 Sensitivity, Specificity and Precision

If we consider software modules with faults as positive instances, sensitivity is defined as
the probability that a module which contains a fault is correctly classified. In the context of
software quality prediction, sensitivity is also called the probability of detection (PD)
(Menzies et al. 2003). As discussed above, modeling techniques that produce very low PD
are not good candidates for the software fault prediction.

The specificity is defined as the proportion of correctly identified fault-free modules. The
probability of false alarm (PF) is the proportion of fault-free modules that are classified
erroneously. Obviously, PF=1-specificity. In case of low specificity, many fault-free
modules would be “tagged” for rigorous software verification and validation, thus
unnecessarily increasing project cost and the time needed for completion. Obviously, there
is always a tradeoff between sensitivity and specificity.

The precision index measures the chance of correctly predicting faulty modules among
the modules classified as fault-prone. Either a smaller number of correctly predicted faulty

Table 2 Performance results from four projects

PC1 KC1 KC2 JM1

Method Acc (%) PD (%) Acc (%) PD (%) Acc (%) PD (%) Acc (%) PD (%)

Naïve Bayes 89.2 29.9 82.4 37.7 83.6 39.8 80.4 20.1
Logistic 92.4 6.5 85.7 20.6 82.0 38.9 81.4 11.6
IB1 91.8 44.2 83.6 40.8 78.6 50.9 76.1 36.8
J48 93.3 23.4 84.5 33.1 82.4 54.6 79.5 23.2
Bagging 93.8 16.9 85.2 24.8 83.6 47.2 81.0 19.7
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modules or a larger number of erroneously tagged fault-free modules would result in a low
precision. A tradeoff also exists between sensitivity and precision (Zhang and Zhang 2007).
Take project PC1, for example. Less than 7% of the modules contain fault(s). We ran the
random forest, a tree ensemble classification method on PC1. The random forest algorithm
builds an ensemble of classification trees from randomly selected bootstrap samples
(Breiman 2001). These trees then vote to classify a data instance. Using a simple majority
voting scheme, the random forest algorithm produces overall accuracy of 93.6% and
specificity of 98.5%, but sensitivity (PD) is only 27.3% (see Fig. 1(a)). Only 15 out of 1,032
fault-free modules were misclassified. With 21 fault-prone modules correctly classified, the
precision is calculated to be 58.3%. By assigning a higher threshold in random forest to the
majority class, we obtained the confusion matrix in Fig. 1(b). A much higher PD was
achieved (74%). Now, 57 out of 77 fault-prone modules are accurately predicted. Due to the
trade-off between sensitivity and specificity, as well as the tradeoff between sensitivity (PD)
and precision, a higher PD is followed by a lower specificity (82.9%) and 176 fault-free
modules were incorrectly classified. The precision in (b) is only 24.5%. But lower precision
does not necessarily imply worse classification performance.

Each of these three measures, independently, tells us a one-sided story. For example,
sensitivity gives us the classification accuracy for faulty modules; specificity provides the
correct classification rate of fault-free modules. These metrics should not be used to assess
the performance of predictive models unitarily. On the other hand, using several numerical
performance indices to compare different predictive models does not facilitate simple
algorithm comparison and/or model selection. It is difficult to observe the superiority of one
model over the other since one model might have a higher sensitivity, but lower precision.
We need performance metrics that provide more comprehensive evaluation of predictive
software quality models. Candidate performance metrics are described in the next
subsection.

2.3 G-mean, F-measure and J-coefficient

Compared to overall accuracy, geometric mean (G-mean) (Kubat et al. 1998), F-measure
(Lewis and Gale 1994), and J-coefficient (J_coeff) (Youden 1950) tell a more honest story
about a model’s performance. G-mean indices are defined in expressions (1) and (2) below.
G-mean1 is the square root of the product of sensitivity (PD) and precision. G-mean2 is the
square root of the product of PD and specificity. In software quality prediction, it may be
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Fig. 1 Confusion matrix of fault
prediction based on project PC1.
a Random forest with majority
voting; b Random forest with a
modified voting cutoff
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critical to identify as many fault-prone modules as possible (that is, a high sensitivity or
PD). If two methodologies produce the same or similar PD, we prefer the one with higher
specificity. So, G-mean2 is the geometric mean of two accuracies: one for the majority class
and another for the minority class. Precision tells us among all the predicted faulty
modules, how many are actually faulty.

G� mean1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD� Precision

p
ð1Þ

G� mean2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD� Specificity

p
ð2Þ

Expression (3) defines the F-measure. Both G-mean1 and F-measure integrate PD and
precision in a performance index. F-measure offers more flexibility by including a weight
factor β which allows us to manipulate the weight (cost) assigned to PD and precision.
Parameter β may assume any non-negative value. If we set β to 1, an equal weight is given
to PD and precision. The weight of PD increases as the value of β increases.

F � measure ¼ b2 þ 1
� �� Precision� PD

b2 � Precisionþ PD
ð3Þ

Youden proposed the J-coefficient (J_coeff) to evaluate models in medical sciences
(Youden 1950). El-Emam et al. were the first to use the J-coefficient to compare
classification performance in software engineering (El-Emam et al. 2001). Expression (4)
describes J-coefficient:

J–coeff ¼ sensitivityþ specificity� 1 ¼ PD� 1þ specificity

¼ PD� 1� specificityð Þ ¼ PD� PF: ð4Þ
When J_coeff is 0, the probability of detecting a faulty module is equal to the false alarm

rate. Such a classifier is not very useful. When J_coeff >0, PD is greater than PF, a
desirable classification result. Hence, J_coeff=1 represents the perfect classification, while
J_coeff=−1 is the worst case.

These three performance indices are more appropriate in the software engineering
studies than the indices which describe overall accuracy. A good software quality model
should be able to identify as many fault-prone modules as possible, therefore, a high PD is
desirable. However, if a project has a low verification budget, analysts would be interested
in identifying a small number of fault-prone modules with a low false alarm rate (thus
avoiding wasting time/budget by analyzing fault-free modules). In these situations, the
flexibility of the G-mean and F-measure becomes important. Both G-mean measures, the F-
measure and the J_coeff include PD in performance evaluation. In this way, they overcome
the disadvantages of the overall accuracy measure. A low accuracy in the minority class
results in a low G-mean, F-measure, or J_coeff even though the overall accuracy may be
high. If all the faulty modules are predicted incorrectly, then the G-mean indices and the F-
measure are zero, while the J_coeff may be either zero or negative. These metrics are
preferable in evaluating software fault prediction models due to the fact that the cost
associated with misclassifying a fault-prone module is possibly much higher than that of
misclassifying a non-fault-prone module, which implies some waste of resources in
verification activities.

Table 3 shows the performance results measured by the G-mean indices, two different F-
measures (β=1 and β=2), and the J_coeff for project PC1. The results reflect the
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application of the random forest classification with the same voting cutoffs as in Fig. 1. As
a reminder, because of the trade-off between PD and specificity and the significantly
skewed class distribution, the classifier in Fig. 1b has higher PD, while precision,
specificity and overall accuracy are all lower.

Table 3 indicates challenges related to model evaluation with these three indices. The G-
mean1 and the F-measure (β=1) indicate that the two voting thresholds produce very
similar classification results, which is misleading. However, from a software engineer’s
point of view, model (b) is likely to be preferable to model (a). This becomes obvious when
we take a look at the G-mean2, the J_coeff or when we assign a higher weight to PD in the
F-measure (β=2). So, without referring to sensitivity, specificity and precision, blindly
computing and comparing some of the F-measure or G-mean could also result in a biased
decision. Another difficulty is associated with the selection of parameter β in the F-
measure. In practice, determining meaningful relative weights of precision and sensitivity is
not trivial. While it is not unusual that fault prediction models are evaluated with several F-
measures, this returns us to the problem of multiple performance indices, which we tried to
avoid in the first place.

3 Graphical Evaluation Methods

In this section, we describe Receiver Operating Characteristic (ROC) curve, Precision and
Recall (PR) curve, Cost Curve (Drummond and Holte 2006), and Lift Chart. To the best of
our knowledge, the consideration of cost curves is novel in the software engineering
literature. These graphs are closely related, being derived from the confusion matrix. Ling
and Li (1998) mentions a close relationship between ROC and lift chart without offering a
mathematical justification. In (Vuk and Curk 2006), Vuk and Curk define a common
mathematical framework between ROC and lift chart, and the Area Under the ROC Curve
(AUC) and the Area Under the Lift Chart. In spite of similarities, each curve reveals
different aspects of classification performance, making them worth considering in software
engineering projects.

3.1 ROC Curve

Many classification algorithms allow users to define and adjust a threshold parameter in
order to generate appropriate models. When predicting software quality, a higher PD can be
produced at the cost of higher PF and vice versa. The (PF,PD) pairs generated by adjusting
the algorithm’s threshold form an ROC curve. ROC analysis is a more general way to
measure a classifier’s performance than numerical indices (Yousef et al. 2004). An ROC
curve offers a visual of the tradeoff between the classifier’s ability to correctly detect fault-
prone modules (PD) and the number of incorrectly classified fault-free modules (PF).

Figure 1a Figure 1b

G-mean1 0.399 0.426
G-mean2 0.519 0.783
F-measure (β=1) 0.372 0.368
F-measure (β=2) 0.305 0.527
J_coeff 0.258 0.569

Table 3 Performance results for
project PC1 based on random
forests at different voting cutoffs
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The Area Under the ROC curve (denoted AUC) is a numeric performance evaluation
measure directly associated with an ROC curve. It is very common to use AUC to compare
the performance of different classification methods based on the same data. However, the
entire region under the curve may not be of interest to software engineers. For instance, the
regions associated with very low probability of detection (region C in Fig. 2a) or very high
probability of false alarm (region B) or both (region D), typically indicate poor performance.
With a few possible exceptions (for example safety critical systems, in which risk aversion
drives the development process), only the performance points associated with acceptable PD
and PF rates (region A) are likely to have a practical value for software engineers.

Therefore, in software engineering studies, the area under the curve within region A
(denoted AUCa) is typically a more meaningful method to compare models than the
standard AUC. Fig. 2b shows the ROC curves of classifiers nb (Naïve Bayes) and j48 on
KC4 project. Using the trapezoid rule, we calculated AUCs to be 0.750 and 0.745,
respectively. From AUC point of view, nb would be a preferred classifier, but after we
calculate AUCa measures, we find that their values are 0.272 for nb and 0.368 for j48. The
AUCa of j48 is greater than that of nb, indicating a preference for the j48 model, the
outcome consistent with the impression a software engineer would gather from looking at
the ROC curves in Fig. 2b. This example illustrates that comparing quality prediction
models based on their ROC curves and the associated standard AUC measures is not as
straightforward as one would expect.

Another simple non-parametric method that utilizes AUC can serve the comparison in
software engineering studies (Braga et al. 2006). The main idea is to compare the ROC
curves using a collection of sampling lines from a reference point; these lines sample the
ROC space. The intersection points of these lines with the ROC curves can be identified and
their Euclidean distances to the reference point computed. This method allows the
identification of performance points in which one classifier is better than the other. For
example, referring to Fig. 2a, the reference point can be the coordinate (PF, PD)=(0.50,
0.50). Starting from this point, N lines with different slopes can be drawn randomly into the

Fig. 2 ROC analysis. a Four regions represent performance parameters of software fault prediction models.
b ROC curves from two classifiers Naïve Bayes (nb) and j48 on project KC4
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Region A. Suppose we are evaluating two ROC curves representing different classifiers.
The distances from point (0.50, 0.50) to the N intersection points on each ROC can be
computed. Longer distances along sampling lines would indicate better classification within
region A of the ROC space.

The utility of this comparison method extends to classifiers which lack the threshold
parameter. Such algorithms are only capable of producing a single point in the ROC space,
a (PF, PD) pair. Rather than measuring distances from an arbitrary reference point, one can
calculate the distance from the perfect classification point (0, 1) to the (PF, PD) pair point
(Menzies et al. 2007):

Distance from Perfect Classification ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q � 1� PDð Þ2þ 1� qð Þ � PF2

q
; ð5Þ

where θ is a parameter ranging from 0 to 1, used to control weights assigned to 1-sensitivity
(i.e., 1-PD) and 1-specificity (i.e., PF). The smaller the distance, i.e., the closer the point is
to the perfect classification, the better the performance of the associated classifier. Figure 3
plots four (PF, PD) pair points in a 2-dimentional space. Points A and B represent the
classification performance of the random forest classifier on project PC1 from Fig. 1a and
b, respectively. C and D are not results of any specific algorithm and are used to
demonstrate performance comparison. The (PF, PD) pairs for C and D are (0.10, 0.80) and
(0.20, 0.90), respectively. If we set θ to be 0.5, then C and D have an equal distance from
(0, 1). From a software engineer’s point of view, are they really equivalent? The answer is
dependent on the rationale behind the value of θ. If misclassifying a faulty module results in
consequences that outweigh falsely “tagging” a fault-free module, then more weight should
be given to 1-PD. In this case, algorithm D would provide a better classification
performance than C.

The distance from the perfect classification point (0,1) is appropriate to choose the best
point from a convex hull of an ROC curve too. This method can assist software engineers in
determining the “best” threshold for a classifier, given a project dataset and an appropriate
value of θ.
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3.2 Precision-recall Curve

Precision-Recall (PR) curve presents an alternate approach to the visual comparison of
classifiers (Davis and Goadrich 2006). PR curve can reveal the difference between
algorithms which is not apparent from an ROC curve. In a PR curve, x-axis represents
recall and y-axis is precision. Recall is yet another term for PD.

Figure 4 shows an example. Looking at the ROC curves for project PC5, it is difficult to tell
the difference among the three classifiers: Naive Bayes (nb), Random Forest (RF), and IBk.
However, their PR curves allow us to understand the difference in their performance: Random
Forest algorithm performs better than Naïve Bayes and Naïve Bayes has an advantage over IBk.

In ROC curves, the best performance indicates high PD and low PF in the upper left-
hand corner. PR curves favor classifiers which offer high PD and high Precision, i.e., the
ideal performance is in the upper right-hand corner. In Fig. 4a, the performance of the three
classifiers appears to approach close to the optimal left-hand upper corner. However, the PR
curve of Fig. 4b indicates that there is still plenty of room for the improvement of
classification performance. We do not contend that PR curves are better than ROC curves.
We only recommend that when ROC curves fail to reveal differences in the performance of
different classification algorithms, PR curves may provide adequate distinction.

3.3 Cost Curve

The aforementioned graphical representations do not consider the implicit cost of misclassifica-
tion. In fact, the basic assumption is that the cost to misclassify a fault-prone module as fault-free
is the same as the cost of misclassifying a fault-free module as a fault-prone. Adams and Hand
(1999) defined loss difference plots to take the advantage of the misclassification cost ratio.
Loss difference plot is considered the predecessor of cost curves which we introduce below.

Proposed by Drummond and Holte (2006), cost curve is a visual tool that allows us to
describe classifier’s performance based on the cost of misclassification. Its y-axis represents
normalized expected misclassification cost. It indicates the difference between the
maximum and the minimum cost of misclassifying faulty modules. The x-axis represents
the probability cost function, denoted PC(+).

Fig. 4 a ROC curve and b PR curve of models built from PC5 module metrics
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Let us denote the faulty module with a “+” and a fault-free module with a “−”. C(+|−)
denotes the cost of incorrectly predicting a fault-free module as faulty. C(−|+) represents
the cost of misclassifying a faulty module as being fault-free. p(+) and p(−) are the
probabilities of a software module being faulty or fault free, p þð Þ þ p �ð Þ ¼ 1. These
probabilities become known only after the deployment of the model, since the proportion of
faulty modules in model’s training and test sets are the approximations of the proportion of
faulty modules the model will encounter during its field use. Cost curves support
visualization of model’s performance across all possible values of p(+) and p(−), offering
performance predictions for various deployment environments.

Equations 6 and 7 present the formulae for computing the values that appear on x-axis
and y-axis:

x� axis ¼ PC þð Þ ¼ p þð Þ � C �jþð Þ
p þð Þ � C �jþð Þ þ p �ð Þ � C þj�ð Þ ; ð6Þ

y� axis ¼ NormalizedExpectedCost ¼ 1� PD� PFð Þ � PC þð Þ þ PF; ð7Þ
where PF is the probability of false alarm and PD is the probability of detection, both defined
in Section 2.2. Let us define the misclassification cost ratio m ¼ C þj�ð Þ: C �jþð Þ. Equation
6 can be rewritten as:

x� axis ¼ PC þð Þ ¼ 1

1þ 1�p þð Þ
p þð Þ m

ð8Þ

From Eq. 8, we observe that the x-axis is determined by only two parameters, p(+) and μ.
In cases when the proportion of faulty modules, p(+), is known a cost curve visualizes

models which cover a range of misclassification cost ratios. Knowing the values of p(+) for
the datasets used in this study make the illustration of such use easy. In stable development
environments, the proportion of faulty modules can be estimated from the past performance.
When p(+) is unknown, cost curve is typically used to evaluate model performance for a set
of assumed misclassification ratios μ over a range of expected proportions of faulty modules
in the software project. This is a common case in practice. While inexact, the estimation of
the misclassification ratio μ should be inferred from project’s characteristics such as severity,
priority, failure costs, etc. In both cases, cost curve can provide guidance for the selection of
fault prediction models relevant for the specific project’s environment.

A sample cost curve diagram is shown in Fig. 5. The diagonal line connecting (0,0) to
(1,1) stands for a trivial classifier that always classifies all the modules as fault-free. The
other diagonal line, connecting (0,1) to (1,0), stands for another trivial classifier that always
classifies all the modules as fault-prone. The horizontal line connecting (0,1) to (1,1)
represents the extreme situation when the model misclassifies all the modules. The x-axis
represents the ideal model which correctly classifies all the modules.

An ROC curve connects a set of (PF, PD) pairs. Cost curves are generated by drawing a
straight line connecting points (0, PF) and (1, 1-PD), corresponding to a (PF, PD) point in
the ROC curve. After drawing all the straight lines that have the counterpart points in the
ROC curve, the lower envelope of the cost curve is formed by connecting all the
intersection points from left to right. Figure 6 shows an example of a cost curve resulting
from the application of Logistic classification model to project KC4. The lower envelope of
the cost curve corresponds to the convex hull in the ROC curve. ROC curves and cost
curves are closely related: a point in the ROC curve corresponds to a line in the cost curve.
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If the costs of misclassifying faulty modules and misclassifying fault-free modules are the
same (admittedly a rare case in any software engineering project), C þj�ð Þ ¼ C �jþð Þ, the
corresponding point in the probability cost function PC(+)=0.48 (see Table 1, the proportion
of faulty modules, p(+), in KC4 is 48%). In Fig. 6 this point is denoted by the vertical line at
x ¼ PC þð Þ ¼ 0:48. Therefore, if the misclassification cost ratio is 1, we should choose the
classifier that offers the minimal expected cost along this vertical line. When PC(+)<0.48,
the misclassification cost of fault-free modules is greater than that of misclassifying a fault-
prone module. The vertical line at x ¼ PC þð Þ ¼ 0:0845 indicates the place where the cost
ratio C(+|−) to C(−|+) is 10. The cost region where PC(+)>0.48 represents models which
are adequate for “risk adverse” projects, those where misclassifying a fault-prone module is
significantly more consequential. The vertical line at x=PC(+)=0.90 indicates the situation
where C þj�ð Þ: C �jð Þ ¼ 1 : 10. Cost curves open significant opportunities for cost-based
software quality management. Misclassification costs can now dictate the preference for the
model and model parameters which are the most appropriate for the given project.

While the goal of ROC and PR curve analysis is to maximize the area under the curve,
the goal of cost curve is to minimize the misclassification cost, that is, minimize the lower
envelope area. The smaller the area under the lower envelope boundary is, the better the
performance of the classifier and, consequently, the better the expected software quality
cost–benefit ratio. However, it is likely that a single model will not be equally good in all
cost regions. If at some point in time a project evolves to an understanding that the
misclassification cost differential is not the same one used in the past, the project may
decide to change the quality model it uses even though the underlying metric distributions
in the dataset remain the same. Cost curves support this type of decisions.

Cost curve reveals the differences among classifiers from perspectives that are not obvious in
ROC and PR curves. Figure 7 demonstrates this using KC4 dataset as an example. The cost
curve, shown in panel (c) of Fig. 7, provides a clear answer to the comparison of two classifiers:
Logistic classifier is better than Naïve Bayes (nb) because its lower envelope is always below
that of Naïve Bayes. Deriving this conclusion from ROC or PR curves would be difficult.

It is not our intension to advocate that cost curve is always the best method for
comparing the performance of fault prediction models. ROC, PR and cost curves describe
classifier performance from different perspectives and they are all useful. When comparing
several models, it is a good practice to plot ROC curves, PR curves, and cost curves
because they provide complementary information for model selection.

3.4 Lift Chart

In practice, every software project has a finite time and budget constraints for verification and
validation activities. Given the fault prediction model, the question that typically arises is how
to utilize available resources to achieve the most effective quality improvement. Lift chart
(Witten and Frank 2005), known in software engineering as Alberg diagram (Khoshgoftaar
et al. 2007; Ostrand et al. 2005; Ohlsson and Alberg 1996; Ohlsson et al. 1997), is another
visual aid for evaluating classification performance. Lift is a measurement of the
effectiveness of a classifier to detect fault-prone modules. It calculates the ratio of correctly
identified faulty modules with and without the predictive model. Lift chart is especially
useful in situations when the project has limited resources to apply verification activities to,
say, 5% of the modules. Which model maximizes the probability that the selected 5% of the
project’s modules contain faults? This type of prediction is common in the literature.
Ostrand, Weyuker and Bell focus on predicting and ordering top 20% of files which contain
the most faults (Ostrand et al. 2005). Arisholm and Briand predict fault-prone components
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in a java legacy system and argue that a prediction model is not practical if the predicted
X% of faults requires inspection of more than X% of the code (Arisholm and Briand 2006).

Lift chart analysis starts by ranking all the modules with respect to their chance of
containing fault(s). The ranking methods can vary (Khoshgoftaar et al. 2007; Kubat et al.
1998; Ostrand et al. 2005; Ohlsson and Alberg 1996; Ohlsson et al. 1997; Witten and Frank
2005). For example, multiple linear regression models calculate the expected number of
faults in a module, Naive Bayes models output a score indicating the likelihood that the
module belongs to a faulty class and an ensemble algorithm, such as random forest, counts
the voting score. Once the modules are ranked, we calculate the number of faulty modules
in the specific rank (from 0 to 100%). In the lift chart, the x-axis represents the percentage
of the modules considered, and the y-axis indicates the corresponding detection rate within
this sample. The lift chart consists of a baseline and a lift curve. The lift curve shows the
detection probability resulting from the use of the predictive model, while the baseline
indicates the proportion of faulty modules in the dataset. The greater the area between the
lift curve and the baseline is, the better the performance of the classifier.

Figure 8a depicts lift charts of two classifiers, J48 and logistic, applied to project PC5. PC5
contains 17,186 modules and 3% of them are faulty. The baseline indicates the proportion of
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faulty modules (3%). Say budget constraints allow us to analyze 5% of the PC5 modules
(0.05×17,186=859 modules). Without a predictive model, we would have a 3% chance to
randomly select faulty modules, i.e., out of 859 randomly selected modules only 26 modules
would be expected to contain faults. Using J48, there is 45.85% chance to capture faulty
modules within the top 5%. Consequently, this model is expected to expose 394 (45.85%×
859=394) faulty modules to verification analysis, with a lift factor of more than 15.

Figure 8b demonstrates another variation of lift charts—a cumulative lift chart. The x-axis
is the same as above, but the y-axis stands for the cumulative proportion of detected faulty
modules. The greater the area under the curve is, the better the classifier’s performance.

4 Statistical Comparisons of Classification Models

Drawing sound decisions from performance comparison of different classification
algorithms is not simple. Statistical inference is often required (Conover 1999; Siegel
1956). The purpose of performance comparison is to select the best model(s) out of several
candidates. Suppose there are k models to compare. The statistical hypothesis is:

Ho: There is no difference in the performance among k classifiers.

vs.

H1: At least two classifiers have significantly different performance.

When more than two classifiers are under comparison, a multiple test procedure may be
appropriate. If the null hypothesis of equivalent performance among k classifiers is rejected,
we can proceed with a post-hoc test.

Demsar (2006) overviewed theoretical work on statistical tests for classifier comparison.
When the comparison includesmore than two classifiers over multiple datasets, he recommends
the Friedman test followed by the corresponding post-hoc Nemenyi test. The Friedman test and
the Nemenyi test are nonparametric counterparts for analysis of variance (ANOVA) and Tukey

Fig. 8 Lift chart and cumulative lift chart of PC4 module metrics
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test parametric methods, respectively. Demsar advocates these tests largely due to the fact that
nonparametric procedures make less stringent demands on the data. However, nonparametric
tests do not utilize all the information available, as the actual data values (typically numerical
performance indices such as AUC) are not used in the test procedure. Instead, the signs or
ranks of the observations are used. Therefore, parametric procedures will be more powerful
then their nonparametric counterparts, when justifiably used.

To illustrate the application of nonparametric tests in software engineering studies, we
follow nonparametric test procedure recommended by Demsar (2006). The Friedman test
and the Nemenyi test are implemented in the statistical package R (http://www.r-project.
org/). In our experiments, the measure of interest is the mean AUC estimated over 10 by 10
cross validation, using 95% confidence interval (p=0.05) as a threshold to judge the
significance (p<0.05). Of course, any numerical performance index discussed in this paper
can form the basis for statistical analysis. Below, the Friedman test tests whether there is a
difference in the performance among 6 classification algorithms over 8 datasets (all listed in
Section 1.1). Provided that the Friedman test indicates statistically significant difference
exists, we will need to compare classifiers to determine which classifier performs better
over these 8 data sets using the Nemenyi test.

We implement the Friedman test as follows (Demsar 2006):

Ff ¼
N � 1ð Þx2f

N k � 1ð Þ � x2f
; where x2f ¼

12N

k k þ 1ð Þ
X
j

R2
j �

k k þ 1ð Þ2
4

" #
; ð9Þ

k is the number of classifiers, N is the number of data sets, Rj is the average rank of a
classifier j over multiple data sets. Rj ¼ 1

N

P
j r

j
i, where r

j
i is the rank of the jth classifier on

the ith data. Ff follows the F-distribution with k−1 and (k−1)(N−1) degrees of freedom and
the critical values available from any statistical textbook.

The Nemenyi test is a post-hoc test of the Friedman test, applied if the null hypothesis is
rejected. It will compare all classifiers with each other. The critical difference (CD) of the

Nemenyi test is calculated as CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffi
k kþ1ð Þ
6N

q
, where qa is the critical value of the

Nemenyi test (Demsar 2006). The performance difference between the two classifiers is
significant if the difference of average ranks between them is larger than the value of CD. In
our case, we have N=8 data sets and k=6 classifiers, The average ranks of IB1, J48, NB,
logistic, bagging, and random forest are 5.50, 5.25, 3.625, 3.125, 2.5, and 1, respectively.
The Friedman test checks the null hypothesis:

x2f ¼ 12�8
6 6þ1ð Þ 5:502 þ 5:252 þ 3:6252 þ 3:1252 þ 2:52 þ 12 � 6 6þ1ð Þ2

4

h i
¼ 33:07;

Ff ¼ 8�1ð Þ�33:07
8 6�1ð Þ�33:07 ¼ 33:41:

With k � 1 ¼ 5 and k � 1ð Þ N � 1ð Þ ¼ 5� 7 ¼ 35 degrees of freedom, the critical value
of F-distribution is 2.48. Because 33.41>2.48, the null hypothesis which states that there is
no difference in the performance of these six models over the eight data sets is rejected.
Next, the Nemenyi post-hoc test compares the performance of classifiers. With six
classifiers, the critical value qa is 2.85 (Demsar 2006). Hence, the critical difference is

CD ¼ 2:85
ffiffiffiffiffiffiffiffiffiffiffi
6 6þ1ð Þ
6*8

q
¼ 2:67

Figure 9 shows the outcome of the Nemenyi post-hoc tests. The numbers in the scale
represent the average rank; the higher the rank, the worse the performance of a classifier.
Therefore, from the worst towards the best, the order of models is IB1, J48, Naïve Bayes,
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Logistic, Bagging, and Random Forest. When the difference between the average ranks or
two models is smaller than the value of CD, the difference in their performance is not
significant, as indicated by the bold straight lines. Figure 9 indicates that our fault
prediction models form two performance clusters: IB1, J48, Naïve Bayes, and logistic
models form one and Naïve Bayes, logistic, bagging, and random forest form the other.

While the example above illustrates the application of statistical testing to a numerical
performance index (AUC), similar tests can be applied to the graphical tools for
performance evaluation. Macskassy et. al. review how to construct confidence intervals
around ROC curves, either as point-wise (Macskassy et al. 2005a) or global confidence
bands (Macskassy et al. 2005b). In the point-wise approach, the user tests the difference
between two PD values for a given PF value. Statistical analysis of differences between
two AUCs is an example of global confidence bands method. The same type of statistical
testing can be applied to ROC curves, PR curves and lift charts. In the rest of this section,
we concentrate on the construction of confidence intervals for cost curves, the topic not
addressed previously in the software engineering literature.

Classifier’s performance is derived from a confusion matrix. In a cost curve, as well as in
other performance analysis graphs, a confidence interval is generated from a series of
confusion matrices. We illustrate the use of confidence bounds on cost curves, following
the procedure outlined by Drummond and Holte (2006). The procedure is based on the
resampling of typically 500 confusion matrices using the bootstrap method. The 95%
confidence interval for a specific PC(+) value, for example, is obtained by eliminating the
highest and the lowest 2.5% of the normalized expected cost values.

In some ranges of the curve, the performance of two classifiers may be significantly
different, but in the other ranges it may not. Figure 10 shows an example of the difference
in performance between two classifiers, IB1 and j48 on PC1 dataset. The shaded area in
Fig. 10 represents the 95% confidence interval. There are three lines inside the shaded area.
The middle line represents the difference between the means of IB1 and j48. The other two
lines along the edges of shaded area represent the 95% confidence interval of the difference
between the mean of two classifiers. If the confidence interval contains the (horizontal) zero
line, then there is no significant difference between the two classifiers, otherwise, there is.
The larger the distance of the confidence interval from the zero line, the more significant
the difference between the two classifiers. Referring to Fig. 10, when PC(+) is in the range
of (0.0, 0.1), the confidence interval is above the zero, indicating J48 outperforms IB1. In
the range (0.27, 0.59), the confidence interval is below the zero line, indicating that IB1
performs better than J48. Between (0.1, 0.27) and (0.59, 0.64), the confidence interval
contains the zero line indicating no significant difference between the two classifiers. When
PC(+)>0.64, the performance of the two classifiers is the same. Given that the proportion
of faulty modules in project PC1 is 7%, at PC(+)=0.07 the misclassification cost for fault-

Fig. 9 Comparison of 6 classi-
fiers over 8 datasets using the
Nemenyi test with 95% CI
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prone and fault-free classes is the same, C þj�ð Þ ¼ C �jþð Þ. When PC(+)<0.07 the cost of
misclassifying fault-free modules outweighs the misclassification of fault-prone modules.
The opposite is true for 0.07<PC(+). Cost curve analysis shows that (1) j48 is a bad choice
when PC(+)<0.07 (worse even than the trivial classifier); (2) j48 outperforms IB1 in (0.27,
0.59) region; (3) in other regions of the cost curve, IB1 and j48 perform similarly.

The confidence band in the cost curve reveals aspects which cannot be inferred from the
statistical analysis of AUC in ROC curves. When misclassification costs are known or can
be guessed, cost curves and their statistical analysis provide the most meaningful guidance
for model selection.

5 Experimental Evaluation

In this section, we mimic the analysis a software practitioner would perform when
developing and selecting fault prediction models. We start by building the six models using
classifiers listed in Section 1.1. For the purpose of analysis presented in this section, we
eliminated models developed using the random forest algorithm. The random forest
outperforms other classification models in many of the measures of interest, thus making
the problem of model selection rather trivial. Since the purpose of this paper is the
description of the model comparison and selection process, eliminating one of the
classifiers does not reduce the generality of our recommendations.

5.1 PC1 Dataset

We would like to select the most appropriate classifier for project PC1 from the MDP
repository. To facilitate the comparison, in Table 4 we highlight the best performers
according to each numerical index. Using the default parameters for each classifier, as
offered in Weka toolkit, the superiority of IB1 classification algorithm appears noteworthy,
as it provides the largest value on majority of the performance indices. If we check PD, and
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set the acceptability threshold to 0.40 then only IB1 is up to this standard. G-mean’s, F-
measure, J_coeff or distance from the perfect classification all point to IB1 as our candidate
model. But, if we use overall accuracy, precision or specificity, we would choose the model
developed by bagging classifier. However, the probability of detection (PD) from bagging
appears poor (∼17%) making its suitability for a software engineering project questionable.

However, as mentioned earlier, numerical performance indices only reveal a part of the
overall evaluation story. The default operational points of classifiers listed in Table 4 offer a
very particular point of view and hide the multitude of tuning options which can
significantly alter the outcome of evaluation.

For this reason, analysis must continue with the visual model performance evaluation
methods. Figure 11 shows the ROC curves corresponding to these five models. The analysis
of AUCs orders the models as follows: Bagging>Logistic>IB1>Naïve Bayes>J48. The
actual AUCs are shown in Table 5. Mean AUC values match the order observed from the
ROC curves. However, if the curves tangle together, as they do in Fig. 11, it is difficult to
assess whether the differences are statistically significant.

Fig. 11 ROC curves of PC1
module metrics

Table 4 Numerical performance indices for project PC1

Indices Naïve Bayes Logistic IB1 J48 Bagging

PD 0.299 0.065 0.442 0.234 0.169
1−PF 0.936 0.988 0.954 0.985 0.995
Precision 0.259 0.289 0.415 0.540 0.732
Overall accuracy 0.892 0.924 0.918 0.933 0.938
G-mean1 0.278 0.137 0.428 0.356 0.352
G-mean2 0.529 0.253 0.649 0.480 0.410
F-measure (β=1) 0.278 0.106 0.428 0.327 0.275
F-measure (β=2) 0.290 0.077 0.436 0.264 0.200
ED (θ=0.5) 0.498 0.661 0.396 0.542 0.588
J_coeff 0.235 0.053 0.396 0.219 0.164
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We next apply the Friedman test and the Nemenyi test, using the AUC values from 10
by 10 cross validation experiments. Although we now compare model performance using
multiple experiments from a single data set, the validity of this statistical inference procedure
is not diminished. Figure 12 shows the test outcomes from the Nemenyi test. The average
rank orders the five models as follows: J48, NaiveBayes, IB1, logistic, and bagging. From
Fig. 12, we can conclude that: (1) The average rank of J48 and Naïve Bayes is the highest,
hence they offer the worst performance; (2) The average rank of Bagging is 1, offering
superior performance among the five models, although using 95% confidence interval its
performance cannot be distinguished from models developed using Logistic classifier; (3)
The difference in performance between J48, Naïve Bayes and, IB1 is not statistically
significant; The performance differences between IB1 and Logistic are also not significant;
(4) Other comparisons reveal statistically significant differences in model performance.

From the ROC curves, mean AUC values and the outcome of the nonparametric tests,
we would likely select the fault prediction model built by the Bagging classification
algorithm. Note that this is a different outcome compared to the classifier selection from the
numerical indices. Let us consider this choice in the cost curve diagram shown in Fig. 13.

When the misclassification cost for fault-prone and fault-free classes in PC1 project is
the same, we have PC(+)=0.07. This is indicated by the vertical line in the cost curve of
Fig. 13. If PC1 is a cost adverse project (meaning that the cost of misclassifying fault-prone
modules as fault-free is lower than the other way around) the region of interest for
performance comparison covers probability cost PC(+)<0.07. If PC1 is a risk adverse
project (the cost of misclassifying fault-free modules as fault-prone is lower, implying the
project is trying to minimize the risk of post deployment failure) the region of interest
covers probability cost PC(+)>0.07. When PC(+)<=0.07, all our models have misclas-
sification rate/cost similar or worse than a trivial classifier (which classifies all modules as
fault-free). Consequently, no model is particularly useful if PC1 project falls into the cost
adverse category. Using any of these 5 models can only be justified in the “risk adverse”
region of the cost curve. The misclassification cost trend of these 5 classifiers indicates the

Fig. 12 Comparison of the five
classifiers on PC1 data using
the Nemenyi test and
95% CI

Dataset Model AUC AUCa

pc1 IB1 0.694 0.14
J48 0.665 0.096
Bag 0.840 0.496
Log 0.814 0.428
NaiveBayes 0.669 0.112

Table 5 AUC and AUCa of PC1
fault prediction models
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same tendency as ROC curves from Fig. 11: Bagging<Logistic<IB1<NaiveBayes<J48.
Generally, bagging has the minimal cost among the five models and it is consistently within
the envelope of the trivial classifier. Its use can contribute to software quality assurance
across the entire range of probability cost. Thus, when misclassification cost is considered,
the model generated by bagging algorithm is the best pick.

We conducted pairwise statistical comparisons of the cost curve models too. Figure 14
shows an example, where we compare j48 and Bagging models. When 0 ¼< PC þð Þ <¼
0:31 and 0:78 ¼< PC þð Þ <¼ 1, the normalized expected cost 0 (i.e., y=0) is inside the
95% confidence interval. Therefore, there is no significant difference between these two
classifiers in these ranges. We observe a significant difference in the region 0.31<PC(+)<

0.5

0.41

0.32

0.23

0.14

0.05

-0.04

-0.13

-0.22

-0.31

-0.4
1.00.90.80.70.60.50.40.30.20.10.0

Probability Cost

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

j48
bag

PC1 module metrics

0.31 0.78

Fig. 14 The 95% confidence interval cost curve evaluation of Bagging and j48 models on PC1

Fig. 13 Cost curves for project PC1

Empir Software Eng (2008) 13:561–595 581



0.78. The confidence bounds span over the entire range of values of probability cost
function. Therefore, once we know the misclassification costs which are specific for the
project at hand, we can draw conclusions about the statistical significance of differences
between models.

Lastly, we compare the models using lift chart analysis. Figure 15 depicts the five PC1
models, emphasizing the realistic scenario in which up to 40% of software modules will be
selected for further analysis. From the lift chart, we can infer the following:

(1) J48 and Bagging overlap when the percentage of software modules to be selected is
below 0.05. J48 slightly outperforms bagging when x>0.05.

(2) The performance of all the studied classifiers becomes similar when x>0.2.
(3) Around x=0.15 (15% of modules), IB1 slightly outperforms J48, but J48 performs

better otherwise.

Project PC1 contains 1,109 modules, so a 10% cut selects 111 modules. If the budget
and time restrict verification effort to less than 111 modules, we should choose J48. If the
project budget calls for the verification of 166 modules (15%), we could choose IB1 model.
However, J48 is the reasonable choice if the verification effort does not surpass 40% of all
the PC1 modules.

In summary, given the five models selected for comparison on PC1 project, the outcome
is quite complex. Different models address different needs of software projects. If the
software quality engineers are confident in the appropriateness of G-mean or F-measure,
the project should choose IB1 classifier. However, precision, specificity, ROC indices and
cost curves all point to the selection of the model generated by bagging algorithm. Given
the lift chart, the model generated by J48 is the most appropriate, although the bagging
model performs almost as well.

It is interesting to compare our performance evaluation of PC1 data set with others, for
example, the recently published work of Menzies et al. (2007). Authors claim that the best
classification performance result, PD=0.48 and PF=0.17, is reached by the specific
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parameter set-up for Naïve Bayes classifier applied to logarithmically transformed metrics
values. These results are comparable to the best (PD, PF) pairs we report in Table 4. But the
ROC curves in Fig. 11 reveal that both Bagging and Logistic models offer significantly
higher PD rates (above 0.6) at PF=0.17. ROC curve offers to an analyst a range of
classification threshold values that are easily overlooked when only selected (PD, PF) pairs
are reported. The point we make is that general conclusions about fault prediction models
cannot be made by reporting only a few (PD, PF) pairs. The comprehensive evaluation
offered here demonstrates that such conclusions should be questioned for validity. This
observation is one of the major conclusions of our study.

5.2 KC2 Dataset

The numerical performance indices for project KC2 are tabulated in Table 6. If we set the
minimum PD acceptability to 40%, Naïve Bayes and Logistic classifiers would not be given
further consideration, even though the former produced the highest specificity, precision
and overall accuracy. The overall accuracy of Bagging model is the highest, but the other
measurements, the G-mean, F-measure, J_coeff and the distance from the perfect
classification are not as good as those generated by J48.

Figure 16 depicts the ROC curves of the five fault prediction models on KC2. After
observing the ROC curves, we infer: 1) The performance of Bagging, Logistic and
NaiveBayes models appears similar; 2) These three models are clearly better than J48 and
IB1; 3) J48 appears to be better than IB1. The same trend can be observed from the values
of AUCs in Table 7.

We used the Friedman test and the post-hoc Nemenyi test to analyze whether the
difference in the performance of the five models is statistically significant. The average
ranks for IB1, J48, Bagging, Logistic, and Naïve Bayes are 4.8, 4.2, 2.6, 1.8, and 1.6,
respectively. The outcome of the Nemenyi test at 95% confidence level is shown in Fig. 17.
We observe that 1) The performance of Naïve Bayes, Logistic, and Bagging models is
statistically indistinguishable; 2) The performance of J48 and Bagging, as well as IB1 and
J48 cannot be claimed to be different; 3) All the other comparisons indicate statistically
significant differences.

Mean AUC values favor the model generated by Naïve Bayes. But, maximizing the area
under the curve in the left-upper corner of ROC, AUCa, favors Logistic (see Table 7).
Statistical tests tell us that differences between NaiveBayes, Logistic or Bagging models are

Table 6 Performance results for project MDP-KC2

Indices Naïve Bayes Logistic IB1 J48 Bagging

PD 0.398 0.389 0.509 0.546 0.472
1−PF 0.950 0.932 0.858 0.896 0.931
Precision 0.674 0.599 0.483 0.578 0.639
Overall Accuracy 0.836 0.820 0.786 0.824 0.836
G-mean1 0.518 0.483 0.496 0.562 0.549
G-mean2 0.615 0.602 0.661 0.700 0.663
F-measure (β=1) 0.501 0.472 0.496 0.562 0.543
F-measure (β=2) 0.434 0.418 0.504 0.552 0.498
ED (θ=0.5) 0.427 0.435 0.361 0.329 0.377
ED (θ=0.67) 0.492 0.500 0.409 0.375 0.433
J_coeff 0.348 0.321 0.367 0.442 0.403
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not significant. Given that the tests analyze AUC values (rather that AUCa) choosing the
model developed using Logistic classifier is appropriate.

Figure 18 depicts the cost curves of fault prediction models for KC2. The cost curves of
Bagging, Logistic and Naïve Bayes are very similar. IB1 implies the highest cost, followed by
J48. These observations match those we reached by analyzing the ROC curves and the
statistical tests. The vertical line at PC(+)=0.21 indicates the performance where the
misclassification cost of fault-prone and fault-free classes is the same (21% of modules in
KC2 are faulty). The region PC(+)<0.21 is the verification’s cost adverse region and PC(+)>
0.21 is the risk adverse region. When PC(+)<0.21 IB1 is inferior and j48 matches the
effectiveness of the trivial classifier. Bagging indicates slight performance advantage in that
region. Logistic gains the sight advantage when 0.28<PC(+)<0.89, but that model becomes
worse than the trivial classifier at PC(+) > 0.88. Depending on project’s actual misclassification
cost ratios and verification needs, any of the top three classification models could be selected.

Figure 19 depicts the 95% confidence interval comparison of cost curves from Logistic and
Bagging classifiers. The zero line is inside the confidence interval along the entire range of
operating points, thus indicating no significant difference between these two classifiers.

Dataset Learner AUC AUCa

KC2 IB1 0.689 0.168
J48 0.729 0.308
Bagging 0.821 0.472
Logistic 0.824 0.484
NaiveBayes 0.832 0.464

Table 7 Mean values of AUC on
KC2 models

Fig. 16 ROC curves for project
KC2
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Further tests between Bagging, Naïve Bayes, and Logistic, provide the same result, i.e., no
statistically significant differences. Bagging and j48, as one would expect, offer significantly
different performance. Figure 20 shows the 95% confidence interval. When PC(+) is in the
ranges (0.0, 0.06), (0.31, 0.40), and (0.77, 0.84), performance of bagging and j48 is
indistinguishable. Within intervals (0.06, 0.31) and (0.40, 0.77), the confidence interval does
not contain the zero line, indicating the significant difference between the two classifiers.

Figure 21 shows lift charts of the five KC2 models. KC2 project contains 523 modules
(see Table 1). If we are to select up to 10% of these modules, Bagging model should be our
choice. This may be the most useful subset to be selected if available verification resources
are sparse. Logistic is the model of choice if resources allow us to inspect 10–25% of
modules (between 52 and 130). If KC2 is a safety/mission conscious project and time and
budget are not too tight, and more than 25% modules can be analyzed, somewhat
surprisingly, J48 emerges as the model of choice.

A brief summary of KC2 model evaluation shows that overall accuracy, precision, and
specificity lead towards the selection of Naïve Bayes model. G-means and F-measure, and a
specific verification scenario in the lift chart indicate support for J48. From the analysis of ROC
and AUC, Naïve Bayes, Logistic, and Bagging are equally good choices. However cost curves
or lift charts, identify several special cases when one of the models outperforms the others.

Fig. 18 Cost curves of fault prediction models on KC2

Fig. 17 Comparison of the five
classifiers over 10 runs on KC2
data using the Nemenyi test at
95% CI
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6 The Guidelines for the Selection of Model Evaluation Techniques

To accurately assess the performance of software quality prediction models, we should
carefully choose and interpret the metrics of merit, and evaluate model’s performance based
on the specific needs of the project. While multiple measurements may be useful for getting
a broad understanding of classification performance, they also cause a difficulty when
drawing conclusions. As we illustrated, it is not unusual for different performance indices to
provide seemingly conflicting comparison results. This phenomenon has been observed
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Fig. 19 The 95% confidence interval indicates no significant difference between Bagging and Logistic fault
prediction models on KC2 dataset
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several times (El-Emam et al. 2001; Kubat et al. 1998; Ohlsson and Alberg 1996). Most
performance indices originate in the confusion matrix, making them easy to compute. But
in practice, the comparison of models is only meaningful if performance indices can be
clearly related to the project specific model evaluation requirements.

In addition to experiments reported in this paper, we conducted many more using more
than twenty project datasets available in NASA MDP software engineering repository. We
offer the following recommendations that emerged through our work.

& Economic parameters of each project are unique. Classification models in software
quality assessment must be developed to address the specific needs of the project.
Therefore, analyzing the project’s cost characteristics must be the first step in
quality assessment. Such analysis builds upon nonfunctional software requirements
and results in project-specific modeling requirements and constraints such as
misclassification costs, assessment of the resource constraints (how many modules
can be exposed to analysis), etc.

& It is unlikely that any single classification algorithm will be able to offer “the best”
performance in general. Consequently, a toolbox that supports software quality
assessment should include classification algorithms recommended in the empirical
software engineering literature. Publicly available machine learning toolsets have
enabled a growing consensus in the software engineering publications regarding
the selection of the most promising modeling algorithms.

& Overall classification accuracy is not an appropriate measure of classification
performance in software fault prediction models due to the fact that fault-free
modules typically significantly outnumber the fault prone modules. Sensitivity
(PD) and the inverse of specificity (PF) are much more appropriate for a quick
model comparison, but not sufficient for model selection.

& Sensitivity, specificity, and precision, each tell us a unitary story about the
performance and should not be used to assess the performance of predictive models

Fig. 21 Lift chart of KC2
module metrics
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independently. Further, these indices take into account only the specific operational
points (selected thresholds) of classification models and may offer misleading
conclusions if used to argue model selection.

& The G-mean, F-measure, J_coeff provide more informative insight into model
performance because they offer (weighted) combinations of two out of the three
indices listed above. However, similar to the comment made above, these
coefficients only offer comparison of classification performance for a selected
operational point. This is a major limitation as most classification algorithms offer
tuning parameters and facilitate a range of operational classification characteristics.

& Graphical model evaluation approaches, such as ROC and PR curves, offer the
advantage of performance evaluation over a range of operational points. However,
these are two dimensional plots and model evaluation studies would typically use
curve comparisons over different plots.

& Comparison between classification models through ROC (or PR) curves should
focus on the performance points meaningful to the project. For most software
projects, the Area Under the Curve of the upper left quadrant of the ROC (AUCa)
is a more informative measure than the standard AUC.

& The limited resources available for verification and validation (V&V) are always a
concern in software engineering projects. Lift charts facilitate model comparison
which supports directing sparse V&V resources to software modules which are the
most likely to contain faults. Increasing the effectiveness of software V&V is the
most important goal of quality modeling. Therefore, lift chart analysis typically
deserves a prime importance in model comparison.

& Cost curves are the most complex and possibly the most informative charts for model
comparison. A cost curve is calculated from many operating points (and classifiers) in
the ROC space. A cost curve facilitates assessment of prediction models across
misclassification cost ratios. Software products operate in environments in which the
occurrence of failures implies different consequences. Generally, for most projects it is
impossible to state the exact misclassification cost ratio. However, the assessments of
failure criticality or fault resolution priority have been a part of software V&V
activities for a long time. Software development teams typically have a good
understanding of the range of pertinent probability cost values. Further, cost curves
can also evaluate model performance over the range of operational scenarios in which
the proportion of faulty modules changes over time (e.g., after major upgrades) and
suggest switching to a more appropriate model. Therefore, we strongly recommend
cost curve modeling as one of the most relevant model selection techniques.

& Whenever model selection includes evaluation of several candidates, the application
of statistical significance tests is necessary. Such tests support a sound procedure for
model selection by distinguishing spurious observations from significant trends in
data analysis. Nonparametric statistical tests are usually adequate for comparing
software quality models. We recommend the analysis procedure outlined in (Demsar
2006), i.e., the application of the Friedman test to compare the performance of
multiple classifiers followed by the Nemenyi post-hoc test.

7 Conclusions

Software quality prediction continues to attract significant attention as it holds the promise
for improving the effectives and offering guidance to software verification and validation
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activities. Over the past five years, several datasets describing module metrics and their
fault content became publicly available. As the result, numerous methodologies for
software quality prediction have been proposed in search of “the best” modeling technique.
The suggestion to experiment with different modeling techniques followed by the selection
of the most appropriate one has become common (Challagulla et al. 2005; Khoshgoftaar et
al. 1997; Ohlsson and Alberg 1996). Performance comparison between different
classification algorithms for detecting fault-prone software modules has been one of the
least studied areas in the empirical software engineering literature. However, fair
comparison of models and their evaluation are the prerequisites for model selection. The
objective of this paper has been to outline the techniques relevant for specific application
requirements of software engineering projects. We believe the approach and evaluation
steps outlined in this work have the potential to offer broad understanding, improve
relevance, and enhance statistical validity of future studies and experiments.

We surveyed various performance metrics and provided a thorough discussion of
adequate and precise evaluation of fault-prediction models in software engineering. An
obvious conclusion is that the comparison of fault-prone models is a multi dimensional
problem. Rarely will one model or the modeling technique prove to be the best for all
possible uses in software quality assessment. Some models will offer advantages when the
goal is to select a few modules most likely to be fault-prone. Others will demonstrate
superiority in traditional comparison methods for binary classification algorithms, such as
ROC curves, PR curves and areas under these curves, thus offering flexibility and
applicability in a range of software engineering project situations. But the reality of
software engineering projects cautions us that the overall model classification performance
is not the ultimate goal in itself. Rather, optimizing the project cost and maximizing the
efficiency of software verification procedures typically tops the agenda. For these purposes,
the application of cost sensitive model evaluation indices, such as F-measure and its visual
derivatives offers a balanced consideration. In this paper, we described a methodological
generalization of cost sensitive numerical performance indices called cost curves. To the
best of our knowledge, this is the first attempt to examine the application of cost curves in
the software engineering literature. Cost curves offer graphical comparison of model
performance across a wide range of module misclassification costs. Being able to
characterize the range of misclassification cost ratios is very important because accurate
determination of the cost of misclassification is never easy. Therefore, we strongly
recommend the use of cost curves in practice and hope they will become a standard tool for
software quality model performance evaluation.

Appendix A: Characteristics of NASA MDP dataset

Accurate prediction of fault-proneness in the software development process enables
effective identification of modules which are likely to hide faults. Corrective and remedial
steps can be adopted early in the development lifecycle before the project encounters costly
redevelopment efforts in the later phases. Software projects vary in size and complexity,
programming languages, development processes, etc. When reporting a fault prediction
modeling experiment, it is important to share the characteristics of the datasets. Here, we
outline the characteristics of NASA Metrics Data Prediction (MDP) datasets, which
inevitably have a significant impact on fault prediction. Some of our observations seem to
be general, i.e., valid across many reported modeling results, while others are specific to
this dataset.
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First, only a small proportion of software modules are faulty (Menzies et al. 2007) This is
one of the most consistent characteristics of software defect databases. Faulty modules
constitute only a small portion of the software product base. Table 1 (Section 1.1) provides
a sample of projects, released as a part of NASA Software Metrics Data Program (Metrics
Data Program NASA IV&V facility, http://mdp.ivv.nasa.gov/). Module faults were detected
either during the development or in the deployment. For project PC1, only 7% of the modules
are faulty and 93% are fault-free; KC4 has the largest percentage of faulty modules among
all five projects considered here, 48%, but it is also the smallest one (only 125 modules) and
the only one that uses a scripting language (Perl). In all other datasets, there are at least three
times as many fault free modules than faulty ones. Such a significantly skewed distribution
of faulty and non-faulty modules in sample datasets presents a problem for supervised
learning algorithms typically utilized in software engineering studies. The reason is that most
supervised learning techniques aim to maximize the overall classification accuracy and
ignore the class distribution. For example, even if we declare all modules in PC1 as fault-
free and misclassify all faulty modules the overall accuracy would achieve 93%. By all
means, in the field of predictive models of software fault-proneness, this would be a fantastic
result. However, such a model would be useless, as the sole purpose of predictive software
quality studies is predicting where faults hide (Menzies et al. 2007).

Second, software metrics used to build predictive models exhibit high correlation (Menzies
et al. 2007) Typically, models use software metrics as prediction variables. These metrics
tend to correlate with each other. Take the projects listed in Table 1, for example. Each data set
contains twenty-one software metrics, which describe the product size, complexity and some
structural properties (Metrics Data Program NASA IV&V facility, http://mdp.ivv.nasa.gov/).
Tables 8 and 9 display the Pearson’s correlation coefficients among the predictive variables
for projects PC1 and KC2, respectively. Due to space constraint, we only tabulate the
correlation between the lines of code (LOC) and five other randomly chosen variables for each
project. In the Table 8, the five randomly selected variables and their metric types are: total
operands (TOpnd)—Basic Halstead, volume (V)—Derived Halstead, effort estimate (B)—
Derived Halstead, lines of code and comment (LCC)—Line Count, and length (N)—Derived
Halstead. The variables selected for KC2 (Table 9) are: unique operators (UOp)—Basic
Halstead, volume (V)—Derived Halstead, design complexity (IV.G)—McCabe, total
operators (TOp)—Basic Halstead, and lines of blank (LOB)—Line Count. For both projects,
the listed variables are either moderately or strongly correlated; the majority of the correlation
coefficients are above 0.90.

The phenomenon of high correlation among predictive variables is termed multi-
colinearity in regression analysis. As Fenton and Neil (1999) state in (Fenton and Neil
1999), multicolinearity produces unacceptable uncertainty in regression coefficient

Table 8 Correlation coefficients among six predictive variables in project PC1

LOC TOpnd V B LCC N

LOC 1.000 0.908 0.937 0.931 0.545 0.924
TOpnd 0.908 1.000 0.976 0.971 0.464 0.996
V 0.937 0.976 1.000 0.995 0.468 0.987
B 0.931 0.971 0.995 1.000 0.468 0.982
LCC 0.545 0.464 0.468 0.468 1.000 0.473
N 0.924 0.996 0.987 0.982 0.473 1.000
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estimates. Specifically, the coefficients can change drastically depending on which terms
(that is, metrics) are present in the model and also depending on the order in which they are
placed in the model.

Third, many fault-free modules tend to be small in size The lines of code (LOC) metric is
commonly used to measure the size of a module. We calculated the 90th percentile of LOC
for faulty and fault-free modules for five MDP projects, and summarized the findings in
Table 10. A 90th percentile is a score such that 90% of the scores are below it. For example,
for project PC1, about 90% of the fault-prone models have at most 114 lines of codes,
while 90% of the non-fault modules have at most 47 lines of codes. Except in KC4, fault-
free modules tend to be shorter than faulty modules. But many software metrics depend on
size and measurements of relatively small modules tend to be “close” to each other. This
may confuse machine learning algorithms and is likely to cause poor prediction results.
Koru and Liu (2005) made the same observation and stated that “small modules show little
variation, which would make it difficult for a machine-learning algorithm to distinguish
between small—defective and small—nondefective modules”. Dealing with such small
components appears to be specific for the MDP dataset studies, limiting the generality of
conclusions reached by studying projects included in it.

Fourth, a significant portion of the minority class instances (i.e., fault-prone modules) are
“close neighbors” with the majority class instances Table 11 provides the evidence. For
each module in a training set, we find the nearest (in Euclidean distance) training set vector
(the module with the most similar metrics) and count the proportion of faulty modules
whose nearest neighbor belongs to the majority class (i.e., fault-free modules). Besides, we
find three nearest neighbors of each faulty module, and compute the percentage of faulty
modules that has at least two neighbors (among three) from the majority class. Table 11
shows that a significant number of the minority class cases are close to the majority class
instances in the feature space. This phenomenon is the consequence of the previously
mentioned characteristics. With the majority of the learning set representing fault-free
modules, faulty modules are likely to have their measurements similar to many fault-free
ones. With the second and third properties, small modules, faulty or not, are likely similar

Table 10 The 90th percentile of lines of code (LOC) for the collection of faulty modules and fault-free
modules in each project

KC1 KC2 PC1 JM1 CM1 KC4 PC5 MC2

Fault-free 42 55 47 72 55 460 7 68
Faulty 99 167 114 165 131 252 294 134

Table 9 Correlation coefficients among six predictive variables in project KC2

LOC UOp V IV.G TOp LOB

LOC 1.000 0.632 0.986 0.968 0.991 0.909
UOp 0.632 1.000 0.536 0.577 0.615 0.636
V 0.986 0.536 1.000 0.970 0.990 0.887
IV.G 0.968 0.577 0.970 1.000 0.972 0.836
Top 0.991 0.615 0.990 0.972 1.000 0.912
LOB 0.909 0.636 0.887 0.836 0.912 1.000
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to each other. This poses a problem for all machine learning techniques (Boetticher 2005),
especially for the instance-based learning methods. Project KC4 is an exception and this
may be part of the reason why in some studies classification algorithms tend to achieve
better overall classification results on this dataset (Menzies et al. 2007) than on others
analyzed here.

These four observations are not necessarily the only interesting and/or unique aspects of the
MDP datasets. But good understanding of the dataset is necessary for the selection of adequate
classification techniques and play important role in model selection and comparison.

Appendix B: A Brief Description of the Six Classification Algorithms

Six machine learning algorithms are used in illustrative examples throughout the paper:
Random Forest, Naïve Bayes, Bagging, J48, Logistic Regression and IBk.

Random forest (rf) is a decision tree-based classifier demonstrated to have good
performance in software engineering studies by Guo et al. (2004). As implied from its name,
it builds a “forest” of decision trees. The trees are constructed using the following strategy:
The root node of each tree contains a bootstrap sample data of the same size as the original
data. Each tree has a different bootstrap sample. At each node, a subset of variables is
randomly selected from all the input variables to split the node and the best split is adopted.
Each tree is grown to the largest extent possible without pruning. When all trees in the forest
are built, new instance(s) is fitted to all the trees and a voting process is taken place. The
forest selects the classification with the most votes as the prediction of new instance(s).

Naïve Bayes (nb) “naively” assumes data independence. This assumption may be
considered overly simplistic in many application scenarios. However, in software
engineering data sets its performance is surprisingly good. Naive Bayes classifier has been
used extensively in fault-proneness prediction by (Menzies et al. 2007).

Bagging (bag) stands for bootstrap aggregating. It relies on an ensemble of different
models. The training data is resampled from the original data set. According to Witten and
Frank (2005), bagging typically performs better than single method models and almost
never significantly worse.

J48 is a Weka (Witten and Frank 2005) implementation of Quinlan’s C4.5 (Guo et al.
2004) decision tree algorithm. A decision tree is a tree structure where non-terminal nodes
represent tests on one or more attributes and terminal nodes reflect decision outcomes. It is
a popular and classic machine learning algorithm (Witten and Frank 2005).

Project Percent of faulty modules
whose nearest neighbor is
a majority class instance

Percent of faulty modules
that has ≥2 among the
three nearest neighbors
in the majority class

KC1 66.26 73.62
KC2 58.33 58.33
JM1 67.90 75.46
PC1 75.32 85.71
CM1 73.47 97.96
KC4 31.67 25.00
PC5 59.71 66.94
MC2 57.69 65.38

Table 11 Class membership of
the neighborhood instance
for the faulty modules
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Logistic regression (log) is a classification scheme which uses mathematical logistic
regression function. The most popular models are generalized linear models.

IBk is the Weka (Witten and Frank 2005) tool implementation of k-nearest-neighbor
classifier. With k=1 the default value, IBk is in fact IB1. This is the basic nearest-
neighbor instance based learner that searches for the training instance closest in Euclidean
distance to the given test instance and uses the result of the search for classification
(Witten and Frank 2005).
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