
Exploring Reinforcement Learning in Path Planning for Omnidirectional
Robot Soccer

José Victor Silva Cruz (jvsc@cin.ufpe.br)

Federal University of Pernambuco
secgrad@cin.ufpe.br

www.cin.ufpe.br/~graduacao

Recife
2023

www.cin.ufpe.br/~graduacao

José Victor Silva Cruz (jvsc@cin.ufpe.br)

Exploring Reinforcement Learning in Path Planning for Omnidirectional
Robot Soccer

A B.Sc. Dissertation presented to the Center of Informatics
of Federal University of Pernambuco in partial fulfillment
of the requirements for the degree of Bachelor in Computer
Engineering.

Concentration Area: Computational Intelligence
Advisor: Edna Natividade da Silva Barros
(ensb@cin.ufpe.br)

Recife
2023

 FICHA

BANCA

ACKNOWLEDGEMENTS

First, I would like to thank God and my family, especially Mrs. Inês and Mr. Paulo Cruz,
for their unconditional support: you are my greatest mirrors in everything I do, and being your
son is the most incredible pride I have in life. I want to thank my brothers Eudes, Pedro, Lucas,
and my cousin Bruno, for all the shared moments; we will always be together, and no distance
will be able to change that. I dedicate all my efforts during the graduation to my family on behalf
of my paternal grandparents, whom I did not have the opportunity to meet, but who guided my
steps until here.

I would also like to thank all the professors who taught me everything I know and
supported my academic choices, especially my math teacher, Edmar, for helping me with the
course decision; Prof. Nivan, for the partnership during the Maratona period; Prof. Hansenclever
Bassani, for the orientation and contribution in writing; and Prof. Edna, for the words said during
the LARC 2019 and for all the support given during graduation, fundamental in the most critical
moments of this trajectory.

I would also like to thank the city of Recife, where nowadays I consider myself to have
citizenship highlighted by my hybrid accent, for the opportunity to meet great friends such as
Raul, João, Luan, Clodes, Leon, Gap, and Victor Hugo. I want to thank Andresa for being by my
side, supporting my choices, and inspiring me with her dedication.

I want to thank CIn, the place for which I chose to leave my hometown and concentrate
my studies in Computer Engineering, for the infrastructure, research support, and excellence
in computing, which allowed me to have a unique formation to make dreams come true and to
conquer things I never imagined. I want to thank my school, Diocesano, for all my primary and
life education.

I also want to thank Maratona for being the project that allowed me to meet highly
talented people and directly contributed to my skills as a programmer. Special thanks to Bezaliel
for all the moments we shared and everything he taught me, Lucas Santana for the support,
and my team, experts com sono, with whom I had the honor of being part alongside Serra and
Mendes.

It is impossible not to thank RobôCIn, where I dedicated most of my efforts during this
period. But yet, I especially want to thank Lucas Cavalcanti for allowing me to join the team and
the Reinforcement Learning student members Breno, Felipe, and Gonça for the orientations that
made this work possible.

Finally, I would like to thank my friends who have become brothers in life: Francisco,
Heitor, and Miguel. To my favorite quartet: André, Vitória, Luísa, and Myrna. To my team
Peladeiros F.C., and to my kitten, Mia, who spent early mornings programming with me. I really
miss you all.

"I might end up somewhere in Mexico"

— Soul to Squeeze – Red Hot Chili Peppers

ABSTRACT

Path Planning consists of a widely studied computational problem of great applicability
in autonomous robotics and virtual reality environments that aims to solve the following problem:
given the origin of an entity in space, obtain a feasible collision-free route to the destination.
From the characteristics of a given environment, in this case, a soccer field in conventional game
conditions that imply a greater complexity given the dynamics of the obstacles, it is intended
to use Reinforcement Learning – technique that has gained expression over time due to the
ability of its applications to perform better than humans in different scenarios –, to optimize the
trajectories performed by an agent as it maximizes the reward accumulated within the executed
iterations.

Keywords: Path Planning. Omnidirectional Robot. Reinforcement Learning.

RESUMO

Planejamento de rotas consiste em um problema computacional amplamente estudado, de
notável aplicabilidade na robótica autônoma e em ambientes de realidade virtual, que propõe-se
resolver o seguinte problema: dado a origem de uma entidade em um espaço, obtenha uma rota
factível e sem colisão até o destino. A partir das características de um dado ambiente, neste caso,
um campo de futebol em condições de jogo convencionais que implicam em uma complexidade
maior dado a dinamicidade dos obstáculos, pretende-se utilizar Aprendizagem por Reforço –
técnica que tem ganhado expressão ao longo do tempo devido a capacidade de suas aplicações
performarem melhor que humanos em diferentes cenários –, visando otimizar as trajetórias
realizadas por um agente na medida em que ele maximiza a recompensa acumulada dentro das
iterações executadas.

Palavras-chave: Planejamento de Rotas. Robô Omnidirecional. Aprendizagem por Reforço.

LIST OF FIGURES

Figure 1 – SSL robots in RoboCup field during real game. Source: The author. . . 13

Figure 2 – Flow diagram for mobile robot navigation. Source: Patle et al. [24]. . . 16
Figure 3 – General structure of the Small Size League operation. Source: RoboCup

Federation [1]. 17
Figure 4 – Comparison of the RRT (a) and RRT* (b) algorithms on a simulation

example with obstacles. Source: Karaman and Frazzoli [10]. 18
Figure 5 – Trajectories with (in green) and without (in yellow) a maximum target

velocity generated by ER-Force’s path planning. Source: Andreas et al.

[29]. 19
Figure 6 – A block diagram of a PID controller in feedback loop. Source: The author. 20
Figure 7 – Force diagram of SSL’s robot with wheels angular distribution. Source:

Adapted from RobôCIn [2]. 20

Figure 8 – Execution cycle of an RL model with main concepts connection. Source:
Adapted from Sutton [26]. 23

Figure 9 – rSoccer Gym Framework modules architecture. Source: Adapted from
Martins et al. [18]. 25

Figure 10 – Example of SSL’s environments on rSoccer’s render view, where it
is possible to visualize differences in the environment’s distribution
within each agent’s learning needs. Source: Martins et al. [18]. 26

Figure 11 – Execution cycle of an Actor-Critic System. Source: Adapted from
Sutton [26]. 27

Figure 12 – Overview of the proposed application, showing the robot’s target
position (in orange), angle (in red), and velocity with magnitude and
direction (in yellow). Source: The author. 28

Figure 13 – Three possible approaches for path planning with Reinforcement
Learning. Source: The author. 29

Figure 14 – The proportional velocity adjustment distance (1) and the final angle
adjustment distance (2). Source: The author. 30

Figure 15 – Route comparison between direct control (in red) and path planning for
a given off-field control (in magenta) using the initial reward. Source:
The author. 35

Figure 16 – Mean (lines) and standard deviation (shades) of the number of steps
and total reward metrics accumulated (Y-axis) both over time (X-axis)
to the first reward. Source: The author. 36

Figure 17 – Visualization of the approach’s behavior close to the target when using
the off-field control, where the target angle consists of the vector (in
red) starting from the center of the objective (in orange). Source: The
author. 36

Figure 18 – Mean (lines) and standard deviation (shades) of the number of steps
(Y-axis) over time (X-axis) for both approaches. Source: The author. . 37

Figure 19 – Robot with initial position near the target position (in orange), angle
near the target angle (in red) and without enough space to reach the
desired speed (in yellow). Source: The author. 38

Figure 20 – Route comparison between direct control (in red), path planning for a
given off-field control (in magenta) and single component (in yellow)
using the final reward with the target angle right since the beginning of
the movement. Source: The author. 40

Figure 21 – Route comparison between direct control (in red), path planning for a
given off-field control (in magenta) and single component (in yellow)
starting with a total opposite angle. Source: The author. 40

LIST OF TABLES

Table 1 – Comparison of completion time of rewarding angular correction for the
entire path heuristic between Path Planning for a Given Control and Single
Component approaches, running across the field diagonal with the target
angle right since the beginning of the movement. 37

Table 2 – Comparison of completion time of final reward between no RL applied,
Path Planning for a Given Off-fiel Control and Single Component ap-
proaches, running across the field diagonal with the target angle right
since the beginning of the movement. 39

Table 3 – Comparison of completion time of final reward between no RL applied,
Path Planning for a Given Off-fiel Control and Single Component ap-
proaches, running across the field diagonal starting with a totally opposite
angle. 39

LIST OF ALGORITHMS

Algorithm 1 – Off-field Control Algorithm . 31
Algorithm 2 – Initial Reward Function . 32
Algorithm 3 – Final Reward Function . 33

CONTENTS

1 INTRODUCTION . 13
1.1 OBJECTIVES . 14

2 NAVIGATION . 15
2.1 OVERVIEW . 15
2.2 PATH PLANNING . 17
2.3 CONTROL . 19

3 REINFORCEMENT LEARNING . 22
3.1 OVERVIEW . 22
3.2 RSOCCER GYM . 24
3.3 DEEP DETERMINISTIC POLICY GRADIENT 26

4 PROPOSED APPROACH . 28
4.1 ENVIRONMENT SETUP . 29
4.2 PATH PLANNING FOR A GIVEN CONTROL APPROACH 30
4.2.1 Off-field Control Algorithm . 30
4.2.2 Reward Function . 31
4.2.2.1 Initial Reward . 32
4.2.2.2 Angle addition . 32
4.2.2.3 Velocity addition . 33
4.3 SINGLE COMPONENT APPROACH 34

5 RESULTS . 35
5.1 INITIAL REWARD . 35
5.2 POSITION-ANGLE REWARD . 36
5.3 POSITION-ANGLE-VELOCITY REWARD 38

6 CONCLUSION . 41

REFERENCES . 42

131313

1
INTRODUCTION

One of the fundamental processes of autonomous robotics is the path planning. It can be
seen as a part of robot’s trajectory steps, where after locating the robot in space, the following
problem seeks to be solved: given the origin position of an entity, obtain a collision-free feasible
route. The study area has broad applicability in the movement of any autonomous entity in a real
or simulated environment.

In this work, the entity considered is an omnidirectional robot soccer, where the main
characteristic is that it can move in any direction inside a 2D plane. There are many competitions
related to robot soccer, with an emphasis on RoboCup 1 [12]. Inside it, lies the Small Size League

(SSL) (Figure 1), one of the oldest categories that use four-wheeled intelligent multi-agent
collaborative omnidirectional robots controlled in a highly dynamic environment with a hybrid
centralized/distributed system.

Figure 1: SSL robots in RoboCup field during real game. Source: The author.

In path planning, choosing the best model to solve the problem may depend on several
factors, including: number and format of obstacles, processing time, distance to the objective, and
environment. Several approaches have obtained great notoriety in general, but more specifically

1RoboCup is a world competition of several modalities of autonomous robots existing since 1997, which has the
ambitious intention of developing a team of humanoid robots capable of defeating the most recent FIFA World Cup
champion in the middle of 21st century [9].

141414

in robot soccer: either by heuristics [17], potential fields assisted by evolutionary algorithms
[15], or sampling-based planning [10, 8]. However, the focus of this work is on Reinforcement
Learning use as a possible alternative to obtain an optimal path for omnidirectional robot soccer.

Reinforcement Learning (RL) is a subarea of Machine Learning where the agent’s
learning occurs from its interaction with the environment within a reward system, without direct
interference from the developer [26]. Applications using this technique have gained expression
over time due to their ability to perform better than humans in different scenarios, such as
driving autonomous cars [11], playing Atari [20], natural language processing (NLP) [28] and
more. Inside RoboCup and SSL scope, although some studies already include RL technique, as
demonstrated by Volodymyr, M. et al. [30], B. R. Kiran, et al. [32] and Uc-Cetina, V. et al. [34],
none of those relates to path planning.

Due to the nature of the problem when focusing more generally on soccer, some charac-
teristics are preestablished. This is, as soccer occurs in an open field, the dynamic obstacles are
entities of the same aspect, whether these are allies or opponents, and the static obstacles occur
in specific foul situations or are predetermined by rules of the modality under study. Therefore,
this work focuses on this and other peculiarities involving robot soccer when associated with the
SSL category, aiming to establish an optimal solution for path planning using Reinforcement
Learning.

1.1 OBJECTIVES

The general objective of this project is to study and propose a path-planning model for
omnidirectional robots using Reinforcement Learning. Thus, the focus does not rely on the
analysis of different techniques or theoretical foundations of RL, but rather on the choice of
determining heuristics for an agent already considered as optimal. Besides, it also does not
involve the analysis of static and dynamic obstacles.

The specific objectives encompassed in the general objectives are:

i. Proposition of the a learning method, i.e definition of the agent’s inputs and rewards.

ii. Implementation of the method in a simulated environment.

iii. Comparative analysis of the results in different preestablished situations, measuring
the output of the model in terms of performance and quality.

This work is divided in 6 chapters. Chapter 2 introduces some key concepts about
omnidirectional robot navigation and path planning applied to the RoboCup SSL category.
Chapter 3 details RL and the training algorithm used in this study. Chapter 4 describes the
step-by-step implementation of this study. Chapter 5 presents the results of the experiments.
Finally, Chapter 6 discusses each result and provides some ideas for future results improvements.

151515

2
NAVIGATION

This chapter explains what robot navigation is, where path planning is inserted, what
challenges are present in this area within the SSL modality, and how the teams are exploring it.

2.1 OVERVIEW

Robot navigation refers to the ability of a robot to move from one location to another in
an environment, it is a crucial component of robotics, as it enables robots to perform a wide range
of tasks in various environments. It involves the integration of perception, decision-making, and
control to enable a robot to autonomously navigate through an environment to achieve a given
goal.

The main components [24] of robot navigation (Figure 2) are:

■ Sensors: the physical components that provide the necessary input for the agent’s
perception, which allows the robot to make decisions and move safely. These sensors
can be cameras, ultrasound or infrared sensors, and others.

■ Perception: processing of sensor data to extract relevant information about the
robot’s environment, such as the location of obstacles, the position of the robot, and
the location of the goal. This component includes algorithms for object detection,
segmentation and recognition, for example.

■ Localization: the process of determining the robot’s location in the environment,
including methods such as odometry, GPS, and SLAM (Simultaneous Localization
and Mapping).

■ Mapping: operation responsible for creating a representation of the environment
that the robot can use to plan its path. This component can use techniques such as
occupancy grid, topological or geometric mapping.

■ Path Planning: analysis aiming to find an optimal path from the robot’s current loca-
tion to its destination, while avoiding obstacles and other hazards in the environment.
This component tipically uses techniques such as A* search or Dijkstra’s algorithm.

161616

■ Control: execution of the planned path by sending commands to the robot’s actuators
that, in this study, can be divided into off-field and in-place control – post-processing
of path planning generated route and motors and/or servos acting in field, respectively.

Figure 2: Flow diagram for mobile robot navigation. Source: Patle et al. [24].

All these components work together to enable a robot to navigate through its environment
autonomously. The choice of sensors, perception algorithms, localization techniques, mapping,
and path planning methods depend on the specific robot platform and environment in which it
will operate.

Navigation is also broadly classified as global and local. Global robot navigation refers
to the process of planning a robot’s path from a starting point to a destination, taking into account
the robot’s surroundings and any obstacles in its path. This typically involves using a map of
the environment and algorithms to plan a safe and efficient route. Local robot navigation, on
the other hand, is concerned with the robot’s ability to navigate in real-time as it moves through
its environment. This involves using sensors to detect obstacles and other objects in the robot’s
immediate vicinity, and using algorithms to adjust the robot’s path to avoid collisions.

In essence, global navigation is concerned with planning the best possible route for the
robot to take, dealing with a completely known environment, while local navigation is concerned
with making real-time adjustments to that route to ensure the robot safely reaches its destination.
Both approaches have their advantages and disadvantages. Global navigation is typically more
efficient and can lead to faster travel times, but it requires accurate maps of the environment and
can be computationally intensive. Conversely, local navigation is more reactive and can adapt to
changes in the environment, but it may not always find the most efficient route.

Global navigation is typically employed on Small Size Soccer. In this modality, a
standardized vision system developed and maintained by the SSL’s community as an open-source
project [33] tracks all the objects on the field and works by processing data from one or more
cameras that are mounted approximately 4 meters above the playing surface (Figure 3).

171717

The coordination and control of robots relie on off-field computers, which are respon-
sible for sending referee commands and position information to the robots. In addition to this
communication function, these computers also typically handle the majority of the processing
required for coordination and control. To enable wireless communication with the robots, dedi-
cated commercial transmitter/receiver units are commonly used. By leveraging these powerful
computing and communication technologies, teams are able to remotely control and manage the
movements of their robots on the field.

Figure 3: General structure of the Small Size League operation. Source: RoboCup Federation
[1].

However, there are ongoing studies in the category, such as the one proposed by J. Melo
et al. [19], which aims to decentralize the agents’ vision and gradually give more power to
the local navigation strategy by embedding cameras and sensors into the robot, consisting in
a greater challenge due to the limitations of their sizes, that must fit within a 180 millimeters

diameter circle and cannot be higher than 15 centimeters.

2.2 PATH PLANNING

Path planning algorithms are an essential component for the success of a team in a robot
soccer competition, as it allows the robots to move quickly and effectively around the field,
making quick and accurate decisions to outmaneuver their opponents and score goals. These
algorithms are used to generate efficient and safe trajectories for the robots to follow, taking into
account the position of other robots and the ball, as well as the boundaries of the field and any
obstacles that may be presented. They must be fast and efficient to keep up with the fast-paced
nature of the game, while also being robust enough to handle unexpected situations that may
arise during gameplay.

One of the most widely used algorithms in this context due to its efficiency and versatility
is the Rapidly-exploring Random Tree (RRT) [13]. RRT is a probabilistic approach based on the
generation of a tree-type graph rooted from the origin that, using heuristics of sampling nodes
in the environment linked to a random factor, performs connections until one of its branches

181818

reaches the target position. For a while, RRT presented satisfactory results only for applications
with a fixed destination point, becoming even better years later, from an asymptotically optimal
variant proposed by Karaman and Frazzoli [10] called RRT* 1. This algorithm uses a cost-to-go
heuristic to guide the sampling toward the goal region and rewires the tree to minimize the cost
of the path to each node, being able to converge to an optimal solution and producing smoother
paths than RRT. However, the sampling function improvements and the connection with suitable
control functions are still fields widely explored by SSL teams [27, 31].

Figure 4: Comparison of the RRT (a) and RRT* (b) algorithms on a simulation example with
obstacles. Source: Karaman and Frazzoli [10].

While RRT can incorporate some physical constraints – such as obstacles or kinematic
constraints, target angle or target velocity – resulting in paths that are feasible in terms of collision
avoidance, it may not always be possible or profitable to fully account for all physical constraints.
Since it is a probabilistic algorithm, the generated paths may not always be the same, even for
the same input parameters, making it challenging to validate and reproduce the generated paths
in a physical sense.

As path planning is a constantly evolving field, where teams are always exploring new
approaches and techniques to improve their robots’ performance. Traditional teams as Tigers
Mannheim and ER-Force used RRT but more recently proposed specific solutions for the creation
of new paths taking advantage of game characteristics such as speed and dynamism. Instead
of just applying changes to the RRT, the new approach focus on the generation of physically
possible paths with improvements in the efficiency of route generation by avoiding the necessary
post-processing.

In 2019, Tigers introduced a new planning algorithm [22] that prioritizes the quick
reaction of the robots within a time limit over the generation of an optimal path. In this way,
the chosen path can count on the presence of collisions within a predetermined time if another
path cannot be obtained. In the following year, ER-Force [29] presented its new path planning
algorithm capable of reaching positions with the desired velocity and acceleration.

1For the sake of simplicity, in this study, RRT* and others optimized variants will be refereed only as RRT.

191919

Figure 5: Trajectories with (in green) and without (in yellow) a maximum target velocity
generated by ER-Force’s path planning. Source: Andreas et al. [29].

For both teams, the observed limitations were overcome with a standard trajectory using
bang-bang trajectories. A bang-bang trajectory is a type of motion characterized by abrupt
and rapid changes in direction or velocity [16], and the leading term bang-bang refers to the
sudden and sharp changes in the control signal used to manipulate the system. In this type
of trajectory, the control signal switches between two extreme values corresponding to the
maximum acceleration or deceleration of the system, allowing the trajectory generation as a
function of the robot’s physical motion.

2.3 CONTROL

There is a traditional and widely used procedure based on global navigation adopted by
most of the SSL teams, which is available as a standard way for simulations in the category [21, 3].
The main information sent by off-field computers as the in-place control input in this procedure
consists of the tuple ⟨vx,vy,ω⟩ (explained below), usually a result from off-field control, directly
related to control error techniques with emphasis on Proportional-Integral-Derivative (PID)

controllers. A PID controller is a type of feedback controller commonly used in engineering
and control systems to regulate a process variable. It consists in three main components that
name this technique: the proportional term (P) – which generates an output signal proportional
to the difference between the setpoint and the actual process variable – the integral term (I) –
that generates an output signal that is proportional to the integral of the error signal over time –
and the derivative term (D) – that generates an output signal that is proportional to the rate of
change of the error signal.

By combining these three components, a PID controller can effectively regulate a process
or a system by adjusting the output signal based on the difference between the setpoint and the
process variable. The gains for each component can be adjusted to optimize the controller’s
performance for a particular application.

202020

∑ ∑ Process

Differentiation

Integration

Proportional

Feedback

OutputSet Point

PID Controller

Figure 6: A block diagram of a PID controller in feedback loop. Source: The author.

The mentioned triplet is composed of two components related to the linear velocity of the
robot – vx and vy –, usually measured in meters per second, and a third component indicating its
angular velocity – ω –, usually measured in radians per second. Together, these three values
specify the robot’s motion, allowing it to move in any direction and turn.

To effectively apply the in-place control, the robot must perform three steps. First, it
must convert the 3-tuple into individual wheel velocities – σN , where each wheel N ∈ 1,4 – to
achieve the desired motion using the equations below [25] – where MNθ

, Rr, Wr represents the
angles, robot and wheel radius, respectively (Figure 7).

σ1 = (sin(M1θ
)/Wr)× vx +(cos(M1θ

)/Wr)× vy +(Rr/Wr)×ω

σ2 = (sin(M2θ
)/Wr)× vx +(−cos(M2θ

)/Wr)× vy +(Rr/Wr)×ω

σ3 = (−sin(M3θ
)/Wr)× vx +(−cos(M3θ

)/Wr)× vy +(Rr/Wr)×ω

σ4 = (−sin(M4θ
)/Wr)× vx +(cos(M4θ

)/Wr)× vy +(Rr/Wr)×ω

Y

X

σ1
σ2

σ3

σ4

R
r

W
r

M2θ

M3θ

M1θ

M4θ

Figure 7: Force diagram of SSL’s robot with wheels angular distribution. Source: Adapted from
RobôCIn [2].

212121

Second, the robot must control the wheel velocities using a feedback loop, where it
adjusts the wheel velocities to maintain the desired motion and ensure the robot moves as
intended. The robot’s sensors and actuators provide feedback to the control system, which
adjusts the wheel velocities as necessary.

And finally, the robot must continuously adjust the wheel velocities to maintain the
desired motion as it moves around the playing field. The control system receives feedback from
the robot’s sensors and adjusts the wheel velocities to keep the robot on track. This ensures that
the robot moves accurately, precisely, and that it can navigate the playing field effectively.

In summary, a SSL robot uses a combination of translational and rotational motion, along
with a feedback loop, to achieve the desired motion.

222222

3
REINFORCEMENT LEARNING

This chapter provides an overview of Reinforcement Learning, along with the specific
technique employed in this study.

3.1 OVERVIEW

Reinforcement Learning is a subarea of Machine Learning that focuses on how an agent
can learn to make decisions and take actions in an environment to maximize its cumulative
reward. It is inspired by the hypotheses that the natural learning process of animals consists in
making mistakes, receiving feedback, and adjusting actions accordingly. RL algorithms seek to
replicate this process by enabling agents to interact with its environment, receive feedback in the
form of reward signals, and learn from their experiences to make better decisions in the future.
This trial-and-error learning process allows the agents to adapt to changing environments and
optimize their behavior over time, much like animals do through experience.

To get into the subject, some main concepts (Figure 8) must be understood, which are:

■ Agent: is the learner or decision maker that interacts with the environment.

■ Environment: is the context in which the agent operates, and it can be anything from
a simple game to a complex real-world scenario. An environment is formally defined
as a Markov Decision Process (MDP) [6], described as a 4-tuple ⟨S,A,Pa,Ra⟩, where
Pa(S,S′) is the probability of transitioning from state S to state S′ = St+1 under action
a = At .

■ State or Observation (S): is the current situation or configuration of the environment
used to determine the agent’s next action. A state s = St describes the state in a
certain time t.

■ Action (A): is the decision made by the agent based on the current state, and it affects
the subsequent state of the environment.

■ Reward (R): is a scalar feedback signal that the agent receives from the environment
used to evaluate how good the agent’s actions were so far. A reward Ra(S,S′) is the

232323

immediate reward received upon transitioning from state S to state S′ under action a.
A reward Rt = r describes the reward in a certain time t.

■ Policy (π): is the agent’s strategy for selecting actions in each state where the optimal
policy is called π∗.

Agent

Environment

Policy

AlgorithmState St Action At

Reward Rt

St+1 Rt+1

Figure 8: Execution cycle of an RL model with main concepts connection. Source: Adapted
from Sutton [26].

Some important definitions based on previously introduced concepts are:

■ Episode or Epoch (τ): is a sequence of steps taken by the agent in the environment,
starting from an initial state and ending in a terminal state. The duration of an episode
can be fixed or variable, depending on the environment.

■ Step: is a single interaction between the agent and the environment, in which the
agent observes the current state and takes an action based on its policy, receiving a
reward, and the next state from the environment.

■ Experience Replay or Memory: is a technique used to store and reuse experiences that
an agent obtained during training. In experience replay, a subset of past experiences
is randomly sampled from a memory buffer and used to update the agent’s policy or
value function.

■ Value (V): is a measure of how good it is for the agent to be in a state or take an action.
It is defined as the expected cumulative reward that the agent can receive starting
from that state and following its policy. A value V (s,a) describes the particular
measure of how good it is to take action a in state s.

242424

■ Q-Value (Q): is defined as the expected cumulative reward that the agent can receive
starting from a state, taking an action and following its policy. A Q-Value Q(s,a)

describes the particular cumulative reward from a state s taking an action a and the
optimal Q-Value is called Q∗.

All these concepts fit perfectly into a robot soccer scenario. In this case, the agent can be
a single robot or the entire team. The environment is the soccer field and the other team. The
state is the positions of the robots, the ball, and the opposing team, but it could also include
information about the score, time remaining and any penalties or other events that occur during
the game. The action can be any movement or manipulation of the robot or ball – for example, a
robot could move forward, backward, sideways, kick the ball or pass the ball to another robot.
The reward can be a positive value for scoring a goal, a negative value for allowing the opposing
team to score or a small positive or negative value for actions that contribute to or detract from
the team’s overall performance. Finally, the policy can be the strategy that the robots use to make
decisions about their actions based on the current state of the game – for example, the policy
might be to pass the ball to a teammate who is in a better position to score or to defend the goal
when the opposing team has possession of the ball.

3.2 RSOCCER GYM

Reinforcement Learning algorithms are currently being trained using a variety of tech-
niques and tools, including Gyms, which are platforms that provide a set of environments and
APIs for developing, testing, and comparing RL algorithms. These gyms are often used to train
and evaluate agents in different scenarios, such as playing video games, controlling robots, or
optimizing financial portfolios. Some of the key features of an RL gym may include support for
multiple programming languages, visualization tools, and integration with popular deep learning
frameworks like TensorFlow [5] or PyTorch [23].

For this study, the rSoccer Gym was chosen. rSoccer was introduced by Martins, F.B. et

al. [18] as an open-source framework optimized for Reinforcement Learning applications in the
context of SSL and IEEE Very Small Size Soccer (VSS) [4], another category in robot soccer
competition, environments.

This framework offers a flexible and customizable platform for researchers and prac-
titioners to experiment with various RL algorithms and techniques, and to develop advanced
strategies and tactics for autonomous robotic soccer players. It is comprises three core modules:
simulator, environment, and render. Each of these modules (Figure 9) plays an essential role in
the overall functionality of the framework.

The simulator module is based on grSim – the official SSL’s simulator -, and it is
responsible for the physics of the soccer game environment – i.e. simulates the movement of the
robots, ball, and other objects within the game world. The environment module, which complies
with the OpenAI Gym framework [7], serves as the bridge between the agent and the simulator,

252525

receiving the agent’s actions, communicating with the other modules using the entities structure
(explained later) and returning new observations and rewards. Finally, the render module is
responsible for visualizing the environment and rendering it for the user – this module creates
a 2D visual representation of the game world, allowing users to see the robots, ball, and other
objects in action.

Framework
Environment Module

Agent

SimulatorSimulator
Module

Render
Module

Actions

Observations

Rewards

Simulator
State

Figure 9: rSoccer Gym Framework modules architecture. Source: Adapted from Martins et al.
[18].

In order to facilitate communication between modules within every environment, a
specific set of data structures known as entities has been defined:

■ Ball: contains information about the position and velocity of the ball.

■ Robot: contains identification information, as well as position, velocity and wheel
speed values. This entity can be used to read the current state of the robot or to send
control commands that affect its movement and actions.

■ Frame: contains both Ball and Robot entities for each robot in the game, which are
structured in a way that makes it easy to index each robot by team color and ID. This
entity is used to store the complete state of the simulation and to enable modules to
access all relevant information about the game environment.

■ Field: contains important specifications about the simulation values, such as the
geometry and parameters of the field and robots. This entity serves as a reference
point for the entire simulation and provides a standardized set of parameters that can
be used to ensure consistent performance and behavior across different modules and
environments.

For a complete definition of the RL environment, it is necessary to implement the
following four methods:

■ frame_to_observations: returns an array of observations that will be sent to
the agent as specified by the environment.

■ get_commands: returns a list of Robot entities containing the commands sent to
the simulator from a list of actions.

262626

■ get_initial_positions_frame: returns a Frame entity used to define the
initial positions of both ball and robots.

■ calculate_reward_and_done: returns the computed step reward and a boolean
value that denotes whether the present state is terminal.

In order to demonstrate the environment’s workability, in rSoccer Gym, several tasks
such as Go To Ball, Dribbling and Pass Endurance (Figure 10) using different RL
algorithms were successfully implemented and tested. As result of the validation, the Deep
Deterministic Policy Gradient stood out for its performance in solving different proposed
problems, configuring one of the best and more commonly RL methods and being, therefore,
chosen for use in the object of this study.

(a) Go To Ball (b) Dribbling (c) Pass Endurance

Figure 10: Example of SSL’s environments on rSoccer’s render view, where it is possible to
visualize differences in the environment’s distribution within each agent’s learning needs. Source:
Martins et al. [18].

3.3 DEEP DETERMINISTIC POLICY GRADIENT

Deep Deterministic Policy Gradient (DDPG) is a type of Reinforcement Learning
algorithm developed by Lillicrap et al. [14] at Google DeepMind in 2015 that can learn to make
decisions in environments with continuous action spaces, such as robotics or game playing.

The policy in DDPG refers to the agent’s decision-making strategy, as explained before;
the gradient part of the name refers to the use of gradient descent to update the neural network
parameters; it is deterministic because it learns a deterministic policy, which means that given a
particular state, it will always output the same action – this is different from stochastic policies,
which output a distribution over the action space.

This algorithm uses a combination of two neural networks: a critic and an actor network
(Figure 11). The critic network – which represents the value function –, evaluates how good the
agent’s actions are in a given state, providing feedback on how good or bad the actions were in
achieving the overall goal. The actor network – which represents the policy –, decides which
actions to take in a given state, being responsible for selecting the actions that maximize the

272727

Policy

Value
Function

Environment

Critic

Actor

T D error

actionstate

reward

Figure 11: Execution cycle of an Actor-Critic System. Source: Adapted from Sutton [26].

expected cumulative reward in the long run and mapping the state to actions at the end. These
networks are connected by the TD error, which is the difference between the predicted value of
the current state and the observed reward received by the agent, being used to update the weights
of the critic network to reduce the prediction error.

During training, the critic network is used to calculate a Q-Value and the actor network
is then updated using the gradient of the calculated value with respect to the actor’s parameters.
Thus, by iteratively updating both the actor and critic networks, DDPG can learn to make better
decisions in the environment over time.

282828

4
PROPOSED APPROACH

In this chapter, the proposed approach is presented. It aims to use RL to create path
planning for a single SSL robot, moving it from a position given by the 5-tuple ⟨sx,sy,vx,vy,θ⟩
to a target ⟨s′x,s′y,v′x,v′y,θ ′⟩ where the target position corresponds to the vector (sx,sy), the target
velocity to the vector (vx,vy) and the target angle to θ (Figure 12).

⟨sx,sy,vx,vy,θ⟩

⟨sx
′,sy
′,vx
′,vy
′,θ ′⟩

Figure 12: Overview of the proposed application, showing the robot’s target position (in orange),
angle (in red), and velocity with magnitude and direction (in yellow). Source: The author.

This approach focuses on two of the three possible approaches to apply Reinforcement
Learning in the path-planning context shown in Figure 13: Path Planning For A Given Control

Approach and Single Component Approach. The first is path planning with the aid of a high-level
control, initially applied to create a base comparison model for the final approach. In other words,
the supply of a off-field control that already worked in a real-world environment makes the
analysis and study of path planning more deterministic, eliminating the probability of occurrence
of problems that are not necessarily related to path planning. Thus, it generates a base behavior
for future comparison of more complex approaches, such as the Single Component Approach,
where the network has the ability to learn to move without aids, directly providing the necessary
input to the low-level control.

The third possible alternative known as Hierarchical Approach was disregarded as it is
outside the scope of the study since it consists of a two-step hierarchical learning, where the

292929

out-of-field control stage would be part of an isolated network, receiving as input the output of
the path planning created by another one.

RL

Path
Planning

Off-field
Control

(a) Path Planning for a Given
Control Approach

RL

Path
Planning

Off-field
Control

(b) Single Component Approach

RLRL

Path
Planning

Off-field
Control

(c) Hierarchical Approach

Figure 13: Three possible approaches for path planning with Reinforcement Learning. Source:
The author.

4.1 ENVIRONMENT SETUP

The entire development used an SSL environment and a Reinforcement Learning algo-
rithm: the rSoccer as the Gym responsible for providing the desired environment and rendering
animations capable of displaying the preliminary results, and the DDPG algorithm, responsible
for guiding the entity’s learning, respectively.

Besides, in order to implement the RL environment in rSoccer, the SSLBaseEnv class
provided by the framework was inherited and the necessary observations were defined as an
array of real numbers parameterized as shown below:

■ T =
〈
sx,sy,vx,vy,cos(θ),sin(θ)

〉
be the tuple of observations related to the target.

■ B =
〈
sx,sy,vx,vy

〉
be the tuple of observations related to the ball.

■ Rn =
〈
sx,sy,vx,vy,vθ ,cos(θ),sin(θ)

〉
be the tuple of observations related to the nth

robot 1.

Then, the observations size can be expressed as:

|O|= |T |+ |B|+
N

∑
n=1
|Rn|

Where N ≥ 1 is the total number of robots. For all applicable entities, (sx,sy) represents
the position in the field, (vx,vy) the velocity vector, vθ the angular velocity, and θ , the orien-
tation 2. The values represented in the observations and the reward’s accumulated value were
normalized in the range [-1, 1] by dividing each value by the constant representing its maximum
value.

1The robot observations for n = 1 are relative to the robot that must be controlled.
2While a range of [-1, 1] may help represent normalized values in some contexts, this range cannot represent

angles. Therefore, the angle was represented in polar format to ensure functionality in the desired four quadrants.

303030

However, for the complete definition of the environment, the necessary methods de-
fined in Section 3.2 were overridden with the implementations described below, except the
calculate_reward_and_done, since it represents the most significant and mutable func-
tion, defining the best possible result for both approaches.

The frame_to_observations performs a direct conversion of rSoccer frame to
observations in the described format. The get_initial_positions_frame defines the
random positioning of the entities within the field, ensuring a minimum distance during the
generation and the target considering the limitations of each magnitude already mentioned. The
get_commands receives the network actions, denormalizes them to the appropriate position,
velocity, and angle values, performs the off-field control call, when it exists, and sends the
displacement triplet to the robot as required by rSoccer.

4.2 PATH PLANNING FOR A GIVEN CONTROL APPROACH

For the implementation of the path planning for a given control approach, a minimum off-
field control capable of helping the agent to learn was initially made, giving the agent the ability
to identify the best route for a given control based on different reward functions. Additionally,
the environment actions were defined as the 5-tuple target of displacement described earlier,
which will serve as input to off-field control.

4.2.1 Off-field Control Algorithm

The off-field control implementation (Algorithm 1) was developed based on a simplifica-
tion of the algorithm initially used by RobôCIn team – available in the team’s open source [2].
It consists of a PID control of the angular error, without integrative-derivative corrections, and
essentially establishes two distances to the target point to guide the optimal movement: one for
the proportional velocity adjustment and the other for the final angle adjustment (Figure 14).

(2)

(1)

Figure 14: The proportional velocity adjustment distance (1) and the final angle adjustment
distance (2). Source: The author.

313131

The proportional velocity adjustment distance (vpr) is an offset centered on the target
point where the robot must gradually approach the final velocity. Within this range, a mapping of
the distance from the robot to the target is performed between a minimum value (vplb) within the
range [0, 1] to 1, where the minimum value corresponds to the mapped distance when the applied
proportional velocity gives enough power to the motors move the robot, which can remain at
maximum velocity (vmax) for longer distances to reach the desired destination as fast as possible.
The final angle adjustment distance (aar) is an offset in which the robot is considerably closer to
the target point. Inside this radius, the robot only tries to adjust its face to the desired direction
until it is within the desired tolerance (aε). Otherwise, it moves in the direction of the goal,
limiting the linear velocity on the angular error, first adjusting its face to the target, and only after
that prioritizing the displacement.

Algorithm 1: Off-field Control Algorithm
function OFFFIELDCONTROL(robot, target)

max_velocity← vmax

target_velocity_norm← VECTORNORM(targetv)

distance_to_goal← DISTANCEBETWEEN(robots, targets)

angle_error← SMALLESTANGLEDIFF(robotθ , targetθ)

if distance_to_goal ≤ vpr then
max_velocity←

max_velocity×RANGEMAPPER(distance_to_goal,0.0,vpr ,vplb ,1.0)

max_velocity←MAX(max_velocity, target_velocity_norm)

if distance_to_goal > aar then
theta← VECTORANGLE(targets− robots)

v_prop←
ABSSMALLESTANGLEDIFF(π−aε ,angle_error)× (max_velocity/(π−aε))

return ⟨FROMPOLAR(theta,v_prop),ANGLE_K_P×angle_error⟩
/* ANGLE_K_P is the PID control’s proportional

constant. */

return ⟨targetv,ANGLE_K_P×angle_error⟩

4.2.2 Reward Function

With the environment defined, obtaining the best reward was the main challenge involved
in this study. It was decided to add velocity and angle, the other requirements incrementally, and
testing, each receiving the target, the current frame, and the next frame, prioritizing reaching
the terminal state before time runs out to maximize its reward. The reward composition was
performed using means with empirical weightings and obtained through a binary search for all
cases.

323232

4.2.2.1 Initial Reward

The initial reward (Algorithm 2) consists in a minimal non-sparse monotonic function,
that prioritizes arrival at the destination position, characterizing the main requirement of the
solution and representing the simplest solution for achieving the desired goal.

Algorithm 2: Initial Reward Function
function REWARDFUNCTION(f rame, f rame′, target)

distance_robot_target← DISTANCEBETWEEN(f rame′robots, targets)

if distance_robot_target ≤ DISTANCE_TOLERANCE then
return ⟨0,T RUE⟩

last_distance_robot_target← DISTANCEBETWEEN(f ramerobots, targets)

step_reward← last_distance_robot_target−distance_robot_target
2×MAX_POSIT ION

return ⟨step_reward,FALSE⟩

This function subtracts the last distance from the current distance to the target, incentiviz-
ing the robot to progress toward the target location while also considering its past performance.
When the robot starts moving, the current distance to the target is typically large, so the reward
for moving toward the target will be high and still be positive if the robot progresses to the same
destination. If the robot stops progressing or moves away, the current distance to the target
will increase. Consequently, the reward for moving toward the target will decrease accordingly,
incentivizing it to continue progressing. It can help the robot avoid getting stuck in undesired
states or wandering in the environment.

Since the path performed is control-dependent and the environment already took into
account the physical possibilities for the robot to move, there was no need for post-processing, and
the improvement of the reward function was the determining factor for changing the generated
path.

4.2.2.2 Angle addition

The addition of the target angle is the first increment proposed to the original solution.
Besides being close to the target for training completion, it was also necessary to be within
an angle tolerance. However, for some approaches, the angular reward studied also subtracts
the previous angular error from the current one, consisting in the angular correction, forcing a
gradual convergence to the acceptable tolerance, similar to what happened with distance.

Three different approaches to this requirement were applied: rewarding angular correc-
tion only at the control’s angular adjustment radius – mentioned previously in Section 4.2.1 –,
not rewarding angular correction at all – only account with angle tolerance –, and rewarding
angular correction for the entire path.

333333

4.2.2.3 Velocity addition

The addition of the velocity constant is the biggest challenge for determining the final
reward function, since it is a physical quantity that can imply a local worsening of distance for
a global improvement of the complete state in the shortest possible time. For instance, only
the ER-Force among SSL teams, as mentioned in Section 2.2, can create a route considering
non-null velocities.

Initially, this reward function was designed independently of the angle, with the aim
of isolating the problem and reducing the randomness of the results. For this case, the reward
function was analyzed for null and non-null velocities, focusing on three types of heuristics:
managing to finish the training without rewarding, rewarding or penalizing the agent for the
difference in its velocity to the desired velocity, the last one being accounted only at the end of
the training.

In the first, the training only ended when the robot’s velocity was within the target margin,
given as a tolerance for the target velocity. For the second, the agent was rewarded when, within
distance tolerance, the velocity approached the target velocity. Moreover, for the last one, the
assigned value was given by the difference to the goal multiplied by a constant.

Thereafter, considering the position-angle-velocity composition, the same approaches
were used, and a final reward function was finally established (Algorithm 3).

Algorithm 3: Final Reward Function
function REWARDFUNCTION(f rame, f rame′, target)

last_distance_robot_target← DISTANCEBETWEEN(f ramerobots, targets)

distance_robot_target← DISTANCEBETWEEN(f rame′robots, targets)

last_angle_error← SMALLESTANGLEDIFF(f ramerobotθ , targetθ)

angle_error← SMALLESTANGLEDIFF(f rame′robotθ
, targetθ)

last_velocity_error← DISTANCEBETWEEN(robotv, targetv)

velocity_error← DISTANCEBETWEEN(robot ′v, targetv)

distance_reward← K_DISTANCE× last_distance_robot_target−distance_robot_target
2×MAX_POSIT ION

angle_reward← K_ANGLE× last_angle_error−angle_error
π

velocity_reward← K_V ELOCITY × (last_velocity_error−velocity_error)
MAX_V ELOCITY

// K_DISTANCE, K_VELOCITY and K_ANGLE are constants
that make up the normalization of the final reward.

if distance_robot_target ≤ DISTANCE_TOLERANCE then
if velocity_error ≤V ELOCITY _TOLERANCE then

return ⟨angle_reward,angle_error ≤ ANGLE_TOLERANCE⟩
return ⟨angle_reward + velocity_reward,FALSE⟩

return ⟨distance_reward +angle_reward,FALSE⟩

343434

This function rewards position and angle as described previously, with the addition
of a reward for velocity while subtracting the error of the previous velocity from the current
one. The angle reward, like the distance reward, occurs throughout the trip, while the velocity
reward is only given when within position tolerance. The terminal state is reached when the
position-speed-angle triple is satisfied, respectively, within its tolerances.

4.3 SINGLE COMPONENT APPROACH

The proven versatility of RL algorithms enables the idea of encompassing steps necessary
for an environment’s development. Therefore, the implementation of the Single Component
Approach can be seen as a natural evolution of this study, where after the validation of different
reward functions based on a given pre-determined control, it was supposed that the network
could learn without the aid of it, obtaining outcomes in the same direction.

Due to the previous analysis, it was possible to obtain a comparative basis to determine
which results are considered satisfactory and to imagine the creation of paths capable of circum-
venting the limitations of the previously presented control. The final and most promising reward
functions based on the position-angle and position-angle-velocity composition were applied to
this new approach. However, the specific scenario of not rewarding angle correction at all was
also applied, since it is directly impacted by the control.

The structure of the environment remained as described in the previous section, with the
exception of the actions, which now directly return the control triplet ⟨vx,vy,ω⟩ mentioned in
Section 2.3.

353535

5
RESULTS

This chapter presents the results obtained from the reward functions described previ-
ously, as well as comparisons between the approaches studied and the limitations found during
development.

5.1 INITIAL REWARD

For the evaluation of the robot’s movement, all other entities that would characterize
an obstacle were removed. As a result of running the environment in this scenario, a rapid
convergence in agent learning was observed, achieving the expected result. In addition, the robot
moved quickly but in a non-linear trajectory, unlike the linear route taken by the direct call to the
off-field control (Figure 15).

Figure 15: Route comparison between direct control (in red) and path planning for a given
off-field control (in magenta) using the initial reward. Source: The author.

Since there are no velocity or angle limitations, going in a straight path is probably the
best option. However, since the path obtained by applying RL to the off-field control relies
in an angular limitation for the control implemented as a function of the received angle, and
taking into account the environment and all the surrounding factors, the network possibly tried
to circumvent the existing angular limitation, while trying to get as close as possible to the goal,
generating a non-linear path.

363636

As the initial reward aimed mainly the validation of the environment and learning method,
the results were considered as good enough to proceed to more complex functions, where for less
than two hundred thousand iterations out of a total of two million – performed in all analyses
onward –, the algorithm was able to achieve the total cumulative reward mean and get the lowest
average number performed reward over time, as can be seen in Figure 16.

(a) Number of steps (b) Total reward accumulated

Figure 16: Mean (lines) and standard deviation (shades) of the number of steps and total reward
metrics accumulated (Y-axis) both over time (X-axis) to the first reward. Source: The author.

5.2 POSITION-ANGLE REWARD

For this composed reward, three main results were obtained using the off-field control
(Figure 17), each related to one of the approaches discussed in Section 4.2.2.2. For all of them,
the ease of reaching the target position was observed, as visualized in the initial reward. However,
none of the three approaches could avoid angular instabilities altogether when close to the target
position, which was reduced and became infrequent with an increase in the chosen angular
tolerance value, except when there was no angular reward, where the robot could not converge
as in the other cases.

(a) Rewarding angular
correction only at the control’s

angular adjustment radius

(b) Not rewarding angular
correction

(c) Rewarding angular
correction for the entire path

Figure 17: Visualization of the approach’s behavior close to the target when using the off-field
control, where the target angle consists of the vector (in red) starting from the center of the
objective (in orange). Source: The author.

373737

Rewarding angular correction only at the control’s angular adjustment radius induced
the agent to arrive with the most different angle in order to accumulate the largest amount of
available reward.

Even though the network with not rewarding angular correction heuristic has reached
quickly close to the target position, a difficulty in the convergence over time was noticed when it
depends on the implemented control, not achieving such good results. It can be explained due to
angular instabilities when close to the target position, which prioritizes an angular correction
as a function of displacement, as mentioned in Section 4.2.1, impacting the speed peaks and
the agent performance. Thus, the agent positioning was more stable for the Single Component
Approach, which has its control.

(a) With aid of off-field control (b) Without aid of off-field control

Figure 18: Mean (lines) and standard deviation (shades) of the number of steps (Y-axis) over
time (X-axis) for both approaches. Source: The author.

Finally, rewarding angular correction for the entire path presented itself as the correct
solution within those presented, since it approximates what the control expects for linear move-
ment. The application of this last heuristic for the Single Component Approach resulted in a
similar generated route, but with improvements in velocity as shown in Table 1.

Table 1: Comparison of completion time of rewarding angular correction for the entire path
heuristic between Path Planning for a Given Control and Single Component approaches, running
across the field diagonal with the target angle right since the beginning of the movement.

Path Planning for a Given Control Approach (ms) Single Component Approach (ms)
4221 3957
4138 3874
4193 3896
4215 3901
4239 3875
4207 3941
4095 3899
4108 3910
4213 3813
4183 3980

4181.2 3904.6

383838

5.3 POSITION-ANGLE-VELOCITY REWARD

From start, the most evident result for the Position-Angle-Velocity reward was that the
model converged when the target velocity was null, but the same was not true when it assumed
a not null value. As mentioned before, this reward consists of the hardest composition due to
physical variables: the robot may be close to the final goal in terms of distance, but far away
in terms of velocity. In such a scenario (Figure 19), there is not enough space for the robot to
get fast enough, and thus a distance from the final state position presents itself as necessary, an
intrinsic limitation of the environment in question.

Figure 19: Robot with initial position near the target position (in orange), angle near the target
angle (in red) and without enough space to reach the desired speed (in yellow). Source: The
author.

Based on the discussed approaches in Section 5.2, for both Position-Velocity and Position-
Angle-Velocity, instabilities in angular correction near the goal position continued to occur,
potentially due to a lack of verification in the angular velocity values obtained upon arrival at the
goal. However, for the scenario where the target velocity is null, it is possible to get around this
problem, since the approximation of an already small distance can be performed by heuristics,
avoiding singularities performed by the model.

Thus, the path obtained over time using the two approaches studied and calling the
control directly, i.e., without using the planning done using RL, was compared in two ways by
traversing the field diagonal: with the angle already correct from the beginning of the path, and
with it totally opposed to the target angle (Tables 2, 3).

For the way the final reward was constructed, the Single Component Approach was able
to outperform, in terms of time, the control used as a reference for the study, which in turn
performed worse than for an approach without the use of RL. This can perhaps be explained by
the fact that the agent did not learn to extract the full potential of the existing control in cases
without an obstacle, where it consists of a direct movement to the goal, which is possible to
visualize in Figures 20 and 21. Although the routes of the Single Component Approach traveled
the longest distance, it achieved the best times, on average, for the two tests performed, probably

393939

because without the limitations of the control, the robot was able to combine the steps in a more
adjusted, and therefore, faster way.

Table 2: Comparison of completion time of final reward between no RL applied, Path Planning
for a Given Off-fiel Control and Single Component approaches, running across the field diagonal
with the target angle right since the beginning of the movement.

Without RL application (ms) With aid of control (ms) Without aid of control (ms)
4351 4401 4099
4434 4510 4237
4454 4438 4143
4694 4561 4164
4436 4509 4080
4454 4432 4047
4419 4542 4180
4455 4479 4058
4445 4593 4132
4404 4582 4079

4454.6 4504.7 4121.9

Table 3: Comparison of completion time of final reward between no RL applied, Path Planning
for a Given Off-fiel Control and Single Component approaches, running across the field diagonal
starting with a totally opposite angle.

Without RL application (ms) With aid of control (ms) Without aid of control (ms)
4555 4554 4232
4556 4672 4360
4511 4621 4505
4583 4534 4606
4523 4659 4504
4538 4633 4253
4557 4652 4676
4514 4663 4367
4561 4591 4581
4639 4650 4656

4553.7 4622.9 4474

404040

Figure 20: Route comparison between direct control (in red), path planning for a given off-field
control (in magenta) and single component (in yellow) using the final reward with the target
angle right since the beginning of the movement. Source: The author.

Figure 21: Route comparison between direct control (in red), path planning for a given off-field
control (in magenta) and single component (in yellow) starting with a total opposite angle.
Source: The author.

However, even without a control dependency, the agent was unable to dissociate the
linear movement from the angular movement, which in theory, can be solved independently.

It is important to note that, although the results were obtained with only one robot in the
field, the average inference time of the already trained network was below 1 millisecond using
CPU, without the need for post-processing, which makes it capable of performing within the
time required for real-time game situations, since for an application like SSL, this is far below the
generally used camera refresh rate of 60 fps, which implies a maximum limit of approximately
16 milliseconds.

414141

6
CONCLUSION

In the context of moving autonomous agents, navigating efficiently is essential. This is
important in different applications, whether for cleaning robots, autonomous cars, or delivery
drones. The challenge becomes even more significant in dynamic environments with require-
ments other than position, such as in real-time or simulated robot soccer game. Hence, adding
physical quantities to the desired state, as angle and velocity, is a well-studied open problem in
the SSL category. The non-convergence of the proposed solutions for not null velocities will
potentially imply a change in the perception of the main reward initially considered, given that
increasing the distance from the objective position may be necessary to obtain the objective
velocity.

As intended at the beginning, proposals for learning methods and the definition of the
specific agent for the problem were made, the necessary inputs and outputs were given, and
the different methods were tested, with comparisons performed simultaneously, satisfying the
specific objectives initially proposed. Thus, although the tests happened with only one robot in
the field, the inference time below 1 millisecond makes the solution extremely efficient even not
using GPU. Also, the tolerance values chosen have proven to be fundamental in obtaining good
results, completely changing the convergence of a model.

Furthermore, it can be concluded that off-field control functions can be encompassed in
the study of path planning since they can obtain better or equally satisfactory results, eliminating
the limitations presented by control algorithms, like the one used in the study, which limited
linear velocity in favor of angular correction. Although the results comprised the validation of the
control to use path planning, they made it possible to understand that a change in the perception
of how the reward was constructed is necessary to achieve the requirements of modern path
planning.

In future works, reward functions that can disassociate local maxima to obtain a global
maximum will be studied, also with scenarios where there is a change in the target, something that
happens quite often in a soccer match, as well as the addition of static and dynamic obstacles.

424242

REFERENCES

[1] (2015). About robocup small size league (ssl). https://ssl.robocup.org/about/.
Accessed: January 21, 2023.

[2] (2016). RobôCIn’s Open Source Code. https://github.com/robocin. Accessed:
March 03, 2023.

[3] (2018). Robotics Erlangen Framework for RoboCup SSL Simulation. https://www.
robotics-erlangen.de/framework. Accessed: March 19, 2023.

[4] (2020). Very Small Size Soccer League Website. https://ieeevss.github.io/
vss/index.html. Accessed: March 22, 2023.

[5] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org.

[6] Bellman, R. (1957). A markovian decision process. Indiana Univ. Math. J., 6:679–684.

[7] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). Openai gym. cite arxiv:1606.01540.

[8] Elbanhawi, M. & Simic, M. (2014). Sampling-based robot motion planning: A review. IEEE
Access, 2:56–77.

[9] Geiling, N. (2014). RoboCup: Building a Team of Robots That Will Beat The
World Cup Champions. https://www.smithsonianmag.com/innovation/
robocup-building-team-robots-will-beat-world-cup-champions-180951713.
Accessed: March 10, 2023.

[10] Karaman, S. & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion plan-
ning.

[11] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., Yogamani, S., & Pérez, P.
(2020). Deep reinforcement learning for autonomous driving: A survey.

[12] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., & Osawa, E. (1997). Robocup: The robot
world cup initiative. In International Conference on Autonomous Agents.

[13] LaValle, S. M. (1998). Rapidly-exploring random trees : a new tool for path planning. The
annual research report.

[14] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra,
D. (2019). Continuous control with deep reinforcement learning.

[15] Lim, Y., Choi, S.-H., Kim, J.-H., & Kim, D.-H. (2008). Evolutionary univector field-
based navigation with collision avoidance for mobile robot. IFAC Proceedings Volumes,
41(2):12787–12792. 17th IFAC World Congress.

https://ssl.robocup.org/about/
https://github.com/robocin
https://www.robotics-erlangen.de/framework
https://www.robotics-erlangen.de/framework
https://ieeevss.github.io/vss/index.html
https://ieeevss.github.io/vss/index.html
https://www.smithsonianmag.com/innovation/robocup-building-team-robots-will-beat-world-cup-champions-180951713
https://www.smithsonianmag.com/innovation/robocup-building-team-robots-will-beat-world-cup-champions-180951713

434343

[16] Lynch, K. M. & Park, F. C. (2017). Modern Robotics: Mechanics, Planning, and Control.
Cambridge University Press, USA, 1st edition.

[17] Mac, T. T., Copot, C., Tran, D. T., & De Keyser, R. (2016). Heuristic approaches in robot
path planning: A survey. Robotics and Autonomous Systems, 86:13–28.

[18] Martins, F. B., Machado, M. G., Bassani, H. F., Braga, P. H. M., & Barros, E. S. (2022).
rsoccer: A framework for studying reinforcement learning in small and very small size robot
soccer. In Alami, R., Biswas, J., Cakmak, M., & Obst, O., editors, RoboCup 2021: Robot
World Cup XXIV, 165–176.

[19] Melo, J. G. & Barros, E. (2022). An embedded monocular vision approach for ground-aware
objects detection and position estimation.

[20] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Ried-
miller, M. (2013). Playing atari with deep reinforcement learning.

[21] Monajjemi, V., Koochakzadeh, A., & Ghidary, S. S. (2011). grsim - robocup small size
robot soccer simulator. In RoboCup.

[22] Ommer, N., Ryll, A., & Geiger, M. (2019). Tigers mannheim (team interacting and game
evolving robots) extended team description for robocup 2019. RoboCup Small Size League,
Mannheim, Germany, 2019.

[23] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, 8024–8035. Curran Associates, Inc.

[24] Patle, B., Babu L, G., Pandey, A., Parhi, D., & Jagadeesh, A. (2019). A review: On path
planning strategies for navigation of mobile robot. Defence Technology, 15(4):582–606.

[25] Purwin, O. & D’Andrea, R. (2005). Trajectory generation for four wheeled omnidirectional
vehicles. In Proceedings of the 2005, American Control Conference, 2005., 4979–4984 vol. 7.

[26] Sutton, R. S. & Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT
Press, second edition.

[27] Takamichi Yoshimoto, Takato Horii, S. M. Y. I. & Zenji, S. (2019). Op-amp 2019 extended
team discription paper. RoboCup Small Size League, Asagami Works, Osaka, Japan 2019.

[28] Uc-Cetina, V., Navarro-Guerrero, N., Martin-Gonzalez, A., Weber, C., & Wermter, S.
(2022). Survey on reinforcement learning for language processing. Artificial Intelligence
Review, 56(2):1543–1575.

[29] Wendler, A. & Heineken, T. (2020). Er-force 2020 extended team description paper.
RoboCup Small Size League, Erlangen, Germany, 2020.

[30] Yoon, M. (2015). Developing basic soccer skills using reinforcement learning for the
robocup small size league.

444444

[31] Zheyuan Huang, Lingyun Chen, J. L. Y. W. Z. C. L. W. J. G. P. H. & Xiong, R. (2019).
Zjunlict extended team description paper for robocup 2019. Zhejiang University, Zheda Road
No.38, Hangzhou, Zhejiang Province, P.R.China 2019.

[32] Zhu, Y., Schwab, D., & Veloso, M. (2019). Learning primitive skills for mobile robots. In
2019 International Conference on Robotics and Automation (ICRA), 7597–7603.

[33] Zickler, S., Laue, T., Birbach, O., Wongphati, M., & Veloso, M. (2010). Ssl-vision: The
shared vision system for the robocup small size league. In Baltes, J., Lagoudakis, M. G.,
Naruse, T., & Ghidary, S. S., editors, RoboCup 2009: Robot Soccer World Cup XIII, 425–436.

[34] Zolanvari, A., Shirazi, M. M., & Menhaj, M. B. (2019). A q-learning approach for
controlling a robotic goalkeeper during penalty procedure.

	Introduction
	Objectives

	Navigation
	Overview
	Path Planning
	Control

	Reinforcement Learning
	Overview
	rSoccer Gym
	Deep Deterministic Policy Gradient

	Proposed Approach
	Environment Setup
	Path Planning For A Given Control Approach
	Off-field Control Algorithm
	Reward Function
	Initial Reward
	Angle addition
	Velocity addition

	Single Component Approach

	Results
	Initial Reward
	Position-Angle Reward
	Position-Angle-Velocity Reward

	Conclusion
	REFERENCES

