
Comparative study of techniques for detecting emulators on
Android devices

Lucas Cardoso1, Leopoldo Teixeira1

1Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Recife – PE – Brazil

lccao@cin.ufpe.br, lmt@cin.ufpe.br

Abstract. The growth in the mobile ecosystem provide a fertile ground for
malicious activities. Malicious users might use mobile emulators to commit
fraudulent acts. Such practice has already caused serious damage to app
service providers. Therefore, the need for effectively detecting whether an app
is running in an emulator must be considered. There is a set of proposed
techniques by open source projects and academic papers. In this work, we
perform a comparison analysis of some of the existing techniques. Our results
show that none of the proposed techniques is effective to all emulators, with
some being unable to detect the emulators they were designed to detect. We have
also found that the current Nox emulator version for macOS is not detected by
any technique.

1. Introduction

The mobile ecosystem has been steadily growing in the last decades, turning into a
huge industry. The combined user spending in the App Store and Google Play is set
to reach almost 233 billion U.S. dollars by 2026 [Statista 2022]. This provides a fertile
environment for malicious activities [Dimjašević et al. 2016]. These activities incur in
major costs to this growing industry and to society overall. For instance, fraud is a major
problem, with American consumers losing $5.8 billion to it in 2021 [Iacurci 2022].

Malicious users might use mobile emulators to commit fraudulent acts. Such
practice has already caused serious damage to app service providers, being linked to
”Mobile ad fraud” or ”Mobile Click Fraud Attack (MCFA)”, this fraud happens because
the fees paid by advertisers are only effective when users click on the advertising page,
while malicious users use simulators to simulate multiple terminals to click in order to
defraud advertisers’ fees [Lin et al. 2019]. Contrary to what happens on PCs, where
practical use cases have developed, virtualization is not broadly available on consumer
mobile platforms [Vidas and Christin 2014].

Another problem present on emulators are the potential threats this unique
architecture may expose its users to. There are some flaws on communication channel
authentication, permission control, and open interfaces, that attackers could exploit to
bypass Android security mechanisms. Some of the found vulnerabilities include: the
abuse of the emulators input method (IME) text channel, that allows a malicious Android
app located in the same emulator to inject any text to Android; a race condition attack that
hijacks the app installation process and finally install an arbitrary app; and the possibility
of a malicious app gaining system privilege (e.g., root) without user consent, which will

change the app into “God Mode” and enable the adversary to do nearly anything within
the emulator [Xu et al. 2021].

Therefore, the need for effectively detecting whether an app is running in
the emulator must be considered [Lin et al. 2019]. A few detection techniques
have been previously developed. Some are based on differences of: behavior,
performance, hardware and software components [Vidas and Christin 2014], memory
usage, context switching and vectorization [Jang et al. 2019], and even machine learning
[Guerra-Manzanares et al. 2019]. This work seeks to make a comparison analysis
between different techniques, taking into consideration the changes in Android’s policies
regarding permissions and the current version of popular emulators.

We have also analyzed open source repositories found on GitHub. Those
repository tend to focus on techniques that observe differences in behavior, specially on
Android’s API return values that have fixed values on emulators. Three were identified as
containing relevant detection techniques [Framgia 2016, Gingo 2017, Arakawa 2019].

The app developed for data collection, the collected data from emulators, and the
Jupyter notebook used in this paper, are available on a GitHub repository [Cardoso 2022].
The emulators used for testing were Android Studio’s emulator, Bluestacks, Genymotion
and Nox, the rationale this selection is explained in Section 2.2.

The results found indicate that there is no silver bullet capable of detecting all
emulators. As a matter of fact, none of the proposed techniques were able to detect one
of the tested emulators. The techniques that were able to detect more emulators were
Android Build Characteristics, described in Section 2.3.1, File Detection, described in
Section 2.3.2 and OpenGL, described in Section 2.3.9, all being capable to detect 2 of the
tested emulators. Of those techniques, Android Build Characteristics had a high number
of false positives, therefore is not an advised method. Vectorization technique described
in Section 2.3.10 has shown great promise when dealing with real devices of supported
architectures but did not support any of the tested emulators.

2. Background
This section provides a brief explanation of the Android ecosystem. Moreover, it explains
and classifies the methods proposed in previous works, as well as in the open source
repositories, describing known problems and limitations.

2.1. Android
Android is an open source operating system for mobile devices and a corresponding open
source project led by Google [AOSP 2022]. Figure 1 shows its overall architecture. It
consists of the following components: the application framework, referring to the set
of frameworks available to app developers; the Binder Inter-Process Communication
(IPC), responsible for enabling the application framework to cross process boundaries
and call into the Android system services code; System services, responsible for bridging
application framework APIs with the underlying hardware; Hardware abstraction layer
(HAL), a standard interface for hardware vendors to implement, which enables Android
to be agnostic about lower-level driver implementations; Linux kernel, the underlying
kernel it is a version of the Linux kernel with a few special additions such as Low Memory
Killer [AOSP-Architecture 2022].

Figure 1. Android architecture [AOSP-Architecture 2022]

Each application runs on it’s own sandbox, since Android takes advantage of the
Linux user-based protection to identify and isolate app resources. This isolates apps from
each other and protects apps and the system from malicious apps. To do this, Android
assigns a unique user ID (UID) to each Android application and runs it in its own process.
The kernel enforces security between apps and the system at the process level through
standard Linux facilities such as user and group IDs that are assigned to apps. By default,
apps can’t interact with each other and have limited access to the OS. If app A tries
to do something malicious, such as read application B’s data or dial the phone without
permission, it’s prevented from doing so because it doesn’t have the appropriate default
user privileges. The sandbox is simple, auditable, and based on decades-old UNIX-style
user separation of processes and file permissions [Android 2022d].

Android apps can be written using Kotlin, Java, and C++ languages. The Android
SDK tools compile the code along with any data and resource files into an APK or an
Android App Bundle. An Android package, which is an archive file with an .apk suffix,
contains the contents of an Android app that are required at runtime and it is the file
that Android-powered devices use to install the app [Android 2022c]. Every app project
must have an AndroidManifest.xml file (with precisely that name) at the root of
the project source set. The manifest file describes essential information about the app
to the Android build tools, the Android operating system, and Google Play. It contains,
among other things, some components of the app, the permissions, hardware and software

features the app needs [Android 2022b].

2.1.1. Permissions on Android

App permissions are an Android feature for supporting the user privacy by protecting
access to sensitive data, such as system state or contact information. It also serves to
restrict some actions that can impact privacy or energy consumption, like connecting
to a paired device and recording audio. Android categorizes permissions into different
types, including install-time permissions, runtime permissions, and special permissions
[Android 2022n].

Install-time permissions give the app limited access to restricted data, allowing
it to perform restricted actions that minimally affect the system or other apps. These
permissions must be declared by the app developer and are automatically granted
upon app installation. These permissions are displayed to the user by the app store
[Android 2022n].

Runtime permissions, also known as dangerous permissions, allow apps to have
additional access to restricted data. They might also allow apps to perform restricted
actions that more substantially affect the system and other apps. As the name suggests,
these permissions must be requested and granted during runtime, besides being declared
in the app manifest file. Requesting such a permission evokes a system prompt that
the user must interact with, granting or revoking the permission. These permissions are
often tied to accessing sensitive and private data such as location and contact information
[Android 2022n].

Special permissions are related to particular app operations, only the Android
platform and Original Equipment Manufacturers (OEMs) have access to such permissions
[Android 2022n]. Since these are not available to regular Android apps, these are not very
relevant to this work.

2.2. Android Emulators

The Android emulators can be divided into two categories, depending on the focus of
its users, either developers or end-users [Xu et al. 2021]. In this work we seek to make
a general assessment on those two categories, so two emulators of each category were
chosen.

With regards to emulators geared toward developers, we use Genymotion and
the Android Studio emulator. This type of emulator is mainly leveraged to assist app
development or perform automated app testing [Xu et al. 2021]. They were chosen
due to their availability and ease of use. Different from the developer-oriented
emulators, the end-user emulators aim to enhance the user experience with Android apps
[Xu et al. 2021]. The chosen emulators to analyze were Bluestacks and Nox due to their
popularity and availability on macOS [Xu et al. 2021].

Android Studio and Nox emulator are QEMU emulators [Lin et al. 2019]. QEMU
is a generic open source machine emulator and virtualizer, it supports the use of Kernel-
based Virtual Machine (KVM) modules [QEMU 2020], Lin et al. found that the KVM
used for Nox is VirtualBox [Lin et al. 2019]. The virtual machine used by Bluestacks

is also VirtualBox [Xu et al. 2021]. With respect to Genymotion, it is not clear but its
documentation implies that it uses them as well [Genymotion 2022]. All emulators were
executed with macOS as the host OS.

2.3. Identified Techniques

Since there is a broad range of techniques, this work focuses mainly on the
proposed methods that were implemented by existing open source projects and some
selected papers regarding difference in behavior detection. The open source projects
selected were developed by Arakawa [Arakawa 2019], Framgia [Framgia 2016] and
Gingo [Gingo 2017].Vidas and Christin [Vidas and Christin 2014] behavior detection
and vectorization proposed by Jang et al. [Jang et al. 2019] were selected from papers.
They were further divided into 10 distinct strategies. The track record and performance
hit of every technique were further analysed and scrutinized on Section 4.

The first selected heuristic is Android Build Characteristics, which is related to
a set of constants system properties common on Android Build. Section 2.3.1 further
explains the heuristic and the values used. Section 2.3.2 describes the second selected
technique, File Detection. This strategy consists of finding known emulator files within
the app sandbox.

The third heuristic consists of accessing Android’s Telephony Characteristic,
checking for known emulator characteristics. This techniques are further scrutinized on
Section 2.3.3. Another selected approach is about the detection of QEMU drivers. It relies
on the behavior of a common open source emulator known as QEMU, it is described on
Section 2.3.4.

IP detection is about using common binaries to check the current device IP
connection, but, as described in Section 2.3.5, it seems to have been deprecated.
Section 2.3.6, named Package Names, describes the check on installed packages for
known emulator packages.

Section 2.3.7 refers to a method that looks for Available Activities. Section 2.3.8
describes the technique that searches Services. OpenGL Render detection is detailed on
Section 2.3.9. Finally, Section 2.3.10 describes the Vectorization strategy proposed by
Jang et al. [Jang et al. 2019].

2.3.1. Android Build Characteristics

These are system properties that contain information about the current build of the
Android device like it’s model (Motorola G5, Samsung S22, etc), manufacturer
(Motorola, Samsung, etc) and other static characteristics. They are set automatically
during the build phase of the Android image, with information set on a .sysprop file
[Android 2022g]. They are usually generated by manufacturers, but on emulators, since
they have to build their own image, the properties are often set either with default values
or with custom specific values.

Since they are set on the ROM image, and have a low performance hit. All
open source projects use it in some way. Vidas and Christin also provided a few

values [Framgia 2016, Gingo 2017, Arakawa 2019, Vidas and Christin 2014]. They use
Android’s helper class Build, that access the underlying set system properties statically.

The first heuristic considered checks for specific values in Build
values [Framgia 2016]. The value check is usually for default values, like golfish,
generic and google sdk. They also check for usual VirtualBox virtual machine,
Nox, Genymotion and Droid4x emulators. The values can be found on Table 1.

Table 1. Build Heuristic 1

Build Characteristic Relation Value
FINGERPRINT starts with generic
MODEL contains google sdk, Emulator,

Android SDK built for x86
MODEL lowercase contains droid4x
MANUFACTURER contains Genymotion
HARDWARE equals goldfish, vbox86
HARDWARE lowercase contains nox
PRODUCT equals sdk, google sdk, sdk x86,

vbox86p
PRODUCT lowercase contains nox
BOARD lowercase contains nox
SERIAL lowercase contains nox
BRAND starts with generic
DEVICE starts with generic

The second heuristic adds to the first by considering three specific build
characteristics [Arakawa 2019, Gingo 2017]. They have similar checks to the ones
proposed by Framgia [Framgia 2016]. But add support for Andy and TianTian emulators.
Since they also only mark the emulator with 3 or more evidences, they have a significantly
higher number of checks on many different properties. These values can be found on
Table 2.

Finally, also similar to what is conducted by Framgia [Framgia 2016], a
third technique lists heuristics that mark them as emulators proposed by Vidas and
Christin [Vidas and Christin 2014]. They seem to be focused solely on default values
and the ones from Android Studio emulator, like generic, sdk, unkwnown and
goldfish. Table 3 shows those values.

2.3.2. File Detection

This heuristic checks the existence of known files present on emulators. They simply
try to see if a file for a given path exists in the app sandbox using java’s File
class, for example checking for the existence of a x86.prop file. Both Framgia and
Arakawa [Framgia 2016, Arakawa 2019] implemented a method of this detection with
the same files paths. Their detection differs only on the listed x86 files, on them,
Framgia [Framgia 2016] has a stricter approach, marking it has an emulator only if five
or more system properties associated with QEMU are found. It is not clear why that is the

Table 2. Build Heuristic 2

Build Characteristic Relation Value
FINGERPRINT contains generic/sdk/generic,

generic x86/sdk x86/generic x86,
Andy, ttVM Hdragon, generic x86 64,
generic/google sdk/generic, vbox86p,
generic/vbox86p/vbox86p

MODEL equals sdk, google sdk, Android SDK built for x86 64,
Android SDK built for x86

MODEL contains Droid4X, TiantianVM, Andy
MANUFACTURER equals unknown, Genymotion
MANUFACTURER contains Andy, MIT, nox, TiantianVM
HARDWARE equals goldfish, vbox86
HARDWARE contains nox, ttVM x86
PRODUCT contains sdk, Andy, ttVM Hdragon, google sdk,

Droid4X, nox, sdk x86, sdk google, vbox86p
BRAND equals generic, generic x86, TTVM
BRAND contains Andy
DEVICE contains generic, generic x86, Andy, ttVM Hdragon,

Droid4X, nox, generic x86 64, vbox86p

case. For each emulator there is a set of known files that are checked, Table 4 contains a
set of the checked emulator files.

Gingo only has one check for a Bluestacks folder, it is calculated during runtime,
using the set external folder ending with windows/BstSharedFolder.

2.3.3. Telephony Characteristics

These characteristics refer to the behavior of the telephony services and states. Since
Android devices are not require to provide this functionality, it is necessary to check
if this feature is available for utilization. Android provides a easy way to check for it
using the PackageManager class, but this restricts this check to the availability of this
feature.

In addition to the feature check, Framgia [Framgia 2016] also checks for the
READ PHONE STATE permission, but there are a few caveats in that. Starting on Android
API level 23, dangerous permissions must be requested at runtime [Android 2022o]
and this particular permission is considered dangerous [Android 2022j]. One of the
used data is the phone number, and starting on Android API version 26, it requires
the READ PHONE NUMBERS dangerous permission [Android 2022j]. But this highlights
a limitation on the approach from Framgia, since it only collects data with the
READ PHONE STATE permission, but not all data collected requires these permissions,
unnecessarily curbing the other check. Table 6 contains the permission related to each
method used in the heuristic.

The values checked are on Table 5. The values are: line1Number, that

Table 3. Build Heuristic 3

Build Characteristic Relation Value
FINGERPRINT starts with generic
MODEL equals sdk
MANUFACTURER equals unknown
HARDWARE equals goldfish
PRODUCT equals sdk
BRAND equals generic
DEVICE equals generic
BOARD equals unknown
ID equals FRF91
RADIO equals unknown
SERIAL equals null
TAGS equals test-keys
USER equals android-build

Table 4. Emulator Files checks

Emulator Files
Genymotion /dev/socket/genyd, /dev/socket/baseband genyd
Nox fstab.nox, init.nox.rc, ueventd.nox.rc
Andy fstab.andy, ueventd.andy.rc
x86 ueventd.android x86.rc,x86.prop, ueventd.ttVM x86.rc,

init.ttVM x86.rc, fstab.ttVM x86, fstab.vbox86,
init.vbox86.rc, ueventd.vbox86.rc

QEMU /dev/socket/qemud, /dev/qemu pipe

represents the device phone number; deviceId, that is an unique device ID;
subscriberId an unique subscriber ID, for example, the IMSI for a GSM phone;
and networkOperatorName, the alphabetic name of current registered operator
[Android 2022q].

Vidas and Christin [Vidas and Christin 2014] also provided a few characteristics,
but they were less assertive about the values provided, because some of them were very
situational. For example, checking for a T-Mobile carrier, which is a valid carrier in the
USA, nevertheless, when found outside the USA, it may be a good indicative of emulator
usage [Vidas and Christin 2014]. Because of this circumstances, only the values they
considered guaranteed to be emulators were taken into account. And those were limited
to evaluating the equality of the subscriber id to 310260000000000 and the voice mail
number to 15552175049.

2.3.4. QEMU drivers

Framgia and Arakawa [Framgia 2016, Arakawa 2019] have a identical approach,
checking for QEMU drivers. They check the content on /proc/tty/drivers
and /proc/cpuinfo, looking specifically for the goldfish substring. Goldfish

Table 5. Telephony Characteristics Values

TelephonyManager Field Values
line1Number 15555215554, 15555215556, 15555215558,

15555215560, 15555215562, 15555215564,
15555215566, 15555215568, 15555215570,
15555215572, 15555215574, 15555215576,
15555215578, 15555215580, 15555215582,
15555215584

deviceId 000000000000000, e21833235b6eef10,
012345678912345

subscriberId 310260000000000
networkOperatorName android

Table 6. Telephony Related Permissions

TelephonyManager method Permissions Required
line1Number READ SMS, READ PHONE NUMBERS
deviceId Deprecated after Android API Level 26
networkOperatorName None
subscriberId READ PRIVILEGED PHONE STATE
voiceMailNumber READ PHONE STATE

is a virtual hardware platform used to run some emulated Android systems under
QEMU [Turner 2014].

About those paths, the tty abbreviation came from an old abbreviation of
teletypewriter and was originally associated only with the physical or virtual terminal
connection to a Unix machine. Nowadays a tty device means any serial port style device.
The /proc/tty/drivers file determines what kind of tty drivers are currently loaded
in the kernel and which tty devices are currently present [Corbet et al. 2005]. The
proc/cpuinfo file is a virtual file that identifies the type of processor used by the
system [RedHat 2022].

2.3.5. IP

This method was proposed by Framgia [Framgia 2016], and consists of using the netcfg
Linux network connection tool [ArchLinux 2022], but it has been deprecated at least since
Android API version 23 [Google 2016]. This data does not seem to be relevant anymore
since less than 3% devices are below this Android version [statcounter 2022].

2.3.6. Package Names

The Android installed packages in a device are available through the PackageManager
class [Android 2022m]. Arakawa [Arakawa 2019] implemented a heuristic checking
the strings of this list of installed packages names for a set of prefixes, and a single
specific package. But there is a privacy issue, since the list of installed packages is

considered a personal and sensitive data. When the app targets Android API level 30
or higher, the system filters the apps, being necessary to either add a query for the desired
packages on the Android Manifest or to add the permission QUERY ALL PACKAGES
[Android 2022l]. This is becoming more relevant as Google is set to enforce this as
the minimum target of all existing apps on the Google Play Store from November 2022
onwards, and every new app or update is already required [Google 2022]. Table 7 contains
the checks used by this heuristics.

Table 7. Package Name Checks

Package Relation Package Name
starts with com.vphone.
starts with com.bignox.
starts with com.nox.mopen.app
starts with me.haima.
starts with com.bluestacks
starts with cn.itools.*
starts with com.kop.
starts with com.kaopu.
starts with com.microvirt.
starts with com.bignox.app
equals com.google.android.launcher.layouts.genymotion

*This heuristic also checks if Build.PRODUCT starts with iToolsAVM

2.3.7. Available Activities

The Activity class is a main component of Android Apps. They are design to
accommodate the necessity apps may face to have different entry points to the application.
Most apps contain multiple screens, which means they are comprised of multiple
activities. These activities work together to form a cohesive experience to the user. They
also have the ability to call for other applications activities, one of the ways to do that is
to use an Intent [Android 2022i].

An Intent is a messaging object you can use to request an action from another
app component [Android 2022h]. In this context, an app component refers to an entry
point through which the system or a user can enter your app [Android 2022c]. There
are two types of Intent, explicit and implicit. Explicit ones must provide a specific
package or component name, whereas implicit specify an action and corresponding data
[Android 2022h].

An explanation on how an implicit intent is delivered through the system to start
another activity can be found on Figure 2. [1] Activity A creates an Intent with
an action description and passes it to startActivity(). [2] The Android System
searches all apps for an intent filter that matches the intent. When a match is found, [3]
the system starts the matching activity (Activity B) by invoking its onCreate()method
and passing the Intent object. [Android 2022h]

In this heuristic, proposed by Arakawa, the detection consists of querying the

Figure 2. Launching Activity using Intent [Android 2022h]

system for action ACTION MAIN and category CATEGORY LAUNCHER, and checking
if any of the activities start with com.bluestacks.. What this does is searching for
the possible entry points of every application installed in the app.

2.3.8. Services

A Service is an application component that can perform long-running operations in the
background [Android 2022p]. Arakawa proposes the collection of 20 running services
and checks for service names starting with com.bluestacks.. The problem with this
detection is that, as of Android 26, it is not possible to collect other application services
[Android 2022a], making the effectiveness of this technique very limited.

2.3.9. OpenGL Render

Android includes support for high performance 2D and 3D graphics with the Open
Graphics Library (OpenGL), specifically, the OpenGL ES (GLES) API [Android 2022k].
It works as an state machine, so applications can call its functions to set its state,
which in turn determines the final appearance of its primitive types in a framebuffer
[Martz 2006]. To create GLES contexts and provide a windowing system for GLES
renderings, Android uses the EGL library. GLES calls render textured polygons, while
EGL calls put renderings on screens [Android 2022f].

Gingo proposes a technique that checks the render for substrings Bluestacks and
Translator. But there is a problem in Gingo implementation, it assumes there is a running
context, which is necessary to access the OpenGL render. There is no documentation
or indication whether this is due to that context being present on an emulator or it is
necessary to create one before this check, so both ways were tested.

2.3.10. Vectorization

Vectorization is a CPU technology that supports calculating multiple data with a single
instruction. Memory access alignment issue stems from the incapability of earlier (and
current) CPUs accessing the cache with byte granularity. For example, some 32-bit CPU
architectures have a 30-bit addressing line for fetching the memory. Due to the lack of 2
bits, such CPU can access the memory only if the target memory address is multiple of 4
(100 in binary). For such reason, if the CPU wants to access a memory address that is not

a multiple of 4, the CPU fetches memory twice and re-assembles the memory contents.
Vectorization instructions of Intel and ARM do not support unaligned memory access at
the hardware level (even with kernel modification for handling alignment feature), thus
raising an application-aware fault. [Jang et al. 2019]

In general, the kernel is capable of handling unaligned memory access. However,
high-performance vectorization operations such as Intel SIMD and ARM NEON are
guaranteed to raise fault upon unaligned access regardless of kernel configuration.
Software emulators, on the other hand, do not have to suffer from such issues because
any memory access is ultimately reconstructed with multiple combinations of operations
at a software level. [Jang et al. 2019]

Jang et al. [Jang et al. 2019] proposed a technique in which first it is installed
a fault-handler to catch the hardware fault signal induced by unaligned vectorization,
then it deliberately triggers a vectors misalignment. If the running environment is
emulated, nothing happens upon such memory access. However, in the real hardware-
based environment, the CPU immediately raises the fault signal and invokes the callback
handler. [Jang et al. 2019]

Since this implementation interacts directly with the system using low level
languages, it is necessary to use a Java Native Interface (JNI) for the C++ and assembly
codes, being available through a Native Development Kit (NDK). The native code
contained in such libraries runs outside the Java virtual machine directly on the processor
of the smartphone or emulator [Spreitzenbarth et al. 2013]. An issue with the provided
code is that to trigger the misaligned vectorization it is necessary to use machine code in
assembly. Therefore, it is necessary to provide code for every supported architecture, and
there is no support on the code for x86 instructions and the used emulators tested ran on
this architecture, so it did not provide a solid detection method as it is.

3. Methodology
In this work, we evaluate existing techniques for detecting emulator usage in Android.
Figure 3 shows the methodology we followed. The first step consisted of a literature
analysis, trying to find related works in detecting emulators within an app during
runtime. The main work we found related to that is the work of Vidas and
Christin [Vidas and Christin 2014], which compares software and hardware analysis.

Jang et al. [Jang et al. 2019] presented some ways to rethink those detection
techniques. They proposed three possible techniques based on context switching,
translation block cache, and vectorization. They argue that the latter was the superior
approach due to its correctness with better performance. So, this was chosen as the
measured approach.

Then, we began evaluating open source solutions, which were not yet fully
exploited by the literature. As mentioned, we searched through GitHub repositories,
and found three popular projects Arakawa [Arakawa 2019], Framgia [Framgia 2016] and
Gingo [Gingo 2017]. In the vast majority they provided methods focused on the Android
API, making their approach easier to incorporate into apps or SDKs and easy for mobile
developers to understand, thus the popularity.

The heuristics selection focused in a blend of techniques from the open source

projects and research papers. The code provided by the open source solutions provides
the easiness to implement, though it required a lot of adaptation and tests due to
changes in Android and lack of documentation. On the other hand the research paper
techniques provided a good benchmark, since they were already peer reviewed. For
[Vidas and Christin 2014] it was used its software detection, since a comprehensive
hardware analysis would require a vast number of real devices that were not available.
The vectorization solution from Jang et al. [Jang et al. 2019] was the chosen due to it
being the superior solution provided. The rest of the heuristics came from open source
projects with occasional minor tweaks explained on earlier sections.

Figure 3. Metodology

An application was developed so that data collection and assertion was closer to
a regular application. It also was thought as being easier to collect real device data, and,
since this project relied on real device collection, easier for people to use. As soon as
the app is initialized it asks for the required Android permissions (it also works without
them), and it has a button that zips the collected data and sends it via a SEND ACTION
Intent. This enables the data collected to be easily shared. Figure 4 is the app screen,
and as it can be seen, there is also a checkbox, as a way to provide everyone to whom the
app was shared with a easy way to confirm it did or did not installed it on an emulator.

Figure 5 illustrates how data is collected within the app. The major component
is the Collection Block, that is an abstraction containing all the data collection necessary
for an assertion and the assertion logic. This is all encapsulated by an measurement
in milliseconds of the time required to run this code block. First the UI related data
collection blocks are executed, with the only representative of this mode being the two
OpenGL implementation as described in Section 2.3.9. Then the app runs on background
all the other collection modes. In the end, it provides a zip file with everything.

After the app development, the app was executed 5 times in all emulators
described in Section 2.2, to minimize possible outliers and have a more precise analysis.
The app was also sent to other people in order to have a benchmark with real devices. The
resulting data was analysed for accuracy and performance (the time in milliseconds). A
Jupyter notebook was developed and is available on the same repository as the app.

4. Results

We were able to collect data from fifteen real devices, and as mentioned, we ran the
data collection five times for each of the evaluated emulators (Bluestacks, Android
Studio, Nox, Genymotion). The real devices general characteristics with OS version,

Figure 4. Collection App Screen

manufacturer and model can be seen on Table 8. In following subsections, we detail the
result by each method, then we make general considerations of each emulator detection
and a technique analysis taking into consideration its intersections.

4.1. Android Build Characteristics
On our first run, we found that all of the Build characteristics techniques proposed by
Vidas and Christin [Vidas and Christin 2014] marked every device as an emulator. Upon
further investigation, it was concluded that the Radio feature had been the reason, due to
the fact that it was deprecated. Thus, the current behavior was returning the string marked
as suspicious by one of the heuristics [Android 2022e]. Because of that, this variable was
removed from the analysis.

Even with the removal, Vidas and Christin [Vidas and Christin 2014] heuristics
still had false positives. This happened only on Xiaomi devices, and the reason that
triggered the false classification was the Board property. The true positives of this
heuristic were Android Studio and Genymotion emulators.

The Arakawa and Framgia techniques [Arakawa 2019, Framgia 2016] were able
to detect Genymotion emulators, and had no false positives. Gingo [Gingo 2017] was not

Figure 5. Data collection on App

able to detect any of the tested emulators. Figure 6 contains the overall Build confusion
matrix.

Figure 6. Build Characteristics Confusion Matrix

Overall, the time to perform detection was very low. The maximum time it took to
collect the whole data was 33 milliseconds, with a mean value of 2.09 milliseconds and a
median value of 1 millisecond.

4.2. File Detection

Gingo [Gingo 2017] was the only one able to detect the Bluestacks emulator. Framgia and
Arakawa [Framgia 2016, Arakawa 2019] were able to detect Android Studio emulators.
They were not able to detect any other emulator and had no false positives. Their
confusion matrix can be seen in Figure 7.

Overall the time needed to perform detection was significantly higher than Build
one. The maximum time it took to collect the whole data was 268 milliseconds, with a
mean value of 17.74 milliseconds and a median value of 4 milliseconds.

Table 8. Real Devices

Device OS Version Manufacturer Model
1 31 samsung SM-G980F
2 31 samsung SM-G780G
3 29 Xiaomi Redmi Note 8
4 30 motorola motorola one fusion
5 27 Xiaomi MI PLAY
6 30 motorola moto g(8) power
7 27 Xiaomi MI PLAY
8 30 motorola moto g(8) power
9 28 motorola moto e6 play
10 29 samsung SM-G960U1
11 33 Google Pixel 6a
12 31 samsung SM-G985F
13 31 samsung SM-G780G
14 31 samsung SM-G998B
15 31 samsung SM-S906E

Figure 7. File Detection Confusion Matrix

4.3. Telephony Characteristics
Both Framgia and the simplified proposed heuristic were only able to identify Android
Studio and Genymotion emulators, with no false positives. Their confusion matrix can be
seen in Figure 8.

For this heuristic, the time to perform detection was significantly higher than
for File Detection. This is probably due to its interaction with the system controlled
component TelephonyManager. The maximum time it took to collect the whole data
was 2217 milliseconds, with a mean value of 222.47 milliseconds and a median value of
50.5 milliseconds.

4.4. QEMU drivers
This detection technique was not able to detect any of the tested emulators. Its
performance hit was very small with a highest value of 44 milliseconds. The mean value
of 9 milliseconds and a median value of 2 millisecond.

Figure 8. Telephony Characteristics Confusion Matrix

4.5. IP

This detection technique was also not able to detect an emulator. Their impact was also
small, but this is due to the fact that it throws an error due to the deprecation of its method,
as described in Section 2.3.5.

4.6. Package Names

The only emulator this method was able to detect was Genymotion. It had a relatively high
detection time, as it scales accordingly to the quantity of installed packages. Therefore,
it is a detection method to be careful with when executing it. But the main device that
was responsible to worsening its performance was Android Studio emulator, the overall
metrics being: maximum value of 837 milliseconds, mean value of 107.89 milliseconds
and median value of 42 milliseconds. The confusion matrix can be seen in Figure 8.

Figure 9. Packages Names Confusion Matrix

4.7. Available Activities

This technique was not able to identify any emulator and had no false positives. The
overall performance hit was not high with maximum time of 160 milliseconds, mean
value of 26.96 milliseconds and a median value of 16.5 millisecond.

4.8. Services

This approach was also not able to identify any emulator and also had no false positives.
Its performance metrics indicates a very high performance hit, due to its maximum
value being 2175 milliseconds. But this was an outlier, and their median value was 2
milliseconds.

4.9. OpenGL Render

Due to the issues described in Section 2.3.9, Gingo [Gingo 2017] does not seems to
work, not being able to collect any useful data on emulators nor real devices. It was then
necessary to instantiate and initialize an OpenGL context in order to correctly obtain any
useful data. Those minor alterations were able to detect Android Studio and Genymotion
emulators. The confusion matrix considering only the solution that works can be seen in
Figure 10.

Figure 10. OpenGL Confusion Matrix

This detection technique must interact with the UI thread, since it revolves around
loading an OpenGL context. Therefore, its performance is the most critical, since it can
directly impact user experience, due to the possibility of causing visible stuttering due to
locking the thread for too long. The maximum value found was 345 milliseconds, with
mean value of 88 milliseconds and median of 34 milliseconds. The general numbers seem
high, but they seem to be pulled up by the Android Studio and Genymotion emulators.

4.10. Vectorization

This method was not able to detect any emulator. As a matter of fact, it did not support
any of the emulators ABIs (Application Binary Interfaces) as described in Section 2.3.10.
However, it was able to run on all real devices.

Though this heuristic was able to correctly assess all devices running on the
arm64-v8a ABI, there was an issue that resulted on a false positive on the armeabi-
v7a/NEON ABI. The support for this architecture should be removed, since this would
result in false positives, but the results for arm64-v8a devices validation were very
promising.

Excluding the problematic result found for the armeabi-v7a/NEON ABI, it
could be used as a cross check for the build technique proposed by Vidas and

Christin [Vidas and Christin 2014]. This method seems to only be able to serve to validate
a real device, instead of acting as an emulator detection technique, since valid devices can
have architectures different than the supported ones and the complexity of reliably adding
new supported ABIs.

The performance metric in this method had 179 milliseconds as its maximum
value. Interestingly, this happened in an unsupported architecture on a emulator. It’s
mean value was 21.29ms, with median of 5 milliseconds. Its confusion matrix can be
seen in Figure 11.

Figure 11. Vectorization Confusion Matrix

4.11. General Considerations
Bluestacks, Android Studio and Genymotion emulators were able to be detected by the
proposed techniques, and only Nox was not detected by any technique. Table 9 contains
the results consolidation.

Table 9. Results Consolidation

Detection Technique Results
Android Build Characteristics Detected: Android Studio, Genymotion, False Positives
File Detection Detected: Android Studio, Bluestacks
Telephony Characteristics Detected: Android Studio, Genymotion
QEMU drivers No emulator detected
IP No emulator detected
Package Names Detected: Genymotion
Available Activities No emulator detected
Services No emulator detected
OpenGL Render Detected: Android Studio, Genymotion
Vectorization Detected: False Positives

It’s important to note that Bluestacks emulators were only identified by
Gingo [Gingo 2017] File Detection heuristic. The heuristics that discovered the Android
Studio emulator were: Arakawa and Framgia [Arakawa 2019, Framgia 2016] File
Detection, Android Build Characteristic by Vidas and Christin [Vidas and Christin 2014] ,
Telephony Characteristics by Framgia [Framgia 2016] and OpenGL Render by

Gingo [Gingo 2017] . Finally, Genymotion was detected by the most number
of approaches, with them being: Android Build Characteristics by Vidas and
Christin [Vidas and Christin 2014] and the same heuristic by Framgia [Framgia 2016] ,
Telephony Characteristic by Framgia [Framgia 2016] , Package Names by
Arakawa [Arakawa 2019] and OpenGL Render by Gingo [Gingo 2017] .

We can see that open source solutions had a lot of good methods that were
able to detect emulators, but had also a lot of them that failed in doing so, like
Available Activities and Services, and some that aren’t even supported anymore, like
IP detection. The Android Build Characteristics solution proposed by Vidas and
Christin [Vidas and Christin 2014] contained a high number of false positives, even with
the fix of the Radio value, and is not advised, unless some tweaks are made. Jang et
al. [Jang et al. 2019] vectorization approach was very promising on supported arm64-v8a
architecture, detecting all real devices on it, but either wasn’t supported or misidentified
real devices on other ones.

The most interesting from all the heuristics were File Detection, being able to
detect Bluestacks and Android Studio, OpenGL and Telephony Characteristics, that
were capable of detecting Android Studio and Genymotion. There are a few caveats
though. First, File detection heuristic actually consists of merging Arakawa’s and Framgia
[Arakawa 2019, Framgia 2016] heuristics with the one proposed by Gingo [Gingo 2017],
with the latter being the only one able to detect the Bluestacks emulator. Second, though
OpenGL Render detection proposed by Gingo [Gingo 2017] performance wasn’t so
bad, it is of very sensitive nature, since it runs on Android’s UI thread and delays may
impact user experience, due to stuttering and frame drops, and further investigation may
be necessary. Third, the Telephony Characteristic requires some sensitive permission
to be able to detect, this permission may not be natural by the app to ask for, and
can cause strangeness for the user. Because of these latter two problems, a simpler
solution that only detects Genymotion may be considered, like Package Names by
Arakawa [Arakawa 2019], along with the File detection pair.

5. Conclusions

The majority of the tested emulators had a technique that was able to detect them, with
Nox being undetected by any method. But our evaluation shows that, so far, there was no
single approach that is able to identify the rest of them. Because of that, a set of techniques
must be used. File detection proposed by Arakawa, Framgia and Gingo [Arakawa 2019,
Framgia 2016, Gingo 2017], Telephony Characteristics by Framgia [Framgia 2016] and
OpenGL proposed by Gingo [Gingo 2017] and were the best in detecting emulators, but
the best subset achieving the highest number of detections with the least performance
and user experience impact are the combination of the File Detection techniques and the
Package Names proposed by Arakawa [Arakawa 2019].

The vectorization technique proposed by Jang et al. [Jang et al. 2019] is currently
not developed enough, but can be used to validate real devices that use the arm64-v8a
ABI. It does also have the potential to be expanded upon adding more ABIs support, but
need further tweaking and tests.

5.1. Similar works
In his PhD thesis, Rashid [Rashid 2018] has made an analysis on emulator detection and
bypassing. His analysis does not focus on performance nor it specifies the detection
efficiency in each method, focusing instead on an external dynamic analysis.

Vidas and Christin [Vidas and Christin 2014] made an analysis similar to the one
proposed here. However, open source proposed techniques by Framgia [Framgia 2016],
Gingo [Gingo 2017] and Arakawa [Arakawa 2019] added more checks to the Android
Build Characteristics and Telephony Characteristics. Other than that, Android has
changed a lot since the time of publishing of the article, specifically regarding it’s
permissions that have become stricter due to the stronger public emphasis on privacy
and control over device data.

5.2. Future works
This comparison can be extended for other emulators on other operating systems, to
validate the results found here. The vectorization technique does have potential to be
a good detection technique, but the lack of support for important architectures tampers its
potential. Adding support to x86 and x86 64 would provide such possibility, so it could
be used for emulation detection instead of real device validation. Since no heuristic tested
here was able to detect the Nox emulator, further research is necessary to its architecture
and inner workings.

A deeper investigation on the performance hit of OpenGL detection may also
be useful, since this detection showed a good track record on Android Studio and
Genymotion emulators. The values returned by the render on the Bluestacks and Nox
emulators were also not found on real devices, and this can also be investigated.

Another possible future work is using Frida to bypass emulator detection and
bypass detection. Frida is a dynamic instrumentation toolkit that supports Windows,
macOS, GNU/Linux, iOS, Android, and QNX. Its widely available for these platforms
and allows injecting snippets of JavaScript or your own library into native apps on
supported platforms. Frida also provides simple tools built on top of its API. These can be
used as-is, tweaked to your needs, or serve as examples for how to use the API. It injects
Googles V8 engine into the target processes, where your JavaScript code gets executed
with full access to memory, hooking functions and even calling native functions inside
the process [Rashid 2018]. This is a powerful tool that has the ability to bypass security
checks, so its detection is also an important research subject.

References
Android (2022a). Activity manager. https://developer.android.com/
reference/android/app/ActivityManager. Accessed: 2022-09-18.

Android (2022b). App manifest overview. https://developer.android.com/
guide/topics/manifest/manifest-intro. Accessed: 2022-10-03.

Android (2022c). Application fundamentals. https://developer.android.
com/guide/components/fundamentals. Accessed: 2022-09-17.

Android (2022d). Application sandbox. https://source.android.com/docs/
security/app-sandbox. Accessed: 2022-10-02.

Android (2022e). Build. https://developer.android.com/reference/
android/os/Build. Accessed: 2022-09-25.

Android (2022f). Eglsurfaces and opengl es. https://source.android.com/
docs/core/graphics/arch-egl-opengl. Accessed: 2022-09-18.

Android (2022g). Implementing system properties as apis. https://source.
android.com/docs/core/architecture/sysprops-apis. Accessed:
2022-10-01.

Android (2022h). Intents and intent filters. https://developer.android.com/
guide/components/intents-filters. Accessed: 2022-09-17.

Android (2022i). Introduction to activities. https://developer.android.com/
guide/components/activities/intro-activities. Accessed: 2022-
09-17.

Android (2022j). Manifest permissions. https://developer.android.com/
reference/android/Manifest.permission. Accessed: 2022-09-17.

Android (2022k). Opengl es. https://developer.android.com/develop/
ui/views/graphics/opengl/about-opengl. Accessed: 2022-09-18.

Android (2022l). Package visibility filtering on android. https://developer.
android.com/training/package-visibility. Accessed: 2022-09-17.

Android (2022m). Packagemanager. https://developer.android.com/
reference/android/content/pm/PackageManager. Accessed: 2022-10-
03.

Android (2022n). Permissions on android. https://developer.android.com/
guide/topics/permissions/overview. Accessed: 2022-09-29.

Android (2022o). Request app permissions. https://developer.android.com/
training/permissions/requesting. Accessed: 2022-09-17.

Android (2022p). Services overview. https://developer.android.com/
guide/components/services. Accessed: 2022-09-18.

Android (2022q). Telephony manager. https://developer.android.com/
reference/android/telephony/TelephonyManager. Accessed: 2022-
10-01.

AOSP (2022). Android open source project. https://source.android.com.
Accessed: 2022-09-11.

AOSP-Architecture (2022). Android architecture. https://source.android.
com/docs/core/architecture. Accessed: 2022-09-11.

Arakawa, Y. (2019). Emulatordetector. https://github.com/mofneko/
EmulatorDetector. Accessed: 2022-09-07.

ArchLinux (2022). netcfg. https://archlinux.org/netcfg/. Accessed: 2022-
09-17.

Cardoso, L. (2022). Android emulator detector. https://github.com/
Lucas-CardosoO/android-emulator-detector. Accessed: 2022-10-02.

Corbet, J., Rubini, A., and Kroah-Hartman, G. (2005). Linux Device Drivers. O’Reilly
Media, Inc, 3rd edition.

Dimjašević, M., Atzeni, S., Ugrina, I., and Rakamaric, Z. (2016). Evaluation of android
malware detection based on system calls. In Proceedings of the 2016 ACM on
International Workshop on Security And Privacy Analytics, IWSPA ’16, page 1–8,
New York, NY, USA. Association for Computing Machinery.

Framgia (2016). Android emulator detector. https://github.com/framgia/
android-emulator-detector. Accessed: 2022-09-07.

Genymotion (2022). Genymotion. https://docs.genymotion.com/desktop/
Get_started/012_Macos_install/#virtualbox. Accessed: 2022-09-12.

Gingo (2017). Android emulatordetector. https://github.com/gingo/
android-emulator-detector. Accessed: 2022-09-07.

Google (2016). netcfg command not found. https://issuetracker.google.
com/issues/37081688. Accessed: 2022-09-17.

Google (2022). Target api level requirements for google play apps. https:
//support.google.com/googleplay/android-developer/answer/
11926878. Accessed: 2022-09-17.

Guerra-Manzanares, A., Bahsi, H., and Nõmm, S. (2019). Differences in android behavior
between real device and emulator: A malware detection perspective. In 2019 Sixth
International Conference on Internet of Things: Systems, Management and Security
(IOTSMS), pages 399–404.

Iacurci, G. (2022). Consumers lost $5.8 billion to fraud last year — up 70% over 2020.
CNBC. Accessed: 2022-09-10.

Jang, D., Jeong, Y., Lee, S., Park, M., Kwak, K., Kim, D., and Kang, B. B. (2019).
Rethinking anti-emulation techniques for large-scale software deployment. Computers
Security, 83:182–200.

Lin, J., Liu, C., and Fang, B. (2019). Out-of-domain characteristic based hierarchical
emulator detection for mobile. In Proceedings of the 2nd International Conference on
Information Technologies and Electrical Engineering, ICITEE-2019, New York, NY,
USA. Association for Computing Machinery.

Martz, P. (2006). OpenGL Distilled. OpenGL. Pearson Education.

QEMU (2020). Qemu-wiki. https://wiki.qemu.org/Main_Page. Accessed:
2022-09-12.

Rashid, W. (2018). Automatic Android Malware Analysis. PhD thesis.

RedHat (2022). E.2.3. /proc/cpuinfo. https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/6/html/
deployment_guide/s2-proc-cpuinfo. Accessed: 2022-09-17.

Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., and Hoffmann, J. (2013). Mobile-
sandbox: Having a deeper look into android applications. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC ’13, page 1808–1815, New
York, NY, USA. Association for Computing Machinery.

statcounter (2022). Mobile tablet android version market share worldwide.
https://gs.statcounter.com/android-version-market-share/
mobile-tablet/worldwide. Accessed: 2022-09-17.

Statista (2022). Mobile app consumer spending worldwide from 2021
to 2026, by store. https://www.statista.com/statistics/
747489/annual-consumer-spend-mobile-app-by-store/
#statisticContainer. Accessed: 2022-09-10.

Turner, D. (2014). Goldfish virtual hardware. https://android.googlesource.
com/platform/external/qemu/+/emu-master-dev/android/docs/
GOLDFISH-VIRTUAL-HARDWARE.TXT. Accessed: 2022-09-13.

Vidas, T. and Christin, N. (2014). Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’14, page 447–458, New York, NY, USA.
Association for Computing Machinery.

Xu, F., Shen, S., Diao, W., Li, Z., Chen, Y., Li, R., and Zhang, K. (2021). Android
on pc: On the security of end-user android emulators. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, CCS ’21, page
1566–1580, New York, NY, USA. Association for Computing Machinery.

