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Abstract

Estimating the translation and rotation of a 3D object in the real world is one of the
quintessential problems in computer vision. If one is to teach a computer how to understand what
it sees in an image, as is the goal of computer vision, more often than not it is also necessary to
know where and how each thing that is seen is positioned, as simply knowing that the thing is
“there somewhere" is usually not sufficient. As humans, we tend to take this task for granted,
as we are naturally equipped with a very high-resolution stereo camera (our eyes) and a huge
neural network trained for tens of thousands of hours (our brain). Even so, we are not capable of
exactly telling the position and rotation of an object by looking at it, which makes the recent
state-of-the-art advancements in 6DoF tracking all the more impressive.

This work introduces a novel real-time edge-based 6DoF tracking approach for 3D rigid
objects requiring just a monocular RGB camera and a CAD model with material information.
The technique is aimed at low-texture or textureless, pigmented objects. It works even when
under strong illumination, motion, and occlusion challenges. It is shown how preprocessing
the model’s texture can improve tracking and how applying region-based ideas like localized
segmentation improve the edge-based pipeline. This way, the technique is able to find model
edges even under fast motion and in front of high-gradient backgrounds. The implementation
runs on desktop and mobile. It only requires one CPU thread per object tracked simultaneously
and requires no GPU. It showcases a memory footprint that is orders of magnitude smaller when
compared to the state of the art. To show how the technique contributes to the state of the art,
comparisons were made using two publicly available benchmarks.

Keywords: 6DoF Tracking, Edge-Based, Monocular, Real-Time, Model-Based, Mobile, Multi-
Object, Augmented Reality, Textureless, Segmentation, RGB, HSV, Single-Thread.



Resumo

Estimar a translação e rotação de um objeto 3D no mundo real é um dos problemas
fundamentais da visão computacional. Se formos ensinar um computador a entender o que ele
vê em uma imagem, como é o objetivo da visão computacional, na maioria das vezes também é
necessário saber onde e como cada coisa está posicionada, já que simplesmente saber que a coisa
está "ali em algum lugar" geralmente não é suficiente. Como humanos, não nos preocupamos
muito com isso, pois estamos naturalmente equipados com uma câmera estereoscópica de
altíssima resolução (nossos olhos) e uma rede neural gigantesca treinada por dezenas de milhares
de horas (nosso cérebro). Ainda assim, nós não conseguimos estimar a pose 6DoF de um objeto
apenas olhando pra ele, o que faz os avanços recentes no estado da arte de rastreamento 6DoF
ainda mais impressionantes.

Este trabalho introduz uma nova técnica de rastreamento 6DoF em tempo real baseada em
arestas para objetos 3D rígidos que requer somente uma câmera RGB monocular e um modelo
CAD com informação de material. A técnica é focada em objetos pigmentados e com pouca ou
nenhuma texturização. Funciona mesmo sob os desafios de iluminação, movimento, e oclusões
fortes. É mostrado como pre-processar a textura do modelo pode melhorar o rastreamento e como
aplicar ideias baseadas em região, como segmentação local, pode melhorar a pipeline baseada
em arestas. Assim, a técnica é capaz de encontrar arestas do modelo mesmo sob movimentos
rápidos e diante de fundos com muitos gradientes. A implementação roda em aparelhos desktop

e móveis. Só é necessário uma thread da CPU por objeto rastreado simultaneamente e GPU não
é necessária. A técnica possui um consumo de memória menor em ordens de magnitude quando
comparado com o estado da arte. Para mostrar como a técnica contribui para o estado da arte,
comparações foram feitas utilizando dois benchmarks publicamente disponíveis.

Palavras-chave: Rastreamento 6DoF, Baseado em Arestas, Monocular, Tempo Real, Baseado
em Modelo, Móvel, Multi-Objeto, Realidade Aumentada, Sem Textura, Segmentação, RGB,
HSV, Única Thread.
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1
INTRODUCTION

Tracking the 6DoF pose of a 3D object through monocular videos in real-time has been
a long-time computer vision challenge. Multiple tasks in thriving technological fields (e.g.,
extended reality, robotics, autonomous vehicles, medical imaging) require information regarding
the objects populating the environment. Real-time tracking requires high precision with temporal
consistency at every snapshot of the scene. In addition, dynamic conditions of the real world
may impose numerous difficulties, such as unexpected occlusions, foreground or background
clutter, varying illumination, and motion blur. Hardware challenges are also present (e.g., lack of
processing power or sufficiently reliable scene input from available sensors).

It is also important to briefly mention detection techniques, which are often seen as
complementary to tracking works. The main difference between them lies in the temporal
consistency and computational cost. Usually, the detection step (which can be automated or even
manually aligned) provides an initial estimation for trackers to use. Unlike detectors, trackers
achieve higher efficiency by not needing to search the entire frame every time, as the object is
expected to be in the vicinity of where it was in the last frame. Additionally, trackers try to make
the current frame’s estimation coherent with the previous frames, generating smoother results.

Objects being tracked can vary in appearance, being considered textured if there is a
significant amount of visual information such as internal gradients and color variation. The lack
of such information in textureless objects configures a relevant category considering how widely
common these objects are (e.g., 3D prints, industrial parts), and how suitable their textureless
surfaces are for applications such as augmented reality.

This dissertation presents a novel 6DoF object tracking technique (see Fig. 1) based
on edges and photometric properties. The technique is mainly aimed at rigid, textureless or
low-texture objects with pigmentation (see Section 4.4). It uses previously known material
information from the input 3D model to generate photometrically-robust local color data. This
data undergoes statistical simplification in order to generalize it, enabling matching to real-world
objects. During tracking, the color matching process then generates a binary segmentation mask
in real time. The approach is shown to be capable of matching object edges even under motion
blur or in front of high-gradient backgrounds, helping to overcome what is arguably the largest
pitfall of edge-based tracking. A novel, more computationally efficient way to match object’s 2D
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Figure 1: The proposed work in different scenes. Left to right: flashing lights, occlusion, clipping,
motion blur, multi-object, and augmented reality.

and 3D silhouette points and a new search range concept are also introduced.
In terms of hardware, the only required input sensor is a monocular RGB camera, such

as a usual mid-range commodity webcam, and a single CPU core per object. The proposed
technique is also, to the best of the author’s knowledge, the first monocular real-time 6DoF object
tracker among state-of-the-art contenders to have been shown to work in mobile devices. For
this reason, it can be argued that the proposed work is more suitable for lightweight application
scenarios than currently existing methods. Additionally, most fields that make use of object
tracking commonly utilize it as part of a larger pipeline (running simultaneously with other
algorithms). Thus, sparing resources by just using one core of the (usually multi-core) modern
CPU can be considered a desirable feat.

1.1 Objectives and Contributions

This dissertation’s main objective and contribution is to introduce a novel multi-platform
edge-based approach aimed at textureless, pigmented objects which provides comparable pre-
cision to the state of the art with less hardware requirements, lower runtime, and a memory
footprint orders of magnitude smaller. The technique excels in handling illumination changes
and fast motion. It showcases a new way for edge-based tracking to isolate object edges under
blur and high-gradient backgrounds. The technique requires less initialization precision and can
recovery from partial losses without needing to be reset. Quantitative evaluations to validate the
claims are performed using 2 different publicly available benchmarking datasets. Comparisons
to the current state of the art are also performed. Secondary contributions are listed as follows:

� A brief study on real-time monocular 6DoF tracking and how CAD object materials
can be used to improve it.

� A more efficient way to encode and unproject 3D models on 2D frames.

� A novel dynamic approach to determining the tracking search range.

� An additional segmentation step to the RAPID-like edge-based pipeline, inspired
by the region-based state of the art. This step aids with handling motion blur and
high-gradient backgrounds, which are challenging aspects of edge-based tracking.

� A real-time approach to HSV-based segmentation to lessen the reality gap.



181818

� A new, more challenging dataset focused on textureless objects using high-quality
3D prints.

� An AR rendering tool for visualizing the results of 6DoF detectors and trackers.

Finally, the proposed work has been accepted for publication as a full paper on the 16th

International Conference on Computer Vision Theory and Applications (VISAPP 2021). It is the
author’s hope that the contents of this dissertation can gain more international visibility through
this publication and therefore have a greater impact on future works in the area.

1.2 Dissertation Outline

This work is organized as follows: Chapter 2 provides a brief overview of projective
geometry. It also provides some insight on core computer vision and graphics concepts necessary
for the comprehension of the dissertation; Chapter 3 provides an overview of the 6DoF monocular
RGB tracking field as well as the current state of the art; Chapter 4 describes the proposed
approach; Chapter 5 details the implementation and the additional tools the accompany this work;
Chapter 6 provides quantitative evaluations of the proposed method; and Chapter 7 contains
the conclusion and future work discussion. Supplemental information can be found in the
Appendices and will be introduced throughout the work accordingly.
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2
BACKGROUND THEORY

The work described in this Bachelor’s dissertation covers a very simple approach to a
very nontrivial problem. In fact, publicly-available state-of-the-art 6DoF trackers mentioned
for comparison have also been published as PhD. theses, each of which can be highly informa-
tional (Tjaden, 2019; Prisacariu, 2012). The works described in this dissertation make use of
knowledge from the areas of linear algebra, projective geometry, computer vision, digital image
processing, and computer graphics. The in-depth explanation of these topics is beyond the scope
of this dissertation, which will provide a brief overview and links to in-depth references instead.

2.1 Projective Geometry

This section will review some core concepts of projective geometry behind real-time pose
estimation using a 3D model. General linear algebra knowledge is assumed. For a more in-depth
look at the math, please refer to the Multiple View Geometry in Computer Vision book (Hartley
& Zisserman, 2003). For detailed information specifically targeted at the 6DoF tracking problem,
please refer to the Survey on Monocular Model-Based Tracking of Rigid Objects (Lepetit et al.,
2005).

2.1.1 The Pinhole Camera Model

This model, very common in computer vision, describes an ideal pinhole camera (see
Fig. 2). It is used to express the mathematical relationship between a point in P3 and its 2D
projection on R2, over the so-called image plane. This mapping is expressed by a 3×4 camera

projection matrix, which, for simplicity, will be used in its homogeneous 4×4 form in this work.
Linear projection parameters are expressed in this work as the 3×3 intrinsic parameter

matrix

K =

 fx 0 cx

0 fy cy

0 0 1

 ∈ R3×3,
�
 �	2.1

where ( fx, fy) represents the focal length in terms of pixels, and (cx,cy) represents the principal
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Figure 2: An illustration of the pinhole camera model.*
*Image publicly available by the CC0 (Creative Commons - No Rights Reserved) license, courtesy of Wikimedia Commons user Trassiorf .

point, as per the pinhole camera model (Hartley & Zisserman, 2003).
This way, the image plane projection p ∈ R2 of an object point P ∈ R3 can be described

by the standard camera model as

p = β (K ·β (E · P̃)),
�
 �	2.2

where matrix E will be introduced in the following subsection and the tilde notation over P̃

represents the point P in homogeneous coordinates so that if P = [x,y,z]T ∈ R3, then P̃ =

[x,y,z,1]T ∈ P3 (3D projective space). Additionally, β represents the conversion function from
projective to real domains Pn→ Rn for every m×1 vector X ∈ Pn, where m = n+1, as follows

β (X) =

[
X(0,1)

X(m,1)
, · · · ,

X(n,1)

X(m,1)

]T

∈ Rn
�
 �	2.3

.
There are multiple other very interesting properties beyond what’s being explained

here. Those can be found in more detailed explanations on projective spaces and homogeneous
coordinates (Hartley & Zisserman, 2003).

2.1.2 Rotation and Translation Representations

Rotations can be defined as 3× 3 matrices members of the 3D rotation group often
denoted as SO(3) so that

SO(3) =
{

R | R ∈ R3×3, RT R = RRT = I, det(R) = 1
}
,

�
 �	2.4

where I represents the identity matrix.
For translation, these can usually be expressed as simply a 3× 1 vector in R3, which

https://commons.wikimedia.org/wiki/File:Pinhole_camera-en.svg
https://creativecommons.org/share-your-work/public-domain/cc0/
https://commons.wikimedia.org/wiki/User:Trassiorf
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represents 3DoF motion without rotation.
For optimization purposes, the rotation matrix R might sometimes be used as rR, corre-

sponding to the twist-coordinate 3×1 vector vrot obtained through Rodrigues’ rotation formula
as follows

vrot = v · cos(θ)+(k× v) · sin(θ)+ k · (k · v) · (1− cos(θ)),
�
 �	2.5

where θ represents the amount of angles for which vector v ∈ R3 will be rotated around the axis
represented by vector k ∈ R3

For more information regarding Rodrigues’ formula and 3D rotations, please refer to the
exponential mapping section of the Monocular Tracking Survey (Lepetit et al., 2005).

2.1.3 The Homogeneous Camera Projection Matrix

The extrinsic parameter matrix which describes the 6DoF rigid body transform from
3D model space to camera coordinate space is represented by the 4×4 homogeneous camera
projection matrix

E =

R t

0 1

 ∈ SE(3),
�
 �	2.6

with R ∈ SO(3) representing the 3×3 rotation matrix, t ∈ R3 representing the 3×1 translation
vector, and SE(3) being the Lie group defined as

SE(3) =

E | E =

 R t

01×3 1

 , R ∈ SO(3), t ∈ R3

 ,
�
 �	2.7

For more details, a very intuitive derivation and explanation of these calculations can be found in
the PhD. thesis of Henning Tjaden (Tjaden, 2019).

If we use the shortened version of R, defined previously as rR, the 4×4 matrix E in
�
 �	2.6

can also be referred as a 6×1 vector as follows

eE =

rR

t

 ∈ R6.
�
 �	2.8

2.1.4 Lens Distortion and Calibration

In the real world, parts of the camera such as the lens present distortions that make it so
light does not behave as expected. One of the most famous cases is perhaps the one of Fisheye

lenses, commonly used in photography, which present strong barrel distortion. Distortion is not
covered by the traditional pinhole camera model described previously. There are two main types
of distortion that must be attended for: radial (e.g., barrel, pincushion, and mustache distortions)
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and tangential (caused by the elements of the lens not being perfectly aligned). Please note
that chromatic aberrations, which are a real problem for vision models, are not included here as
distortions.

Usually, these distortions can be mapped for each individual piece of hardware through a
process known as camera calibration, which is also able to obtain the intrinsic camera parameters
previously described in Eq.

�
 �	2.1 . This process can be done through multiple different methods,
such as a direct linear transformation (Hartley & Zisserman, 2003), Zhang’s method (Zhang,
2000), and Tsai’s method (Tsai, 1987).

For software correction, distortion is usually mapped as a 1D vector of coefficients de-
scribing the disparities between the real-world camera and the ideal model, as well as expressing
the individual distortion types. Using these, an image can be undistorted, as seen in Fig. 3.

Figure 3: An example of undistortion on a Fisheye lens.*
*Image publicly available by the CC BY 4.0 (Creative Commons - Attribution) license, courtesy of Sáez et al. (2019).

2.1.5 The Perspective-n-Point Problem

The PnP is one of the classical problems in computer vision. It is one of the ways of
estimating the 6DoF pose of a camera by matching n 3D points to their equivalent 2D projections.
In practical terms, for edge-based object tracking approaches like the proposed one, this means
searching on the image for the 2D points and edges that most resemble the 3D ones found in the
3D CAD model and attempting to correlate them.

PnP has been solved by multiple methods, including the simpler P3P (Hartley & Zisser-
man, 2003) and the efficient EPnP (Lepetit et al., 2009). The error can be minimized iteratively
using approaches such as Random Sample Consensus (RANSAC) (Hartley & Zisserman, 2003)
or a Levenberg–Marquardt optimization scheme (Levenberg, 1944).

2.2 Computer Graphics and Vision

This section will briefly go over some core concepts of computer graphics and computer
vision used throughout the work. To understand these concepts in more detail, as well as other
terms mentioned through the dissertation such as Bresenham’s line and circle drawing algorithms

https://creativecommons.org/licenses/by/4.0/
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(very efficient, classic algorithms for drawing basic geometric shapes in 2D), depth buffering,
and 3D mesh decimation algorithms (which is an active research field of its own), please refer
to the Computer Graphics: Principles and Practice book (Foley et al., 1996). For computer
vision and image processing concepts mentioned in this work that go beyond what is explained
below, including keypoints, descriptors, kernels, depth images, normalization, segmentation,
thresholding, and gradient or contour extraction, please refer to the Digital Image Processing
book (Gonzalez et al., 2004).

2.2.1 Wavefront 3D Objects and Materials

The CAD models used in this work can be applied to any 3D manifold mesh. A manifold
polygon mesh can be defined simplistically as any connected mesh that can exist in the real
world. A connected mesh is manifold if every edge in the mesh is either a boundary edge or
is part of exactly two other faces. A face in a Wavefront object can be defined as a convex
polygon composed of usually 3 or 4 edges. For this dissertation 3 is assumed, so that the mesh is
composed of triangular faces.

Wavefront objects, also known as OBJ files, usually specify the individual 3D vertices,
3D normal vectors for every vertex (not necessarily normalized), and texture coordinates (also
known as UV coordinates) for every vertex, the latter expressed as 2D unit vectors. Faces are
defined by the index of the vertices that compose them. The format supplies other less-common
options, which are disregarded in this explanation.

These objects are usually accompanied by material (MTL) files, which provide texture
and color details. These can be assigned to the whole object or to a subset of faces, so that
a single OBJ can have multiple materials. These files usually contains ambient, diffuse, and
specular RGB colors normalized as unit 3D vectors. For more complex distributions, a texture
image can be assigned to each color, so that the vertices (and, by consequence, faces) are mapped
to it by their UV coordinates. MTL files can provide multiple other details on how the object’s
material interacts with light, which are beyond the scope of this dissertation.

2.2.2 Color Spaces

In addition to RGB, there are multiple alternative color spaces to and from which an image
can be converted. Among the ones most used for computer vision alone, there are HSV/HSL,
CIELAB, YCbCr/YUV, and many others. Each different space has its own advantages and
disadvantages. For this subsection, the focus will be on the RGB, HSV, and HSL spaces as can
be seen in Fig. 4.

RGB is an additive color space defined by three main axes: red, green, and blue. This
work limits itself to an 8-bit quantization, so that RGB values range from 0 to 255. Every color
in this spectrum can be expressed in terms of a combination of the 3 additive primaries. This is
very useful for things like displays that combine differently-colored light sources to color a pixel.
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Figure 4: Representations of the RGB, HSV, and HSL color spaces.*
*Images publicly available by the CC BY-SA 3.0 (Creative Commons - Attribution) license, courtesy of Michael Horvath.

The problem with RGB’s representation is that it is not very easy to work with in terms
of human comprehension. For that end, the HSV and HSL spaces were created. These spaces are
more closely aligned with the way humans perceive color, being more photometrically rooted.
Photometry, in this sense, is defined as the science of measuring light in terms of its perceived
brightness to the human eye. HSV and HSL spaces are so similar, in fact, that the technique
proposed in this dissertation could work with either of them (though it has only been tested in
HSV).

These two spaces have been widely used in computer graphics and vision for a very long
time. The reason they are so useful is that they make the task of segmenting colors easier. For
example, a red ball might get darker or lighter, might have specularities, and might suffer from
slight color bleeding from other environmental sources. Still, it is fundamentally red, which is
expressed in its hue channel. Some camera sensors might capture colors with a bit less intensity
than others, or a real world object might get discolored over time, which might just alter the
saturation channel. The same way, aforementioned illumination and shadows might, in some
cases, just alter the lightness channel. These changes are sometimes very difficult to map and
isolate in the sense of a subset of combinations of red, green, and blue when working with RGB.
This is especially true when talking about colors that naturally mix the primary RGB colors.

Truthfully, there is enough interesting content about these colors spaces that many more
pages could be spent on them. Yet, this dissertation will limit itself to this brief introduction.
More information, such as details on how to convert values between these spaces, can be found
in the previously-mentioned resources as well as in some academic works (Phung et al., 2005;
Saravanakumar et al., 2011; Hidayatullah & Zuhdi, 2015). The usefulness of HSV and HSL
will be further explored in the method of the proposed approach to deal with challenges like the
reality gap and illumination.

https://creativecommons.org/licenses/by-sa/3.0/
http://isometricland.net/home.php
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3
RELATED WORK

As there are many possible tracking challenges regarding objects and scenes, different
monocular real-time model-based 6DoF tracking approaches have been proposed over the years.
Some of these are better suited for textured objects, such as feature-based ones, while others,
like edge-based, excel in textureless objects (and even refractive ones). Different techniques also
have limitations that suit them better to specific scenes.

3.1 Feature-Based and SLAM

So far, several well-known RGB real-time detection and tracking approaches make use of
feature descriptors (Lowe, 1999; Bay et al., 2006; Morel & Yu, 2009). These are extracted over
multiple keyframes to estimate the pose of the object. These descriptors often arise from specific
object characteristics such as gradients and color patterns. Consequently, these approaches tend
to have difficulties when faced against objects with low texture, uniform color, or less-prominent
geometric qualities. Additionally, robustness to certain challenges (e.g., changes in scene or
object chrominance, illumination, scale, viewpoint, and motion blur) is generally anchored to the
initial set of known features. Therefore, this set must be very carefully and reliably constructed
for maximum invariance (sometimes a task which is delicate and time-consuming). Some of
these approaches are coupled with Simultaneous Localization and Mapping (SLAM) techniques
to match the entire scene where the object is currently located in. One such example is ORB-
SLAM2 (Mur-Artal & Tardós, 2017), which has been adapted to track 3D rigid objects (Wu
et al., 2017) on a fixed scene. If the scene is altered or the object is moved, though, these methods
tend to fail.

Non-model-based approaches (which use 3D reconstruction before tracking begins) will
not be covered here. These techniques have their own advantages and limitations, working
differently from what has been described so far. Industrial mobile approaches such as Apple’s
ARKit1 usually work this way and make heavy use of other hardware such as neural engines and
sensors (e.g., IMU). These approaches are beyond the scope of this work both in terms of not
being monocular RGB and not being model-based.

1Apple ARKit

https://developer.apple.com/augmented-reality/
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3.2 Region-Based

Recently, monocular region-based approaches have been proposed, mostly influenced
by PWP3D (Prisacariu & Reid, 2012). These techniques extract a whole portion of the input
frame and attempt to statistically increase the differences between the object and its surrounding
background regions by the use of step functions. Discrepancies between the final segmented
shapes are used to feed energy minimization functions which attempt to estimate the infinitesimal
motion between frames. One such method, the Region-Based Object Tracker, best known as
RBOT (Tjaden et al., 2018), has so far yielded the most reliable results in versatile conditions. It
is suitable to a wide range of objects and textures, being reliable even when under challenges in
terms of motion and occlusion. RBOT also tracks multiple objects with linear scalability in terms
of FPS. In terms of hardware, both RBOT and PWP3D require GPU usage (OpenGL2 rendering
in RBOT and CUDA3 computations in PWP3D). RBOT’s interaction between multiple objects
as well as standard pose optimization both make use of GPU-rendered depth maps. Problems
with these region-based techniques lie mostly in their need to perform heavy processing in
large portions of each frame repeatedly, requiring high amounts of memory and parallelism
to obtain real-time performance. This parallelism bottleneck comes to light especially when
tracking multiple objects. In addition, these works suffer with object symmetries, as they rely
mostly on the silhouette. A state-of-the-art work (Zhong & Zhang, 2019) has recently proposed
a region-based hybrid approach which contains photometric and statistical constraints to aid in
such failure cases, though it has not surpassed RBOT in the general scenario.

3.3 Edge-Based

Unlike real-time region-based, real-time edge-based approaches have been around for
decades. The idea consists of taking the 3D model’s edges and matching the overall expected
shapes to the ones found in the frame, then adjusting the pose by minimizing the error. Some
techniques attempt to match the entire model edges to the scene, those are called explicit-
edge approaches and can yield robust results at a higher computational cost (Koller et al.,
1993; Han & Zhao, 2019). Most edge-based techniques, though, are based on point sampling
heuristics (including the proposed method). These heuristics have arisen from the algorithm
called RAPID (Harris & Stennett, 1990). It was the first available real-time 6DoF tracker
and has served as a blueprint for a wide array of RAPID-inspired trackers and pipelines (Seo
et al., 2013b; Drummond & Cipolla, 2002; Han & Zhao, 2019; Lepetit et al., 2005). Initially,
these RAPID-based techniques have relied only on differences of color intensity, needing just
a grayscale image. More recently, techniques like Global Optimal Searching, better known
as GOS (Wang et al., 2015), have achieved state-of-the-art edge-based tracking by applying

2OpenGL
3NVIDIA CUDA

https://www.opengl.org//
https://developer.nvidia.com/cuda-toolkit
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color analysis to regions neighboring the edges. This is done to better match the object and
avoid matching clutter and occlusion (Wang et al., 2019; Seo et al., 2013a). These edge-based
techniques tend to struggle with highly textured objects, as the many internal gradients can cause
confusion via erroneous internal matching. This limitation has been surpassed by the proposed
approach, which has achieved state-of-the-art results for half of the OPT dataset objects, which
have lots of internal edges (see Section 6.1). Additionally, these approaches are prone to fail in
cases of heavy motion where edges become blurred. This limitation has been strongly diminished
by the segmentation technique proposed in Section 4.4.

Edge-based trackers tend to be the most lightweight in terms of processing required
and have been shown to work with refractive objects (Choi & Christensen, 2012). There are
also edge-feature hybrid approaches that achieved promising results by matching the object’s
contours to feature descriptors. One such work, by Bugaev et al. (Bugaev et al., 2018), far
surpasses state-of-the-art results on the OPT dataset, although it is not real-time capable. Seo et
al. (Seo et al., 2013b) have merged RAPID’s pipeline with SIFT features to track an object and
its scene using phones, though with limited robustness to motion, clutter, and manipulation.

3.4 RGB-D and Machine Learning

For completeness sake, techniques which are not monocular but have relevant charac-
teristics must also be mentioned. Some promising results have been obtained through machine
learning approaches, which are very lightweight and work under extreme illumination conditions
due to the depth data (Tan & Ilic, 2014). The downside of all these approaches lies in the higher
hardware requirements when it comes to RGB-D cameras and high-end graphics cards. Works
from Kehl et al. (Kehl et al., 2017) (region-based) and Tan et al. (Tan et al., 2017) (machine
learning) have both been able to successfully use RGB-D information and, like the proposed
work, require just a single CPU core. Tan et al., in particular, is even able to track multiple objects
simultaneously. Deep learning has also been used, as seen in Garon and Lalonde’s work (Garon
& Lalonde, 2017). While it has not achieved the same speed of its machine learning counterparts,
it was shown to be reliable in scenarios with strong occlusions or imprecise initialization.
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4
METHOD

The proposed method uses the object’s 3D model together with its material information.
Models are defined as standard triangular meshes composed by a set of vertices, edges, and
faces, without repetition of shared edges between faces. Materials can be assigned to the entire
object or to a subset of faces. Diffuse texture images are assumed to be in RGB format with
8-bit quantization per intensity channel. The usage of 8-bits of color quantization per RGB pixel
(i.e., each channel can have up to 256 different color intensity levels) can be thought of as a
common-ground choice for computer graphics, used by similar approaches (Tjaden et al., 2018)
and widely supported both in terms of hardware and software. The color of faces with no diffuse
texture specified in its material (as is the case with textureless objects such as solid-color 3D
prints) is referred to as the RGB vector C ∈ R3→{0, · · · ,255}3. Such color is specified by the
diffuse color coefficient of the face’s material.

All frames are remapped to remove radial and tangential lens distortion. It is also
assumed that the camera is precalibrated, with the focal length and principal point expressed in
pixels as the 3×3 intrinsic parameter matrix K, as per the pinhole camera model.

The extrinsic parameter matrix E describes the 6DoF transform from world to camera
space and is represented as a 3×4 matrix [R t]. The projection p ∈R2 of an object point P ∈R3

can be described in the specific usage case of this work as p = β (K · (E · P̃)), with P̃ being its
homogeneous coordinate form. This way, β represents the conversion between P3→ R2 so that
β (P) = [X/Z,Y/Z]T ∈ R2.

The pose Ei for the ith frame can be estimated by approximating the object’s infinitesimal
rigid body motion between frames. This is done by using the ith frame and the last known pose
expressed by E(i−1) to estimate ∆t = ti− t(i−1) and ∆R, finally obtaining Ei.

An overview illustration of the proposed technique can be seen in Fig. 5.

4.1 Model Preprocessing

Before tracking begins, the 3D model is preprocessed and has its texture simplified.
This is a one-time procedure. Every model face’s diffuse texture image region (i.e., the diffuse
image associated to the set of vertices, masked by the UV coordinates associated with each face
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Figure 5: An illustrative overview of the proposed edge-based tracking pipeline for a single
object. A) Preprocessing of the 3D model to extract color information and edges. B-1) Input
frame processed into HSV and set for multiple iterations. B-2) Last known pose projected and
encoded. C) Local circular color search to construct a segmentation mask. D) Establishing
2D-3D correspondences to perform pose estimation from world to camera coordinates. E)
Tracking result for the frame.

vertex) is simplified by being quantized into a 32-bin RGB probability histogram. Each color’s
probability value corresponds to the percentage of pixels of said color in the face’s histogram.
Colors are then ranked according to said probability, highest first, and stored in HSV format.
They are stored until either reaching a kp1 = 95% accumulated probability limit (i.e., all stored
colors for that face represent over kp1% of the face’s surface) or reaching the kp2 = 3 color per
face limit. For faces without diffuse texture, C = 100% probability. The kp1 limit was set to
avoid storing unrepresentative colors and kp2 was set due to the textureless scope of this work, as
an upper limit for the amount of colors and gradients per triangle.

Each face color is then assigned to every edge within the face. Thus, every edge has a list
of all colors from all faces that contain it, without repetition. The list of edges, vertices that form
them, and HSV colors they contain are then stored. The original object model and materials are
no longer utilized.

4.2 Efficient Silhouette Encoding

The first step executed in real-time for every frame consists of encoding the 2D-3D
correspondences for the current pose. All the model’s 3D vertices are projected using the last
known pose. Based on line projection properties, the 2D edges are drawn using the projected
vertices and Bresenham’s line-drawing algorithm. The canvas used consists of a single-channel
32-bit image. Each pixel of a projected edge has its intensity value corresponding to its own
3D edge index from the edge set ξ contained in the preprocessed model. This is similar to the
Edge-ID algorithm (Lima et al., 2009), but uses a single 32-bit channel directly for the ID instead
of splitting it in three 8-bit channels. The resulting image is referred as the codex. It is important
to mention that the implementation does not utilize depth testing (details in the Appendix A).
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Next, a topological border following algorithm (Suzuki & Abe, 1985) is used on the
codex to extract the external-most 2D contour ζ . The contour is continuous and returned in
counter-clockwise order. This set of pixels corresponds to the object’s 2D silhouette at the last
known 6DoF pose.

Finally, the set of 2D normal vectors ϒ is determined so that ϒi = Θ̃(ζ(i+1)−ζ(i−1)), as
ζ is circular and continuous. The vector Θ̃ corresponds to the normalized output of the function
Θ(v) = [−y,x]T , which returns a 2D vector orthogonal to v = [x,y]T ∈ R2. The normal vector is
always rotated 90o clockwise. Given the counter-clockwise property of the contour’s continuity,
this means the 2D normals will automatically always point outwards from the silhouette (see Fig.
6).

Figure 6: Illustration of the final encoding output containing projected mesh edges, outlined
contour, and normal vectors.

To extract a 3D point P from the codex’s 2D point p, because only the edge vertices
were projected, it is first necessary to linearly interpolate those two endpoint Z values to obtain
Pz. Then, P = [(px− cx)/(Pz · fx),(py− cy)/(Pz · fy),Pz]

T (Lima, 2014), where cx, cy, fx and fy

come from the intrinsic camera matrix K defined previously. To find those two endpoint z values,
the edge ID is checked in the codex and verified in the edge array for which pair of 3D vertices
compose that edge. This operation is only performed when a match is found for that silhouette
pixel, which is more efficient than calculating all z values using a depth buffer.

4.3 Adaptive Circular Search

In order to segment the frame in real-time, a search range must be established. Instead of
conducting 1D linear searches directly (as is traditional in edge-based approaches), the search is
performed locally in dense circular areas with radius r, centered around contour points from ζ

(drawing inspiration from RBOT). The goal of this search is to match the colors found in the
frame with the ones expected from that region of the preprocessed 3D model (see Section 4.4).
Additionally, instead of sampling 3D points at random, consecutive points are taken directly
from ζ in 2D. This is done to maintain uniform contour coverage as the projected silhouette’s
length varies with z-axis translation.
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Ideally, every point in ζ should be evaluated in its own circle, covering a dense strip
around the object’s curvature. Because that is too computationally expensive, every rth consecu-
tive contour point is sampled instead (see Fig. 7). This makes it so that every circle is always
equally re-visited by each of its two immediate neighbors, increasing coverage. Neighbors check-
ing the circle’s area can be useful when there’s larger motion and object dislocation between
frames or when colors are blended due to blur.

Figure 7: Segmentation search coverage. A) Input frame. B) Ideal case. C) r-spaced search.

Instead of using a fixed radius value (as is commonly done in tracking approaches), it is
hereby suggested to change the radius according to the object’s current silhouette area in relation
to the frame resolution. In the proposed way, r is updated at every new pose, proportionally to
how many pixels are being occupied by the object’s projection. This projection region consists
of all pixels inside (and including) ζ , referred to as A(ζ ), the area of pixels covered by ζ . Thus,
the number of pixels inside this region is represented by |A(ζ )|. The radius r can be calculated
as a linear function with limiting thresholds:

r(ζ ) = min

(⌊(
kθ ·λ−1

A · |A(ζ )|+ r0

)
·λS

⌋
,r1

)
,

�
 �	4.1

where r0 = 7 pixels is the minimum tolerable level of detail where shapes are still discernible
for the PnP-based approach used, determined empirically. The angular coefficient kθ = 0.002
determines how fast the radius grows with proportion to the object size. The value of the
maximum allowed radius is defined as r1 =

√
kA · |A(F)|/π . This equation makes it so the area

in pixels of a circle of radius r can not be larger than kA% of the frame’s pixels, where |A(F)| is
the total area (in pixels) of the input frame F and kA = 0.01, or 1%, corresponds to the percentage
of the frame that the maximum radius is allowed to occupy. The suggested values for kθ and kA

were found via experimentation with multiple handheld objects.
Variable λA = |A(F)|/(νw ·νh) represents the scale factor between the current resolution

and ν , the base resolution (in this case VGA). It makes it so the technique behaves uniformly
under resolution changes. Values νh and νw represent height and width of ν , respectively.

Finally, λS = min(Fw,Fh)/min(νw,νh), where Fh and Fw represent height and width of
F , respectively. The equation for λS represents the shortest side scale. It minimizes changes
when under different (e.g., wider or narrower) aspect ratios. An alternative to using λS to handle
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changes in aspect ratio is to use directly-proportional elliptical search circles, but that would
divert from the circular search concept by creating directional search bias.

4.4 Binary Segmentation

A binary segmentation mask is constructed by evaluating every pixel within the search
circles described previously. In an ideal world, where the model texture corresponds exactly to
what will be found in the frame, the binary segmentation is very straightforward. Yet, due to
the reality gap, tolerances must be established for a pixel’s color to be considered a match. This
reality gap concept is widely used for measurements in robotics and simulation. For the detection
and tracking scenario, it can be described as the inherent difference in appearance that exists
between a virtual object and its real counterpart, no matter how photorealistic is the said virtual
object or how pristine is the real object’s shape, color, and surface. Such differences might be
due to aspects other than the object itself as well, such as illumination or camera imperfections.

The aforementioned reality gap segmentation tolerances used for pixel color matching are
controlled by what is here called the uncertainty coefficient, or σ . The idea is that in a scenario
where the developer (or the user) is very sure the texture is accurate, such as for 3D printed
objects or synthetically-rendered scenes and applications, the uncertainty (and therefore tolerance
to variation) is low. But in a real world scenario, that tends to be larger (see Section 6.1).

The core idea of the proposed segmentation approach consists of utilizing the photometric
properties of the HSV space to help in overcoming reality gap challenges and select pixels. By
utilizing hue and saturation information, a preprocessed color can be more easily identified in
cases where, if using a space like RGB, it might not be so clear. Because this work relies on
HSV, the approach focuses on pigmented objects. Grayscale (non-pigmented) objects do not
possess reliable hue information (see the Appendix B).

To take advantage of the HSV properties, this technique borrows a concept from region-
based approaches: the smoothed unit step function (see Fig. 8). In this case, the idea is to
statistically highlight the difference between regions of HSV space itself, as to continuously
regulate the uncertainty tolerance levels proportionally to the amount of pigmentation present.

This way, a segmented frame pixel p must satisfy the following conditions with respect
to the preprocessed color c in order to be set as 1, or true, in the binary segmentation:

H(ps)≥ dθ (ph− ch) ∧ ps > ks ∧ η ≥ |ps− cs|,
�
 �	4.2

where subscript h and s represent the hue and saturation channels, respectively. Function dθ

represents the shortest distance between hue values (considering they are cyclic) and constant
ks = 0.05 represents the minimum saturation threshold, indicating the point where there is so
little pigmentation hue is no longer reliable (determined via experimentation as demonstrated
in Appendix B). The saturation tolerance range is mapped by the logarithmic function η =
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Figure 8: Behavior of H(s) for σ = 0.1 as saturation changes. Desaturation threshold ks is also
highlighted.

kl · ln(σ)+ kη , where the vertical shift kη = 0.5 sets the log curve’s plateau at the maximum
saturation tolerance window possible. The elasticity coefficient kl = 0.08 both determines how
fast that plateau will be reached and sets the function within the 0 to 1 quantization. Finally, H

represents the hue tolerance proportional to the amount of pigmentation present, represented by
a smoothed unit step function, adapted as follows:

H(s) = σ ·

[
3
2
− 1

π
· tan−1

(
s−0.5

kH

)]
,

�
 �	4.3

where kH = 0.2 represents the sharpness coefficient (Wang & Qian, 2018).

4.5 Mask Simplification

After every pixel in the search circles is subjected to the binary segmentation described
in the previous section, an additional step is performed to avoid noise and erroneous background
bits in the resulting mask. First, all existing external-most contours are identified (Suzuki & Abe,
1985) and the largest contour in terms of area is stored. This is assumed to be the main tracked
object body (or body portion). Every contour with area less than km = 5% of the largest contour’s
is removed (see Fig. 9). This heuristic does not work if the erroneous portion is connected to the
main body.

From this point, the binary mask will be referred to as Φ, so that {Φ f ,Φb} ⊆Φ refer to
the foreground (true) and background (false) pixel subsets, respectively.

4.6 Correspondence Search

The next step consists of searching for a match for every point in ζ . This is done by
using a traditional (Drummond & Cipolla, 2002; Seo et al., 2013b) edge-based linear 1D search

for gradients along the normal vectors from ϒ. This search uses the kernel ψ =
[
1 −1

]T
along

the parametric pixel line of vector dtϒi ∈R2 over point ζi ∈ ζ , described as ζi+dtϒi. This linear
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Figure 9: Mask simplification process. From left to right: input frame, initial segmentation, final
result.

search can thus be expressed as

S(i, t) = ψ ·
[
Φζi+dtϒi Φζi+d(t+1)ϒi

]
,

�
 �	4.4

where d ∈ {−1,1} corresponds to the search direction (inwards or outwards) so that d = 1
always points outwards from the model contour. The parametric term t ∈ {0,r−2} is limited
to (r−2) to avoid matching with the edges of the circular search masks, as this indicates that
the accepted pixel region would continue beyond the search range and does not correspond to
a border. These cases are usually indicative of same-color background regions. The minimum
range of 0 deals with cases where the object did not move at all.

Eq.
�
 �	4.4 is calculated for every value of t until a result different from 0 is obtained. When

and if that happens, the 2D-3D point tuple (µi, ζi +dtϒi) is stored in the vector χ as a possible
match candidate. The 3D point µi represents the unprojected 3D equivalent of ζi from the codex.

Instead of alternating d values while t increases (Seo et al., 2013b), the direction of d

is defined as per Table 1. Set W = A(ζ )− ι(ζ ), where ι(ζ ) is a mask indicating the search
range, where all pixels for every search circle for every chosen point in ζ are set to 1. Thus,
O = W (ζ )∩Φ f represents whether there seems to be an occlusion in Φ f . This is due to no
pixels in W being reachable by the search circles, but being within the contour, so that they can
only be set if the contour was not interrupted by occlusion and could thus be filled, as per Fig. 10.

Figure 10: Segmentation without (A) and with (B) occlusion.

If the previous pose contour point ζi ∈Φ f , then the search continues outwards (d = 1)
otherwise, if ζi is outside Φ f , the search goes inwards (d =−1). If Φ f is not filled and ζi is not
in it, then it can be either outside or inside the current pose. Thus, it is first assumed to be inside
the model and, to avoid matching the search strip, the first match going outwards is ignored, so
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that only the second one is valid. If no two matches are found, then the point is likely outside the
model and the search must look for the first match inwards.

Table 1: Guidelines for directional search and matching.

ζi ∈Φ f O =∅ d match stored in χ

T 6 1 1st

F F −1 1st

F T 1 then −1 2nd then 1st

It can be argued that this segmentation step is an interesting addition to be considered for
edge-based approaches because it circumvents the background gradients problem by postponing
the gradient matching step to the binary mask. The downside remains erroneous color-based
segmentation, which can be adjusted according to the limitations of the chosen segmentation
module for each technique.

4.7 Iterative Pose Estimation

Given a set of 2D-3D correspondences χ , the current pose is estimated as the solution
of a Perspective-n-Point (PnP) problem. The resulting matrix is iterated over by a Levenberg-
Marquardt (LM) optimization scheme, using the last known pose as an initial estimation. The
process lasts until either a local minimum for the reprojection error is found or 20 iterations are
performed. The reprojection error can be defined as the sum of squared Euclidean distances
between the 3D points’ 2D projection (using the current pose estimation) and the original 2D
matches. More details on the PnP problem and how to apply LM optimization to it can be found
in the reference survey by EPnP’s author Vincent Lepetit (Lepetit et al., 2005).
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5
ADDITIONAL DETAILS

This chapter provides details of the proposed tracker’s C++ implementation. Further
explanation is also given for the multi-object and mobile scenarios. Finally, Section 5.3 describes
the accompanying tools proposed for augmented reality rendering and tracker benchmarking.

5.1 Implementation

All major steps are performed using a single CPU thread. The implementation relies on
OpenCV1, which is optimized for computational efficiency and multi-platform portability. More
low-level details on the implementation of the technique can be found in Appendix C.

The mobile port utilizes the same C++ code via Android’s Native Development Toolkit
(NDK)2. Frames, in this case, are captured in Java through OpenCV for Android’s CameraView,
which is limited to 30 FPS but provides the frames as matrix objects compatible with the C++
implementation.

Every new input frame is converted from OpenCV’s native BGR (or YUV in Android’s
case) to HSV and iterated by each tracker instance 12 times. Every iteration performs steps from
Sections 4.2 through 4.7.

5.2 Tracking Multiple Objects

The technique has been extended to track multiple simultaneous objects without com-
promising the frame rate by having each tracker instance (one object per instance) running on
a separate CPU thread. The amount of objects that can be tracked in parallel depends on the
number of physical CPU cores.

Threads are managed in a producer-consumer scheme with the same number of threads
and tracker-object instances, no instance being tied to any specific thread. One tracking job is
queued per instance at every new frame. New frames are only processed after all jobs on the
previous frame have finished, making it so the multi-object tracking is as fast as the slowest

1OpenCV
2Android NDK

https://opencv.org/
https://developer.android.com/ndk
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tracker instance. The approach is not very suitable to mobile CPUs, as cores do not usually share
the same clock speed. Thus, the Android port does not currently support multi-object tracking.

5.3 Additional Tools

5.3.1 Augmented Reality

An AR rendering engine has been implemented using OpenGL and C++, for desktop
platforms only. It is mostly GPU-based and its CPU portion shares the same thread pool as
the tracking queue (see Section 5.2), executing after all the present frame’s jobs are done. This
engine renders the object according to the provided input vertex and fragment shaders and can
be used for displaying results as well as various sorts of AR experiences (see Fig. 1).

Tracked objects are rendered according to the most recent pose estimation performed
by their respective tracker instance. The current camera frame is used as background. For
augmentation (i.e., adding virtual elements to the real objects), tracked objects must be rendered
first. In most AR experiences, those objects are only written to the depth buffer and not to the
color buffer. This makes the objects seem invisible (i.e., the pixels where they are located display
the background frame, which corresponds to the real object). Yet, depth buffering makes it so
they are not transparent (i.e., they interact with and occlude other virtual objects).

5.3.2 3DPO Dataset

A real-world qualitative set of sequences, named the 3DPO dataset (3D Printed Object
dataset), together with CAD models (see Fig. 11) and camera calibration is being made available.
The set has scenes with multiple high-quality 3D-printed objects for the challenges of clutter,
extreme motion, heavy occlusion, handling, and independent object-camera motion. It also
contains two sequences with ground truth. More details in Appendix D.

Figure 11: Objects used in proposed sequences.
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6
EXPERIMENTS AND EVALUATION

Experiments were executed in a laptop with a dual-core Intel Core i7 7567U CPU @ 3.50
GHz, 16 GB of RAM, and integrated Iris 650 graphics. Results are compared to the current state
of the art using the publicly available implementation of RBOT1 (see Appendix E for details
on this setup). Values used for the reality-gap uncertainty were σ = 0.1 on OPT, σ = 0.01 on
RBOT dataset, and σ = 0.05 on 3DPO (unless where explicitly specified). Initial poses were
provided with the datasets, requiring no detection module.

6.1 Benchmark Comparison

For benchmark comparisons, this work used the publicly available datasets OPT2 at
1920×1080 resolution and RBOT dataset3 in its original resolution (640×512). Experiments
were conducted using the AUC metric as described by OPT (Wu et al., 2017). The pose error per
frame (eAUC ∈ R) can be described as

eAUC =
1
n

n

∑
i=1
||Eest · ṽi−Egt · ṽi||2,

�
 �	6.1

corresponding to the average Euclidean distance for all n CAD model vertices vi ∈ R3 in
homogeneous coordinate form, when subjected to both the pose Eest ∈ SE(3) estimated by the
tracker for that frame (see Eq.

�
 �	2.6 ) and the ground truth Egt ∈ SE(3) provided with the dataset.
If eAUC < dAUC · kAUC then the pose estimation for that frame is deemed successful. Constant
kAUC ∈ R corresponds to the predetermined error threshold and dAUC ∈ R corresponds to the
largest distance between two model vertices, representing the model’s diameter. The percentage
of dataset frames with successful estimations is then plotted as a curve against increasing values
of kAUC ∈ {0,0.2}. The integration of such curve is known as the area under curve or AUC.
Results can be seen in Table 2 and Fig.12.

AUC results from Table 2 show that Chest, House, and Ironman were reliably tracked, as
they contain the least non-pigmented parts and are less textured (better fitting the scope). One

1github.com/henningtjaden/RBOT
2media.ee.ntu.edu.tw/research/OPT/
3cvmr.info/research/RBOT/

https://github.com/henningtjaden/RBOT
http://media.ee.ntu.edu.tw/research/OPT/
http://cvmr.info/research/RBOT/
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Table 2: AUC score table for the OPT dataset.

Method Soda Chest House Ironman Bike Jet Average

Proposed 4.11 11.76 13.45 15.70 0.04 0.94 7.67
RBOT 6.62 9.41 6.84 7.36 6.44 8.74 7.57

interesting aspect of the proposed edge-based binary approach is that it is able to more finely
match the object’s silhouette than probabilistic approaches like region-based (see Fig.12).

Figure 12: AUC curves for Chest, House, and Ironman.

The proposed method particularly struggled with objects Soda, Bike, and Jet. That was
expected, as these objects are highly textured. In addition, Bike and Jet contain many non-
pigmented portions and Soda has a highly symmetrical silhouette. In the case of Bike (Bugaev
et al., 2018) and Jet, models and textures were also not very accurate. Thus, it is safe to say that
these three objects presented a worse-case scenario for this work (see Fig.13).

Figure 13: Failure case which shows the proposed work attaching itself to the pigmented portions
the Bike object.

Table 3 shows more detailed results per OPT challenge. There it can be seen that the
proposed work particularly excels in handling illumination changes. This is mostly due to the
segmentation utilizing hue information. In terms of handling motion, the technique’s ability to
swiftly recover from partial loss has been beneficial (see Section 6.2).

A comparison was performed to evaluate how the segmentation manages motion blur.
Segmented pixels and ground truth masks using all Level 5 motion (fastest) OPT sequences
were used. Results in Table 4 show that the approach successfully handles blur, overcoming the
blurred-edges problem of edge-based techniques by using the pigmented information.

Combined tests were also performed as to better understand the impact of dynamic radii.
The test compared variations on search range (fixed) to Eq.

�
 �	4.1 in the Scale Changes (zoom)
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Table 3: AUC scores per challenge

Object Method Illum. Free Scale Trans- Rota-
Changes Motion Changes lation tion

Chest
Proposed 8.75 9.77 13.69 10.19 12.23
RBOT 6.64 2.43 7.08 10.86 11.67

House
Proposed 15.19 13.70 7.78 16.12 14.67
RBOT 11.36 2.05 3.40 11.02 7.82

Ironman
Proposed 16.34 10.86 14.75 14.92 16.85
RBOT 6.52 5.45 5.78 5.41 8.81

Average
Proposed 13.43 11.44 12.06 13.74 14.58
RBOT 8.17 3.31 5.42 9.10 9.94

Table 4: Average results for motion blur segmentation test.

Measure Chest House Ironman
False Negatives (%) 3.50 1.98 6.82
True Positives (%) 98.75 96.99 96.74

scenes of the OPT dataset and the Cat scene from the RBOT dataset. Table 5 shows dynamic
radius is preferable for generality purposes. The metric of the RBOT dataset as proposed by
RBOT (Tjaden et al., 2018) is simpler than the AUC, as follows: if the estimated 4× 4 pose
matrix (as per Eq.

�
 �	2.6 ) is either over 5 cm of translation or 5o of rotation away from the ground
truth, the estimation for that frame is deemed to have failed. The score corresponds to the
percentage of the 1000 estimated frames with accepted poses. Unlike in OPT where trackers are
only reset at the first frame of every sequence, in the RBOT dataset whenever a pose is rejected
the tracker is reset to the ground truth before the next frame is processed.

Table 5: Results for different search ranges (in px).

Object AUC Scores (OPT Dataset)
r = r0 r = r1/4 r = r1/2 r = r1 Eq.

�
 �	4.1

Chest 13.65 13.71 13.90 13.90 13.69
House 2.48 7.72 7.81 8.15 7.78
Ironman 14.03 15.63 11.59 5.92 14.75
Average 10.05 12.35 11.10 9.32 12.07

RBOT Dataset Scores
Cat 57.90 67.30 94.10 88.70 97.20

Next, the textureless pigmented objects from RBOT’s proposed dataset were used to-
gether with its proposed metric (Tjaden et al., 2018) on the scene regular to evaluate robustness
to similar-color backgrounds by varying σ tolerance (see Table 6).

Numbers for the object Cat show that the proposed work excels in handling similar-color
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Table 6: Evaluation on varying σ values. Percentages S, TP, and FN stand respectively for
score (Tjaden et al., 2018), and averages of true positives and false negatives (in %) for the
segmented pixels with respect to the ground truth segmentation masks.

Object
Proposed (varying σ values) RBOT

0.10 0.05 0.01
S TP FN S TP FN S TP FN S

Ape 36.7 82.6 9.5 48.4 92.5 7.6 47.4 98.1 33.5 85.2
Duck 43.8 96.2 5.5 52.2 99.7 6.1 44.9 100.0 21.6 87.1
Cat 13.5 43.7 18.8 50.4 81.2 2.7 97.2 99.5 7.1 95.5
Squirrel 25.4 67.8 18.5 37.5 77.2 15.5 70.5 97.8 34.2 99.2

background when there’s little uncertainty, even surpassing RBOT’s high score, but suffers from
background matching otherwise. Such low uncertainty values are only possible because the
materials are very accurate to the objects, which means the technique requires high-quality 3D
model materials to perform well under similar-color backgrounds. Ape and Duck were precisely
segmented as well, but their quick-rotating, simple silhouettes created inconsistencies in the
estimated poses. Squirrel was not properly segmented even at low uncertainty due to large
portions of same-color background, which is a limitation of the proposed segmentation approach
(different from similar-color).

For completeness sake, the different challenges from the RBOT dataset were also eval-
uated for the Cat object, still using RBOT’s metric. Results from Table 7 show the technique
handles such challenges comparably to RBOT.

Table 7: Comparison of RBOT scores per challenge for the Cat object (higher is better).

Method Regular Dynamic Light Occlusion Average
Proposed 97.2 97.0 87.0 93.7
RBOT 95.5 95.2 90.1 93.6

One thing to note is that RBOT’s metric is very strict, resetting the tracker when it is
not necessarily lost. Thus, to show how the proposed technique is able to recover from partial
tracking losses on its own, a no-reset methodology (Garon & Lalonde, 2017) was used on the
RBOT dataset. The translation and rotation errors were plotted separately for the regular and
occlusion scenes, without ever resetting the trackers since the first frame. Results from Fig. 14
show that the proposed work is always able to recover the object’s position (translation), whereas
RBOT is unable to recover since the first loss.

Because detection module calls are usually computationally expensive, this reduced need
is highly desirable. In addition, this adds flexibility to minor losses right from the start or the
tracking process, meaning there’s less requirement for a robust detection module. This fits well
with the proposed low hardware requirement application scenario, especially considering that
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Figure 14: Recovery from partial loss results.

popular mobile trackers can be manually-aligned by a user4, given that state-of-the-art detectors
use deep learning and powerful GPUs.

6.2 Imprecise Initialization

To further understand how robust the proposed technique is to an imprecise previous
pose, a very extensive Imprecise Initialization test (Garon & Lalonde, 2017) was conducted. For
this test, 10 frames were selected at random from the sequence Slow of the 3DPO dataset, which
has 1155 frames at 30 Hz. This sequence (unlike OPT ones) has a lot of clutter and background
gradients. Unlike the RBOT dataset’s, the sequence is also not synthetic, containing motion blur
(an important aspect for temporally-consistent real-time tracking). It consists of smooth camera
movements around a still Green Bunny, with comprehensive camera rotations and translations
while moving closer and farther away from the object. Ground truth was obtained with the help
of ArUco markers.

Initial pose rotation and translation perturbations are measured separately. Rotation
perturbations range from 5 to 60o and are incremented 5o at a time. Translation perturbations
range from 10 to 130 mm in 10 mm increments. For each increment, 40 random samples are
taken. Before computing the error, the tracker is called 15 times for each frame to take the
temporal factor into consideration. Mean and standard deviation for the L2 norms of the errors
(with respect to the ground truth) of each of the 10 sample for each of the perturbations are
plotted in Fig. 15.

The proposed technique has achieved consistent translation robustness for up to 60 mm,

4Vuforia Model Targets

https://library.vuforia.com/content/vuforia-library/en/features/objects/model-targets.html
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Figure 15: Initial perturbation test. Lines represent the average error. Margins represent the
standard deviation.

which corresponds to roughly 30% of the model’s size. For rotation, the technique achieved
constantly reliable results for up to 15o perturbation. The deep learning work that first proposed
this methodology has also performed well in this test (Garon & Lalonde, 2017) (albeit using a
different RGB-D sequence and object). It achieved robustness levels of 100 mm and 30o. In
their case, though, all perturbation averages (even the smallest ones) had at least 8 mm and 8o

of error. This is a good illustration of the trade-offs between geometric and machine learning
methods. The similarity between these very different approaches is that both are supplied with
some sort of previous knowledge regarding the model’s color and texture.

Model-based techniques do not tend to directly assess this imprecise initialization issue,
simply falling back to a costly detection module. Since real-world applications usually can not
count with a ground truth value, robustness to detection error is a relevant factor and should not
be overlooked. This serves as argument for using texture information alongside geometry on
model-based approaches.

6.3 Performance and Scalability

The first frame from the RBOT dataset sequence regular and the object Cat (with 2500
vertices) were used for this test. More object instances were added on top of the same object
to simulate a multi-object scenario. The proposed work’s memory requirement was orders of



444444

magnitude smaller than the state of the art’s, at ∼ 10 MB per object tracked simultaneously, on
top of a baseline value of ∼ 10 MB. RBOT’s memory consumption was ∼ 4.3 GB per object,
which makes multi-object impractical for most low-end devices. In terms of runtime, RBOT
scaled linearly with ∼ 70 ms per new object. The proposed work had an initial runtime of ∼ 30
ms, with approximately ∼ 3 ms per new object until a limit of 3 objects (amount of threads able
to run in parallel efficiently on the dual-core CPU). Afterwards, the proposed work’s runtime
scaled linearly (like RBOT) with ∼ 30 ms per new object.

The second test had a similar setup but used only one object at a time. Cat objects with
different simplification levels (amount of vertices) were used, as follows: 2500, 5000, 7500,
10000, 12500. RBOT scaled at ∼ 4.3 GB of RAM per new 2500 vertices, whereas the proposed
work showed no significant difference, staying at about 20 MB. In terms of runtime, RBOT
scaled ∼ 10 ms per 2500 vertices from a baseline of ∼ 70 ms. The proposed work scaled about 2
ms per 2500 vertices, from a baseline of ∼ 30 ms. The single-object mobile port of the proposed
work ran at ∼ 50 ms on a Samsung Galaxy S10 phone.

In terms of pipeline time costs, this work averaged roughly 2.5 ms per pipeline iteration,
consisting of: encoding, segmentation, matching, and pose estimation. Preprocessing averaged
112 ms per 100 triangles with diffuse texture and 3 ms for those without.
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7
CONCLUSION

This dissertation has presented a novel edge-based 6DoF tracking technique focused
on textureless, pigmented objects. The technique, for the intended scope of objects, achieves
comparable results to the present state of the art while surpassing it in relevant aspects. It
particularly excels in challenges like illumination changes, motion, and recovering from imprecise
poses. The technique has been shown to be well suited to either manual alignment or imprecise
automated detection modules. It is also single-core, RGB-only, and much more lightweight,
thus more well suited for less-powerful hardware (e.g., mobile) as well as multi-object tracking.
Other contributions beside the main technique include a new way to avoid fixed search ranges,
an efficient silhouette encoding technique, a brief study on using material information for model-
based 6DoF object tracking, and a new segmentation step which handles problems such as
background gradients and gradients lost to motion blur. These contributions have enabled edge-
based tracking to be once again competitive (in terms of precision and robustness) against the
region-based state of the art, albeit for a smaller scope of objects. Finally, sequences focused on
3D printed textureless objects and an AR rendering tool are both being made available, hopefully
to enrich further research in the area.

7.1 Future Work

As future work, the technique’s main limitations have proven to be symmetry and
imprecise textures along with similar of same-color backgrounds. The former can be aided by
photometric constraints (Zhong & Zhang, 2019) and the latter can be tackled by using temporal
foreground-background segmentation strategies as performed by region-based approaches.
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A
DEPTH TESTING

Because the proposed approach is only interested in the outermost 2D silhouette edges at
the last known pose, edge overlap is infrequent. Objects with rounded edges do not contain 2D
silhouette edges overlapping. Objects with straight-angled edges (such as boxes, or the Chest
from the OPT dataset) also avoid significant silhouette overlap due to perspective projection.

A simple CPU-based z-buffer was implemented for experiment on this. It had a big
performance impact, but was completely functional. As expected, for rounded-edge objects it
made little to no difference, and for the straight-angled ones in scenes where the edges were
overlapping results were slightly better. Surprisingly, depth-testing made results much worse
when dealing with rotations. A possible explanation is that by allowing some edge overlap,
segmentation can work better for colors that are not directly visible, but that can appear with a
small rotation. Thus, as not including depth testing made the work both faster and more precise,
the choice has been made to not utilize it.
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B
SATURATION THRESHOLD

HSV space by definition only has overlap in hue values when there is zero pigmentation
present, in which case all hue values can lead to the same color (see Fig. 16). That is not true
in the real world, though, where illumination, materials, camera sensors, and color-conversion
algorithms play a role in the final color as perceived by a tracking program.

Figure 16: HSV color model in a classical cylindrical representation.*
*Image publicly available by CC BY-SA 3.0 (Creative Commons - Attribution) license, courtesy of Michael Horvath.

This concept can be better illustrated via a print-scan attack (Solanki et al., 2006). Except,
instead of a scanner, two cameras were used: a Logitech HD Pro Webcam C920 at 1920×1080
resolution and an Apple iPhone X’s Rear-Facing Camera at 1920×1080 resolution. Full RGB
images and isolated hue channel can be seen in Fig. 17.

Figure 17: Experimentation for hue unreliability as saturation varies. Top row shows the full
RGB images, bottom row the isolated hue channel.

https://creativecommons.org/licenses/by-sa/3.0/
http://isometricland.net/home.php
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C
IMPLEMENTATION TIPS

A few implementation tricks might severely increase performance and might be key to
obtain real-time capabilities using the proposed technique. Thus, they are listed in the following
paragraphs with replication easiness in mind.

It is recommended to always favor pre-allocation of values, such any matrix used repeat-
edly on the execution loop, when creating the tracker instance as opposed to doing it at every
frame. Also favor inline functions and pass values, vectors, and matrices by reference whenever
possible. This technique does not require much memory at all, thus, there is no reason to have
concerns with pre-allocating where necessary in favor of performance.

The 2D search normals of ζ will always have x and y components ranging between 0 and
2 pixels, thus, this can also be preprocessed as opposed to calculating hundreds of square-roots
at every iteration.

When rendering the wireframe using Bresenham’s algorithm, especially for high-poly
objects, most times edges will be no longer than 2 pixels, those being the vertices themselves.
Thus, for such cases, the algorithm can be avoided.

Many elements of the pixel segmentation equations that relate to the preprocessed
model can be computed when the tracker object is instantiated. This significantly improves
performance as opposed to repeating thousands operations every frame. Moreover, hue values
can be normalized to 0-180 as opposed to the traditional 0-360, enabling storage in 8-bit images
and making data containers interchangeable with the RGB equivalents.

All masks ranging from r0 to r1 can also be preprocessed when creating the tracker
object, having their centers at the canonical 2D origin (0,0). These can then be added to every
point in ζ as needed during runtime. This is much more efficient than repeatedly drawing and
painting circles.
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D
3DPO DATASET AND SETUP

The proposed qualitative dataset actually contains 2 quantitative sequences (with ground
truth for every frame as opposed to only the first one): Slow and Still. Objects used in the videos
were 3D printed in PLA after the dataset’s 3D models, and material colors were set according to
the filament. The exception being the Glass Bottle, which was modeled after the real thing (a
standard Heineken beer bottle, easily obtainable). The setup can be seen in Fig. 18. Objects are
illustrated in Fig. 11 and sequences in Fig. 19.

Figure 18: 3DPO’s recording setup with the webcam on a tripod, as seen by an observer.

Sequences were captured using a standard RGB webcam with 640×480 resolution at
30 FPS. Sequences, CAD models, and camera calibration are publicly available.

f =

643.2870808241204,
644.3426395729206

 c =

317.1686355903425,
219.3068634190016

 d =



0.000909967262509,
0.340232634571985,
−0.003160702756864,
−0.001101383931263,
−1.264632700808084


It is the author’s hope that these sequences (albeit qualitative) can help with the literature

gap concerning publicly available textureless real sequences for 6DoF object tracking.
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Figure 19: 3DPO sequences.
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E
PUBLICLY AVAILABLE IMPLEMENTATIONS

As far as the literature review has shown, the best publicly available real-time RGB 6DoF
trackers, which are commonly used for comparisons, are PWP3D (Prisacariu & Reid, 2012),
GOS (Wang et al., 2015), and RBOT (Tjaden et al., 2018).

PWP3D is nearly 10 years old and has since inspired and been surpassed in precision
by other works. RBOT, for instance, builds heavily upon PWP3D and was already extensively
shown to surpass it in multiple papers (Tjaden, 2019). Thus, adding PWP3D to the comparison
would not accurately represent the state of the art.

As for GOS, it is also fairly outdated, but none of the multiple newer techniques built
on top of it have a publicly available implementation. Moreover, all newer works built on top
of GOS are tested and compared to each other using the same textureless dataset, which would
be very interesting to run the proposed work on. The problem is this dataset is not public and
none of the authors responded when contacted. In the tests for this dissertation, GOS’s results
averaged below 35% on the RBOT dataset for all objects in every scene (with the reset metric),
and not even 1% without a reset. GOS was also unable to recover from minor losses and was
extremely sensitive to motion, which caused it to fail almost immediately in all 3DPO sequences
when the objects or the camera were moved. Thus, it felt out of place in the state-of-the-art
comparison.

Next, here is an explanation on why the results using the publicly available implementa-
tion of RBOT on the OPT dataset are lower than what is reported in RBOT’s paper (Tjaden et al.,
2018). First, it is important to make clear that RBOT’s paper’s results for the RBOT dataset
were fully reproduced for this work, and that the publicly available implementation of RBOT
worked with no problems in the challenging 3DPO dataset as well. The AUC metric used for
this work was confirmed to be correct by reproducing the OPT results of other works which
used the publicly available implementation of GOS (Bugaev et al., 2018). This AUC metric was
also confirmed by RBOT’s author when contacted. The author also provided the information
that OPT objects needed some resampling to work with the publicly available implementation.
Unfortunately, the authors did not have access to the modified objects anymore. For this work,
the publicly available implementation could not be made to reach the numbers, so it was decided
to use the best results that were obtained. There was no way around this issue because it was
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necessary to run the publicly available implementation in order to build the AUC curve charts
and scores per challenge for comparison.

Still, as a personal note, I want to make it clear that RBOT’s publicly available imple-
mentation does work far better, overall, than any other 6DoF RGB tracker I have tested when
reviewing the literature, both open source and from the industry. I would also like to point out that
these lower OPT results are still comparable to the best publicly available real-time monocular
6DoF trackers. One last thing to mention is that the proposed work’s superior numbers in the
3 OPT objects are also superior to the higher numbers in RBOT’s original paper, so the points
made in the previous chapters remain relevant.

To achieve the numbers reported from the publicly available implementation of RBOT,
the object meshes Jet, Bike, and Chest from OPT (Soda, House, and Ironman worked with-
out needing changes) and Cat, Squirrel, Ape, and Duck from RBOT dataset were simplified
to 5000 vertices (as instructed by RBOT’s paper) using MeshLab’s1 Quadric Edge Collapse
Decimation with 0% reduction, 100% quality threshold, and set to preserve the boundaries,
topology, and normals of the mesh. This simplification is necessary as RBOT’s RAM con-
sumption is otherwise unmanageable. Additionally, although RBOT is tuned to a 640× 512
resolution (with parameters such as radius fixed for it according to the paper), it was found that
the best results yielded for the publicly available implementation on OPT were obtained by
running it at OPT’s original 1920×1080 resolution. The code version came from the GitHub
commit 7 f 14bce72430ba4 f ee f 213a63d1784ab93b0da96, the most recent as of the writing of
this dissertation.

1MeshLab

https://www.meshlab.net/
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