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Resumo

Simulação de flúıdos é uma área com diversas aplicações, de filmes e jogos até
construção naval e defesa costeira. Podendo ser separada entre simulações de
malhas e de part́ıculas,os avanços em simulações de flúıdos trazem resultados cada
vez melhores. Um caso de grande interesse para esse tipo de simulação é o estudo do
fenômeno de sloshing, que ocorre em tanques carregando ĺıquidos, como em tanques
de combust́ıveis e em contêineres presentes em navios. Neste trabalho faremos
comparações entre soluções baseadas no método de part́ıculas SPH combinado
com modelos de turbulência, visando uma simulação realista de fluxos.

Palavras-chave: Simulação de flúıdos, SPH, Sloshing, Turbulência.
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Abstract

Fluid simulation is an area with various applications, ranging from movies and
games, to shipbuilding and coastal defense. Being divided in mesh-based and
meshless methods, improvements in fluid simulation achieve ever better results.
A case of great interest is the study of the liquid sloshing phenomenon, which
occurs in liquid inside other objects, such as fuel tanks and containers in ships. In
this work we will make comparisons between solutions that use the SPH particle
method coupled with turbulence models, aiming at realistic flow simulation.

Keywords: Fluid Simulation, SPH, Sloshing, Turbulence.
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Chapter 1

Introduction

1.1 Motivation

A wide range of applications use fluid simulation: games, movies and engineering
being the biggest areas where it is applied. By making compromises between
physical accuracy and visual quality, creators can generate plausible results for
entertainment while reducing time and processing costs, even being able to develop
real-time solutions[1][2].

Fluid simulation can be separated in mesh based solutions and mesh-free solu-
tions. The former makes use of a grid of cells to represent the fluid[3], this approach
usually achieves more efficient results, with higher numerical accuracy[4]. But
achieving physical accuracy is not a trivial feat and the complexity of the imple-
mentation can become a hurdle[5], as poor management of the grid can introduce
errors[4] and lead to non realistic behaviors.

Mesh-free, or particle based, approaches rely on a set of particles to represent
the fluid, boundaries and interacting objects[6]. Each particle stores parameters
that are used to calculate values as pressure, density, velocity, among others[5].
The particles motion is given by equations that use those parameters as input. Be-
cause of this, when compared to grid-based solutions, the implementation becomes
more straightforward, while maintaining good physical accuracy.

In this work, we will be using the Smoothed Particle Hydrodynamics (SPH)
method, which was originally developed to solve three-dimensional astrophysical
problems[7]. The SPH Method consists of three main steps: neighborhood search,
computation of each particle acceleration and time integration. The first step can
be the most time consuming if dealt with in a poor manner, such as through brute-
force. To circumvent this it is usual to implement spatial access structures, like
grids[8] or an octree[9]. The forces considered in the simulation are gravity, pres-
sure and viscosity[10]. The second step usually is solved using the Navier-Stokes
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CHAPTER 1. INTRODUCTION

equations[10] but the pressure can also be determined by the Poisson equation[10],
though the latter can make the simulation slower as it creates the need to solve a
sparse linear system. The third step can be done in a few different ways, such as
locally and globally[11], and with fixed or varying time-steps[12].

After its creation, SPH has been used to solve a plethora of problems involving
fluid simulation and other problems, ranging from coastal defense[13] and tsunami
and landslide prediction[14] to surface erosion[15] and liquid sloshing[16].

In this work we decided to focus on liquid sloshing, given the importance of
understanding this phenomenon for real world applications. Sloshing is the move-
ment of liquids inside objects under motion when there is a free surface[17]. A
common example found in the literature is fuel tanks on oil tankers[18]. But
other examples found in the literature study sloshing occurrence in eggs[19], beer
glasses[20], containers in moving trucks[21], and more.

Coupling with turbulence models can lead to results with better inner fluid
motion and vortexes representation.

1.2 Objective

The main objective of this graduation work is to explore the liquid sloshing phe-
nomenon using the Smoothed Particle Hydrodynamics method for turbulent fluid
simulations. In order to accomplish our objective, we intend to implement differ-
ent turbulence models proposed in the literature and make comparisons between
them and available experimental data. Existing SPH implementations will be cho-
sen based on their accuracy and extensibility, and the proposed turbulence models
will then be extended to the implementations

Although validations exist in the literature, the SPH method is still not con-
sidered as mature as other methods, such as the Finite Element Method. For
this reason, we believe that the proposed tests can be used not only to study
the phenomenon, but also to further validate the use of SPH for realistic sloshing
simulation, this way creating a better base for future works and validations.

1.3 Contributions

The contributions of this work are the following:

• Validation for sloshing simulations using the DualSPHysics[22] solver for
both the SPS and RANS model.

• Comparisons between CPU and GPU numerical accuracy and run time.

• A method to compute the wave height relative to the moving boundary

1.2. OBJECTIVE 8



CHAPTER 1. INTRODUCTION

1.4 Document overview

In the second chapter, the basic SPH formulation is explained, building up on this
explanation we explain the turbulence models and time integration schemes, thus
giving an understanding of the fundamental theoretical process of the work. On
the third chapter, the methodology is explained, showing the simulation framework
and the method devised for computing the wave height. On the fourth chapter,
the results are shown and are briefly analyzed. Then, on the fifth chapter a brief
conclusion is made and after that some ideas for future works are elicited.

9 1.4. DOCUMENT OVERVIEW



Chapter 2

Smoothed Particle
Hydrodynamics

2.1 Basic formulation

Smoothed Particles Hydrodynamics (SPH) is a meshless method that uses discrete
Navier-Stokes equations to apply forces at each particle, according to the properties
of neighboring particles. For each particle, a function that takes into account
the distance between particles determines the set of neighboring particles and a
factor for the forces applied by each particle. The distance is usually called the
smoothing length, denoted as h. For each simulation step, new physical quantities
are calculated for all particles and their positions are updated accordingly.

As we need a discrete model for the simulation, first the conservation laws of
continuum fluid dynamics need to be rewritten as an integral equation based on
an interpolation (or weighing) function, commonly referred as the kernel function,
denoted as W on the following equations. The forces that act at position r from
other positions r′ will be given by the function F (r):

F (r) =

∫
F (r′)W (r − r′, h)dr′ (2.1)

Eq.(2.1) can be further be transformed into a discrete form, suitable to work
with a set of particles instead of positions F (ra). This approximated form is given
by:

F (ra) ≈
∑
b

F (rb)W (ra − rb, h)∆vb (2.2)

Where ra is the position of the particle for which we want to calculate the
acting forces, rb represents the position of a neighboring particle and ∆vb is the

10



CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS

volume of the neighboring particle. As the volume is calculated as ∆vb = mb

ρb

from the mass mb and density ρb associated with the particle b, Eq.(2.2) can be
rewritten as:

F (ra) ≈
∑
b

F (rb)
mb

ρb
W (ra − rb, h) (2.3)

The particle’s mass is a constant, but its density ρ is calculated each time step
by the following equation, called the continuity equation:

dρa
dt

=
∑
b

mbvab · ∇aWab (2.4)

The final model has a term for pressure −1
ρ
∇P , gravitational force g and

dissipative terms Γ. It is commonly called the momentum conservation equation
with which we update the particle velocity v for each time step t:

dv

dt
= −1

ρ
∇P + g + Γ (2.5)

Simpler simulations may ignore Γ, in this work aside Γ, an extra turbulence
term is added.

2.2 The equation of state

The chosen solver[22] uses weakly compressible equation of state to solve the pres-
sure value in Eq.(2.5) which is given by[23]:

P = b

((
ρ

ρ0

)γ
− 1

)
(2.6)

Where γ = 7, b =
c20ρ0
γ

, the reference density is ρ0 = 1000kg/m3 and the speed
of sound at the reference density is c0.

For comparison purposes, an equation for incompressible flow is implemented,
given by[16]:

P = c20ρ (2.7)

2.3 The kernel function

The kernel function W is used to determine the neighboring particles b that in-
teract with particle a at each simulation step. Three important points on kernel

11 2.2. THE EQUATION OF STATE



CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS

functions will be briefly summarized here, but for a deeper explanation we recom-
mend reading the overview by Liu et al[5].

1. Positivity: The function should not return negative results. In case this is
not true unphysical behaviors can be a consequence.

2. Decay: The further particle b is from particle a, the less impact its forces
will have in final calculation.

3. Symmetric property: The function should be symmetric. Neighboring
particles b located at different positions but with the same distance from a
should have the the same factor for the forces calculation.

In this work we will be using the cubic spline kernel[24]:

W (r, h) = αD


1− 3

2
q2 + 3

4
q3 0 ≤ q ≤ 1,

1
4
(2− q)3 1 ≤ q ≤ 2,

0 q ≥ 2

(2.8)

and the quintic kernel[25]:

W (r, h) = αD

(
1− q

2

)4
(2q + 1) 0 ≤ q ≤ 2 (2.9)

For both kernels, q is given by q = r
h

where r is the distance between particles
a and b and h is the smoothing length. On the cubic spline kernel, αD is valued
as 10

7πh2
in 2-D simulations and 21

16πh3
for 3-D cases.

2.4 Viscosity term

Going back to Eq.(2.5), Γ is where we will introduce the viscosity term that can be
separated in two types: artificial viscosity and laminar viscosity. In this work, the
turbulence model is coupled with the laminar viscosity term, and for validation
purposes, both the artificial viscosity and the laminar viscosity models are used.

2.4.1 Artificial viscosity

In this work, the artificial viscosity term Πab is defined as proposed by Mon-
aghan[26]:

Πab =

{
−αcabµab

ρab
vab · rab < 0,

0 vab · rab > 0
(2.10)

2.4. VISCOSITY TERM 12
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Where ρab = ρa− ρb is the difference in density between a and b, vab = va− vb
is the difference in velocity between a and b and rab = ra − rb is the distance
between a and b. µab = hvab·rab

r2
ab+η

2 with η2 = 0.01h2 and cab = 0.5(ca + cb) being the

mean speed of sound. α is a user defined coefficient that can be tuned to achieve
proper dissipation.

The momentum conservation equation (Eq.(2.5)) can then be rewritten for a
given particle a as:

dva
dt

= −
∑
b

mb

(
Pb + Pa
ρb · ρa

+ Πab

)
∇aWab + g (2.11)

2.4.2 Laminar viscosity

The laminar viscous stress vo∇2v for a given particle a can be written as[27]:

(
vo∇2v

)
a

=
∑
b

mb

(
4vorab · ∇aWab

(ρa + ρb)(r2
ab + η2)

)
vab (2.12)

where vo is the kinematic viscosity (for water, usually 10−6m2s). Substituting
Γ with vo∇2v, we can rewrite Eq.(2.5) for a given particle a as:

dva
dt

= −
∑
b

mb

(
Pb + Pa
ρb · ρa

)
∇aWab + g +

∑
b

mb

(
4vorab · ∇aWab

(ρa + ρb)(r2
ab + η2)

)
vab (2.13)

2.5 Turbulence models

In the following equations, the term 1
ρ
∇ · ~τ represents the turbulence model. Two

turbulence models are used in this work: the Sub-Particle Scale (SPS) model and
the Reynolds Averaged Navier-Stokes (RANS) model.

Before explaining the models, we will rewrite Eq.(2.5) to better visualize the
following steps:

dv

dt
= −1

ρ
∇P + g + vo∇2v +

1

ρ
∇ · ~τ (2.14)

The SPS model implementation is already available in the DualSPHysics solver.
The RANS model was chosen for comparison because it does not require complex
modifications to the SPS model. We intend to compare the numerical results and
also the overall time each model requires. By using the RANS model we hope to
achieve results comparable to the SPS model, but faster, as this model is a little
simpler.

13 2.5. TURBULENCE MODELS
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2.5.1 The RANS model

In the RANS model, ~τ in eq.(2.14) is rewritten as:

~τab = ρ
(

2vtSab −
2

3
kδab

)
(2.15)

where vt is the turbulence eddy viscosity given by Eq.(2.16) and Sab is given
by Eq.(2.17). k is the kinetic energy, l = Csh is the maxing length, where h is the
smoothing length and Cs = 0.12 is the Smagorinsky constant.

vt = l2
√

2SabSab (2.16)

Sab =
1

2

(
δva
δrb

+
δva
δrb

)
(2.17)

The discrete form of 1
ρ
∇ · ~τ is given by[27]:

1

ρ
∇ · ~τ =

∑
b

mb

(
~τa
ρa

+
~τb
ρb

)
∇aWab (2.18)

2.5.2 The SPS model

The SPS model was firts proposed by Gotoh et al[28], for their Moving Particle
Semi-implicit (MPS) simulation. In this work the definition proposed by Dal-
rymple et al[29] is used. The main difference between the RANS model and the
SPS model used in this work is in the ~τ term. The term is rewritten as, where
CI = 0.00066 as defined by Blin et al[30]:

~τab = ρ
(

2vtSab −
2

3
kδab

)
− 2

3
ρCI∆

2δab (2.19)

As the SPS model has this added term, we believe that by using the RANS
model we will be able to achieve faster results without a great impact on the
numerical accuracy.

2.6 Time integration

The chosen solver[22] has two options for time integration, the Verlet scheme[31]
and the Symplectic scheme, proposed by Leimkuhler et al [32]. Due to the two
stage nature of the Symplectic scheme, it yields better numerical results and was
chosen for this work.

2.6. TIME INTEGRATION 14
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2.6.1 Symplectic scheme

The Symplectic scheme used in the solver has an accuracy in time of O(∆t2). It
has two stages, the predictor and the corrector stages.

During the predictor stage, the position and density are estimated for the
middle of the time step, according to:

r
n+ 1

2
a = rna +

∆t

2
vna (2.20)

ρ
n+ 1

2
a = ρna +

∆t

2
Dn
a (2.21)

Then, at the corrector stage, dv
n+1

2
a

dt
is used to calculate the correct velocity and

position, according to:

vn+1
a = v

n+ 1
2

a +
∆t

2
F
n+ 1

2
a (2.22)

rn+1
a = r

n+ 1
2

a +
∆t

2
vn+1
a (2.23)

Finally the correct density value dρn+1
a

dt
= Dn+1

a is calculated using vn+1
a and

rn+1
a .

15 2.6. TIME INTEGRATION
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Figure 2.1: Diagram for one simulation step using the Symplectic scheme.

2.6. TIME INTEGRATION 16



Chapter 3

Methodology

3.1 Simulation setup and computer configura-

tion

Two scenario variations were simulated, each scenario with a baffle and no baffle
case. For all of the simulations the tank dimensions according to Fig.(3.1) were
height th = 1.15m and length tl = 1.73m. In both scenarios the tank is moving in
a sinusoidal fashion (S(t) = A · cos(2πt

T
)), with an amplitude A = 0.025m. For the

first variation, the water height was wh = 0.6m and the period of the motion was
T = 1.3s and for the second variation wh = 0.5m and T = 1.875s. The baffles in
both variations have height bh = 0.3m and length bl = 0.025m. For the artificial
viscosity an viscosity value of α = 0.01 was chosen, given its performance in other
simulations[13]. For the turbulence models, the kinetic viscosity value was set to
vo = 10−6m2s, for water simulation.

Figure 3.1: Simulation scenario diagram. th is the tank height, tl tank length and wh
initial water height. The red zone indicates the position along tl where the wave height
is computed. Left scenario with baffle, right scenario without baffle

17



CHAPTER 3. METHODOLOGY

The specifications of the computer used for the simulations are summarized in
Table 3.1.

Part Memory Memory clock rate memory bus width Processing clock rate Number of cores
Intel i5-4590 8 GB (DDR3) 1600 MHz 64-bit 3.3 GHz 4
GeForce GTX 1060 6 GB (DDR5) 4004 MHZ 192-bit 1.78 GHz 1280 (CUDA)

Table 3.1: Computer specification

3.2 DualSPHysics and simulation framework

As the focus of this work was to study the sloshing phenomenon and not imple-
ment an SPH solver from the ground-up, we chose to use the DualSPHysics[22]
solver. This choice was made because by doing so, we were able to focus only on
the modifications needed to implement the RANS model and the incompressible
equation of state.

The DualSPHysics solver is an open source solver developed by Universidade de
Vigo and the University of Manchester. For its open source nature, this solver has
great extensibility and easily available documentation. It has also been validated
for various simulation scenarios in the literature, including dam break simula-
tion[33], wave generation and propagation[13], fluid and rigid body interaction[34]
and more.

The simulations ran on a CUDA[35] enabled GPU, with CUDA v9.1, utilizing
the Symplectic time integration scheme.

The simulation scenarios are modeled after the experiment made by Faltinsen
et al[36] and simulations by Shao et al[16].

3.3 Wave height

One problem encountered during the implementation process was that, with the
available tools, the fluid height could only be batch computed for given points at fix
positions relative to the whole simulation space. But in our simulations the tank is
always moving. Besides that, the shear amount of parts each simulation produced
made manually finding the height information prohibitive. For this reasons, a
method for calculating the wave height relative to the moving tank was devised.
We will now briefly explain it.

The main idea is to define an initial x position to be used as a reference. For
each step a new x position Xstep is calculated according to the motion of the tank
and the wave height for each step is thus computed relative to the moving tank
and not to the whole simulation space.

3.2. DUALSPHYSICS AND SIMULATION FRAMEWORK 18
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The algorithm receives as input the desired position Xdesired, the boundary and
fluid data for the simulation Bounds and Fluids and a reference density value ρref
used to find surface particles. Xdesired is used to find the closest boundary particle
to that x position and saves that particle’s ID as boundID.

From the simulation we have each particle’s position for each step, there is no
need to actually calculate stepx, we simply need to retrieve this information with
boundID we saved before.

After Xstep is determined, we need to find the wave height. To do that we first
filter the fluid particle by density, to find the particles closest to the surface. Then
the surface particles are filtered yet again, this time according to their x position,
returning only those particles that are sufficiently close to Xstep. As of the time of
writing, from this last filtering, the highest z position is chosen as the wave height.

The algorithm is summarized in pseudo-code below, and some remarks are
made after.

Algorithm 1 Motion relative wave height

1: procedure Relative Height(Xdesired, Bounds, F luids, ρref )
2: j ← 0
3: boundID ← ClosestBoundaryParticle(Boundsj, Xdesired)
4: for each simulation step do
5: Xstep ← GetReferenceX(Boundsj, boundID)
6: surface← filterSurface(Fluidsj, ρref )
7: closestSurfaceParticles← filterAlongX(surface,Xstep)
8: heightV aluesj ← max(closestSurfaceParticlesz)
9: j ← j + 1

10: end for
11: end procedure

Although this method works, some points can be improved, mainly the surface
reconstruction. As it is, low resolution simulations can lead to not so smooth
results. Other point for improvement is that the list of surface points from one
step to the other, probably, does not change a lot. This gives room for optimizing
the surface reconstruction by only looking for particles around a given area.

19 3.3. WAVE HEIGHT



Chapter 4

Results

4.1 Visual results

For variation 1, all the 3 models performed similarly visually. The particle displace-
ment along time on the inside of the fluid was more uniform when the turbulence
models were used for variation 1. But this did not affect the results greatly.

Even though the simulations visual results were similar for particle distribution,
as can be seen on Fig.(4.1) through Fig.(4.2), when we compare the velocities we
can see that without turbulence models there is some dampening Fig(4.3).

No model SPS RANS

Figure 4.1: dp = 0.002 m, 261218 particles.

20



CHAPTER 4. RESULTS

No model SPS RANS

Figure 4.2: dp = 0.008 m, 16632 particles.

No model SPS RANS

Figure 4.3: Velocity profiles for variation 1. We are able to see some dampening when
no model is used.

As can be seen on Fig.(4.4) and Fig.(4.5), although the surface level is simi-
lar for the three models, the simulations without a turbulence model shows some
dampening in the internal vortexes. As a middle baffle is introduced in varia-
tion 2, the flow becomes more violent, resulting in more violent vortexes and the
dampening becomes clear.

No model SPS RANS

Figure 4.4: Baffle comparisons for variation 1, t = 4 s, 261218 particles.

21 4.1. VISUAL RESULTS
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No model SPS RANS

Figure 4.5: Baffle comparisons for variation 2, t = 7 s, 218018 particles.

4.2 Numerical results

Using both the incompressible and weakly compressible state equation, all simu-
lations yielded similar results for wave height variation, with good agreement to
the experimental results. The dissimilarity between the SPS and RANS models
was 0.001, computed using the Kolmogorov-Smirnov test[37]. With this small
difference we achieved the intended goal of comparable results between the two
models.

Lowering the resolution leads to impaired wave height reading Fig.(4.6) and
Fig.(4.7). This further indicates that the solution proposed in Alg.(1) can be
improved with better surface tracking. Besides this, the simulations were in good
accordance with the experiment, thus validating the models used Fig(4.6) and
Fig.(4.7).

dp = 0.002 m dp = 0.004 m dp = 0.008 m

Figure 4.6: Graphs for variation 1

4.2. NUMERICAL RESULTS 22
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dp = 0.002 m dp = 0.004 m dp = 0.008 m

Figure 4.7: Graphs for variation 2

The pressure at the left wall was also analyzed, with a probe placed 0.4 m up
from the bottom of the tank. Even though the surface level was very close for
all the 3 models, analyzing the pressure profile we can see that there is also some
dampening when no model is used, as expected from the visual velocity results.

Also as expected from the visual results and height variation results, the baffle
variation exhibits lower overall pressure values. It can also be noted that initially
the pressure values for the scenarios with and without baffles are similar, but when
the height reduction from the baffles becomes more apparent, the same happens for
the pressure reduction on the wall. As both turbulence models behaved similarly,
they are shown together in Fig(4.8).

No baffle With baffle Baffle and no baffle

Figure 4.8: Graphs for pressure values.

4.3 Performance results

In Fig.(4.9) we have a breakdown of the simulation time, roughly based around the
diagram shown on Fig.(2.1). We can see that the biggest part of the simulation
is spent on the forces computations, being over 63% of the simulation time. This
shows that this step is a great candidate for future optimizations.

23 4.3. PERFORMANCE RESULTS
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Figure 4.9: GPU simulation breakdown.

For comparison purposes, simulations using the CPU were also made. Simu-
lations with 116548, 510601 and 1041433 particles were run multiple times to get
an average time. The simulation results were similar, with a difference of 0.002,
using the Kolmogorov-Smirnov test[37]. But the CPU simulations were up to 21
times slower when compared with one that used the GPU, and, as can be seen on
Fig.(4.10), the higher the particle count the bigger the difference between CPU
and GPU run time became.
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Figure 4.10: CPU and GPU comparisons.

As can be seen on the following tables, there was no significant change in mem-
ory usage or steps generated between the two turbulence methods. But using the
RANS method the simulations were up to 10% faster. Taking into consideration
that many simulations in the literature use more than 1 million particles, those
10% can become a great difference in simulation time with the increase of particle
count.
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Case
Number

of particles
Memory
(CPU)

Memory
(GPU)

Number
of steps

Simulation
time

No baffle v1
(no model)

261218 22.42 MB 41.22 MB 933629 2.5 h

Baffle v1
(no model)

261218 22.42 MB 41.22 MB 937264 2.4 h

No baffle v1
(RANS)

261218 22.42 MB 53.17 MB 941603 2.6 h

Baffle v1
(RANS)

261218 22.51 MB 53.18 MB 947839 2.6 h

No baffle v1
(SPS)

261218 22.42 MB 53.17 MB 938048 2.6 h

Baffle v1
(SPS)

261218 22.42 MB 53.18 MB 942151 2.6 h

Table 4.1: Simulation data for H = 0.6m, T = 1.3s and dp = 0.002m

Case
Number

of particles
Memory
(CPU)

Memory
(GPU)

Number
of steps

Simulation
time

No baffle v1
(no model)

65812 5.65 MB 10.40 MB 465276 0.47 h

Baffle v1
(no model)

65812 5.65 MB 10.40 MB 466705 0.48 h

No baffle v1
(RANS)

65812 5.65 MB 13.41 MB 467651 0.5 h

Baffle v1
(RANS)

65812 5.65 MB 13.41 MB 469251 0.5 h

No baffle v1
(SPS)

65812 5.65 MB 13.41 MB 467899 0.51 h

Baffle v1
(SPS)

65812 5.65 MB 13.41 MB 469286 0.5 h

Table 4.2: Simulation data for H = 0.6m, T = 1.3s and dp = 0.004m
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Case
Number

of particles
Memory
(CPU)

Memory
(GPU)

Number
of steps

Simulation
time

No baffle v1
(no model)

16632 1.43 MB 2.64 MB 231106 0.19 h

Baffle v1
(no model)

16632 1.43 MB 2.64 M 231675 0.19 h

No baffle v1
(RANS)

16632 1.43 MB 3.40 MB 232265 0.18 h

Baffle v1
(RANS)

16632 1.43 MB 3.40 MB 232692 0.18 h

No baffle v1
(SPS)

16632 1.43 MB 3.40 MB 232414 0.2 h

Baffle v1
(SPS)

16632 1.43 MB 3.40 MB 232690 0.19 h

Table 4.3: Simulation data for H = 0.6m, T = 1.3s and dp = 0.008m

Case
Number

of particles
Memory
(CPU)

Memory
(GPU)

Number
of steps

Simulation
time

No baffle v2
(no model)

218018 18.8 MB 35.43 MB 853644 1.85 h

Baffle v2
(no model)

218018 18.71 MB 34.41 MB 857010 1.99 h

No baffle v2
(RANS)

218018 18.71 MB 44.38 MB 858814 2.09 h

Baffle v2
(RANS)

218018 18.71 MB 44.39 MB 865241 2.09 h

No baffle v2
(SPS)

218018 18.71 MB 44.38 MB 858803 2.21 h

Baffle v2
(SPS)

218018 18.71 MB 44.39 MB 865942 2.1 h

Table 4.4: Simulation data for H = 0.5m, T = 1.875s and dp = 0.002m
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Case
Number

of particles
Memory
(CPU)

Memory
(GPU)

Number
of steps

Simulation
time

No baffle v2
(no model)

55012 4.72 MB 8.70 MB 425096 0.55 h

Baffle v2
(no model)

55012 4.72 MB 8.70 MB 426675 0.54 h

No baffle v2
(RANS)

55012 4.72 MB 11.22 MB 428054 0.43 h

Baffle v2
(RANS)

55012 4.72 MB 11.22 MB 430506 0.43 h

No baffle v2
(SPS)

55012 4.72 MB 11.22 MB 427842 0.43 h

Baffle v2
(SPS)

55012 4.72 MB 11.22 MB 430510 0.43 h

Table 4.5: Simulation data for H = 0.5m, T = 1.875s and dp = 0.004m

Case
Number

of particles
Memory
(CPU)

Memory
(GPU)

Number
of steps

Simulation
time

No baffle v2
(no model)

14052 1.21 MB 2.23 MB 211667 0.2 h

Baffle v2
(no model)

14052 1.21 MB 2.23 MB 212376 0.2 h

No baffle v2
(RANS)

14052 1.29 MB 2.87 MB 213082 0.2h

Baffle v2
(RANS)

14052 1.21 MB 2.87 MB 214049 0.23h

No baffle v2
(SPS)

14052 1.21 MB 2.87 MB 213087 0.22 h

Baffle v2
(SPS)

14052 1.21 MB 2.87 MB 214184 0.22 h

Table 4.6: Simulation data for H = 0.5m, T = 1.875s and dp = 0.008m

4.3. PERFORMANCE RESULTS 28



Chapter 5

Conclusion

Fluid simulation is a great tool for many areas of study. The applications can
range from pure entertainment to more critical usages such as naval engineering.

In this work we chose to study the sloshing phenomenon, using different meth-
ods for turbulence modeling and were able to validate the models used.

Depending on the purpose of the application, the use of turbulence models may
not bring greater insights. Many applications don’t need realistic representation
of the inner part of the fluid and choosing to use turbulence models might not
lead to better results. But, when there is need for better vortex and inner fluid
representation, the advantages of using turbulence models quickly becomes clear.

5.1 Future works

As next steps a few options are listed below, not in any particular order:

• Extend the simulations to 3D.

• Multi-phase simulations to study the damping effects of air or other gases on
the liquid phase. In the real world the tank is usually filled with air, adding
an air phase to the simulation may improve the results[38].

• Scenarios with floating objects and more violent flows. There already exists
in the literature experiments for sloshing cases with floating baffles and other
objects, aiming for sloshing reduction[39][40].
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Appendix A

Algorithm 1 Python
implementation

import pandas as pd
import numpy as np
import time as tm

s t a r t t i m e = tm . p roc e s s t ime ( )

de s i r edx = 0.05
k = 0.001
n b f i l e s = 1001
rhoRes = 0.01
surfaceRhoBase = 1000
auxRhoResIncreaseFactor = 0.001
auxKincreaseFactor = 0.001
i n i t H e i g h t = 0
sur f a cecount = 0

c s v t i m e s t a r t = tm . p roc e s s t ime ( )

for j in range (0 , n b f i l e s ) :

print ( str (round ( ( ( j / n b f i l e s ) ∗ 100) ,2 ) ) + ’%’ )

f i l e n b = ’ { : 04 d} ’ . format ( j )

bound f i l e = ’ partboundcsv ’ + f i l e n b + ’ . csv ’
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f l u i d f i l e = ’ P a r t f l u i d c s v ’ + f i l e n b + ’ . csv ’

formatedb = ’ formboundcsv ’ + f i l e n b + ’ . csv ’

formatedf = ’ f o r m f l u i d c s v ’ + f i l e n b + ’ . csv ’

with open( boundf i l e , ’ r ’ ) as bf , open( formatedb , ’w+’ ) as
f b f :

b f l = bf . r e a d l i n e s ( )

for l in b f l [ 3 : ] :
f b f . wr i t e ( l [:−2]+ ’\n ’ )

with open( f l u i d f i l e , ’ r ’ ) as f f , open( formatedf , ’w+’ ) as
f f f :

f f l = f f . r e a d l i n e s ( )

for l in f f l [ 3 : ] :
f f f . wr i t e ( l [:−2]+ ’\n ’ )

c sv t ime end = tm . proc e s s t ime ( )

p l o t t e r t i m e s t a r t = tm . p roc e s s t ime ( )

t imerHeaders = [ ’ TimeStep [ s ] ’ , ’Np ’ , ’Nbound ’ , ’ Nf ixed ’ , ’
Nmoving ’ , ’ N f loat ’ , ’ N f lu id ’ ]

f l u idHeade r s = [ ’ Pos . x [m] ’ , ’ Pos . y [m] ’ , ’ Pos . z [m] ’ , ’ Idp
’ , ’Rhop [ kg/mˆ3 ] ’ ]

boundHeaders = [ ’ Pos . x [m] ’ , ’ Pos . y [m] ’ , ’ Pos . z [m] ’ , ’ Idp
’ ]

maxZvalues = np . z e r o s ( n b f i l e s )
t imes = np . z e r o s ( n b f i l e s )
measurepos = np . z e r o s ( n b f i l e s )

i n i t i a lBound = pd . r ead c sv ( ’ formboundcsv 0000 . csv ’ ,
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d e l i m i t e r=’ ; ’ , header =0, names=boundHeaders )
boundID = (np . abs ( i n i t i a lBound [ ’ Pos . x [m] ’ ] . va lue s −

de s i r edx ) ) . argmin ( )
r e a l i n i t i a l = in i t i a lBound [ ’ Pos . x [m] ’ ] . i l o c [ boundID ]

for j in range (0 , n b f i l e s ) :
print ( str (round ( ( ( j / n b f i l e s ) ∗ 100) ,2 ) ) + ’%’ )
f i l e n b = ’ { : 04 d} ’ . format ( j )

bound f i l e = ’ formboundcsv ’ + f i l e n b + ’ . csv ’

f l u i d f i l e = ’ f o r m f l u i d c s v ’ + f i l e n b + ’ . csv ’

t i m e f i l e = ’ partboundcsv ’ + f i l e n b + ’ . csv ’

bound = pd . r ead c sv ( boundf i l e , d e l i m i t e r=’ ; ’ , header =0,
names=boundHeaders )

f l u i d = pd . r ead c sv ( f l u i d f i l e , d e l i m i t e r=’ ; ’ , header =0,
names=f lu idHeade r s )

time = pd . r ead c sv ( t i m e f i l e , d e l i m i t e r=’ ; ’ , header =0,
names=timerHeaders , nrows=1)

t imes [ j ] = time [ ’ TimeStep [ s ] ’ ] . i l o c [ 0 ]

timestepX = bound [ ’ Pos . x [m] ’ ] . i l o c [ boundID ]
measurepos [ j ] = timestepX

indexes = [ ]
su r f I dx = [ ]

# F i l t e r i n g us ing rho
aux = f l u i d [ ’Rhop [ kg/mˆ3 ] ’ ] . va lue s
auxRhoRes = rhoRes

i f ( j ==0 ) :
while len ( su r f I dx ) == 0 :

for i , x in enumerate ( aux ) :
i f (abs ( x − surfaceRhoBase ) < auxRhoRes ) :
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sur f Idx . append ( i )
auxRhoRes += auxRhoResIncreaseFactor

else :
while len ( su r f I dx ) < su r f a cecount :

for i , x in enumerate ( aux ) :
i f (abs ( x − surfaceRhoBase ) < auxRhoRes ) :

su r f I dx . append ( i )
auxRhoRes += auxRhoResIncreaseFactor

print ( ’\ nsur f a c e indexes count : ’ )
print ( len ( su r f I dx ) )
print ( )

# F i l t e r i n g a long x a x i s
auxK = k
while len ( indexes ) == 0 :

for i , x in enumerate ( su r f I dx ) :
i f (abs ( f l u i d [ ’ Pos . x [m] ’ ] . i l o c [ x ] − timestepX ) < auxK) :
indexes . append ( x )

auxK += auxKincreaseFactor

zValues = np . z e r o s ( len ( indexes ) )
for i , x in enumerate ( indexes ) :

zValues [ i ] = ( f l u i d [ ’ Pos . z [m] ’ ] . i l o c [ x ] )

maxZvalues [ j ] = np . average ( zValues )
i f ( j == 0) :

i n i t H e i g h t = maxZvalues [ j ]
su r f a cecount = len ( su r f I dx )

maxZvaluesVariat ion = maxZvalues − i n i t H e i g h t
with open( ’ heightsGraph . csv ’ , ’w+’ ) as graph :

graph . wr i t e ( ’ x , z , bx\n ’ )

for i , x in enumerate ( t imes ) :
graph . wr i t e ( str ( x ) + ’ , ’ + str ( maxZvaluesVariat ion [ i ] ) +

’ , ’ + str ( measurepos [ i ] − r e a l i n i t i a l ) + ’\n ’ )
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p l o t t e r t i m e e n d = tm . p roc e s s t ime ( )

r epo r t = ( ’−−−p l o t t e r report−−−\n ’ +
’ t o t a l runtime . . . . . . ’ + str (round( p l o t t e r t i m e e n d −

s t a r t t i m e ) ) + ’\n ’ +
’ csv format time . . . . ’ + str (round( c sv t ime end −

c s v t i m e s t a r t ) ) + ’\n ’ +
’ p l o t t e r time . . . . . . . ’ + str (round( p l o t t e r t i m e e n d −

p l o t t e r t i m e s t a r t ) ) + ’\n ’ )

with open( ’ r epo r t . txt ’ , ’w+’ ) as rp r t :
rp r t . wr i t e ( r epo r t )
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Example of definition file

<?xml version=” 1 .0 ” encoding=”UTF−8” ?>
<case>

<ca s ede f>
<cons tan t sde f>

< l a t t i c e bound=”1” f l u i d=”1” />
<g rav i ty x=”0” y=”0” z=”−9.81” comment=”

Grav i t a t i ona l a c c e l e r a t i o n ” units comment=”m
/ s ˆ2” />

<rhop0 value=”1000” comment=” Reference dens i ty
o f the f l u i d ” units comment=”kg/mˆ3” />

<hswl va lue=”0” auto=” true ” comment=”Maximum
s t i l l water l e v e l to c a l c u l a t e speedofsound
us ing coefsound ” units comment=” metres (m) ”
/>

<gamma value=”7” comment=” Po ly t rop i c constant
f o r water used in the s t a t e equat ion ” />

<speedsystem value=”0” auto=” true ” comment=”
Maximum system speed ( by d e f a u l t the dam−
break propagat ion i s used ) ” />

<coefsound value=”20” comment=” C o e f f i c i e n t to
mult ip ly speedsystem ” />

<speedsound value=”0” auto=” true ” comment=”
Speed o f sound to use in the s imu la t i on ( by
d e f a u l t speedofsound=coefsound ∗ speedsystem ) ”
/>

<coe fh value=” 0.91924 ” comment=” C o e f f i c i e n t to
c a l c u l a t e the smoothing l ength (h=coe fh ∗ s q r t
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(3∗dpˆ2) in 3D) ” />
<cf lnumber value=” 0 .2 ” comment=” C o e f f i c i e n t to

mult ip ly dt” />
</ cons tan t sde f>
<mkconfig boundcount=”240” f l u i d c o u n t=”10” />
<geometry>

<d e f i n i t i o n dp=” 0.004 ” units comment=” metres (m
) ”>
<pointmin x=”−1” y=”0” z=”−1” />
<pointmax x=”2” y=”0” z=”2” />

</ d e f i n i t i o n>
<commands>

<m a i n l i s t>
<setshapemode>dp | bound</ setshapemode>
<setdrawmode mode=” f u l l ” />
<setmkbound mk=”0” />
<drawbox>

<b o x f i l l>a l l</ b o x f i l l>
<point x=”0” y=”−0.1” z=”0” />
<s i z e x=” 1 .73 ” y=” 0 .2 ” z=” 1 .15 ” />

</drawbox>
<s e tmkf lu id mk=”1” />
< f i l l b o x x=” 0 .8 ” y=”0” z=” 0 .3 ”>

<m o d e f i l l>void</ m o d e f i l l>
<point x=”0” y=”−0.1” z=”0” />
<s i z e x=” 1 .73 ” y=” 0 .2 ” z=” 0 .6 ” />

</ f i l l b o x>
<shapeout f i l e=”” />

<setmkbound mk=”2” />
<drawpoint x=”−0.5” y=”0” z=”−0.12” />
<drawpoint x=” 1 .9 ” y=”0” z=” 1 .5 ” />

</ m a i n l i s t>
</commands>

</geometry>
<motion>
<o b j r e a l r e f=”0”>
<begin mov=”1” s t a r t=”0”/>
<mvpredef id=”1” durat ion=”10”>
< f i l e name=”C:\Users\dquei\Documents\DualSPHyshics\TG\

S lo sh ing \movf i l e . dat” f i e l d s=”2” f i e l d t i m e=”0”
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f i e l d x=”1” />
</mvpredef>
</ o b j r e a l>
</motion>
</ ca s ede f>
<execut ion>

<parameters>
<parameter key=”PosDouble” value=”1” comment=”

P r e c i s i o n in p a r t i c l e i n t e r a c t i o n 0 :Simple ,
1 :Double , 2 :Uses and saves double ( d e f a u l t
=0)” />

<parameter key=” StepAlgorithm ” value=”2”
comment=” Step Algorithm 1 :Ve r l e t , 2
:Symplec t i c ( d e f a u l t =1)” />

<parameter key=” Ver l e tS teps ” value=”40” comment
=” Ver l e t o n l y : Number o f s t ep s to apply
Euler t imestepp ing ( d e f a u l t =40)” />

<parameter key=” Kernel ” va lue=”2” comment=”
I n t e r a c t i o n Kernel 1 :Cubic Spl ine , 2
:Wendland ( d e f a u l t =2)” />

<parameter key=” ViscoTreatment ” value=”1”
comment=” V i s c o s i t y fo rmulat ion 1 : A r t i f i c i a l ,

2 :Laminar+SPS ( d e f a u l t =1)” />
<parameter key=” Visco ” value=” 0 .01 ” comment=”

V i s c o s i t y va lue ” /> % Note alpha can depend
on the r e s o l u t i o n . A value o f 0 .01 i s
recommended f o r near i r r o t a t i o n a l f l ows .

<parameter key=”ViscoBoundFactor” value=”0”
comment=” Mult ip ly v i s c o s i t y va lue with
boundary ( d e f a u l t =1)” />

<parameter key=”DeltaSPH” value=” 0 .1 ” comment=”
DeltaSPH value , 0 . 1 i s the t y p i c a l value ,
with 0 d i s ab l ed ( d e f a u l t =0)” />

<parameter key=”#S h i f t i n g ” value=”0” comment=”
S h i f t i n g mode 0 :None , 1 : I g n o r e bound , 2
: I g n o r e f ixed , 3 : F u l l ( d e f a u l t =0)” />

<parameter key=”#Sh i f tCoe f ” value=”−2” comment=
” C o e f f i c i e n t f o r s h i f t i n g computation (
d e f a u l t=−2)” />

<parameter key=”#ShiftTFS” value=” 1 .5 ” comment=
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” Threshold to de t e c t f r e e s u r f a c e . Typ i ca l l y
1 . 5 f o r 2D and 2 .75 f o r 3D ( d e f a u l t =0)” />

<parameter key=” RigidAlgorithm ” value=”1”
comment=” Rigid Algorithm 1:SPH , 2:DEM (
d e f a u l t =1)” />

<parameter key=”FtPause” value=” 0 .0 ” comment=”
Time to f r e e z e the f l o a t i n g s at s imu la t i on
s t a r t (warmup) ( d e f a u l t =0)” units comment=”
seconds ” />

<parameter key=”CoefDtMin” value=” 0 .05 ” comment
=” C o e f f i c i e n t to c a l c u l a t e minimum time step

dtmin=coefdtmin ∗h/ speedsound ( d e f a u l t =0.05)
” />

<parameter key=”#DtIni ” value=” 0.0001 ” comment=
” I n i t i a l time step ( d e f a u l t=h/ speedsound ) ”
units comment=” seconds ” />

<parameter key=”#DtMin” value=” 0.00001 ” comment
=”Minimum time step ( d e f a u l t=coefdtmin ∗h/
speedsound ) ” units comment=” seconds ” />

<parameter key=”#DtFixed” value=”DtFixed . dat”
comment=”Dt va lue s are loaded from f i l e (
d e f a u l t=d i s ab l ed ) ” />

<parameter key=” D t A l l P a r t i c l e s ” va lue=”0”
comment=” Ve loc i ty o f p a r t i c l e s used to
c a l c u l a t e DT. 1 :A l l , 0 :Only f l u i d / f l o a t i n g (
d e f a u l t =0)” />

<parameter key=”TimeMax” value=”10” comment=”
Time o f s imu la t i on ” units comment=” seconds ”
/>

<parameter key=”TimeOut” value=” 0 .01 ” comment=”
Time out data ” units comment=” seconds ” />

<parameter key=”IncZ” value=”0” comment=”
I n c r e a s e o f Z+” units comment=” decimal ” />

<parameter key=”PartsOutMax” value=”1” comment=
”%/100 o f f l u i d p a r t i c l e s a l lowed to be
excluded from domain ( d e f a u l t =1)”
units comment=” decimal ” />

<parameter key=”RhopOutMin” value=”700” comment
=”Minimum rhop v a l i d ( d e f a u l t =700)”
units comment=”kg/mˆ3” />
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<parameter key=”RhopOutMax” value=”1300”
comment=”Maximum rhop v a l i d ( d e f a u l t =1300)”
units comment=”kg/mˆ3” />

</ parameters>
</ execut ion>

</ case>
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