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Le grand finale.



A intuição é uma das maiores facetas humanas. Você intui,
e mesmo que não seja do nada, não se sabe de onde...

mas que intui, intui.

—CLYLTON GALAMBA



Abstract

Physics-based animation is an area of computer graphics that is concerned with generating
realistic animation from the laws of dynamics. Typical applications are computer games,
visual effects, animated movies and simulators; some of them must be interactive and
real-time, which limits the computation budget to a few milliseconds. In this work, we
present a new method for real-time simulation of deformable objects in reduced space.
Recent methods such as the quasi-Newton solver presented by Liu et al. [13] are robust,
general and simple, but can be expensive when dealing with large meshes. In order
to fulfill high frame-rate requirements, we apply dimensionality reduction and optimal
cubature to the standard quasi-Newton solver. As result, our implementation in CPU
achieves a speed-up of hundred times, while preserving overall realistic animation qualities.
Additionally, we provide a brief introduction to deformable object simulation and compare
the classical implicit backward Euler method to the quasi-Newton solvers.

Keywords: Physics-based Animation, Deformable Object Simulation, Finite Element
Method, Computer Graphics
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Chapter 1
Introduction

Sample frames of a deformable dragon model undergoing sudden pulling forces. The
simulation is performed in real-time using the proposed method.

In this work, we present a novel technique for real-time simulation of hyperelastic
materials. Before proceeding to further details, we shall first present an overview of physics
simulation for computer animation, also known as physics-based animation, and briefly
explain how its goals differ from classical scientific computing methods. Then, we shall
introduce the branch of deformable object simulation and examine its recent works and
applications.

1.1 Physics-based Animation

Physics simulation is the progressive numerical computation of physical quantities that
fully describe a system over time, given their initial values, namely boundary conditions.
The output of a simulation is a discrete-time sequence of state variables – frames – sampled
at a constant rate. Phenomena are commonly modeled through differential equations
whose solution is usually impossible to be calculated analytically, but certainly achievable
by approximate simulations. The term time-step refers to the process of producing a new
frame from previous computed data, but is often used as the duration ∆t between two
consecutive frames.

Historically, several simulation methods for computational dynamics of solids and fluids
have been widely deployed in industry as a consequence of the well-established scientific
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computing research in applied mechanics and mechanical engineering. One of the most
widespread techniques is the Finite Element Method (FEM) for structural analysis, which
calculates the accurate response of forces acting upon complex structures, such as a bridge
loaded with cars or bent airplane wings during a take-off. When it comes to computer
graphics, the research on physics-based animation is still increasing due to the recent
demand of computer games, animated movies, visual effects and diverse simulators (e.g.,
surgery and flight simulators). In this research field, most of techinques are derived from
scientific computing methods, such as FEM, but have different constraints and goals.

Scientific computing applications primarily focus on the reproduction of phenomena
with high accuracy rather than robustness, interactivity and performance [9]. In most
cases, users may change parameters, such as the time-step, and perform the simulation
until they achieve the desired stable results. Although fast simulations are valuable, the
cost of a solution is not as important as its quality. On the other hand, physics-based
animation is mainly concerned with visually appealing motion, interactivity, stability
and freedom of modeling regardless of realism [9]. Moreover, in real-time applications,
the simulation must be fast to fullfill high frame-rate requirements, and robust to avoid
unexpected artifacts (resulting from numerical instability). For example, a typical rate of
60 Hz in games leaves about 16 ms to the overall frame computation, including rendering
and physics. Thus, less than 10 ms remain to perform collision detection and dynamics
update.

Physics-based animation methods are frequently classified into two main categories:
fluid dynamics and solid dynamics [17]. Within solid dynamics, we may group objects as
follows:

� Rigid-bodies, whose shape is preserved throughout the motion, meaning that only
rotations and translations are allowed;

� Cloth, which are approximated to surfaces that have low reaction to bending and
torsion, but high resistance to stretching and shearing;

� Deformable objects, general elastic bodies whose shape is disturbed under stimuli.

As mentioned, we focus on deformable objects.

1.2 Deformable Object Simulation

A deformable object in three dimensions is often modeled by some continuous domain
contained in R3. During a deformation, each point of its domain is mapped to an arbitrary
point and, as result, forces act to minimize the so-called strain energy. The relationship
between stimuli (deformation) and response (forces and strain energy) is defined by
its elastic material model. Materials whose strain energy depends only on the current
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deformation are said to be hyperelastic. This class of materials is broadly investigated
because it is able to model a large variety of real-world elastic properties.

Computer simulations require that we choose both a discrete representation for the
deformable object domain and an elastic force model. Thus, we can apply Newton’s laws to
derive the governing differential equations of motion and use numerical integration to find
the solution. Perhaps the simplest approach for 3D-elasticity may be mass-spring systems,
where the domain is modeled as a group of particles connected by springs. However, this
model does not always achieve the desired response because its behavior depends strongly
on how the mesh is built [17]. For this reason, advanced approaches such as FEM are
based on the field of continuum mechanics, which provides highly accurate models for
elasticity.

Nonlinear FEM-based techniques are largely explored in computer graphics. In [23],
the authors presented VegaFEM, an open-source library that implements several nonlinear
material models and implicit integration methods. In practice, although all these classical
methods achieve high quality animation, they may be overly expensive for the available
computation time. The main reasons are: complex structures require detailed meshes
(that might have thousands of vertices); to guarantee stability, integrators must be implicit,
which requires solving high-order nonlinear systems at each time-step. Because of that,
many applications use alternative approaches such as Position-Based Dynamics (PBD)
[16].

PBD has been successfully implemented in game engines (e.g. PhysX) because of its
general constraint-based formulation. Yet it lacks the support for more advanced elastic
material models. Recently, based on PBD, Bouaziz et al. [8] proposed projective dynamics,
a novel real-time solver that uses a continuum mechanics approach to deal with basic
elastic models. Afterwards, Liu et al. [13] interpreted projective dynamics as a quasi-
Newton method and improved its convergence through line search and L-BFGS update [12].
This extended the support to general material models, such as the St. Venant-Kirchhoff,
Neo-Hookean, Mooney-Rivlin and the spline-based [26].

We implemented both projective dynamics with FEM potentials and the quasi-Newton
solver described above; we noticed that they are in fact robust, general and simple. But due
to the approximate energy gradients, their convergence is usually slow and, as consequence,
the output animation becomes damped and not as accurate as the original implicit
backward Euler integrator. Furthermore, their strain energy must be evaluted at each
solver iteration, which requires performing either polar or singular-value decomposition of
all tetrahedron deformation gradients.



1.3. PROPOSAL 14

1.3 Proposal

Inspired by dimensionality reduction, we propose a reduced quasi-Newton solver, a
new technique to accelerate the simulation of large meshes of hyperelastic materials.
In this work, we build a scheme that applies the concepts of model reduction [15] and
optimal cubature [1] to the quasi-Newton solver of projective dynamics under hyperelastic
constraints. Model reduction minimizes the time-step cost because it projects the state
of an object and its differential equation from the original high-dimensional space onto a
representative low-dimensional subspace. Optimal cubature increases the efficiency even
more by selecting a subset of the mesh elements whose projected reduced internal forces
best approximate the overall reduced force. Thus, all optimization steps become simpler
and easier to compute, with the trade-off of decreasing the animation quality.

Unlike methods such as the reduced implicit backward Euler and the reduced Newark,
our technique does not require computing specific reduced force models or stiffness matrices.
As it follows the quasi-Newton solver, only the energy function must be implemented
according to the material model. Therefore, our method speeds up the full solver while
preserving its simplicity and robustness. Although we do not investigate methods for basis
generation or cubature estimation, the quality of the proposed method is determined by
the precomputed basis and cubature.

1.4 Structure of the Thesis

This document is divided as follows. Chapter 2 introduces the underlying concepts
of physics-based animation, focused on deformable object simulation. Chapter 3 reviews
recent works in real-time simulation of hyperelastic materials, including classical and
projective methods; it also explains the standard quasi-Newton method [13] on which the
proposed method is built. In Chapter 4, we derive the proposed solver and provide a
high-level algorithm for it. Chapter 5 reports the experiments and analysis of the proposed
solver against the original quasi-Newton and the implicit backward Euler. In Chapter
6, we briefly present the benefits and limitations of our method, together with potential
improvements and future work.
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Chapter 2
Background

This chapter provides some of the basic concepts of real-time simulation of deformable
objects. It is intended to be only a starting point for those who have not been introduced
to this area; if you want to go further please consider studying the referenced works. We
start by formulating a general model for simulating particle systems. Then, we present an
overview of the elasticity theory from a continuum mechanics perspective. Afterwards, we
explain how to apply the Finite Element Method (FEM) to continuum mechanics models
to obtain a discrete system that we can integrate. Last, we describe the basic idea of how
model reduction can be successfully used to accelerate the time-step computation.

2.1 General Particle Systems

a. Formulation

Let S be a system of n particles in 3D space (Figure 2.1). Each particle Pi has a mass
mi and, at a given moment t, a position xi(t) ∈ R3 and velocity vi(t) ∈ R3. Between
any two particles Pi and Pj, there might be an internal force fi,j ∈ R3, such as elastic,
gravitational or even magnetic. Generally, internal forces are functions of the particle
positions and some of their derivatives. For example, while damping forces depend only
on the particle velocities, electric forces depend only on the positions. We model external
forces (e.g., user interaction forces) acting on Pi using a single term fext,i which is constant
within the time-step. Thus, the resulting force ftotal,i on Pi is:

ftotal,i = fext,i +
∑
j 6=i
fij

Notice that ftotal,i is a function of the configuration of all particles with which Pi interacts.
Let ∆t be the time-step duration. For the sake of simplification, we will use αk = α(k∆t)
as a variable α at the k-th time-step (in the context of simulation). Also, we will use the
notation x = x(t) and ẋ = dx(t)

dt
except when its meaning can not be implicitly inferred.

In order to represent the current configuration of S, we concatenate the positions of all
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Figure 2.1: System S with n particles. Each particle has a position xi(t) and velocity vi(t).
They may interact with each other through internal forces that are position-dependent.

particles vertically into a single vector x = (xT0 ,xT1 , ... xTn−1)T ∈ R3n. Similarly, the system
velocities are v = (vT0 ,vT1 , ... vTn−1)T ∈ R3n. Considering that the mass of each particle
is totally concentrated in its position, we can represent the system mass by a diagonal
matrix M = diag[m0,m1, ... mn−1] ∈ R3n×3n. Since hyperelastic forces are conservative,
we assume that the internal forces can be calculated from the positions alone. Then, the
total system forces become:

ftotal =


ftotal,0

ftotal,1
...

ftotal,n−1

 = fint(x) + fext(t)

Once the forces are defined, we apply Newton’s Second Law to find the differential equation
that describes the motion:

M ẍ = fint(x) + fext(t)
�� ��2.1

As most of forces do not depend linearly on the positions, this second-order Ordinary
Differential Equation (ODE) is often nonlinear as well. To make numerical integration
easier, we decouple it into two first-order ODEs:

v̇ = M−1 [fint(x) + fext(t)]

ẋ = v

�� ��2.2

The system is uniquely described by the positions and velocities, so we can write the state
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variable as z = (vT , xT ) and rewrite the governing equation as:

ż = G(z)
�� ��2.3

b. Integration

Given the boundary conditions, that is, the state variable z0 = z(0), the solution of
Eq. 2.3 gives us the system configuration over time. However, Eq. 2.3 is unlikely to have
an analytical solution; let us see how to use numerical integration methods to find its
discrete-time approximation. First, the exact solution is:

z(t) = z0 +
∫ t

0
ż(τ)dτ

�� ��2.4

whose integral term may not exist. As the simulation is performed, the states z(t) are
output at each time-step ∆t. Thus, we may rewrite the Eq. 2.4 in a recursive form:

z(t+ ∆t) = z(t)︸︷︷︸
previous state

+
∫ t+∆t

t
ż(τ)dτ︸ ︷︷ ︸

term to be approximated

�� ��2.5

There are several methods for approximating the above integral. Explicit integrators
extrapolate the function z(t) within the interval [t, t+∆t] using the states of previous frames
only. Implicit integrators do not extrapolate z(t); instead, they build an approximatation
scheme that leads to a nonlinear equation whose unknown is z(t + ∆t). Then, using
a numerical method, we solve for z(t + ∆t). Examples of explicit methods are explicit
Euler, Runge-Kutta and Verlet integration. Some of the well-known implicit methods are
implicit Euler and Newmark integration. For more information about them, please refer
to [9, 17, 4]. We will now look into the Euler’s methods, the simplest integrators.

Explicit Euler’s method. The basic idea is to approximate the time-derivative of
z(τ) to be constant within the integration interval and equal to the previous computed
derivative. That is, ż(τ) ≈ ż(t) for τ ∈ [t, t+ ∆t]. Thus, applying into Eq. 2.5, we obtain:

z(t+ ∆t) ≈ z(t) +
∫ t+∆t

t
ż(t)dτ = z(t) + ∆t ż(t)︸︷︷︸

G(z(t))

�� ��2.6

that can be written again with positions and velocities:
v(t+ ∆t) = v(t) + ∆tM−1 [fint(x(t)) + fext(t)]

x(t+ ∆t) = x(t) + ∆tv(t)

⇓
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v
k+1 = vk + ∆tM−1

[
fint(xk) + fkext

]
xk+1 = xk + ∆tvk

�� ��2.7

It is a simple direct computation from the previous frame state vk,xk.
Implicit Euler’s method. It is very similar to the explicit Euler’s method, but

avoids extrapolation by assuming that the derivative depends on the next time-step state:
ż(τ) ≈ ż(t+ ∆t) for τ ∈ [t, t+ ∆t]. This leads to:

z(t+ ∆t) ≈ z(t) + ∆t ż(t+ ∆t)︸ ︷︷ ︸
G(z(t+∆t))

= z(t) + ∆tG(z(t+ ∆t))

a nonlinear system where the unknown is z(t+ ∆t). Writing the equations separately, we
get: v

k+1 = vk + ∆tM−1
[
fint(xk+1) + fkext

]
xk+1 = xk + ∆tvk+1

�� ��2.8

We can apply the second equation into the first one to remove the dependency of xk+1:

vk+1 = vk + ∆tM−1
[
fint(xk + ∆tvk+1) + fkext

]
Mvk+1 −Mvk −∆t

[
fint(xk + ∆tvk+1) + fkext

]
= 0

F (vk+1) = 0
�� ��2.9

Since the internal forces are nonlinear functions of positions, we must use an iterative
numerical method such as Newton-Raphson to find the zero of F . To simplify the notation,
let v = vk+1 be the unknown. Given an initial guess v0 (which can be the previous frame
velocities), the iterations of the Newton-Raphson follow:

vl+1 = vl − [∇F (vl)]−1F (vl)
�� ��2.10

where ∇F (vl) is the Jacobian of F evaluated using the previous iteration velocities. Please
notice that previous iteration refers to the Newton’s method, not the previous time-step.
Eq. 2.10 is equivalent to the linear system below:

∇F (vl)(vl+1 − vl) = F (vl)
�� ��2.11

Taking the the gradient of F (vl):

∇F (vl) = M −∆t2∇fin(xk + ∆tvl)︸ ︷︷ ︸
K(vl)

⇒ ∇F (vl) = M −∆t2K(vl)
�� ��2.12

We must compute the derivativeK(vl) of the internal forces, also known as tangent stiffness
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matrix, to solve the linear system (Eq. 2.11) at every iteration. Even though K(vl) and M
are sparse matrices, solving this system multiple times per time-step is overly expensive.
Because of that, running only one or two Newton-Raphson iterations may already achieve
a good result depending on the time-step or other simulation parameters.

Although explicit methods are computationally cheap, they may not behavior correctly
during high-frequency motion or under energetic user inputs (explosions). Therefore, the
implicit methods are usually the best option for real-time dynamics, because even with
the drawback of cost and numerical damping, they are more stable and do not accumulate
energy [4].

2.2 Continuum Mechanics

So far, a general formulation for discrete systems was described but no specific force
model was discussed. In this section, we analyze the continuous hyperelasticity theory
in 3D to understand and use a more realistic force model for deformable objects. We
follow the course notes presented by Sifakis and Barbic [22] and recommend it for further
reading.

a. Deformation Map and Strain Energy

Suppose we want to simulate the dynamics of a deformable object. At its rest state,
namely reference configuration, the object is represented by a continuous domain Ω ⊂ R3.
When it is deformed, each point X of its domain, called material point, is brought to
another location. Thus, the deformation is modeled as a function φ : Ω → R3, known
as deformation map, that assigns a new position φ(X) to each domain point X (i.e., a
vector field over Ω). The deformation φ is imposed by an external agent or just induced by
previous elastic forces (i.e., an object may be forced to change its shape). It is a mechanical
stimulus that yields some response (forces). Perhaps an easy way to understand this theory
is to see motion as a time-dependent vector field over the fixed domain Ω. At time t, an
infinitesimal part of Ω is displaced to φ(X; t) (Figure 2.2).

The deformation map is able to handle all types of transformations, including rigid-
body transformations. For example, φ(X) = X + T is a translation of all points by a
displacement T ; φ(X) = sX scales all points with respect to the origin by a factor s. The
deformation map itself may not be a useful measure for calculating elastic forces, because
in most of cases, such as a simple translation, its values are non-zero even when there is
no shape change. Therefore, one important concept for developing elasticity models is
the deformation gradient. The deformation gradient F ∈ R3×3 is the second-order tensor
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Figure 2.2: Motion of a bouncing elastic ball. The material point X ∈ Ω is displaced to
locations x1 and x2 at t1 and t2, respectively. (a) Reference configuration (undeformed
shape). (b) Image of a deformation that horizontally stretches the object due to collision
forces. (c) Image of a deformation that vertically stretches the object as result of oscillation
caused by the collision.

derived from φ as follows:

F (X) = ∇φ(X) =



∂φx
∂x

∂φx
∂y

∂φx
∂z

∂φy
∂x

∂φy
∂y

∂φy
∂z

∂φz
∂x

∂φz
∂y

∂φz
∂z


�� ��2.13

which is the Jacobian of φ. As φ, F may vary all over the domain Ω (i.e., a tensor
field). In spite of not being able to handle the effects of rotations directly, the deformation
gradient is an underlying part of the projective dynamics-based methods that we will see
in the next chapter.

Another fundamental concept is strain energy, the energy associated to an elastic
deformation. In hyperelastic materials, the strain energy, here represented by g, depends
only on the current configuration of the object, which means that it is a potential energy. It
penalizes states that undergo intense shape change and is expected to be zero-valued when
the object is at its reference configuration. Since every point of the domain is mapped
to an arbitrary location, they may contribute to the total strain energy in different ways.
The local contribution is modeled by the energy density Ψ, the energy per unit of volume.
The energy density at a given point X ∈ Ω is invariant to translations, and is a function
of the deformation gradient only [22]. We then calculate the total energy as:

g{φ} =
∫

Ω
Ψ(F (X))dX

�� ��2.14
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b. Strain & Stress

Elastic forces are the response of an object to a given deformation towards the decrease
of potential energy. In general, the direct relationship between forces and deformation
may be too complex or not intuitive for modeling real-world materials. Thus, most of
material models use the concept of stress tensor as a force measure and strain tensor as
deformation measure. The constitutive laws then relate stress and strain by equations.

The 1st Piola-Kirchhoff stress tensor P ∈ R3×3 is a quantity from which we can
calculate the elastic forces acting both on the interior and on the surface of an object. By
definition, it is the derivative of the strain energy density with respect to the deformation
gradient:

P (F ) = ∂Ψ
∂F

�� ��2.15

From P (F ), the internal force density fden (per unit of undeformed volume) and the
surface traction τ (per unit of undeformed area) can be respectively computed by:

fden(X) = −∇X · P (F (X)) for X in the interior
�� ��2.16

τ (X) = −P (F (X)) ·N for X on the surface
�� ��2.17

where ∇X · is the divergence operator with respect to the positions and N is the outward
normal of the surface at X. Although there are other types of stress tensors, we will not
go further because the quasi-Newton methods do not require calculating specific strain
energy derivatives.

Strain tensors are quantities intended to describe the magnitude and properties of
deformations more accuretely. A fundamental model for strain is the green strain tensor
E ∈ R3×3, defined by:

E(F ) = 1
2(F TF − I)

�� ��2.18

a nonlinear function of F where I ∈ R3×3 is the identity matrix. While the deformation
gradient entries change under rigid-body rotations, E(F ) cancels the effect of orthogonal
transformations (this can be seen from polar decomposition of F ). Therefore, several
constitutive laws are built on the top of the green strain tensor. Another useful strain
model is the small strain tensor, which is calculated from the linear approximation of
E(F ):

ε(F ) = 1
2(F + F T )− I

�� ��2.19

It is only valid under small deformations, but due to its linearity, it fairly simplifies the
stress-strain relation of some materials.
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c. Materials

Important measures associated to deformations were defined above. Now, we will see a
few elasticity models widely used in graphics and engineering. Materials may be classified
into two categories: isotropic materials, whose properties are equal along any direction;
anisotropic materials, whose properties vary according to the direction. That is, the strain
energy of isotropic materials is rotation-invariant. In this work, we focus on the first group.

Linear elasticity. This is the simplest material model, in which the Piola stress
tensor depends linearly on the small strain tensor and, therefore, the deformation gradient.
Its constitutive law is defined by:

Ψ(ε) = µε : ε+ λ

2 tr
2(ε)

�� ��2.20

where µ, λ are the Lamé coefficients (related to Young’s modulus and Poisson’s Ratio) [22].
The operation a : b denotes the tensor product between a and b, the summation of the
element-wise multiplication of both tensors. This leads to:

P (F ) = µ(F + F T − 2I) + λtr(F − I)I
�� ��2.21

The linear dependency of forces on positions makes this material computationally cheap,
because any required derivatives are constant and can be precomputed. However, large
deformations are poorly represented by such model.

St. Venant-Kirchhoff. This model is very similar to linear elasticity, but uses the
Green strain tensor instead of the small strain tensor. Thus, the stress-strain relation
becomes nonlinear:

Ψ(E) = µE : E + λ

2 tr
2(E)

�� ��2.22

P (F ) = F (2µE + λtr(E)I)
�� ��2.23

One of the problems listed by [22] is its poor resistance to compressions, because the
restorative elastic forces reach a maximum value after certain threshold of deformation
along some axis. In practice, the consequence is that external forces may enforce the
material to invert unexpectedly.

Principal Stretches. Some isotropic materials such as the invertible St. Venant-
Kirchhoff and spline-based are described by orientation-independent energy functions. In
this case, the strain energy density is expressed in terms of the principal stretches, which
are singular values of the deformation gradient:

Ψ(F ) = Ψ(UΣV T︸ ︷︷ ︸
SVD

) = Ψ(Σ)
�� ��2.24
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where Σ = diag[σ1, σ2, σ3] is the diagonal matrix of principal stretches. The physical
meaning is that σ1, σ2, σ3 are the scales of the most representative deformation directions;
and directions make up an orthogonal basis specified by the columns of U . Therefore,
since the stretches are always defined with respect to this basis, Ψ becomes an orientation-
invariant formula from which we can easily detect and solve the inversion problem.

2.3 Finite Element Method

In the previous section, we described the theory of continuum mechanics for hypere-
lasticity. Its mathematical formulation yields a partial differential equation whose exact
solution is the ideal motion of the continuous object, that is, the displacement of each
material point over time. Nevertheless, the deformation map is a vector field that needs an
infinite number of functions to be fully described. In practice, we must use a discretization
scheme that allows us to accurately represent the object motion by a finite number of
functions or parameters. This achieved by the Finite Element Method (FEM).

In the FEM, the domain Ω is first discretized into small regions called elements, which
can be either tetrahedra or cubes (voxels). Then, variables such as the deformation map
and forces are approximated as piecewise functions whose values are measured at the
vertices and interpolated within the elements. This makes possible computing elastic forces
resulting from element deformations for a given configuration of vertices. This procedure
converts partial differential equations into ordinary differential equations that we can
integrate using the methods presented previously.

a. Volumetric Meshes

Figure 2.3: Meshes for the classic bunny model. On the left, a surface triangulation
typically used for rendering. On the right, a detailed tetrahedal mesh for discretizing
the enclosed domain in FEM-based techniques. JIGSAW (2017). An unstructured mesh
generator. [image] Available at: https://sites.google.com/site/dengwirda/jigsaw [Accessed
28 Oct. 2017].
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The set of vertices and elements originated from the discretization of Ω ∈ R3 is called
volumetric mesh. In this work, we deal with tetrahedral meshes only, which are the
equivalent to triangulations in 2D. Tetrahedral meshes are unstructured grids whose level
of detail can be tuned to achieve the desired accuracy. In computer graphics, we usually
have available 3D models that represent the surface of an object. However, to simulate
deformable objects, we must distribute vertices and elements over the enclosed volume, the
interior (Figure 2.3). There are several algorithms to construct tetrahedral meshes [20, 21].
Since this is not the scope of our research, we use the open-source library VegaFEM [23]
to generate such models.

Let n be the number of vertices and m be the number of elements in our mesh. Each
tetrahedron Ej is specified by four vertices: (Va, Vb, Vc, Vd) with 1 ≤ a, b, c, d ≤ n and a
vertex Vi may be shared by multiple tetrahedra. When we work with just one tetrahedron,
we may use local indices k = 0..3 to address its vertices. The mass distribution of
the object is defined by the matrix M ∈ R3n×3n which is diagonal if the masses are
concentrated at vertices (lumped mass). At reference configuration, the vertex Vi has a
position Xi; during a deformation, it is displaced to a new position xi. FEM approximates
the deformation map φ to a piecewise function divided into components φj that hold
within the corresponding element Ej. To avoid increasing the nonlinearity of equations,
most of authors use linear tetrahedral meshes, where φj is modeled as an independent
affine transformation with 12 degrees of freedom. Analyzing tetrahedra separately (Figure
2.4), we notice that deformations yield four point correspondences.

Figure 2.4: Deformation of tetrahedron Ej . (a) Rest shape. (b) Deformed shape.

With these four correspondences, the coefficients of the general affine transformation
φj(X) = AjX + b for all X ∈ Ej may be found and the gradient Fj = ∇φ = Aj may be
derived. Fj is essentially the matrix that transforms the three directed outgoing edges of
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a reference vertex to their deformed configuration. Thus,

Fj
[
(X1 −X0) (X2 −X0) (X3 −X0)

]
︸ ︷︷ ︸

Dm,j (constant)

=
[
(x1 − x0) (x2 − x0) (x3 − x0)

]
︸ ︷︷ ︸

Ds,j (variable)

⇓

Fj = Ds,jD
−1
m,j

�� ��2.25

where Ds,j depends on the current deformed shape and D−1
m,j is constant matrix that we

can precompute.

b. Elastic Forces

Recall that the strain energy density Ψ is a function of the deformation gradient only.
Therefore, in linear tetrahedral meshes, Ψ becomes a constant within each element Ej.
Let Ψj(Fj) be the strain energy density of Ej. Then, we may simplify the total energy
(Eq. 2.15) of a single tetrahedron to:

gj = g{φj} =
∫
Ej

Ψ(Fj)dX = Ψj(Fj)vol(Ej)
�� ��2.26

where vol(Ej) denotes the volume of Ej at rest shape. A tetrahedron can be interpreted
as a hyper-spring, because it exerts elastic forces on all its vertices to different directions.
Applying the conservation law of the total energy, we can calculate these forces from the
spatial derivative of the potential energy gj [22]. Thus, this yields a closed-form expression
for the contribution of Ej to the elastic forces:

Hj =
[
f0 f1 f2

]
= −vol(Ej)P (F )D−Tm,j

�� ��2.27

where f0,f1,f2 are the forces acting on the first three vertices of Ej. The force on the
last vertex is just f3 = −(f0 + f1 + f2). Notice that P (F ) = ∂Ψ(F )/∂X is determined
by the corresponding constitutive law (Section 2.2 c.).

c. Governing Equations

At this point, we have formulated the discretization of deformation measures and
elastic force models for linear tetrahedral meshes. Meshes can be seen as discrete systems
where particles are vertices and the internal forces arise from the contribution of individual
elements. Therefore, similarly to Eq. 2.1, we may write down a differential equation that
describes the overall system motion from Newton’s second law. Instead of the actual
vertex positions x = φ(X), most of authors use the vector of displacements u = x−X
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as the unknown (e.g., u = 0 indicates reference configuration). This yields:

M ü = fint(u)
�� ��2.28

We integrate the above equation using the methods presented in Section 2.1 b. In fact, this
procedure is analogous to what was described, but most of force models are higly nonlinear,
which makes the equations to me more complex. Furthermore, implicit integration envolves
calculating force differentials, an expensive computation for real-time simulation. For more
information on FEM and also damping models, please refer to [22].

2.4 Model Reduction

Model reduction for simulating general dynamic systems [15] is a classical technique
which substantially simplifies the time-step computation by projecting the original high-
dimensional space of solutions to a precomputed low-dimensional subspace. As a result
of this projection, the simulation loses local details of elasticity and dynamics because
the configurations tend to follow displacements with the smallest increase of energy.
Nonetheless, the computation in reduced space becomes less expensive and proper for
real-time applications, as the reduction usually decreases the number of degrees of freedom
hundreds of times.

In deformable object simulation, this subspace is defined by the column-space of a
basis matrix U ∈ IR3n×r, where each one of the r columns represents a mode of vibration.
The vector of displacements in full-space u ∈ IR3n can then be calculated as a linear
combination of all modes, which is described by u = Uz, where z ∈ IRr is the vector of
reduced coordinates. Also, notice that at rest configuration x0 in full space, the reduced
coordinates are just z = 0. For more details on how to generate the basis or how model
reduction works, please refer to [6]. This is the last concept needed for understanding the
most recent works and the presented method.
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Chapter 3
Related Work

In this chapter, we group techniques for real-time simulation of deformable objects
into two branches: classical methods and projective methods. While classical methods
numerically integrate the governing differential equations of motion to compute the next
time-step state, projective methods minimize an objective function that properly models
constraints and potential energies. The work presented here belongs to the latter group,
which may be considered a less conservative approach.

3.1 Classical Methods

Several State-of-Art techniques for simulating deformable bodies are based on the
classical implicit backward Euler integrator [5]. As seen previously, the most fundamental
step of this method is a nonlinear system solve, which is computationally expensive because
the system matrix changes at every iteration. Thus, one typically runs the Newton’s
method for just one iteration. The implicit Euler is able to simulate any object given the
constitutive law of its material; that is, the strain energy, the elastic forces and the spatial
derivative of elastic forces (tangent stiffness matrix). VegaFEM [23] is an open-source
library that implements a large variety of material models that can be used with different
integrators, including the implicit Euler and the implicit Newmark [18].

Although these classical integrators are accurate, they may be costly for the available
computation time in real-time applications. Therefore, early works investigated model
reduction to decrease the differential equation order [19, 11]. In 2005, Barbič et al.
[7] proposed an efficient technique for integrating StVK deformable objects in a low-
dimensional subspace, where the elastic forces are shown to be cubic polynomials. This
work also introduced modal derivatives, a new algorithm for generating bases for such
subspaces. Within the scope of model reduction, An et al. presented in the optimal
cubature [1], which accelerates the subspace integration by approximating reduced forces
using a small subset of the mesh elements. Later, further algorithms were developed to
construct cubatures faster [25]. Reduced methods run at high frame-rates, but with a
significant loss in animation quality.
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3.2 Projective Methods

In 2007, Müller et al. proposed in [16] Position-Based Dynamics (PBD), a totally
different way of integrating general systems. This cheap technique allows us to simulate
particle systems with custom constraints while achieving a real-time performance. It does
not use velocities directly and may be easily coupled with collision detection. Martin et
al. went further and formulated a technique to simulate objects from examples using a
projective approach [14]. Other authors develop methods to address the numerical damping
problem present in traditional integrators by imposing energy conservation [10, 24].

More recently, Bouaziz et al. [8] presented a novel solver called Projective Dynamics
(PD), which generalizes the PBD constraints to potential energies. This approach is able
to model not only several types of forces and constraints at once, but also nonlinear
elasticity of volumetric tetrahedral meshes. Though its formulation is robust and general,
the objective energy is limited to quadratic expressions. For this reason, Liu et al. built a
quasi-Newton solver that minimizes arbritary elastic energies to support more material
models [13]. Its formulation is similar to PD, but additional steps are added to accelerate
the convergence. As needed to derive our method, we will provide an overview of this
quasi-Newton method in the next section.

3.3 Quasi-Newton Solver

Notation. Let n be the number of vertices and m be the number of tetrahedra in
the object mesh. Let h be the time-step duration. The vertices at rest configuration
are represented by the vector x0 ∈ IR3n and the mass is distributed according to the
positive-definite matrix M ∈ IR3n×3n, which is diagonal when the mass is lumped. At
time-step t = l, the state of this object is described by a vector of vertex positions x(l) and
its velocity ẋ(l). At iteration k, the variables will be specified with the subscript k, such
as xk. The vector of displacements is generically defined as u = x− x0. Even though x,
y and z coordinates can be easily decoupled for a faster system solve, we write them down
in the 3n× 1 form for clarity of equations.

Quasi-Newton Solver. This section is an overview of the solver proposed in [13],
which extends the projective dynamics technique to handle more general hyperelastic
materials. As a quasi-Newton method, it is computationally cheaper than the original
Newton’s method because it does not require the Hessian evaluation at every iteration and,
therefore, does not add a significant overhead of computation to the original projective
dynamics optimization. The main idea is to find the next time-step state by minimizing the
energy function g(x). It deals with different constitutive models of materials by including
in g(x) an inertia term and an elasticity term E(x), which is a sum of all individual
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tetrahedron elastic energies Ei(x):

g(x) = 1
2h2 (x− y)T M (x− y)︸ ︷︷ ︸

Inertial Energy

+
m∑
i=1

wiEi(x)︸ ︷︷ ︸
Elasticity EnergyE(x)

�� ��3.1

where wi are weights proportional to the tetrahedra volumes and stiffness, and the constant
y ∈ IR3n is the current time-step prediction of the state based only on inertia and external
forces. It is evaluated using the previous time-step data and current external forces f (l)

ext,

y(l) = x(l−1) + hẋ(l−1) + h2M−1f
(l)
ext

�� ��3.2

For isotropic materials (independent of orientation), the energy density Ψi can be
written as function of the principal stretches of the tetrahedron i, which are the singular
values of the deformation gradient Fi ∈ IR3×3 [22]. Assuming that each element is linear
and therefore the deformation gradient Fi is constant within it, the energy per element is
just Ei(x) = ViΨi(σi), where Vi is the tetrahedron volume at rest pose and σi ∈ IR3 is the
vector of principal stretches.

The algorithm searches for xopt = argmin
x

g(x), which is equivalent to finding the
solution for ∇g(x) = 0. This method is iterative and usually takes about 10 to 20 iterations
to reach the minimum. At iteration k, the state is updated towards the descent direction
d(x) computed by the Limited BFGS algorithm (L-BFGS) [12] followed by a line search
[3]. L-BFGS is a method to find d(x) by updating the Hessian matrix approximation
A ≈ ∇2g(x) according to curvature data from previous iterations without building it in
memory. Because of its improved descent direction, the convergence is accelerated even
for large deformations. The simulation starts with the solution of A0 d(x) = −∇g(x),
where A0 is the initial Hessian approximation whose Cholesky decomposition can be
precomputed (positive-definite matrix). Afterwards, x and ∇g(x) from the m previous
iterations are used to correct d(x) as it was the solution of Ak d(x) = −∇g(x), where
Ak ≈ ∇2g(xk) [12].

In order to compute the gradient of the strain energy in each tetrahedron, projective
dynamics requires auxiliary variables pi ∈ IR9 for i = 1..m that correspond to the
local projection of the deformation gradient Fi onto the zero strain energy manifold.
Mathematically, pi represents the entries of the closest orthogonal matrix Ri to Fi, which
can be obtained through polar decomposition or Singular-Value Decomposition (SVD).
All projective variables can be combined together into a 9m-dimensional vector p. Let
Gi ∈ IR9×12 be the gradient operator which maps the displacements of a single tetrahedron
ui ∈ IR12 to a 9-vector whose elements are entries of the gradient Fi. Also, according to
the volumetric mesh topology, for each tetrahedron i, we can define two selector matrices
Ci (12× 3n) and Di (9× 9m) that map u into ui and p into pi, respectively. Thus, we
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obtain
∇g(x) = 1

h2M(x− y) + Lx− Jp
�� ��3.3

where L = ∑m
i=1wiC

T
i G

T
i GiCi and J = ∑m

i=1 wiC
T
i G

T
i Di are constant sparse matrices.

Once the gradient is evaluated, L-BFGS is called to return d(x). Projective dynamics
defines the system matrix as

A0 = ( 1
h2M + L) ≈ ∇2g(x0),

�� ��3.4

which reasonably approximates the initial Hessian matrix.
One of the most important contributions of [13] is to use a line search as a way to

handle complex nonlinear materials, such as spline-based [27], St. Venant-Kirchoff and
Neo-Hookean [22], avoiding energy accumulation. This is necessary because taking the
full descent direction does not always lead to the minimal energy state for any type of
material. So, the algorithm finds αopt such that min

α
g(xk−1 + αd(xk)) for α ∈ [0, 1] and

then updates xk = xk−1 + αoptd(xk). However, for complex meshes (large m), the energy
evaluation becomes a time-consuming part of the solver, since it has to perform SVD of
all m deformation gradients at line search iteration. Notice that this quasi-Newton solver
minimizes the ground-truth nonlinear elastic energy but uses the projective dynamics
approximate gradient to perform the optimization.
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Chapter 4
Reduced Quasi-Newton Solver

In this chapter, we will develop the reduced quasi-Newton solver. We build this method
by applying model reduction and cubature techniques on the original quasi-Newton solver
presented in the previous section. To simplify notation, the quasi-Newton solver will
be called full-solver and the reduced quasi-Newton will be called reduced-solver. Unlike
classical methods of integration, these iterative techniques are formulated as an optimization
problem whose solution is the next time-step state. Therefore, we first derive the reduced
expressions – initial guess, energy (cost function), forces (gradient) and system matrix
(Hessian). Secondly, we show how to construct a cubature subset using the combinatorial
optimization method proposed in [2] with the projective dynamics force model. In the last
section, we provide the complete algorithm for our reduced solver and explain its behavior.

4.1 Derivation

For the sake of consistency, we will keep the notation used in the Section 3.3. Since
this work is not concerned with basis generation, we assume that the modal matrix
U ∈ R3n×r with r modes is computed in advance through modal derivatives [7] and has
been mass-orthonormalized, which yields M̃ = UTMU = I. An implementation of modal
derivatives is also available on VegaFEM [23]. After the projection, the state variable and
the velocity become z, ż ∈ Rr respectively, where r is the number of modes of vibration.
Except for the displacements, we express variables in reduced space with a tilde, such as g̃
(the reduced energy).

Reduced Initial Guess. The first step of an optimization algorithm is the initial
estimation of the unknown variable. In projective dynamics, the prediction yl ∈ IR3n is
dependent on the previous step state x(l−1), ẋ(l−1) and the current external forces f lext.
The reduced initial guess can be obtained by left-multiplying Eq. 3.2 by UTM and writing
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the full variables as a function of the reduced variables:

UTM yl︸︷︷︸
U ỹl+x0

= UTM x(l−1)︸ ︷︷ ︸
Uz(l−1)+x0

+hUTM ẋ(l−1)︸ ︷︷ ︸
U ż(l−1)

+h2UTf
(l)
ext

UTMU ỹl + UTMx0 = UTMUz(l−1) + UTMx0 + hUTMU ż(l−1) + h2UTf
(l)
ext

⇓ simplifying UTMU = I

ỹl = z(l−1) + hż(l−1)︸ ︷︷ ︸
Inertia term

+ h2UTf l
ext︸ ︷︷ ︸

External forces term

�� ��4.1

For simplicity, ỹl will be written as ỹ in the following equations.
Reduced Energy. As seen in the previous section, for a given state x ∈ IR3n, the

full-solver energy is a function g(x) (Eq. 3.1). In the reduced-solver, we want to find g̃(z)
for a given z. Thus, applying x = Uz + x0 into Eq. 3.1, the objective function can be
derived as:

g̃(z) = g(Uz + x0)

= 1
2h2 (Uz − U ỹ)TM(Uz − U ỹ) +

m∑
i=1

wiEi(Uz + x0)

= 1
2h2 (z − ỹ)T UTMU︸ ︷︷ ︸

I

(z − ỹ) +
m∑
i=1

wiEi(Uz + x0)

= 1
2h2‖z − ỹ‖

2 +
m∑
i=1

wi Ei(Uz + x0)︸ ︷︷ ︸
isotropy: ViΨ(σi)

�� ��4.2

Reduced Gradient. At each solver iteration, the reduced gradient is evaluated by
projecting the full gradient (Eq. 3.3) down onto the basis:

∇g̃(z) = UT∇g(Uz + x0)

= UT
[ 1
h2M(Uz − U ỹ) + LUz + Lx0 − Jp

]
= 1
h2 U

TMU︸ ︷︷ ︸
I

(z − ỹ) + UT (LUz − Jp)

= 1
h2 (z − ỹ) + (UTLU)︸ ︷︷ ︸

constant

z − (UTJ)︸ ︷︷ ︸
constant

p+ UTLx0︸ ︷︷ ︸
constant

�� ��4.3

Reduced L-BFGS and Line Search. Similarly to the full-solver, L-BFGS algorithm
will compute a reduced descent direction by using m previous solver iterations. The core
idea is to initialize this direction by solving a linear system with the initial reduced Hessian
approximation Ã0 ∈ IRr×r before the update using previous data.

Ã0 = UTA0U =⇒ d(zk) = −Ã−1
0 ∇g̃(zk)

�� ��4.4
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If the dense inverse Ã−1
0 is precomputed, the above linear system solve becomes a

simple matrix multiplication. Notice that in reduced space all the steps (except for the
system solve) are just O(r), which makes L-BFGS a small fraction of the overall time-step
computation (approximately 2%, according to the experiments).

The reduced line search iterations proceed in the same way as in the full solver, but
whenever the straing energy is evaluated, the state x in full coordinates has to be retrieved
by x = Uz + x0 to compute the principal stretches σi.

4.2 Optimal Cubature

So far, we defined a solver that searches for the new state in a subspace, but if compared
to model deduction on the classic implicit backward Euler method, it does not speed up
the time-step computation considerably. Although its descent direction computation is fast
(using the reduced L-BFGS), it turns out that the gradient and energy computations are
still the bottleneck of the entire optimization because they require assembling the vertices,
performing the SVD decomposition of all tetrahedra and also large matrices multiplication.
Therefore, to avoid this heavy computation, we use the idea of optimal cubature conceived
in [2] and the training algorithm developed in [25]. In reduced FEM, optimal cubature is
the limited-size subset S of the set E of tetrahedra such that the total reduced internal
forces F̃total can be best approximated as a linear combination of the reduced internal
forces generated by each individual element. In other words,

F̃total(Uz) =
∑
i∈E
f̃i(Uz) ≈

∑
i∈S

αif̃i(Uz)
�� ��4.5

where αi is the optimal weight of the i-th tetrahedron computed by the training algorithm.
As cubature exploits the correlation between single tetrahedron forces when projected
onto the basis, we can extend this idea to more general functions (after they are projected
onto the subspace), such as the term L(Uz)− Jp in the reduced gradient (Eq. 4.3) and
also the strain energy (Eq. 4.2). For our solver, we train the data set to approximate the
internal force model of the gradient (the elasticity term). Once we find the optimal subset
S, we perform SVD on the selected deformation gradients Fi ∀i ∈ S instead of all of them.
At this point, we assume that S and the corresponding set of weights W = {αi}, ∀i ∈ S
are known and precomputed (using the above methods). Then, we can rewrite the reduced
equations for the energy as:

g̃(z) = 1
2h2‖z − ỹ‖

2 +
∑
i∈S

αiwiEi(Uz + x0)
�� ��4.6

Note that the state x = Uz+x0 no longer needs be fully calculated; only the cubature
vertices i ∈ S, that is, the dot product between each row i of U and z. Recall p is a
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9m-dimensional vector whose blocks of 9 entries correspond to the rotation matrix elements
of each tetrahedron. Then, by using cubature, only 9 ∗ |S| elements of p are required
to be computed. This is efficiently done in parallel as well as the sparse UTJp product.
Additionally, we also precompute the dense matrix UTLU using the cubature elements
only. Let Ji = wiC

T
i G

T
i Di. Thus, the reduced gradient is computed as:

∇g̃(z) = 1
h2 (z − ỹ) + (UTLU)︸ ︷︷ ︸

r×r

z −
∑
i∈S

αi (UTJi)︸ ︷︷ ︸
r×9

pi + UTLx0︸ ︷︷ ︸
r×1

.
�� ��4.7

Since all terms are now in reduced space, the gradient evaluation becomes a cheap part of
the technique.

4.3 Algorithm

Data: cubature S and basis U
input : previous time-step state z(l−1), ż(l−1) and current external forces f lext
output : current time-step state zl, żl

1 z0 = ỹ = ComputeInitialGuess(z(l−1), ż(l−1), f lext) // Eq. 4.1
2 xS = AssembleCubatureVertices(z0)
3 g̃(z0),pS = EvaluateObjectiveEnergy(z0, ỹ, xS) // Eq. 4.6
4 for k = 1..N do
5 ∇g̃(zk) = ComputeGradient(zk−1, pS) // Eq. 4.7
6 dzk = L-BFGS(∇g̃(zk−1), Ã−1

0 )
7 α = 2
8 repeat
9 α = α/2

10 zk = zk−1 + αdzk

11 xS = AssembleCubatureVertices(zk)
12 g̃(zk),pS = EvaluateObjectiveEnergy(zk, ỹ, xS) // Eq. 4.6
13 // Armijo Condition

14 until g̃(zk) ≤ g̃(zk−1) + γα(∇g(zk−1))Tdzk;
15 end
16 zl = zN , żl = (zl − zl−1)/h

Algorithm 1: Reduced quasi-Newton solver
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The solver takes the previous frame (time-step) data as input and returns the current
frame data. We write only the most essential functions and variables in the Algorithm 1
to keep notation simple. Although the optimization is done in reduced space, assembling
the full state xl = Uzl + x0 at the end is needed whenever the volumetric mesh must be
updated. Partially assembled variables such as xS ∈ R3n and pS ∈ R9m are sparse vectors
that contain only the cubature data; the remaining entries are zero.

Our reduced quasi-Newton solver works as follows:

� Line 1. Direct reduced initial guess computation from Eq. 4.1.

� Lines 2-3. Two steps for initial energy evaluation. First, assemble cubature vertices
only (xS). Then, build cubature deformation gradients and decompose them to find
projective variables pS. Depending on the elastic model, extracting the principal
stretches of the deformation gradients may be required to calculate the energy. In
this case, SVD is recommended because it provides not only the stretches but also
the projective variables. With the computed data, evaluate objective function from
Eq. 4.6.

� Lines 5-6. Descent direction computation using projective variables. The first line is
the basic gradient evaluation (Eq. 4.7) with several constant terms. As mentioned,
L-BFGS corrects the direction as if the Hessian matrix is updated for the current
vertex positions. For more details on how L-BFGS works, please refer to [13].

� Lines 8-14. Reduced line search with Armijo condition [3], which searches for α
that minimizes the objective function along the descent direction. At each line
search iteration, to evaluate the energy, we need recompute the projective variables
or even the principal stretches for cubature elements. This is similar to lines 2-3.

� Line 16. At the end, the velocities are updated and variables are output.

This algorithm may be parallelized in several steps: partial or complete assembly
of vertices, gradient evaluation, deformation gradient calculation and decomposition.
However, due to the line search, both reduced and full quasi-Newton methods rely
heavily on energy evaluation, which is performed multiple times per time-step. In fact,
line search is the bottleneck of the entire algorithm. While larger cubature subsets
approximate projective dynamics elastic forces more accurately, they certainly make the
energy evaluation expensive as more deformation gradients must be decomposed. Yet, it is
also very favorable to GPU implementations (typically, over 100 simultaneous SVDs may
be executed at once). For these reasons, the basis size r has small impact on the overall
computational cost of CPU implementations.
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Chapter 5
Experiments and Results

5.1 Experiments

In this chapter, we compare the implicit backward Euler, the quasi-Newton and the
reduced quasi-Newton methods. We perform a series of experiments on meshes with different
materials and geometries, and record the simulation data such as deformations, kinetic
energy, average frame rate and performance profile. External forces are pre-recorded to feed
600-frame animations that run the different solvers under the same conditions (time-step,
material, fixed vertices). Then, we analyze the behavior and features of the three methods
against the ground-truth, which is generated by running the implicit backward Euler 5−10
sub-steps per time-step (i.e., executed at a higher sample-rate).

To assess the methods, we use three tetrahedral meshes (Figure 5.1): Letter A model
with 575 vertices and 2, 144 elements, Bridge with 4, 000 vertices and 12, 827 elements, and
Dragon with 46, 736 vertices and 160, 553 elements (all available online). Also, two material
models are examined: invertible St. Venant-Kirchoff material (StVK) and Projective
Dynamics material (PD). Due to the limited time for this research, we did not explore
more materials and models; but for a given combination of material and mesh, we cover a
large variety of dynamics by performing sets of 3 experiments including high-amplitude
jerk, high-frequency vibration, large stretching, and strong inversion.

In this research, we implemented both quasi-Newton solvers, but we use the implicit
backward Euler available on VegaFEM [23]. All the implementations are done in CPU
(C++) and run on a MacBook Pro with Intel i5 2.7GHz processor, Intel Iris Graphics
6100 (1536 MB) and 8GB-DDR3 memory (1867 MHz). Several steps of all methods may
be parallelized in different ways, that is, with different number of threads; empirically, we
choose the multi-threading parameters that best decrease the per-frame computation time.

Finding metrics for evaluating a new physics-based animation method may be a difficult
task, because even standard error measures such as the per-vertex distance might not
indicate how realistic or plausible the output animation is for humans. Therefore, we first
assess the trade-off between animation quality and computational cost in all solvers using
a qualitative approach with the ground-truth as reference. Then, in the latter section, we
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Figure 5.1: Tetrahedral meshes at reference configuration. On the top-left corner, the
Letter A model (small). On the top-right corner, the Dragon model (large). On the
bottom, the Bridge model (medium size).

analyze the numerical damping over the experiments from the kinect energy data.

5.2 Performance vs. Animation Quality

In the Letter A model experiments, we use time-step h = 10−3s. While the full solver
converges with 10 iterations, our reduced solver needs 20, otherwise it becomes unstable.
We try model reduction with two cubature sets, one with 60 tetrahedra and the other with
120. Similarly, we simulate the Bridge model with h = 10−3s, 10 full iterations, 20 reduced
iterations and two cubature sets with 50 and 100 elements. Due to different elastic and
geometrical properties, the Dragon is simulated with h = 1

30s and 10 iterations for both
quasi-Newton methods. Also, we use two cubature sets with 60 and 120 elements. In all
cases, we run only one iteration of the implicit backward Euler method.

Table 5.1 shows the average computational cost per solver iteration in each 600-frame
long experiment for different solvers and material models. In our reduced method, we do
not take into account the full vertices assembly x = Uz + x0 that updates the deformable
mesh, because it is a rendering issue which may be solved directly on GPU. Vega [23]
provides a class that performs this heavy matrix multiplication directly on the fragment
shader, though our research prototype does not use it (check SceneObjectReducedGPU).

From the invertible StVK data, we see that the reduced solver with a small cubature
size achieves an average simulation frame-rate of 124Hz for the Letter A model, 141Hz
for the Bridge and 142Hz for the Dragon, against 24.09Hz, 4.54Hz and 0.34Hz of the
full solver (respectively). The reduced solver frame-rate is roughly constant because the
sizes of the basis and the cubature are preserved. Thus, if we compare to the standard
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PD Material per-iteration time
model exp. full red. (small cub.) red. (large cub.)
A 1 1.68 ms 0.21 ms 0.42 ms
A 2 1.60 ms 0.21 ms 0.39 ms
A 3 1.61 ms 0.22 ms 0.40 ms
Bridge 1 10.64 ms 0.17 ms 0.37 ms
Bridge 2 10.67 ms 0.17 ms 0.35 ms
Bridge 3 10.74 ms 0.18 ms 0.37 ms
Bridge 4 11.01 ms 0.18 ms 0.38 ms
Dragon 1 141.87 ms 0.58 ms 0.92 ms
Dragon 2 138.72 ms 0.55 ms 0.84 ms
Dragon 3 133.64 ms 0.48 ms 0.82 ms

Inv. StVK per-iteration time
model exp. Euler full red. (small cub.) red. (large cub.)
A 1 15.03 ms 4.57 ms 0.41 ms 0.80 ms
A 2 14.67 ms 3.73 ms 0.37 ms 0.81 ms
A 3 14.72 ms 4.25 ms 0.43 ms 0.79 ms
Bridge 1 91.92 ms 23.12 ms 0.42 ms 0.70 ms
Bridge 2 92.18 ms 20.80 ms 0.33 ms 0.64 ms
Bridge 3 91.93 ms 21.87 ms 0.32 ms 0.67 ms
Bridge 4 92.55 ms 22.56 ms 0.35 ms 0.75 ms
Dragon 1 1698.66 ms 298.81 ms 0.74 ms 1.27 ms
Dragon 2 1668.06 ms 291.61 ms 0.71 ms 1.34 ms
Dragon 3 1680.05 ms 293.32 ms 0.67 ms 1.19 ms

Table 5.1: Average per-iteration computation time in different solvers. Euler stands
for one implicit backward Euler iteration, which is not available for PD materials. Full
and red. correspond to the full and reduced quasi-Newton solvers, respectively. The size
of small and large cubatures vary in different models. As the mesh size increases, the
methods in full space become highly expensive, while our reduced solver keeps roughly
the same cost. This happens because regardless of mesh, we always use a low size basis
(r = 20 or r = 40) and the same cubature sizes. As expected, by doubling the cubature
size, the average cost of the full solver increases accordingly.

full solver, the reduced simulation of larger meshes might be accelerated up to hundred
times (e.g, the Dragon becomes 417 times faster). Yet, one important drawback of both
quasi-Newton methods is that the frame-rate is not stable, mainly because the number of
line search iterations may change under different conditions (i.e., it increases whenever
true energy gradient becomes poorly approximated by the PD gradient).

Regarding quality and realism, although the reduced solver output is generally less
locally detailed than the full solver output, their overall motion is similar. Notwithstanding,
the reduced simulation can be inaccurate in a few cases. For example, our solver is not
able to handle the strong inversion of the Letter A in Experiment 3. Also, its oscillation
frequency may be lower than the frequency in the other methods. Analyzing all solvers,
we notice that both quasi-Newton methods are not as vivid and natural as the implicit
backward Euler, but they are less expensive and clearly more robust. Figure 5.2 depicts a
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sample frame of the first Letter A experiment, where artifacts occur in the implicit Euler
animation, while the other methods remain stable, but with low amplitude motion.

Figure 5.2: Letter A model, Experiment 1 (StVK), frame 155 (time-step h = 10−3s).
From the left to the right, the images depict the ground-truth, the implicit Euler, the
full and reduced quasi-Newton, respectively. The ground-truth output animation (green)
is more vivid and more locally detailed. However, we notice that the classical implicit
integrator (in blue) becomes unstable (explosion). Furthermore, the motion of the quasi-
Newton methods is similar, but with a higher damping and smaller deformation amplitudes.

The advantages of the reduced quasi-Newton method arise when simulating the Bridge
and the Dragon. In Figure 5.3, we show a comparative sequence of frames sampled from
both quasi-Newton methods running the first dragon experiment. The reduced solver
allows us to simulate large deformable objects in real-time even with a CPU implementation
only, achieving qualitatively similar results. Therefore, one may say that the loss in visual
quality is small for such gain in performance, which the makes trade-off between motion
quality and cost balanced. One of its limitations is certainly the required precomputation
of a basis and cubature, but in applications such as games, the reduced simulation may be
the only approach to fulfill the high frame-rate constraints.

5.3 Numerical Damping Analysis

Given the system velocities v ∈ R3n in full-space and the mass-matrix M ∈ R3n×3n, we
may calculate the total kinetic energy by Ek = 1

2v
TMv. External forces exerted on the

system vertices increase the strain energy; then, the total energy oscillates between strain
and kinetic energy. Ideally, without a specific model for damping, no energy loss should
be expected when simulating hyperelastic materials. However, some solvers introduce
numerical damping as consequence of the approximation error, which ceases the system
motion after a certain time. By measuring the kinetic energy over the animation frames,
we can compare the influence of damping in all solvers. Important behaviors to consider
are the instability and potential explosions, which lead to sudden peaks of energy even
when no stimuli is caused. Apart from these cases, a low rate of kinetic energy loss is a
good feature, because it suggests that the method has a low numerical damping.

Since the implicit backward Euler method does not handle projective dynamics materi-
als, we analyze the experiments with invertible StVK materials only. For each 600-frame
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Figure 5.3: Dragon model, Experiment 1 (StVK), frames 189, 196, 204 (time-step
h = 1

30 s). This vertical sequence of images shows how the full solver (in black, on the left)
and the reduced solver (in red, on the right) react to a long impulse on the dragon’s head.
The animations are similar, but our reduced solver (with small cubature) runs about 402
times faster than the standard quasi-Newton.
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simulation, we plot the total kinect energy of the system as computed by different solvers
under the same input forces. In both quasi-Newton methods, we choose the number of
iterations that makes the solver to converge. In our experiments, the full solver required
10 iterations, while the reduced solver required 10 iterations for the Dragon model and 20
for the other models.

Figure 5.4 shows the kinetic energy during a typical response of the Bridge model
to pulling forces in part of the Experiment 3. According to the generated plot, we see
that the implicit backward Euler with one iteration achieves the lowest damping, followed
by the full solver and then the reduced solver. This is repeatedly observed throughout
the experiments. Indeed both quasi-Newton methods have similar behaviors due to their
descent direction scheme. However, approximate reduced forces may increase the energy
loss because of the cubature error.
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Figure 5.4: Plot of the total kinect energy under constant upwards pulling forces on the
bridge mesh (Experiment 3, frames 82-228). Curves are ordered from the largest energy
(top) to the smallest (bottom). The oscillation in both quasi-Newton methods loses the
amplitude more quickly than in the implicit backward Euler. The output motion of the
reduced solver is similar to the full solver, but the oscillation frequency is lower.

In general, every peak on the kinetic energy curve is followed by a local minimum,
which indicates the state of maximum deformation amplitude (largest stretching). Perhaps,
a good way to visualize the effects of damping is by plotting the peaks of energy (Figures
5.5, 5.6 and 5.7). In all plots, the curves are always ordered from the less damped motion
to the most damped. Notice that the ground-truth curve (in green) presents several ripples
in its peaks because of its energetic motion (Figure 5.7). As in the example above, the
energy curves of our reduced technique are always close to the full quasi-Newton curves.
The implicit Euler does not perform well in Letter A experiments as consequence of its
instability (after explosions, the motion becomes incoherent with the ground-truth). In
the following experiments though, it mostly outperforms the quasi-Newton methods in
terms of damping.
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Figure 5.5: Plot of kinetic energy peaks in Letter A model experiments. In Experiment
1, the tall peak of energy in blue around frame 150 occurs due to the explosion in the
implicit Euler animation.
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Figure 5.6: Plot of kinetic energy peaks in Dragon model experiments.
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Figure 5.7: Plot of kinetic energy peaks in Bridge model experiments. Notice how the
ground-truth motion is energetic. Though all methods do not approximate it well, they
have close curves.
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Chapter 6
Conclusion

In this work, we proposed a new method for deformable object simulation in low-
dimensional spaces. The presented solver allows simulating in real-time large meshes that
were too expensive for the standard quasi-Newton method, while achieving a balanced
trade-off between cost and quality. It may not be able to handle extreme conditions,
such as inversions, or its output animation may be more damped than the other methods.
However, it can be the most suitable option under high frame-rate constraints. Since our
method is built on the top of the standard quasi-Newton, extending the support for model
reduction is easy, and no specific elastic force models or tangent stiffness matrices are
needed.

Regarding the comparative analyis, we notice that the implicit backward Euler is
clearly more accurate than the other methods. Yet it is also more costly and likely to
present artifacts under strong stimuli. The projective dynamics gradient is what makes
the quasi-Newton method [13] general and simple to implement, because it approximates
the true energy gradient of any material model. On the other hand, 10 quasi-Newton
iterations are expensive and still far in quality from a single iteration of the classical
implicit Euler. Nevertheless, the robustness and simplicity to handle new materials are
the best advantages of the full quasi-Newton solver.

6.1 Limitations

Like other reduced methods, the proposed technique requires a basis and a cubature,
an additional data that must be precomputed using specific algorithms. Generating such
data for large meshes is a process that may take several minutes, and is certainly an
undesirable additional step for many applications. Furthermore, the cubature introduces
an approximation error in the elastic forces, which slows down the convergence. For this
reason, we run twice as much iterations in both Bridge and Letter A experiments. If too
few cubature elements are used, the energy gradient may not be zero-evaluated even at rest
configuration. This causes the output motion to present sudden and quick deformations.
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6.2 Future Work

As a future work, we would like to compare our solver against the reduced implicit
backward Euler. For now, we expect that the reduced quasi-Newton would be outperformed
by the reduced Euler in terms of computational cost, because the quasi-Newton methods
rely on line search, which requires multiple energy evaluations per time-step. In fact,
from our data, we can see that roughly 80% of the total simulation time is spent in
line search. A GPU implementation of our solver would explore its highest potential of
performance and would also make it fairly comparable to the reduced Euler. For instance,
parallelizing the cubature vertices assembly and the deformation gradient decompositions
would already provide an additional speed-up of almost 5 times. We estimate that a total
GPU implementation can accelerate our technique more than 10 times.
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