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Abstract

Studies in activity recognition have gained attention and matured in the past years. This is
mainly due to advances in the sensor’s technology and in the underlying activity discovery and
recognition process. Activity recognition in smart home environments aims to identify which
activities are currently happening and predict which activities are going to happen in order to
monitor the residents status and promote comfort and well-being. The sensor’s information
extraction is the foundation of the activity recognition. If the data is not encrypted properly, it
will become an easy target for interceptions and the resident will be more likely to suffer from
malicious unauthorized attacks. Two of the major challenges in smart homes are privacy and
security. In order to forbid hackers to retrieve resident data and determine which activities the
resident is performing or learn the resident habits, one technique that has been studied is the
insertion of noise in the data generated by the sensors. This work aims to analyze how real-
world smart home datasets and machine learning techniques perform while being exposed to
noise. Experiments are conducted over 10 different datasets. Using the 5-fold cross-validation
method, each machine learning technique was evaluated against different noise ranges. Based
on the results obtained, the machine learning algorithms suffered considerably from the noise
insertion. Decision Tree, Random Forest, and K-NN achieved the best general accuracy and
were affected significantly by the noise. SVM did not experience drastic changes when exposed
to noise but had bad results in most cases and Naive Bayes can be considered the worst of all
classifiers under those circumstances.

Keywords: Activity recognition, Smart homes, Noise, Sensors, Information extraction, Secu-
rity, Privacy, Machine learning
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Resumo

Estudos em reconhecimento de atividades ganharam bastante atenção e amadureceram nos
últimos anos. Isto é devido principalmente a avanços na tecnologia implantada nos sensores
e no processo de descoberta e reconhecimento de atividades. Reconhecimento de atividades
aplicado a casas inteligentes visa identificar que atividades estão acontecendo e prever quais
ainda vão se realizar com objetivo de monitorar o estado dos residentes e promover um maior
conforto e bem estar. A extração de informações proveniente de sensores é o alicerce do recon-
hecimento de atividades. Se os dados não forem encriptados devidamente, eles se tornarão um
alvo fácil para intercepções e os residentes estarão mais propícios a sofrer ataques maliciosos e
não autorizados. Dois dos maiores desafios encontrados em casas inteligentes são privacidade
e segurança. Com o intuito de impedir hackers de adquirir dados dos residentes e determinar
quais atividades os residentes estão executando ou aprender os hábitos dos residentes, uma téc-
nica que vem sendo estudada é a inserção de ruído nos dados gerados pelos sensores. Este
trabalho analisa como bases de dados de casas inteligentes do mundo real e técnicas de apren-
dizagem de máquina se comportam quando expostas a ruídos. Os experimentos são conduzidos
sobre 10 bases de dados diferentes. Utilizando o método de validação cruzada, analisa-se cada
técnica de aprendizagem de máquina em relação a diferentes níveis de ruído. Baseado nos re-
sultados obtidos, os algoritmos de aprendizagem de máquina sofreram consideravelmente com
a inserção de ruído. Árvore de decisão, Random Forest e K-NN alcançaram as melhores acurá-
cias gerais e foram afetados significativamente pelo ruído. SVM não apresentou mudanças
drásticas quando exposto a ruídos mas obteve resultados ruins na maioria dos casos e Naive
Bayes pode ser considerado o pior dos classificadores.

Palavras-chave: Reconhecimento de atividades, Casas inteligentes, Ruído, Sensores, Ex-
tração de informação, Segurança, Privacidade, Aprendizagem de máquina
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CHAPTER 1

Introduction

1.1 Motivation

Progresses in the sensor’s technology and data mining techniques allowed the growth of the
Internet of things. The Internet of things states that ordinary daily objects are going to become
intelligent, sensing the context that it is inserted and making assumptions and decisions to
improve the quality of life, the object overall performance, and its energy consumption.

Smarts houses are residences that possess a good amount of these intelligent ordinary ob-
jects. In the past, these objects were restrict to lighting and heating systems, nowadays most
of the electrical objects can become intelligent somehow. The smart objects are able to rec-
ognize some actions performed by the residents and sense the environment itself, as well as
communicate with each other and consequently facilitate the resident life.

There is no use in having plenty of sensors, a vast quantity of data if there is no information
extraction associated with them. Activity recognition techniques aim to keep track of all the
resident activities, it monitors the functional status of the resident in real-time. Doing so, it is
possible to find patterns in the resident routine and maybe automate some tasks.

It is very important that residents remain independent in their own houses, activities consid-
ered fundamental also known as Activities of Daily Living(ADLs) such as cooking, drinking,
taking medicine and grooming are essential for living a functional autonomous life. Above
from that, the aging population, the cost of healthcare, and the opportunity of improving the
quality of life of individuals with disabilities, increasing the support received from the environ-
ment, were some of the reasons that motivated further studies in this area.

The information exchanged between smart objects is very susceptible to attacks. Re-
searchers have been concerned about security and privacy issues in the context of IOT. One
of the methods they proposed in order to prevent attackers to steal sensitive information and
infer the resident status is to add noise on the training set.

Most of the approaches that treat activity recognition in the literature focus on well scripted
or pre-segmented data, which does not represent the real-world scenario. In order to be more
realistic, there is a need to have an online activity recognition system that is able to overcome
embedded errors and identify interleaved and concurrent activities.

Some studies interesting to point out that already explored activity recognition in the smart
home scenario were the MavHome [1], the PlaceLab [2], the AwareHome [3] and the CASAS
project [4]. They reiterate the importance of this field of study.

1



2 CHAPTER 1 INTRODUCTION

1.2 Objective

The main purpose of this work is to analyze the performance of the machine learning tech-
niques in the context of activity recognition in real-world smart houses against some differ-
ent noise percentage scenarios. This would prove whether inserting noise in the training data
should be considered sufficient in order to camouflage the authentic data and forbid attackers
to have access to the legitimate activities that the resident is performing. With the objective
of validating this assumption, some metrics were established and the results obtained in the
noise-free scenario and the scenarios with some percentage of noise inserted were compared as
a manner of understanding the impact that noise can cause.

1.3 Methodology

The first step in the development of this work after choosing the machine learning area
of study was to perform a literature review. This facilitated the overall understanding of the
most basic concepts, main objectives and difficulties faced by the area, as well as made it
possible to pursue an analysis of the existent techniques. After the conclusion of the literature
review, one of the papers was selected to serve as guidance. The activity recognition technique
proposed in this work is based on the paper "Activity recognition on streaming sensor data"
written by Narayanan Krishnan and Diane Cook [5]. Based on ideas expressed in this paper, an
activity recognition algorithm was implemented. After that, the decision regarding the work’s
specificity was made. It was decided to analyze the behavior of the algorithm and the machine
learning models in different noise percentage scenarios. The machine learning techniques were
also selected at this point. The proposed method was analyzed using 10 real-world data sets
from the CASAS dataset repository [4] against 5 machine learning models in 6 noise percentage
scenarios. The evaluation metrics were chosen and the results were interpreted and discussed.

1.4 Organization of the Dissertation

This work is organized as follows. Chapter 2 refers to the literature review and it is respon-
sible for presenting all the basic concepts. It also gives the foundation necessary to understand
the theory associated with the areas of studies related to this work and the motivation behind
each one of them. Chapter 3 explains in detail the proposed method. It deciphers the compo-
nents, steps, and assumptions made during the implementation. The experimental study can be
seen in Chapter 4. It describes the datasets used in this work, as well as how the experiments
were made, which evaluation metrics were chosen and discusses the results obtained. Chapter
5 sums up what could be learned by this work, if the objectives were met and suggests some
improvements to consider for future works.



CHAPTER 2

Literature Review

This chapter is responsible for providing all the basic concepts necessary to fully understand
this work. Section 2.1 explains what is Internet of Things and its connection to smart houses
and activity recognition. Section 2.2 talks a little bit about an emerging area of study called
Adversarial Machine Learning and what is its biggest concerns and objectives. Section 2.3
reveals what can be considered noise, what are the most common kinds of noise and how can
noise be useful. Section 2.4 clarifies the purpose of machine learning as well as explains the
functioning of some of the machine learning techniques used in this work, their advantages and
disadvantages.

2.1 Internet Of Things

The term Internet of Things has become very popular in the last couple years. However,
this concept is not entirely new. The idea of Ubiquitous computing was already disseminated
in the early 1990s by Mark Weiser. Ubiquitous computing presupposes that computing is made
to appear everywhere and anywhere. According to Weiser, the ordinary computers such as
desktops and laptops are a transitional step towards achieving the real potential of information
technology. He believes that the most profound technologies are those that disappear and that
in the future the computers will be integrated with the world seamlessly in the most different
forms and sizes [6].

On the other hand, Internet of Things states that everyday devices are going to become
smarter and communicate with one another, sharing information and coordinating decisions
[7]. In other words, the Internet will be more present in the real world daily life objects, such
as televisions, fridges, stoves, lamps, washing machines, coffee makers and blenders.

Unlike the most common forms of communication nowadays which are Human-to-Human
and Human-to-Machine, IoT is a concept to get devices connected to the Internet in a Machine-
to-Machine interaction [8].

The sensors will provide context to the devices, communicate with each other and interact
with people [7]. Doing so, the sensors are able to optimize their performance and simplify the
resident’s lifestyle by automating some tasks and saving time, energy and money [9].

Internet of things relies on the continuous advances in the sensor technology, the communi-
cation and information technology, pervasive computing and the Internet protocols compatible
with the most heterogeneous things [10].

Data science plays a very important role to enhance IoT application intelligence. Data
Science consists of a combination of different fields such as machine learning and data mining

3
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with the objective of finding insights and patterns hidden on the raw data [9].
Researches estimate that by 2020, the total number of Internet-connected devices will be

between 25 and 50 billion [11]. A problem that has to be faced is the enormous number of
devices willing to connect to the Internet. To meet customer demands for smart objects, it is
necessary to utilize a large addressing space, such as IPv6 [10].

IoT can be of great importance in order to improve the quality of people lives. Internet of
things can be applicable to health-care, transportation, emergency response to natural disasters,
agriculture, industrial manufacturing, education, smart homes and many other sectors [10].

In smart homes, Internet of things makes it possible for the resident’s digital devices to
interact with each other and for instance, open the garage when the resident is reaching home,
prepare the coffee when waking up in the morning, turn off the TV when the resident is not
watching and forgot it on, control the apartment temperature, turn all the lights off when the
resident leaves the house and other applications. With the objective of making assumptions
and control the digital devices in smart houses, activity recognition methods are fundamental
to identify the resident’s context.

Two of the most important requirements in relation to IoT are Security and privacy. Con-
sidering the resident ability to control and monitor physical objects, the systems have to be
cautious and make sure the information does not fall into the wrong hands [10]. The way the
data is transmitted makes the system vulnerable. This point will be more elaborated in the next
subsection.

2.2 Adversarial Machine Learning

Machine learning algorithms have been progressively more adopted in security-related sce-
narios such as malware and spam detection, network intrusions, fraudulent transactions and
other malicious activities [12][13]. However, attackers may take advantages of vulnerabili-
ties exposed by machine learning algorithms to violate system security [14]. For instance, an
attacker can modify or generate data from a spam filter to deceive the system and increase
misclassification [15].

In machine learning, a classification problem takes the feature vector from the input samples
and labels it with the most adequate class. The decision relies on how the model interprets the
feature vector. In this context, adversarial samples are created or modified to force the machine
learning model to classify them in a different class compared to their legitimate class [8]. An
adversary may attempt to manipulate a system targeting the machine learning component by
changing some of its inputs (i.e., poisoning the learner’s classifications) in order to harm the
system’s detection capabilities or stealing private information (i.e., obtaining information from
the learner, compromising the privacy of the system’s users). If the attacker acquires some
portion of the training examples he/she might manipulate the system into revealing information
about the unknown examples [12][16].

This field of study aims to find effective machine learning techniques against an adversar-
ial opponent, algorithms that can resist the attacks [16]. It is noticeable how much important
became for the machine learning algorithms to operate well in adversarial settings. The term
model resilience means how robust the system is to perturbations of its input. The more pertur-



2.3 NOISY DATA 5

bation is necessary to move a sample from its legitimate class to another class, the more robust
the model is to adversarial manipulations, and this is exactly what this field is seeking [13].

Security is a significant challenge for the IoT implementations because of the lack of com-
mon standard and architecture. Securing data exchanges is necessary to avoid losing or com-
promising privacy. Heterogeneous networks suffer to guarantee security and privacy to the
users [10]. The debate whether to accept or reject IoT involves the dualisms of "security versus
freedom" and "comfort vs data privacy". The concern is that the personal data is collected and
used by third parties without people agreement or for potentially damaging purposes [7].

In the smart house scenario, the adversary could try to control all the digital devices inter-
connected, unlocking the front door and turning off the robbery alarms for example.

One of the major directions machine learning have pursued regarding privacy is the ran-
domization/perturbation of data. In this approach, the data is perturbed, noise is added to the
data, the labels or attributes have its values swiped in the preprocessing phase [17]. The next
subsection will explain in more detail noisy data.

2.3 Noisy Data

One usual problem identified in classification problems is the presence of noise in data.
Real-world data is never perfect. In supervised problems, the noise changes the relationship
between the features and the desired output. The model’s performance depends on the training
data quality and on the robustness of the algorithm against noise, which is its capability to build
models less sensitive to data corruption. In noisy scenarios, the robustness is considered to be
the most important performance result [18].

In order to diminish the impact of noise in the classification problem, some approaches
have been studied. The use of robust learners, data polishing methods before training and noise
filters that eliminate noisy instances from the training set are examples of alternatives [18].

It is important to point out that the presence of noise is not the only problem faced by
the machine learning algorithms. The presence of small disjuncts and overlapping between
classes might generate complex and nonlinear boundaries between classes that can result in the
degradation of the classification performance. Nevertheless, noisy examples are considered to
be samples from one class occurring in the safe areas of other class, not in the boundary.

Noise can be divided into two types. Class noise also known as label noise and attribute
noise. Class noise takes place when an example has its label incorrectly assigned and attribute
noise refers to corruptions in the attribute values (e.g., missing, unknown or erroneous at-
tributes). Studies proved that attribute noises are more harmful than label noises [18].

However, noise is not always necessarily something bad. As described in the last subsec-
tion, researchers are studying the insertion of noise in order to contribute to the system security.

While checking the effect of noise on a specific classifier, noise needs to be generated. First,
it is necessary to choose the place the noise will be introduced (i.e., attribute or label), the noise
distribution used in the simulation (e.g., Gaussian, uniform) and the magnitude of the generated
noise, how much of the training set will be manipulated.

The label noise insertion can be performed following one of the noise schemes in the lit-
erature. The uniform class noise consists of randomly replacing the class label of x% of the
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examples. Besides that technique, the pairwise class noise insertion is also a well-known ap-
proach. Given a pair of classes (X,Y) and a noise level x, an instance with label X has x/100
probability to be mislabeled as Y [18].

To analyze the robustness of the classifier, a comparison between the original training set
and the data generated by the different noise magnitudes needs to be executed. Therefore, those
classifiers whose results are not so distant from the noise-free classifier are considered to be the
most robust.

2.4 Machine Learning

There are some tasks in computer science in which the algorithm is unknown, there is no set
of instructions to transform the input in the desired output. However, if a good amount of data
is available, we can rely on the examples and construct machine learning algorithms intelligent
enough that have the ability to learn from the data and get insights from it [19].

Classification problems are very common in Machine learning. In this type of problem,
based on the data examples used in the training phase, the machine learning algorithm tries
to categorize the examples belonging to the test set in the more satisfactory class, taking into
account the resemblance between this example and the other members of the different classes.

Each specific learning algorithm has a distinct inductive bias and makes different assump-
tions. This subsection presents the machine learning algorithms used in this work.

2.4.1 Decision Tree

Decision trees are one of the most widely used machine learning techniques for inductive
inference. Decision trees can be represented by a series of if-then rules to help human read-
ability. Each node of the tree represents a test of some attribute of the instance and each branch
descending corresponds to one of the possible values for that attribute. The classification of an
instance starts at the tree’s root and after testing the correspondent attribute, you move down
until you reach one of the leaf nodes, which provides the classification [20].

The root of the tree and the attribute test order is determined by evaluating, using statistical
tests, which attribute performs better, which one is the most useful for classifying examples.
The best attribute, the one that has the most information gain is selected.

Information gain is basically the reduction of entropy while partitioning examples in rela-
tion to an attribute. Entropy characterizes the impurity of a collection of examples.

Some of the advantages regarding the decision tree usage are their easy interpretation and
implementation and their capability to show possible paths not yet considered.

The disadvantages that can be associated with the decision tree are that the calculations can
become very complex and time-consuming, they are not robust to noisy, meaning that a small
change can cause a totally different outcome and the algorithm is considered greedy since it
never backtracks to reconsider earlier choices.
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2.4.2 K-Nearest Neighbors

K-Nearest Neighbors is an instance-based learning algorithm. There is not an effort to
discover a target function that maps the examples to its classes. Every time a new testing
instance needs to be evaluated, the distance between this instance and the others from the
training set is calculated. Because the algorithm only processes the data when a new instance
comes to be classified, the instance-based methods are referred as "lazy" learning algorithms.
The fact that the instances can be represented as points in a Euclidean space is an assumption
used by this method. Each test instance will have its distance calculated from all the training
instances. The distance function can be the Euclidean distance for example. The K most similar
neighbors (i.e., the K closest ones) are going to determine the class. The majority vote can be
used among the K neighbors in order to classify the test instance.

K-NN is also simple to implement, is flexible to features and distance choices, there is
no training cost, and it handles multi-class naturally. Some drawbacks found in the K-NN
approach are that the cost can be high since all computation takes place in classification time,
the performance depends on the number of dimensions and on the size of the database, the need
to determine the value of parameter K, it does not learn from the training data, the algorithm
may not generalize well and might not be robust to noise, and that it considers all attributes in
order to identify the similar training examples. In a scenario in which the classification relies
on only a portion of the attributes, the distance could be larger than it was supposed to be.

2.4.3 Naive Bayes

The Naive Bayes is a supervised learning method based on a probabilistic approach to
inference. It assumes that there is a probability distribution and that an optimal solution can be
found [20]. It classifies an example in a specific class based on the probability of this example
belong to that class.

The Naive Bayes implementation is simple, it requires a small number of training data and
it does not only returns the prediction but also the degree of certainty. However, it considers
that attributes are independent what actually might not be the reality. It also relies on initial
knowledge of many probabilities, otherwise, these probabilities are estimated, the computa-
tional cost, in order to find the optimal hypothesis, is significant and if there are no occurrences
of a class label in relation to an attribute value, the probability estimated is going to be zero.

2.4.4 Random Forest

Random Forest is an ensemble approach composed of several independent decision trees
combined with aggregation and bootstrap ideas. It is based on the divide and conquer paradigm,
in which a group of weak learners gather together to form a strong model.

Random Forest was created in order to fix the overfitting seen in general decision trees that
have grown very deep.

If a tree is very sensitive to noise in its training set, the majority of the others trees might
not be assuming that they are not correlated. When taking the majority vote between the trees,
the noise would not affect as much, making this machine learning algorithm more robust to
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noise and leading to best performance. The number of trees can vary. Usually, a few hundred
to several thousand are chosen according to the size and nature of the training set. In a Random
Forest, the learning algorithm selects a random subset of the features at each candidate split
in the learning process. This avoids that few strong features get selected in most of the trees,
otherwise, this would make them become correlated. Random Forests are considered efficient
on large datasets and can achieve better results than simple decision trees by reducing overfit-
ting. However, they are more complex than a simple decision tree and more computationally
expensive. They also do not provide an easy visualization and understanding of the model.

2.4.5 Support Vector Machine

Support Vector Machine (SVM), is a discriminant-based method. This algorithm aims
to find the boundary separating the classes. The examples are represented as points in a n-
dimensional space, where n is the number of features. SVM tries to map the examples in
order to separate examples from different classes even further finding the hyperplane that best
segregates the classes. To identify the best hyperplane among the possible hyperplanes, the
margin (i.e., the distance between the nearest data point of both classes and the hyperplane)
must be taken into consideration. It is considered to be the best hyperplane the one that seg-
regates well the classes and has the maximum margin. If the margin is large the chances of
miss-classification are lowered and the algorithm is more robust. Some advantages associated
with SVM are its performance in high dimensional spaces, its generalization capability and the
fact that it works well in clear margin of separation. Some of the drawbacks are the training
time can be really time-consuming if the database is very large, it does not perform so well
when the target classes are overlapping, it is difficult to find the appropriate kernel function and
to understand the final model and the algorithm is complex.



CHAPTER 3

Proposed Method

The activity recognition technique proposed in this work can be divided into two phases,
training (Figure 3.1), and testing (Figure 3.2). It is important to point out that both flows have
some components in common and they also have a preprocessing phase in order to prepare
the data to be trained or tested. Each component is explained in more detail in the following
subsections.

Figure 3.1: Overview of the proposed framework training phase

Figure 3.2: Overview of the proposed framework testing phase

However, some notations must be defined and some explanations must be given. First of
all, the datasets adopted in this work consists of sensor events. Let {S1,S2, . . . ,SN} represent
the sequence of sensor events. Each sensor event is composed of calendar day, time of the
day, sensor name, and sensor status. All of the datasets selected in this work were annotated.
Therefore, in addition to the fields mentioned above, some sensor events have an activity label
indicating the beginning or ending of an activity.

A fragment of one of the datasets used in this work can be seen in Figure 3.3. The first
column represents the calendar day composed of year, month and day. The second column
refers to the time of the day, which consists of hour, minute, second and millisecond. The third
column identifies the sensor. T101 is a specific temperature sensor found in the apartment, per
example. The fourth column expresses the sensor value. It can be nominal like ON/OFF or
numeric such as "35" seen in the first row. Some sensor events have an activity associated with
it. In the figure, it is noticeable the beginning and ending of the sleep activity and the beginning
of the bed to toilet transition.

9



10 CHAPTER 3 PROPOSED METHOD

Figure 3.3: Fragment of the HH103 dataset

In Figures 3.1 and 3.2, the S going out of the datasets correspond to the sequence of sensor
events. The windows generated by the sensor windowing component, are represented by W.
When the windows pass through the feature extractor component, the feature vectors obtained
are defined as X. The symbol λ represents the machine learning technique. The machine is
trained with the training examples after the noise insertion component and is tested with the
testing data preprocessed resulting in the predicted class.

In the training phase, initially, sensor events are going to pass through a preprocessing
phase, in which the data is organized in windows, feature vectors are extracted and the label
noise is inserted. The raw sensor data doesn’t have a very strict structure, in which every row
has the exact number of columns making it difficult to train most machine learning algorithms
without any kind of preprocessing.

3.1 Sensor windowing

There are different ways of processing streams of data. The sensor stream can be equally
divided into windows according to a specific time interval. A problem observed with this tech-
nique is the possibility of having windows with a small number of sensor events, containing no
activities and windows with more than one activity inside. It is recommended to use the time-
based windowing when dealing with constant time rate sensors, such as accelerometers and
gyroscopes [21]. The approach adopted in this work, known as sensor event based windowing,
rather than taking into consideration the time in order to create the windows, uses the sensors
itself with that exact purpose.

The idea of the sensor event based windowing is to divide the sensor stream into windows
containing an equal number of sensors events. The sequence {S1,S2, . . . ,SN} is reorganized and
results in the creation of the windows {W1,W2, . . . ,WM}, where M is the number of windows
generated from the sequence of sensor events according to the window length desired. Doing
this, all the windows will have the same number of sensor events and can vary their duration.
The last sensor event in the window will determine the window activity label. However, this
method has some drawbacks. For example, the relevance of all the sensors is the same, inde-
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pendently of when the sensors were triggered. Another concern important to point out is the
difficulty in determining the window length in order to sufficiently define the window context
[5]. Figure 3.4 illustrates how sensor event based windowing works assuming that the window
length is 4.

Figure 3.4: Example of sensor based windowing with window length=4

As can be seen in Figure 3.4, the dataset fragment resulted in 5 windows (M=5). The
window W4, for example, goes from the fourth line until the eighth line since the window
length was set to 4. Moreover, its associated activity label is "Phone" based on the last sensor
event found in the eighth line.

3.2 Feature Extraction

Once the sensor window Wi is defined, the next step is to generate a fixed dimensional
feature vector Xi. The vector is composed of the time of the first sensor event within the window,
the time of the last event within the window, the span time between the last sensor event and
the first sensor event, and a bag of all sensors indicating which ones have been triggered.

• Time based features The first sensor event and last sensor event time are computed
by calculating the POSIX timestamp and multiplying it by 1000. In the end, this will
represent the number of milliseconds that have elapsed since 00:00:00 Coordinated Uni-
versal Time (UTC), Thursday, 1 January 1970. The POSIX was used in order to take into
consideration different days and not only the time of the day in the calculations. Thereby,
the span time is the subtraction of the last sensor event by the first sensor event.

• Bag of sensors The bag of sensors is nothing more than a count of how many times
each sensor was triggered in that specific window. There is no differentiation between
the status of ON/OFF in the count. Whatever status was obtained, either ON/OFF or a
numeric value, it will sum 1 in the correspondent sensor count. As mentioned before, the
bag of sensors size will be equal to the number of sensors in the dataset. For instance, if
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the database has 30 sensors, the dimension of Xi would be 33 since there are 30 distinct
sensors and there are 3 time-based features. Each Xi is labeled with the last sensor event
activity within the window.

• Activity labeling Some special cases should be mentioned regarding the window la-
beling. Figure 3.4 displays a hypothetical sensor based windowing scenario in which the
window length is set to 4. This fragment results in 5 windows and most of the special
cases can be identified in this example. The first window ends in between the "Toilet"
activities. Since there is no activity indication in the last sensor event of this window we
have to look at the previous activity within the windows. Even though the last activity
was "Toilet", since it is not a begin-end block this activity was not taken into considera-
tion. However, W1 is inside the "Phone" begin-end block explicitly seen in the first line.
Therefore, W1 label is "Phone". W2 activity label is "Toilet" since it is explicitly written
in its last sensor event. The activity class corresponding to W3 is "Phone" for the same
reason noticed in W1. W4 activity label is "Phone", even though the last sensor event says
that it was the end of the "Phone" activity, the label was chosen to still be designated.
Lastly, the ultimate sensor event within the window W5 is not inside any begin-end block,
it does not correspond to any of the known activities. Whereas, it was introduced a new
type of activity denominated "Other". Typical real-world settings tend to have the class
"Other" as dominant, that is why its introduction is considered to be of great importance
[5].

Taking into consideration the window W4 in Figure 3.4, the time of the first sensor event
within the window is 2013-08-01 06:08:58.615525, the time of the last sensor event is 2013-08-
01 06:16:00.869687. These values are converted to milliseconds and the subtraction of them
represents the span time between the first and last sensor events. The bag of sensors for this
window would have 3 dimensions taking into account that there are only 3 different sensors
in this database. The bag of sensors for W4 is {M014:2, LS014:2, M012:0}. The reason why
sensors M014 and LS014 have value 2 is due to the fact that each of these sensors was triggered
twice in the window. Sensor M012 was triggered only after the end of window W4. For that
reason, it was not triggered within the window and its value is 0.

After the generation of all feature vectors. They are normalized (rescaling the range of
features to [0, 1]). The details referring to the normalization are treated in Section 4.2. When
the normalization process is over, the noise is inserted in the training sets. This process is
described in more detail next.

3.3 Noise Introduction Mechanism

In order to analyze the behavior of the datasets and understand how the most different
machine learning algorithms are affected by noise, the label noise insertion technique was
chosen. A percentage of the training data had its label switched for another random activity
label according to the noisy rate desired. As explained in Sections 2.2 and 2.3 the insertion
of noise can encrypt the data as a manner of preventing the interceptor to get ahold of all the
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resident real activity information, obfuscating the truth. Even though the data might still be
intercepted, it should be useless since it does not represent the real information.

3.4 Model Training

The machine learning algorithms chosen to train the datasets having as input value the fea-
ture vectors generated by the preprocessing phase were: Decision Tree, k-Nearest Neighbors,
Naive Bayes, Random Forest, and Support Vector Machine. These classifiers were chosen
according to the results obtained in the paper "Do we Need Hundreds of Classifiers to Solve
Real World Classification Problems?" [22]. This article evaluated 179 classifiers over almost
the whole UCI machine learning database. They concluded that the best results achieved were
from the Random Forest, followed by the SVM classifier. Decision Trees, Nearest Neighbors,
and Bayesian classifiers were far behind. However, we decided to still take them into consider-
ation in order to explore other learning paradigms. All of them were described in more detail
in Section 2.4.

The model is trained with the normalized feature vectors and results in the machine learning
trained model designated λ .

3.5 Model Testing

For each noise range, all the folds corresponding to that noise range are trained and tested.
In order to test the data according to a specific classifier. The sensor events (S) also have to
be preprocessed. However, in this case no noise is inserted. The data is split into windows
(W) and have its features extracted (X) and normalized following the same rules applied to the
training data. The test data serves as the input for the machine learning model generated by the
training phase (λ ) and the predicted class is obtained for each feature vector.



CHAPTER 4

Experimental Study

This section aims to describe how the experiments were performed and discuss the results
obtained. Section 4.1 outlines which datasets were used and their characteristics. Section 4.2
is responsible for defining the experiment parameters. The evaluation metrics established are
more detailed in Section 4.3 and in the last Section, the results are presented and discussed.

4.1 Datasets

All the datasets used in this work were obtained in the CASAS (Center for Advanced Stud-
ies in Adaptive Systems) website. CASAS serves to meet research needs around testing of the
technologies using real data through the use of a smart homes environment located on the WSU
Pullman campus [4]. In total, 10 datasets were selected. The testbeds are annotated and contain
either 1 or 2 residents only and they represent the resident’s daily life. The experiments were
not based on scripted activities in a laboratory setting, in which activities are well segmented.
This work’s approach reflects the real world scenario since it relies on sensor streams. The res-
idents perform their daily routine without being given explicit instruction regarding what to do.
Making it possible to investigate more complex scenarios such as interleaved activities, con-
current activities performed by multiple residents and the presence of embedded errors. The
datasets analyzed were: HH103, HH105, HH110, HH124, HH125, HH126, HH129, Kyoto
2008, Kyoto Spring 2009 and Tulum 2009. Among the datasets chosen, the minimum number
of sensor events is 20952 and the maximum is 486912. The minimum number of activities per
dataset is 5 and the maximum is 35. Table 4.1 shows some of the datasets characteristics and
more detailed information regarding the activity count in each dataset can be checked on the
Appendix.

Data Set #Residents #Sensor Events #Activities
HH103 1 167183 33
HH105 1 225822 31
HH110 1 138331 26
HH124 1 76028 22
HH125 1 216255 35
HH126 1 189814 33
HH129 1 216292 33
Kyoto 2008 2 20952 5
Kyoto Spring 2009 2 138039 16
Tulum 2009 2 486912 11

Table 4.1: Datasets characteristics

14
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The smart homes have the most different kinds of sensors. Some types of sensors are motion
sensors, temperature sensors, burner sensors, hot water sensors, cold water sensors, magnetic
door sensors and light sensors. An example of the layout of one of the apartments can be
examined in Figure 4.1

Figure 4.1: Layout of the Kyoto apartment

4.2 Experiment Parameters

This section talks about parameters set in the experiment implementation. As Section 3.1
explained, choosing the window length in order to accommodate a good number of sensor
events and designate the context of the window well is a hard task. According to the book
Activity Learning, windows lengths between 5 and 30 are more common when talking about
fixed-sized windows in sensor event based windowing [21]. Since the objective of this work
was not to identify the most optimal window size, there were no implementation or investiga-
tion with this purpose. Based on the book and other works which explored more this concept,
the window size chose for the experiments was 30.

The normalization of the feature vectors was done using the following formula:

Xn =
(X−Xmin)

(Xmax−Xmin)

Where Xmin represents the minimum feature value and Xmax represents the maximum feature
value.
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Table 4.2 shows how the feature vector looks like before the normalization and after the
normalization. The first line represents the feature vector before the normalization and the
second row represents the vector after the normalization process. The columns present in the
feature vector visible in the figure are respectively the time of the first sensor event, the time of
the last sensor event, the span time between the last and the first sensor event and the following
numbers correspond to the bag of sensors. Meaning that this dataset has only 10 sensors. Thus,
the feature vector is composed of 13 columns and have one activity label associated with it.

Start Time End Time Span Time Bag of Sensors
!Normalized 1238667135081.328 1238667163077.2659 27995.93798828125 1, 0, 3, 1, 0, 0, 1, 1, 2, 1
Normalized 0.7703268188170178 0.7016197378551695 0.7009158756572871 0.5, 0.0, 1.0, 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5

Table 4.2: Example of feature vector structure

After normalizing the feature vectors based on windows of length 30, the introduction of
noise was executed. Each training fold had its labels switched according to a certain noise rate.
The noise rates analyzed were 10%, 20%, 30%, 40% and 50%. The label substitution is done
by randomly choosing a new label among all the activities labels in the dataset and assigning
its value to one of the examples in the training fold.

All reported experiments used the stratified 5-fold cross-validation. For each experiment
performed, one machine learning technique was evaluated according to all the noise ranges.
All the experiments with respect to the same database have the same input since the same fold
is used.

The Decision Tree classifier was set in order to choose the best split at each node. The
maximum depth was not determined, the nodes are expanded until all leaves are pure or un-
til all leaves contain less than a specific number of samples required to split an internal node,
which in the case was 2. In the k-Nearest Neighbors classifier the number of neighbors was set
to 3, the weights were left with their default value which is uniform, where all points in each
neighborhood are weighted equally. The Naive Bayes classifier assumed a Gaussian distribu-
tion since we are dealing with continuous data. The number of jobs of the Random Forest was
set to 2, while the number of trees remained 10. The Support Vector Machine had its kernel
function set to Radial Basis Function (RBF).

4.3 Evaluation Metrics

To evaluate the machine learning performance due to the different noise rates some eval-
uation metrics were established. For each fold of each noise rate the general accuracy, the
accuracy, the precision, the recall, the f-measure and the confusion matrix were calculated.
Before explaining each evaluation metric, some abbreviations must be defined:

• True Positive (TP) : Consider TP as being an example predicted of class C and its real
label is indeed C.
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• True Negative (TN) : Consider TN the example that does not belong to the class C and
it was correctly predicted as not being from the class C.

• False Positive (FP) : Consider FP one example predicted C but its ground truth says that
this example is actually not from C, it belongs to another class.

• False Negative (FN) : Consider FN as being an example that is part of class C but was
predicted otherwise, judged to be from a class different than C.

The general accuracy is calculated by dividing the number of examples correctly classified
by the total number of examples. The following formula represents the general accuracy

Accuracy =
∑T P+∑T N

∑T P+∑T N +∑FP+∑FN

The other metrics are calculated in relation to each class and the mean value is taken among
the activity classes. It is important to point out that the "Other" activities were not considered
in the calculations. For each class different than "Other", the values of TP, TN, FP, and FN are
calculated.

The accuracy is a metric similar to the general accuracy described above. The only dif-
ference is the fact that it is calculated per activity class and the mean is taken between the
activities. In other words, each class will have its accuracy and the mean will be computed.

The precision is the number of examples correctly classified as belonging to the class di-
vided by all the examples classified as being part of that class. Whence, the precision is defined
as

Precision =
T P

T P+FP
The recall is the number of examples correctly classified from that specific class divided by

the total number of examples that should have been classified from that class. Its mathematical
equation can be examined below.

Recall =
T P

T P+FN
The f-measure is calculated using the precision and recall computed values. The formula

which represents F-Measure is

F−Measure =
2× precision× recall

precision+ recall

The confusion matrix was also generated in order to analyze which classes the classifiers
were having more trouble with. The confusion matrix evidences how many examples of each
class were correctly classified and for which classes the examples were misclassified. One
dimension of the matrix represents the predicted classification and the other dimension refers
to the correct classification, the ground truth. The correct predictions reside in the confusion
matrix diagonal.
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After calculating all these metrics for each fold, the mean was calculated among the folds
of the same noise range to get the average performance of the machine learning algorithm
according to the specific noise percentage.

Having this information, a depth investigation in relation to the behavior of each machine
learning algorithm in the most varied scenarios is made possible.

4.4 Results and discussion

The machine learning techniques which had the best outputs in the noise-free scenario were
Random Forest, K-NN and Decision Tree. Naive Bayes and SVM did not have good results.

Figure 4.3 illustrates the general accuracy value of each dataset in relation to the increase in
the noise range. The X-axis in each plot represents the noise percentage inserted in the training
set and the Y-axis consists of the general accuracy obtained in a range of 0 to 1 (0 meaning
0% and 1 meaning 100%). Each line in the line chart stands for a different machine learning
technique. The blue line represents the Decision tree, the red line appears as the K-NN, the
yellow line act in place of the Random Forest, the green line corresponds to the Naive Bayes
and the purple line represents the SVM technique. Each marker on top of the lines represents
the general accuracy mean among the 5 folds.

From the figure, it can be inferred that for the most machine learning techniques, the general
accuracy decreases with the noise range insertion increase, except the Naive Bayes technique
which had its general accuracy increased with the increment of noise insertion in some cases.

Another interesting fact to point out is that SVM, even though did not perform very well in
most scenarios, was the algorithm which suffered less impact from the noise insertion. This can
be explained by SVM robustness. The databases in which SVM had the best general accuracy
happens to be the smaller ones, HH124, Kyoto 2008 and Kyoto 2009 Spring.

Although the K-NN and Random Forest obtained very similar results in a noise-free sce-
nario, it is noticeable that in most of the datasets, the Random Forest achieves better results in
the 50% noise scenario.
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Figure 4.3: General Accuracy per noise range plots
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Figure 4.4 shows the other metrics calculated from the Kyoto 2009 Spring dataset.
The top left sub-figure shows the accuracy against the noise percentage. All the machine

learning algorithms scored high in this metric even with the noise insertion. Since there was
not an expressive change between the algorithms and the noise percentage, this metric is not
relevant for further comparisons. I believe this metric is biased. It is calculated in relation to
each class and it considers everything that is not from that class as true negative even though
the label is different from the ground truth. The accuracy takes into consideration the value of
true negatives helping the final high accuracy value.

The top right sub-figure of Figure 4.4 represents the precision according to the different
noise percentages. It can be analyzed from this sub-figure that the K-NN, Random Forest, and
Decision tree had the best scores in a noise-free scenario. When looking at the 50% noise
scenario the decision tree had the worst result, the noise insertion really influenced its perfor-
mance. The SVM had its precision constant among all the noise ranges and the Naive Bayes
suffered little effect from noise after the 20% noise range.

The bottom left sub-figure of Figure 4.4 correspond to the recall metric. The line chart
is very similar to the precision one. However, the recall was not as affected by the noise
insertion as the precision was. This can be observed just by comparing the values obtained in
the 50% scenario in both charts. The SVM recall was smaller and maintained constant from
all the noise ranges. Unlike the precision line chart, the SVM recall was worse than the K-NN,
Decision Tree, and Random Forest even on the 50% scenario. The same can not be seen in the
precision plot. Where the SVM precision in the 50% noise scenario was the best among the
other algorithms.

The bottom right sub-figure of Figure 4.4 reproduces the F-Measure behavior according to
the different noise scenarios. Since the F-Measure takes into consideration the precision and
the recall it is reasonable that the plot is a mix of the other two. One difference interesting to
point out is that the SVM F-Measure in the 50% scenario was better than the Decision Tree but
worse than the Random Forest and K-NN.

Table 4.3 illustrates the maximum general accuracy achieved in the noise-free scenario and
50% noise scenario in all datasets. The Random Forest is the machine learning technique
which has the best results in most of the datasets in both scenarios. All the datasets have a
high general accuracy in the noise-free scenario. The maximum achieved in the noisy free
scenario was 0.996 by the Random Forest in the Kyoto 2008 dataset which happens to be the
dataset with fewer activities and the one with the smallest number of sensor events. The dataset
with the smallest maximum general accuracy was the HH125, the one with the highest number
of activities. In the 50% scenario, the highest general accuracy was achieved by SVM in the
HH124 dataset. And the smallest maximum general accuracy between the datasets in the 50%
scenario was 0.639 scored by the SVM in the HH125 dataset. It can be concluded based on
this table that even though the data suffered a noise insertion of 50% the general accuracy was
affected but not as much as expected. If the machine learning module suffered an attack the
malicious program could still achieve an accuracy of 0.639 minimum and 0.867 maximum. The
value 0.867 is a very good general accuracy, the attacker could recognize most of the activities
generated by the resident, highlighting the danger still present after the noise insertion.
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Figure 4.4: Accuracy, Precision, Recall and F-Measure of Kyoto 2009 Spring dataset
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Dataset 0% Noise 50% Noise
HH103 0.938 (RF) 0.681 (K-NN)

HH105 0.973 (RF) 0.706 (RF)

HH110 0.984 (RF) 0.707 (RF)

HH124 0.996 (RF) 0.867 (SVM)

HH125 0.923 (DT) 0.639 (RF)

HH126 0.937 (RF) 0.686 (RF)

HH129 0.947 (RF) 0.702 (RF)

Kyoto 2008 0.996 (RF) 0.794 (K-NN)

Kyoto 2009 Spring 0.994 (RF) 0.753 (SVM)

Tulum 2009 0.978 (RF) 0.751 (RF)

Table 4.3: Maximum general accuracy per dataset, 0% and 50% noise rate
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Conclusion

This work’s main objective was to analyze the performance of machine learning techniques
in the context of recognizing activities on smart homes against several noise insertion scenarios.

The datasets were obtained from the CASAS project. A total number of 10 datasets were
selected. They consist of sensor streams and represent the routine of the residents in each
apartment. The data was not scripted, it corresponds to the real-world scenario.

The activity recognition was based on a sensor windowing approach. The features were
extracted from each window and each training set was submitted to noise insertions equivalent
to the percentages of 10%, 20%, 30%,40% and 50%. The model was trained with all the noise
percentages, including the noise-free scenario and tested with the accurate data. The machine
learning models selected were Random Forest, Naive Bayes, Decision Tree, SVM and K-NN.
The result obtained from the machine learning module was the predicted class.

The metrics chosen to evaluate the machine learning techniques performance according
to the noise percentages were general accuracy, accuracy, precision, recall, f-measure, and
confusion matrix.

The ideal result would be if the machine gets a big amount of activities right in a noise-free
scenario and that it miserably get almost all the activities wrong in the noisy scenarios.

The results obtained have shown that inserting noise on the datasets did not appear to be
as efficient in order to mask the resident’s legitimate activities. Even though the data was
manipulated, the general accuracy rate can still be considered high in some of the databases on
a 50% scenario. This proves that this approach is not sufficient and did not assure the security
and privacy promised.

Future works intend to test different window sizes to check if this would affect the results,
consider more machine learning techniques such as Multi-Layer Perception, as well as investi-
gate the reason why SVM did not achieve good results in almost all cases even though it excels
in most of the machine learning problems, and examine whether the attribute noise insertion
would have superior results or not in comparison to the class noise insertion implied in this
work.

24
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Appendix

Class Count Class Count Class Count Class Count
Bathe 3483 Eat_Breakfast 1430 Other 27502 Wash_Breakfast_Dishes 2188
Bed_Toilet_Transition 4075 Eat_Dinner 2010 Personal_Hygiene 14589 Wash_Dinner_Dishes 3427
Cook 509 Eat_Lunch 1207 Phone 1221 Wash_Dishes 166
Cook_Breakfast 11031 Enter_Home 5355 Read 1280 Wash_Lunch_Dishes 4233
Cook_Dinner 18680 Evening_Meds 868 Relax 1710 Watch_TV 8270
Cook_Lunch 10687 Exercise 124 Sleep 11859 Work_At_Table 1971
Dress 3451 Leave_Home 5240 Sleep_Out_Of_Bed 1127
Eat 10 Morning_Meds 1075 Toilet 18376

Table A.1: HH103 Activity Count

Class Count Class Count Class Count Class Count
Bathe 4030 Eat_Breakfast 1250 Morning_Meds 2237 Wash_Breakfast_Dishes 1419
Bed_Toilet_Transition 1872 Eat_Dinner 1075 Other 73867 Wash_Dinner_Dishes 1774
Cook 15437 Eat_Lunch 1548 Personal_Hygiene 9893 Wash_Dishes 7783
Cook_Breakfast 11006 Enter_Home 4918 Phone 1994 Wash_Lunch_Dishes 4531
Cook_Dinner 8065 Entertain_Guests 1197 Relax 10818 Watch_TV 5241
Cook_Lunch 5584 Evening_Meds 753 Sleep 6133 Work 2123
Dress 6250 Groom 1589 Sleep_Out_Of_Bed 4759 Work_At_Table 6502
Eat 1547 Leave_Home 4820 Toilet 15777

Table A.2: HH105 Activity Count

Class Count Class Count Class Count Class Count
Bathe 1229 Enter_Home 653 Relax 18212 Work_At_Table 10784
Bed_Toilet_Transition 1677 Evening_Meds 2436 Sleep 15421 Work_On_Computer 15462
Cook_Breakfast 2368 Groom 2106 Sleep_Out_Of_Bed 3593
Cook_Dinner 225 Leave_Home 586 Take_Medicine 4582
Dress 5487 Morning_Meds 2464 Toilet 11389
Drink 81 Other 30297 Wash_Breakfast_Dishes 2617
Eat_Breakfast 1359 Personal_Hygiene 3876 Wash_Dinner_Dishes 110
Eat_Dinner 316 Read 640 Work 332

Table A.3: HH110 Activity Count
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Class Count Class Count Class Count
Bed_Toilet_Transition 737 Leave_Home 1825 Wash_Dinner_Dishes 32
Cook_Dinner 216 Other 60198 Wash_Dishes 37
Dress 179 Personal_Hygiene 147 Watch_TV 364
Eat_Breakfast 84 Phone 146 Work 60
Eat_Dinner 125 Sleep 1478 Work_At_Table 56
Enter_Home 1228 Sleep_Out_Of_Bed 357 Work_On_Computer 385
Entertain_Guests 6626 Toilet 1252
Groom 397 Wash_Breakfast_Dishes 66

Table A.4: HH124 Activity Count

Class Count Class Count Class Count Class Count
Bathe 1296 Eat_Breakfast 366 Other 21809 Toilet 10525
Bed_Toilet_Transition 1099 Eat_Dinner 418 Personal_Hygiene 14494 Wash_Breakfast_Dishes 5235
Cook 1672 Eat_Lunch 364 Phone 1514 Wash_Dinner_Dishes 8143
Cook_Breakfast 10530 Enter_Home 6086 Read 640 Wash_Dishes 17700
Cook_Dinner 30095 Entertain_Guests 13995 Relax 542 Wash_Lunch_Dishes 1797
Cook_Lunch 9129 Evening_Meds 1334 Sleep 2658 Watch_TV 7251
Dress 5718 Groom 18133 Sleep_Out_Of_Bed 2776 Work 718
Drink 6314 Leave_Home 2971 Step_Out 1159 Work_On_Computer 7187
Eat 92 Morning_Meds 1328 Take_Medicine 1138

Table A.5: HH125 Activity Count

Class Count Class Count Class Count Class Count
Bathe 508 Eat_Breakfast 1979 Other 62864 Wash_Breakfast_Dishes 2578
Bed_Toilet_Transition 391 Eat_Dinner 721 Personal_Hygiene 8689 Wash_Dinner_Dishes 804
Cook 402 Eat_Lunch 753 Phone 1958 Wash_Dishes 3328
Cook_Breakfast 8726 Enter_Home 6148 Read 4430 Wash_Lunch_Dishes 1118
Cook_Dinner 7234 Entertain_Guests 5222 Relax 195 Watch_TV 11667
Cook_Lunch 5123 Evening_Meds 1060 Sleep 5406 Work_On_Computer 7891
Dress 7763 Groom 6315 Sleep_Out_Of_Bed 311
Drink 6018 Leave_Home 7282 Step_Out 1106
Eat 92 Morning_Meds 604 Toilet 11099

Table A.6: HH126 Activity Count

Class Count Class Count Class Count Class Count
Bathe 508 Eat_Breakfast 1979 Other 62864 Wash_Breakfast_Dishes 2578
Bed_Toilet_Transition 391 Eat_Dinner 721 Personal_Hygiene 8689 Wash_Dinner_Dishes 804
Cook 402 Eat_Lunch 753 Phone 1958 Wash_Dishes 3328
Cook_Breakfast 8726 Enter_Home 6148 Read 4430 Wash_Lunch_Dishes 1118
Cook_Dinner 7234 Entertain_Guests 5222 Relax 195 Watch_TV 11667
Cook_Lunch 5123 Evening_Meds 1060 Sleep 5406 Work_On_Computer 7891
Dress 7763 Groom 6315 Sleep_Out_Of_Bed 311
Drink 6018 Leave_Home 7282 Step_Out 1106
Eat 92 Morning_Meds 604 Toilet 11099

Table A.7: HH129 Activity Count
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Class Count Class Count Class Count Class Count Class Count
Cook 3272 Eat 278 Other 5379 Relax 1078 Sleep 10916

Table A.8: Kyoto 2008 Activity Count

Class Count Class Count Class Count
Cleaning 1316 R1_work_at_dining_room_table 4407 R2_sleep 12044
R1_bed_to_toilet 1874 R2_bed_to_toilet 1961 R2_watch_TV 10038
R1_breakfast 5681 R2_breakfast 8692 R2_work_at_computer 8570
R1_groom 5313 R2_groom 7434 Wash_bathtub 219
R1_sleep 13715 R2_prepare_dinner 17257
R1_work_at_computer 32907 R2_prepare_lunch 6582

Table A.9: Kyoto 2009 Spring Activity Count

Class Count Class Count Class Count
Cleaning 1316 R1_work_at_dining_room_table 4407 R2_sleep 12044
R1_bed_to_toilet 1874 R2_bed_to_toilet 1961 R2_watch_TV 10038
R1_breakfast 5681 R2_breakfast 8692 R2_work_at_computer 8570
R1_groom 5313 R2_groom 7434 Wash_bathtub 219
R1_sleep 13715 R2_prepare_dinner 17257
R1_work_at_computer 32907 R2_prepare_lunch 6582

Table A.10: Tulum Activity Count
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