

Universidade Federal de Pernambuco

BSc Computer Science
Centro de informática

Henrique Vicente de Oliveira Pinto

picel - HTTP Middleware
for image processing

Undergraduate work

Recife
2017

Henrique Vicente de Oliveira Pinto

picel - HTTP Middleware
for image processing

Undergraduate work

A B.Sc. Dissertation presented to the
Center for Informatics of Federal University
of Pernambuco in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science.

Supervisor: Vinicius Cardoso Garcia
(vcg@cin.ufpe.br)

Recife, 2017

1

Henrique Vicente de Oliveira Pinto

picel - HTTP Middleware
for image processing

Undergraduate work

Trabalho apresentado ao Programa de
Graduação em Ciência da Computação do
Centro de Informática da Universidade
Federal de Pernambuco como requisito
parcial para obtenção do grau de
Bacharelado em Ciência da Computação.

Recife, 13 de Dezembro de 2017.

Banca examinadora

__
Prof. Vinicius Cardoso Garcia

(Orientador)

__

Prof. Kiev Gama
(Avaliador)

2

Acknowledgements

Gostaria de agradecer ao meu orientador, Vinicius Cardoso Garcia, aos meus colegas
de trabalho da Liferay, Inc. (principalmente ao meu chefe, Eduardo Lundgren e ao resto do
meu time do projeto WeDeploy), a minha namorada Bruna Carolina Baudel de Santana (pelo
carinho e várias leituras e excelentes sugestões para a melhoria deste trabalho e apoio
durante o curso), a meus colegas da faculdade (que muito me ajudaram a estudar em
momentos de dificuldades e se divertiram em momentos de alegria), e a minha família.
Gostaria ainda de agradecer ao Prof. Kiev Gama, pela sua participação na banca
examinadora.

3

Resumo

Arquivos de mídia digital como fotos e vídeo compõe uma parte significativa do tráfego
de dados da Internet. Uma mera imagem (seja uma foto ou frame de vídeo) utiliza uma
quantidade de espaço muito maior do que dados textuais. Servir estes arquivos
eficientemente pode se tornar complicado e caro rapidamente. Você pode armazenar toda a
Wikipédia anglo-saxônica em uma dúzia de GB, mas isto é espaço suficiente apenas para
alguns minutos de vídeo 4K ou algumas centenas de fotos de uma câmera dSLR de uma
viagem que você fez a um lugar bonito.

Este trabalho de conclusão de curso de graduação estuda e propõe uma solução
envolvendo a integração de picel, um middleware HTTP (Hypertext Transfer Protocol) de
processamento de imagem que pode ser implantado em grandes sites da web para simplificar
e automatizar o processo de publicação. Uma implementação de uma versão beta do picel é
demonstrada na seção de resultados para validar o conceito conjuntamente com código de
exemplo de como usá-lo programaticamente.

Palavras-chave: Internet; web; middleware; micro-service; image; picel

4

Abstract

Media files such as photos and video compose a significant portion of Internet data
traffic. A single picture (either a photo or a video) frame takes way much more space than a
textual data. Serving such files with efficiency can get complicated and expensive fast. You
can store the full English Wikipedia articles on a dozen GB, but this is only enough space for
just a few minutes of 4K video or a few hundred dSLR photos of a trip you take to a beautiful
place.

This undergraduate work studies and proposes a solution involving the integration of
picel, an HTTP (Hypertext Transfer Protocol) image processing middleware that can be
deployed on large scale websites to simplify and automate the publishing process.

An implementation of a beta version of picel is demonstrated in the results section to
validate the concept along with example code of how to use it programmatically.

Key-words: Internet; web; middleware; micro-service; image; picel

5

Figure List

Figure 2.1 Wikimedia multi-tier topology (2010) 13
Figure 3.1 picel handling requests 17
Figure 3.2 License data extracted from a query on Google's BigQuery 25
Figure 4.1 Original xkcd: tar #1168 27
Figure 4.2 Cropped xkcd: tar #1168 28

6

Table List

Table 3.1 Examples of encoding/decoding. 20
Table 4.1 Comparing files of generated thumbnails 29

7

Table of Contents

1. Introduction 10
1.1 Context 10
1.2 Problem Statement 10
1.3 Motivation 11
1.4 Objective 11
1.5 Work structure 12

2 Concepts and background 13
2.1 Large-scale websites infrastructure 13
2.2 Background 14
2.3 Imaging libraries 14

ImageMagick 15
WebP 15
GD Graphics Library 15
High Efficiency Image File Format (HEIF) 15

2.4 Photo thumbnail services on the market 15
thumbor 15
JPEGmini Server 16
Imgix 16

2.5 Chapter summary 16

3 Implementation 17
3.1 Storage service 18
3.2 Image processing 18
3.3 API 18
3.4 Load balancer 21
3.5 Caching 21
3.6 Handling requests 21
3.7 Debugging and profiling 22
3.8 Software quality 22

3.8.1 Static code analysis 22
3.8.2 Unit and integration testing 23
3.8.3 Benchmark/Stress testing 23

3.9 Avoiding premature optimization 23
3.10 Distribution 23
3.11 License 24
3.12 Chapter summary 25

8

4. Results and Acceptance Testing 26
4.1 Example of image transformation 27
4.2 Quality degradation and weight optimization 29
4.3 Stress tests 30
4.4 Chapter summary 30

5. Conclusion 31
5.1 Limitation 31
5.2 Future work 31

References 33

9

1. Introduction
This chapter is an introduction to this undergraduate work. It consists of a context, a

scenario, the motivation for developing the project, the intended objectives, and this work
structure. This works is about the distribution of images on the web and focuses on the
networking, infrastructure, and high-level aspects of the matter. It does not comprise in-depth
details about low-level image manipulation algorithms or concepts. Lack of more publicly
available data about image processing costs made it infeasible to theorize about costs savings
quantitatively, though there is preliminary evidence supporting the hypothesis that this is the
case [37, 85].

1.1 Context
In the early days of the web, a desktop computer was the most common client for

accessing images [50]. Narrower bandwidth connections, lower processing power, fewer
Internet users, and less powerful browsers meant that web pages were simpler and contained
less visual content.

The first web browser was the WorldWideWeb (next renamed to Nexus), written by Sir.

Tim Berners-Lee, with an initial release in December 1990. However, the browser that
popularized the World Wide Web was NCSA Mosaic, also the first one to display images inline
with text, instead of in a separate window [45].

Times have changed, and the average web page of the top 1000 websites passed
1600KB for the first time in July 2014 [50]. By 2015, images already comprised 62% of the top
1000 web pages total weight, according to Akamai, a leading content delivery network and
clouds services provider [49]. The advent of smartphones with the ubiquitous digital camera is
partly responsible for this increase in image and video traffic [46-48]. Not only professional
editing software such as Adobe Photoshop is now more practical, but it is far way more
comfortable to snap a photo or film something and share online than it used to be previously.

1.2 Problem Statement
During work on an e-commerce car website project [66], a necessity for a photo

thumbnail system was identified by the author of this project for its search engine and product
pages (with cropping functionality) [67]. During research, it was discovered many web
applications [5, 42, 44] does image processing internally using bindings to image libraries
such as GD [68] or ImageMagick (or did it at some point). However, some large websites uses
dedicated image thumbnail software such as thumbor [5, 8], an open-source photo thumbnail
service by Globo.com.

A decision to use thumbor was made. A few years later, during work on WeDeploy
(cloud computing platform the author works on) [69] it was necessary to evaluate the Go
programming language [70, 71]. For that, the author decided to build an alternative to thumbor
with the challenge of responding the following questions:

10

1. Is it possible to define a more friendly API to get images?
2. Is it possible to integrate with existing systems easily?
3. Is it possible to minimize storage needs and contract footprints by delegating

caching responsibilities?
4. Is it possible to distribute such software efficiently?

1.3 Motivation
Working with images might result in considerable costs and workload to process and

store. Large sites such as Flickr [5] and Globo.com have published articles, presented talks,
and publicly released code related to this subject [37, 60].

There are also a few companies that offer a broad range of image processing products

or services for the web, such as JPEGmini server, by JPEGmini. However, most of these
alternatives seem to require extensive setup or planning that might discourage both casual
use and system implementation.

This lack of a variety of plug-and-play offers might explain in part why while most web

applications software use external databases, many, such as MediaWiki (the software that
powers Wikipedia) [51], do image processing internally instead of delegating this to a
dedicated software.

Even when taking care to scale efficiently by handling image processing requests
separately, this type of workload is not usually desired on most application servers, for it can
be suboptimal, introduce errors on other areas, and impact system performance and reliability
in unpredictable ways.

1.4 Objective
This undergraduate work studies the problem of distributing images on the web and

presents a new photo thumbnail service with the objective of offering a simple and efficient
open-source image processing middleware capable of doing simple image transformations
such as cropping and resizing, and file format optimization. Though there is some software on
the market for this area, they require certain effort to use that might not be found on certain
circumstances (for example, due to the "Not Invented Here syndrome") [102].

Besides reducing software development costs, for small and large websites other

benefits include reduced use of resources such as CPUs, memory, and storage space and
potentially better compression of images and quality, which translates as bandwidth savings
and performance, what dramatically impacts user experience and Search Engine Optimization
[52]. Scalability and the possibility of easy integration [67, 75] of the system on a
Content-Delivery-Network [100-101], a geographically distributed network of servers, are also
welcome to reduce latency issues.

A secondary benefit of the broad adoption of a tool similar to this in the industry is the
reuse of software, avoiding the expenses related to creating the same feature over and over,

11

given that most software for the web contains images. However, usually with its proprietary
code for handling them [76].

1.5 Work structure
This work is composed of 5 chapters, including this introduction. In chapter 2, there is

a analyze of large website infrastructure and comparison of photo thumbnail services on the
market. In chapter 3, you can find the details of the implementation of picel, a new photo
thumbnail service. In chapter 4, you can see a discussion of the results. In chapter 5, you can
find a conclusion of this work and some proposals for future work. The repository with source
code of this project is available at https://www.github.com/henvic/picel.

12

https://www.github.com/henvic/picel

2 Concepts and background

2.1 Large-scale websites infrastructure
Large websites with high-traffic such as Google, Facebook, Wikipedia, and Netflix are

known to have many internal services organized in layers, and only a few directly exposed to
the public web [42]. This kind of pattern is known as multi-tier architecture (or n-tier) [39-42].

Figure 2.1. Wikimedia multi-tier topology (2010) [53]

13

Such tiers might be on a single monolithic application or, more commonly in large
systems, on different application and servers, following the concept of micro-services
architecture [54] [98].

As an example, Figure 2.1 shows the multi-tier topology of Wikimedia, the entity
behind the Wikipedia, Wiktionary, and other smaller projects, and maintains clusters of servers
in different locations worldwide. While MediaWiki (the software that powers it) is mostly a
monolithic [53] it use some additional parts, such as ElasticSearch [73], to provide a higher
experience for its users. Besides using different specialized software, it routes some of the
requests to specialized servers (like for the image scalers, which shares the same code base
of the main cluster) [74].

It might be the case even a traditional monolithic system benefits from using a
shared-nothing architecture photo thumbnail middleware [67], what simplifies much of
conventional image handling operations (what is usually not a first-class citizen on most
application services). This reality has some parallels with database servers: most software
that needs to store data on the web relies on external databases such as MySQL,
PostgreSQL, etc. for a production environment, instead of embedded ones such as SQLite or
even Lucene [42, 44].

2.2 Background
Image processing for the web involves, in many cases, resizing down a large image

available on a storage server [8, 51]. Most of the processing work involves the high intensive
use of processing power and memory to generate a new file, that is commonly saved to an
ephemeral storage device for posterity [51]. Image operations involve algorithms that read and
processes the images as large matrices of points with a variety of strategies for compression
and image transformation [89]. Such complexities are reduced by the use of image libraries,
as described in section 2.3.

2.3 Imaging libraries
Implementing image processing for complex image files such as JPEG and its

peculiarities is hard. Therefore it is interesting to consider the use of open-source robust
third-party libraries [17].

Three approaches for communication with such software are:

a. Calling external programs (e.g., file descriptor, regular files on a filesystem)
b. Calling embedded dependencies
c. Calling linked external dependencies

There are different issues with each of these different approaches. Calling external

programs means that the portability of the software is affected because now the middleware
requires more than just the operating system to work correctly and version compatibility issues
such as "dependency hell" might arise [99]. Calling embedded dependencies removes this
risk. However, compilation, portability, and distribution might still be affected due to availability

14

options of bindings for the language of choice for writing the middleware, and there is a risk of
the system getting more fragile and less extensible/adaptable. Calling external dependencies
has an even higher chance of compatibility issues [16].

ImageMagick
ImageMagick is a popular library for manipulating images created inside DuPont for

solving the image manipulation needs of chemists and biologists, released in 1st August 1990
[18]. It is used for all image manipulations operations on all file formats, except to/from WebP.
The photo-sharing website Flickr used to use it before moving to a private GPU-based solution
[5].

WebP
WebP is a relatively new image format (initially released in 30 September 2010 and

still not broadly supported like JPEG) developed by Google that has significant performance
and containerization advantages over JPEG, GIF, and PNG [19]. picel uses its official
implementation CLI tool to read and write .webp files. This library is only capable of converting
files to the WebP file format (.webp) and produces better image quality results than the current
implementation of ImageMagick as of the date of this work.

GD Graphics Library
GD is another popular graphics software library, initially released in the year 1994, and

one of the most popular formats along ImageMagick [68].

High Efficiency Image File Format (HEIF)
HEIF is a new file format for individual images and image sequences, developed by

the Moving Picture Experts Group (MPEG). It has compelling advantages over WebP, JPEG,
PNG, and many others image formats designed for rasterized images [30, 64]. Including, less
memory footprint and faster image resizing and cropping/zooming thanks to parallelism and
how it subdivides the images internally. All this also allowed a new deblocking algorithm that
can improve the quality of highly compressed images. During Apple's 2017 WWDC event it
was announced they would embrace the new HEIFF by the MPEG working group [63] natively
on newer iOS and macOS operating systems (already on the market) so this format might get
popular on the web as well soon given Apple's extensive user base and incentive. It should be
the standard option for web clients that announces its support capability by sending a HTTP
Accept request header [30].

2.4 Photo thumbnail services on the market

thumbor
thumbor [8] is an open-source photo thumbnail service in Python by the Brazilian

media and Internet company globo.com, which serves around 15 billion images with it monthly

15

(2017) [55], thumbor currently support different sources of images. By default, it uses a File
loader approach, which requires the user to upload the image to the service [60].

It has a rich set of image manipulation features such as adding watermarks, inverting

colors, and using face and feature detection algorithm for smart cropping. It uses an internal
cache layer and has a built-in URL Tampering protection option to overcome the issue of
malicious overload. It supports a plethora of file formats.

JPEGmini Server
JPEGmini is a paid proprietary software product for compressing the file size of JPEG

photos efficiently. It has a server version [9] that JPEGmini advertises as a regular image
processing server, but is more akin of a CLI tool which can be invoked programmatically using
system calls to optimize JPEG files (only) in batch [61]. It is limited to file optimizations and
doesn't have features such as image resizing or cropping. The output it generates is saved to
a file.

Imgix
Imgix [14] is a paid real-time image processing and Content-Delivery-Network service

used by large websites such as Kickstarter, reddit, The Guardian, Eventbrite, etc. It offers a
great variety of options and image details extraction methods on its API, besides having a
sandbox where you can try the operations available. It supports multiple sources and has
caching features built-in. It supports a plethora of formats and is the most complete regarding
documentation and capabilities by far.

2.5 Chapter summary
In this chapter, we saw that running large websites involves running a considerable

amount of software together and that there is a variety of different vendors of imaging software
for the web on the market, most using the same set of very robust image processing libraries.
In the next chapter, we are going to see how the implementation for picel was crafted.

16

3 Implementation
picel is a photo thumbnail service middleware able to do common image operations

such as cropping, resizing, and file format conversion, exposing this service through the HTTP
protocol. It is designed to be deployed as an internal service that might be publicly exposed
protected by a load balancer with a cache layer. It should be able to get and process JPEG,
PNG, GIF, and WEBP files, and efficiently deliver them, acting similarly to a traditional Unix
filter program [10]. RAW files are not accepted as input because of their "digital negative"
scope [25], which means that they aren't ready for final distribution.

Figure 3.1. picel handling requests

picel handles incoming requests by requesting the image from a backend, processing

it, and delivering the processed as the response to the user. However, besides serving files
already in storage to final users, picel can validate a file as an image file to be stored and
served. One approach for this is to save such file on a private backend server that can be
accessed with picel and let it process the image. A decision to store the original file or not
might be made. However, it is interesting always to serve users a modified version of the file
to cope with the dangers of unrestricted file upload [62] and to do major image optimizations.

Following the UNIX philosophy [16], this middleware is focused on doing one thing
only, and doing it well: serving as a special type of proxy/filter program that read images,
transforms it, and sends the result as the response to the requester. The nginx server is a
good fit for attending the recommendations of HTTP/2 and caching at the load balancer level
explained in the subsections below [21].

17

3.1 Storage service
Similar software usually works with a variety of protocols such as NFS, FTP, HTTP,

samba, etc. on the backend. picel, on the other hand, only consumes requests from an HTTP
server. This decision was made for simplicity, given that HTTP is one of the natural and most
common application protocols used on the web for serving files and has a low overhead [38].
Connections to the backend storage are ephemeral and happen at the time picel handles a
request. An HTTP server must be set up to serve files available only on the filesystem.

3.2 Image processing
One of the advantages of the Go language is that it produces statistically-linked

binaries by default [24]. That said, the option of invoking slave processes of external programs
for doing the image processing was decided for the reasons explained in section 2.3. It is
important to note that the cost of image processing itself usually far outweighs the cost of
swapping processes [17].

One significant challenge is always to be sure to use a compatible version of an

imaging library. This need can be met in two ways. Automatically, if using the published
container for the project, which already contains all dependencies built-in (see section 3.10),
or by running the available unit and integration tests. Nuances about how an image is
processed, such as quality parameters, are mostly left the default, using the recommendations
of the imaging libraries used. An important goal to meet is that it should be good enough to be
used on a photography website.

3.3 API
picel has two modes: single-site and multi-site (default). On single-site mode, requests

received by the middleware are always made to a given storage server. In the multi-site mode,
an address must be passed encoded on the URL with the image file origin server.

A micro-format specification is defined for encoding/decoding picel URLs. For
encoding, a new URL is composed by combining the original URL and the desired processing
properties. For decoding, a parser extracts the parameters from a URL.

The format for the path part of a URL request to picel is: "[optional "s:"][optional
host]md", where:

● "s:" is an optional modifier telling picel to use HTTPS when contacting a storage server
● Optional host is a host address for a storage server
● The md (modified part) is the original path without the last element appended with a,

possibly, modified le (last element)

The "s:" modifier and optional host parts are only necessary when using picel with the
multi-site mode (default).

18

The le part is a product of:

● Original path
● Resizing and cropping parameters might be added (crop factor:resize factor)
● File format: if ".extension" is used, output is coerced to the same input format,

otherwise "_extension" should be used (e.g., ".jpg" coerces, "_jpg" does not)

The standard input format is JPEG. If a request is made to an endpoint without an
extension, it automatically appends ".jpg". For performance, picel currently uses the WebP
image format as the output format if the client sends an Accept request header unless an
explicit output is requested on this line (for example, if it ends with ".jpg"). The separator "_" is
used on the md part for adding parameters. If the original path contains a "_" it must be
escaped by a leading "_". Example: "file__blackandwhite.jpg".

The query string parameter ?query can be appended to a URL to check how picel
resolves a given path. picel does not work with URLs that require query strings parameters.

19

Table 3.1 Examples of encoding/decoding.

picel URL Original file address Parameters

http://picel-server/animals/dog.jpg http://<any>/animals/dog
.jpg

Single mode: yes
Output format: JPEG (coerced,
in)

http://picel-server/animals/dog_800x.
webp

http://<any>/animals/dog
.webp

Single mode: yes
Output format: webp (coerced,
in)
Width: 800px, Height: 56px

http://picel-server/127.0.0.1/animals/d
og_jpg.gif

http://127.0.0.1/animals/
dog.jpg

Single mode: no
Output format: GIF (coerced, out)

http://picel-server/remote.local/animal
s/dog.webp

http://remote.local/anima
ls/dog.webp

Single mode: no
Output format: webp (coerced,
in)

http://picel-server/s:example.com/ani
mals/dog_800x.webp

https://example.com/ani
mals/dog.webp

Single mode: yes
Output format: webp (coerced,
in)
Width: 800px, Height: 56px

http://picel-server/s:example.com/ani
mals/dog_800x_webp

https://example.com/ani
mals/dog.webp

Single mode: yes
Output format: better supported
(with fallback to webp)
Width: 800px, Height: 56px

http://picel-server/big__sur_500x.jpg http://<any>/big_sur.jpg Single mode: yes
Output format: JPEG (coerced,
in)
Width: 500px, Height: 56px

http://picel-server/big__sur_0x0:600x
300_112x56

http://<any>/big_sur.jpg Single mode: yes
Output format: better supported
(with fallback to JPEG)
Crop box points: (x, y, width,
height) = (0, 0, 600, 300)
Width: 112px, Height: 56px

http://picel-server/big__sur_0x0:600x
600_100x

http://<any>/big_sur.jpg Single mode: yes
Output format: better supported
(with fallback to JPEG)
Crop box points: (x, y, width,
height) = (0, 0, 600, 600)
Width: 600px, Height: auto

http://picel-server/big__sur_50x40:60
0x600_x300

http://<any>/big_sur.jpg Single mode: yes
Output format: better supported
(with fallback to JPEG)
Crop box points: (x, y, width,
height) = (50, 40, 600, 600)
Width: auto, Height: 600px

http://picel-server/people_500x_gif http://<any>/people.gif Single mode: yes
Output format: better supported

20

(with fallback to GIF)
Width: 500px, Height: auto

http://picel-server/people_500xx_ - URI parsing error

3.4 Load balancer
In a networking perspective, load balancing improves the distribution of workloads

across multiple servers by using any number of different metrics or heuristics, provides
resilience/fail-tolerance by implementing redundancy and monitoring health-checks. Rate
limiting to avoid abuse might be performed on the load balancer to prevent DoS attacks (on
purpose or accidental overload due to faulty connections) returning 429 Too many Requests
responses [15].

For better performance, support for the HTTP/2 binary protocol is recommended, like
shows, the HTTP2 Explained study of Daniel Stenberg, author of the cURL library and
Command-Line tool for transferring data using various protocols [20] for improved reliability,
and lower latency. Using TLS (Transport Layer Security) to enable HTTPS at this level also
removes overheads of the TLS handshake protocol negotiation and TLS record protocol from
the application servers.

3.5 Caching
This implementation has no public caching mechanism. Instead, it is highly

recommended that the load balancer has a caching layer, which should cacheable public
requests (according to Cache policy response headers). Not doing so would jeopardize the
performance of picel on a real-scenario use case significantly. Prefetching can also be used
on the application level to warm the cache before use and is recommended as an upload
hook. The duration span of a cached asset is better determined by the needs of the system
and more study should be made regarding it [37], though in many cases, forever while the
original asset exists is a good answer (especially when prefetching predefined parameters).

3.6 Handling requests
The following is the process for processing an image with picel:

1. User requests an image to the picel endpoint (directly or through a load balancer)
2. picel receives the request and unmarshal it
3. If the request is invalid, return error
4. Download image file from storage server
5. Spawn a webp or imagick process with the received image output parameters
6. Send a response to the client

The conversion parameters (including quality settings, preferences, etc.) are passed to

the CLI imaging manipulation tools, along with the temporary file path for the original file, as
program arguments. Image metadata (such as XMP and Exif) is always stripped, mostly due

21

to security reasons [65] (for example, avoiding exposing GPS coordinates, photographer
personal identification, etc.), but also for generating smaller files.

The response sent to the client should be cached by the caching layer on the load
balancer to avoid a second request from triggering the process from the beginning once again.
To avoid concurrency issues making this happen during a window where the content is not
cached yet, prefetching of a resource is to be used. Also, if concurrent requests occur, it might
be identified, and the request to the original object and response shared for all requests.

3.7 Debugging and profiling
Profiling a Go program is relatively easy, safe to do on a production environment

without hitting the performance of an entire system, and can be done remotely [22] through an
HTTP web server on the application.

picel is already an HTTP server. Therefore it is only necessary to:

1. include the pprof profiler package (that works as side-effects)
2. protect the /debug/* routes to avoid exposing the profiling routes to the public

web
3. register a few pprof HTTP endpoints [23] (this protection can be done on the

load balancer level).

After these changes, profiling can be made with the built-in go tool pprof.

3.8 Software quality
This software needs to have a high Quality of Service if run as a critical infrastructure

for large websites [55] or part of web systems where a high risk of failure is not tolerated [26].

3.8.1 Static code analysis
Go has many static code analysis tools. Doing static code analysis is an important step

to decrease technical debt, improve source code quality, and reduce software defects [27].
The official golint tool is used for linting the source code against programmer errors. The
official go vet tool is used to examine and report suspicious constructs. The errcheck tool is
used for checking unchecked error returns. All code must completely adhere to these strict
constraints (e.g., no code should be committed with one unchecked error or suspicious
construct). Even false positives must be “fixed” for the sake of avoiding over-complication of
quality control procedures.

Change Risk Anti-Patterns (CRAP) score, and cyclomatic complexity is also analyzed
with the Codacy service [28]. The threshold for the cyclomatic complexity (that measures code
complexity) is set to 10 and is analyzed with the Go tool gocyclo. The CRAP score for all code
must be below 30 (the default value recommended by Codacy). The CRAP score is a
correlation between the code test coverage and the cyclomatic complexity [86].

22

3.8.2 Unit and integration testing
A Continuous Integration (CI) system is used to run the unit and integration tests of

picel [87], generating a test coverage report in the process [88]. The unit tests are there for
verifying if the encoder/decoder mechanism is working correctly and if the request handler is
handling the connections correctly. For the integration step, the tests call the ImageMagick
tool identify to compare images and determine if the generated image appears to be created
successfully. This test usually generates the same binary files on a given machine. However,
it is not deterministic if you compare results of different computers as it is related to what
dependency version is running on it and other smaller factors.

Test assets (mostly image files; including for benchmark) are available on a secondary
branch called test_assets [93] for the sake of not polluting the application/main branches with
binary blobs on the versioning system, git [92]. All things on this branch should be inside a
test_assets directory. Files generated by picel can be found inside the test_assets/compare
directory.

3.8.3 Benchmark/Stress testing
ab is an Apache Benchmarking tool can be used for benchmarking picel to compare it

with alternatives and to see how it handles multiple different files at once [29]. An
implementation of it is still underway. For tests to be relevant, it is recommended that they are
made on large machines similar in power to ones that would be used for serving images on a
large scale website. It should be interesting to compare a distinct set of requests with different
workload styles (i.e., image size, file sizes, etc.) multiple caching configurations, etc.

3.9 Avoiding premature optimization
There are at least two topics that were considered for addition on picel, but postponed

indefinitely until enough data exists to support a final decision [12].

● Image recognition is a hot topic with services like Amazon Rekognition, Google
Cloud Vision API [2], or Microsoft Azure's Computer Vision [3] offering image
analysis solutions that work out of the box and extracts face detection, objects
description, location info, and other data

● The use of a strategy for doing multiple resizing/cropping on the same image
file

3.10 Distribution
There are two official supported forms of installing picel. The repository with source

code and builds of this project is available at https://www.github.com/henvic/picel [6], and
Docker images are available as "henvic/picel" in the Docker Registry. A JavaScript encoder
library is available at https://www.github.com/henvic/picel-js [7].

23

https://www.github.com/henvic/picel
https://www.github.com/henvic/picel-js

Using the binary directly from the repository requires configuring your system with the
ImageMagick and WebP dependencies, as explained at section 2.3. These dependencies
should be installed with your operating system package installer.

3.11 License
This software is licensed under public domain (where applicable) or the permissive

MIT License, as most Go software. This choice of licensing is to allow the indiscriminate use
of the software [57], what is very welcome within the Go community, given the fact that Go is a
statically-linked language and Go dependencies are necessarily pure source code (text).
Therefore, the community is very wary of the risk of license proliferation of non-permissive
licenses, what is known for taking away the focus on programming [58-59].

24

Figure 3.2 License data extracted from a query on Google's BigQuery [56]

Also interesting to know is that the market for cloud computing [11] components (both
software and hardware) is very competitive and open-source solutions have a competitive
advantage [77-80]. Not surprising Hashicorp [81] and Docker [82] are recent market
successes [83, 84].

3.12 Chapter summary
In this chapter the implementation details of picel were presented, along with an

explanation about its design principles, a description of the processes adopted to ensure that
it achieves a minimum quality requirement, how to install it using Docker, and its permissive
licensing choice. In the next chapter, we are going to do acceptance tests with it.

25

4. Results and Acceptance Testing
Even though picel URLs are easy to compose by hand, this is not a process you want

to do manually. Therefore, an accompanying encoder library picel-js is available [33] to
simplify the process of encoding requests on the browser. Although it is easier to start using
picel on the beginning of a project, it is still easier to integrate with existing projects than the
competing solutions presented here because it uses existing storage servers as the origin
source for images. On this chapter, we are going to see how to run picel and an acceptance
testing demonstration.

To run picel you need to either use its Docker image or get its binary from its repository

page. Once you have the binary, you can execute it to list its available commands as shown
below.

$ picel

Usage:
 picel [flags]
 picel [command]

Available Commands:
 serve Serve images
 dependencies Verify dependencies
 help Help about any command

Flags:
 -c, --config string .ini configuration file
 -h, --help Show help message
 -v, --verbose Verbose mode (show image processing output)
 --version Print version information and quit

Use "picel [command] --help" for more information about a command.

The "picel dependencies" command checks the availability of all required

dependencies. The "picel serve" command starts the picel server. It accepts the "--addr" flag,
to configure on what port/net addresses picel should be run. The default port is 8123.

Running the command "picel serve --addr :8000", picel will try to listen on the port
8000 for all network interfaces available on the machine.

By default, picel runs the non-profiled picel binary for avoiding any safety issues, as
explained in section 3.7. picel requires external dependencies, and this might make
installation more complicated. However, it is also available on a Docker [82] container image
on the public Docker Registry, containing all required dependencies necessary for the
immediate use of the middleware:

26

You can install it using:
$ docker pull henvic/picel

Then, run it exposing it on its default port 8123:
$ docker run --publish 8123:8123 henvic/picel

You can use the --detach flag to run it as a daemon, instead:
$ docker run --detach --publish 8123:8123 henvic/picel

You can also run the picel with the profiler:
$ docker run --detach --publish 8123:8123 --env PICEL_PROFILER=true henvic/picel

Please be aware that ports below 1024 are privileged ports and if you try to run on it

exposing picel on such low port on a UNIX-like system, you will need to have superuser/root
privileges [90]. After picel is up and running, you can start testing it right away.

4.1 Example of image transformation
Important: Images presented here are not in scale and quality is degraded by the print.

The source for this cartoon is https://imgs.xkcd.com/comics/tar_2x.png

Figure 4.1 Original xkcd: tar #1168

JavaScript code for extracting the first panel:

picel.encode({
 prefix: "http://localhost:8123",
 backend: "https://imgs.xkcd.com",
 path: "comics/tar_2x.png",
 crop: {x: 0, y: 0, width: 346, height: 458},
 width: 300
});

This code would create the following URI:
http://localhost:8123/s:imgs.xkcd.com/comics/tar__2x_0x0:346x458_300x_png

27

http://localhost:8123/
https://imgs.xkcd.com/

Which is correctly parsed by the server as we can see if we visit
http://localhost:8123/s:imgs.xkcd.com/comics/tar__2x_0x0:346x458_300x_png?explain

{
 "message": "Success. Image path parsed and decoded correctly",
 "transform": {
 "image": {
 "id": "comics/tar_2x",
 "extension": "png",
 "source": "https://imgs.xkcd.com/comics/tar_2x.png"
 },
 "path": "comics/tar__2x_0x0:346x458_300x_png",
 "original": false,
 "width": 300,
 "height": 0,
 "crop": {
 "x": 0,
 "y": 0,
 "width": 346,
 "height": 458
 },
 "output": "jpg"
 },
 "errors": null
}

This corresponds to the following processed image:

Figure 4.2 cropped xkcd: tar #1168 (13KB)

Please notice that ".png" was replaced as "_png", for the performance optimization

objectives explained in section 3.3. Also, be aware that if you are using Docker and want to
test local files, you must use a non-localhost/127.0.0.1 loopback address on the part of your
URI, or else it is going to use the internal container loopback device, instead of your host
machine.

28

4.2 Quality degradation and weight optimization
This test only comprehends a single image. More tests would be welcome, but as both

ImageMagick and WebP are already very well-tested, this is not the focus of this work, and
picel is using no image preferences arguments besides the quality parameter.

Image: "Hraunfossar & Barnafoss #2 Borgarfjörður, Iceland."
https://www.flickr.com/photos/henriquev/24016682888/

Source Size (Weight) Link

Original file 5472x3078 (15.5MB) https://farm5.staticflickr.com/
4453/24016682888_dfff44d4
7c_o.jpg

WebP generated by picel
(using WebP)

5472x3078 (6.4MB) https://gist.github.com/henvic
/458ec4e4cbc60c3b045799d
1cbc4abfa/raw/502d3a181a1
5c09f801d8f4a513a7d70960
ffbf8/24016682888__dfff44d
47c__o_jpg.webp

Resized by Flickr (with
added sharpening)

800x450 (295KB) https://farm5.staticflickr.com/
4453/24016682888_68ce7cc
7cb_c.jpg

JPEG generated by picel
(using ImageMagick)

800x450 (251KB) https://gist.githubusercontent
.com/henvic/458ec4e4cbc60
c3b045799d1cbc4abfa/raw/5
02d3a181a15c09f801d8f4a5
13a7d70960ffbf8/240166828
88__dfff44d47c__o_800x.jpg

WebP generated by picel
(using WebP)

800x450 (198KB) https://gist.github.com/henvic
/458ec4e4cbc60c3b045799d
1cbc4abfa/raw/502d3a181a1
5c09f801d8f4a513a7d70960
ffbf8/24016682888__dfff44d
47c__o_800x_jpg.webp

Table 4.1 Comparing files of generated thumbnails

If you compare output, you may notice Flickr is using heavy sharpening on its
thumbnails [96], while no sharpening treatment is being given on picel.

The main average error (MAE) for channel distortion after the conversion from the
original file to WebP is almost none as we can verify with the ImageMagick compare tool [97]:

29

$ compare -verbose -metric mae ../24016682888_dfff44d47c_o.jpg
24016682888__dfff44d47c__o_jpg.webp diff.png

 Channel distortion: MAE
 red: 552.222 (0.00842636)
 green: 401.081 (0.00612011)
 blue: 535.04 (0.00816419)
 all: 496.114 (0.00757022)

4.3 Stress tests
This test is a preliminary stress test and only serve to show that this server can

achieve a high throughput, without comparing it to alternatives. A more serious analysis would
require a dedicated machine not as readily available. For this stress test, the image used on
4.2 was used as well.

These tests were run on a macOS 10.13.1 running Docker 17.09.0-ce on a Late-2013

MacBook Pro Retina 15-inch 2.3 GHz Intel Core i7 with 16GB 1600 MHz DDR3. No graphics
cards were used for the test [94]. The Docker preferences were set to use up to 8 CPU cores
and 10GB of memory.

A copy of the Flickr original image was made to a local server and ab was used to
make 200 requests with a concurrency level of 4 per time. It was found this machine is
capable of handling about 2 requests per second for a 5472x3078 15MB JPEG file, resizing it
to 800x450 251KB. Or 2.7 requests per second when resizing it to WEBP, with a final file of
198KB [95].

4.4 Chapter summary
Although there still need more validation for picel to be able to be labeled as a stable

version that can be safely used in a production environment, the results appear to correspond
with what is expected from a robust and stable middleware. Also, it seems to meet the
expected requirements set during the planning and conceptual phases of this project. In the
next chapter, we conclude this work.

30

5. Conclusion
The core expectations of the project were met mostly satisfyingly. Now, more tests

need to be done to validate whether this solution is ready for prime time, and one possibility is
to use strategies of feature toggles, A/B testing, and dark launches [34-35] on production
environment until enough data is available for a proper definition.

Interestingly enough, building and deploying a middleware for processing image files at
scale involves the area of networking expertise much more than of the actual processing of
images, if a decision to delegate the processing to robust specialized software by major
vendors is made.

This software would involve many other parts had it been decided that it would perform
the image processing internally using available image manipulation libraries directly (or
implementing one). While this would avoid the overhead of spawning new processes, it would
add a lot of additional code and chances of defects by removing the isolation granted by this
current state of separation of concerns.

This is why care was taken to whitelist what input files to accept before spawning an
ImageMagick process to handle it. ImageMagick has some capacity to re-encoding video files,
but that would add room for unexpected behaviors, and this is why most services do one or
the other, not both. For example, while thumbor has support for photos. Amazon has the
Elastic Transcoder [36] specialized for video, but not photos. If support for video is wanted, it
is probably more worth to create it separately given that the requirements (latency, image size,
request duration, resource utilization, caching worthiness, etc.) differ significantly, even though
the processing material is similar.

5.1 Limitation
As expressed in section 3.9, this software has limitations regarding the lack of

optimization for doing multiple operations on a copy of a single file and entirely lacks any
Artificial Intelligence deciders or detectors.

5.2 Future work
Here is a not exhaustive list of possible future work for improving picel quality, support,

and usefulness.

● Create guidelines on the documentation and boilerplate code to advance the use of it
● Create a comprehensive suite of benchmark/stress tests
● Use SHA1 hashes to store a cache of loaded files on the same place to minimize disk

and networking I/O
● Improve the current accompanying encoding JS library by adding the identification of

Internet connection quality/type and user device/screen size

31

● Publish more accompanying encoding/decoding libraries on other languages for
server-side and non-web usage

● Improve logging functionality
● Consider sharpening resized down images
● Add support for rasterizing SVG (Scalable Vector Graphics)
● Replace the ImageMagick dependency with the more mature fork GraphicsMagick,

that thumbor uses [8, 31-32]
● Add High Efficiency Image File Format (HEIFF) support and prioritize it when possible,

for the reasons explained on Section 2.3.

32

References

[1] Wikipedia:Size of Wikipedia. Wikipedia, the free encyclopedia, 2017. Available in

https://en.wikipedia.org/w/index.php?title=Wikipedia:Size_of_Wikipedia&oldicd=79828821
1. Last visited on 3rd December, 2017.

[2] Google Cloud Vision API. Google, 2016. Available in https://cloud.google.com/vision/.
Last visited on 3rd December, 2017.

[3] Microsoft Azure Vision API. Microsoft, 2017. Available in
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/. Last
visited on 3rd December, 2017.

[4] Video file size calculator. Toolstud.io, 2006. Available in
https://toolstud.io/video/filesize.php. Last visited on 3rd December, 2017.

[5] Russell, A. Real-time Resizing of Flickr Images Using GPUs. Flickr, 2015. Available in
http://code.flickr.net/2015/06/25/real-time-resizing-of-flickr-images-using-gpus/. Last
visited on 3rd December, 2017.

[6] Pinto, H. picel middleware repository. GitHub, Inc., 2016. Available in
https://github.com/henvic/picel. Last visited on 3rd December, 2017.

[7] Pinto, H. picel encoder tool (JavaScript). GitHub, Inc., 2016. Available in
https://github.com/henvic/picel-js. Last visited on 3rd December, 2017.

[8] Thumbor. Globo.com, 2015. Available in https://github.com/thumbor/thumbor. Last
visited on 3rd December, 2017.

[9] JPEGmini Server. Beamr Ltd., 2017. Available in http://www.jpegmini.com/server. Last
visited on 3rd December, 2017.

[10] Raymond, E. S. The art of Unix programming. Languages. Online version. catb.org,
2003. Available in http://www.catb.org/esr/writings/taoup/html/ch14s04.html#perl. Last
visited on 3rd December, 2017.

[11] Mell, P.; Grance, T. The NIST definition of cloud computing. NIST U.S. Department of
Commerce, special publication, 2011.

[12] Knuth, D. E. Structured Programming with go to Statements. ACM Computing
Surveys (CSUR), 6(4), pp. 261-301, 1974.

[13] Kreitz, G.; Niemela, F. Spotify--large scale, low latency, P2P music-on-demand
streaming In Peer-to-Peer Computing (P2P). IEEE Tenth International Conference, pp.
1-10, 2010.

[14] Imgix. Zebrafish Labs Inc., 2017. Available in https://www.imgix.com/. Last visited on 3rd
December, 2017.

[15] RFC 6585: Additional HTTP Status Codes: 429 Too Many Requests. IEFT, 2012.
Available in https://tools.ietf.org/html/rfc6585#section-4. Last visited on 3rd December,
2017.

[16] Raymond, E. S. The art of Unix programming. Philosophy. Online version. catb.org,
2003. Available in http://www.catb.org/esr/writings/taoup/html/philosophychapter.html.
Last visited on 3rd December, 2017.

[17] Raymond, E. S. The art of Unix programming. Taxonomy of Unix IPC Methods.
Online version. catb.org, 2003. Available in

33

https://en.wikipedia.org/w/index.php?title=Wikipedia:Size_of_Wikipedia&oldid=798288211
https://en.wikipedia.org/w/index.php?title=Wikipedia:Size_of_Wikipedia&oldid=798288211
https://cloud.google.com/vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://toolstud.io/video/filesize.php?imagewidth=3840&imageheight=2160&framerate=60&timeduration=200&timeunit=seconds
http://code.flickr.net/2015/06/25/real-time-resizing-of-flickr-images-using-gpus/
https://github.com/henvic/picel
https://github.com/henvic/picel-js
https://github.com/thumbor/thumbor
http://www.jpegmini.com/server
http://www.catb.org/esr/writings/taoup/html/ch14s04.html#perl
http://www.jpegmini.com/server
https://tools.ietf.org/html/rfc6585#section-4
http://www.catb.org/esr/writings/taoup/html/philosophychapter.html

http://www.catb.org/esr/writings/taoup/html/ch07s02.html#id2922002. Last visited on 3rd
December, 2017.

[18] Cristy, J. ImageMagick history. ImageMagick Studio LLC, 2017. Available in
http://www.imagemagick.org/script/history.php. Last visited on 3rd December, 2017.

[19] WebP - A new image format for the Web. Google Developers, 2016. Available in
https://developers.google.com/speed/webp/. Last visited on 3rd December, 2017.

[20] Stenberg, D. HTTP2 explained. 2015. Available in
https://daniel.haxx.se/http2/http2-v1.10.pdf. Last visited on 3rd December, 2017.

[21] Nginx content caching. NGINX Inc., 2017. Available in
https://www.nginx.com/resources/admin-guide/content-caching/. Last visited on 3rd
December, 2017.

[22] Cox, R.; Ma, S. Profiling Go programs. The Go Programming Language - The Go Blog,
2011. Available in https://blog.golang.org/profiling-go-programs. Last visited on 3rd
December, 2017.

[23] Krylysov, A. Profiling and optimizing Go web applications. 2017. Available in
artem.krylysov.com/blog/2017/03/13/profiling-and-optimizing-go-web-applications/. Last
visited on 3rd December, 2017.

[24] Why is my trivial program such a large binary? The Go Programming Language -
FAQ, 2017. Available in
https://golang.org/doc/faq#Why_is_my_trivial_program_such_a_large_binary. Last visited
on 3rd December, 2017.

[25] Understanding Digital Raw Capture. Adobe Systems Inc., 2004. Available in
http://www.adobe.com/digitalimag/pdfs/understanding_digitalrawcapture.pdf. Last visited
on 3rd December, 2017.

[26] Perrow, C. Normal Accidents: Living with High-Risk Technologies. Basic Books,
1984.

[27] Louridas, P. Static code analysis. IEEE Software. v. 23. 4. pp - 58-61, 2006. Available in
http://ieeexplore.ieee.org/abstract/document/1657940/. Last visited on 3rd December,
2017.

[28] Codacy code reviews & code analysis. Codacy Automated Code Review, 2017.
Available in https://www.codacy.com/. Last visited on 3rd December, 2017.

[29] ab: Apache Benchmarking tool. The Apache Software Foundation, 2017. Available in
https://httpd.apache.org/docs/2.4/programs/ab.html. Last visited on 3rd December, 2017.

[30] WWDC. High Efficiency Image File Format. Apple Inc., session 513, 2017. Available in
https://developer.apple.com/videos/play/wwdc2017/513/. Last visited on 3rd December,
2017.

[31] Friesenhahn, B. Introducing GraphicsMagick Project. 2003. Available in
https://marc.info/?l=imagemagick-developer&m=104777007831767&w=2. Last visited on
3rd December, 2017.

[32] GraphicsMagick Image Processing System. GraphicsMagick Group, 2017. Available in
http://www.graphicsmagick.org. Last visited on 3rd December, 2017.

[33] Pinto, H. picel encoder tool (JavaScript). GitHub, Inc., 2016. Available in
https://github.com/henvic/picel-js. Last visited on 3rd December, 2017.

34

http://www.catb.org/esr/writings/taoup/html/ch07s02.html#id2922002
http://www.imagemagick.org/script/history.php
https://developers.google.com/speed/webp/
https://daniel.haxx.se/http2/http2-v1.10.pdf
https://www.nginx.com/resources/admin-guide/content-caching/
https://golang.org/
https://blog.golang.org/profiling-go-programs
http://artem.krylysov.com/blog/2017/03/13/profiling-and-optimizing-go-web-applications/
https://golang.org/
https://golang.org/doc/faq#Why_is_my_trivial_program_such_a_large_binary
http://www.adobe.com/digitalimag/pdfs/understanding_digitalrawcapture.pdf
http://ieeexplore.ieee.org/abstract/document/1657940/
https://www.codacy.com/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://developer.apple.com/videos/play/wwdc2017/513/
https://marc.info/?l=imagemagick-developer&m=104777007831767&w=2
http://www.graphicsmagick.org/
https://github.com/henvic/picel-js

[34] Cook, T. Hammering Usernames. Facebook, 2009. Available in
https://www.facebook.com/note.php?note_id=96390263919. Last visited on 3rd
December, 2017.

[35] Dark Launch. DevOps Dictionary, 2015. Available in
http://devopsdictionary.com/wiki/Dark_Launch. Last visited on 3rd December, 2017.

[36] Amazon Elastic Transcoder. Amazon Web Services, Inc., 2013. Available in
https://aws.amazon.com/elastictranscoder/. Last visited on 3rd December, 2017.

[37] A Year Without a Byte. Flickr, 2017. Available in
http://code.flickr.net/2017/01/05/a-year-without-a-byte/. Last visited on 3rd December,
2017.

[38] The Zettabyte Era: Trends and Analysis. Cisco, 2017. Available in
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-inde
x-vni/vni-hyperconnectivity-wp.html. Last visited on 3rd December, 2017.

[39] Tanenbaum, W. Computer Networks (The Application Layer). Pearson Education, Inc,
5th ed., 2011.

[40] Wang, A.; Tonse, S. Announcing Archaius: Dynamic Properties in the Cloud. Netflix,
Inc., 2012. Available in
https://medium.com/netflix-techblog/announcing-archaius-dynamic-properties-in-the-cloud
-bc8c51faf675. Last visited on 3rd December, 2017.

[41] Network Service Tiers: Custom Cloud Network. Google (Alphabet, Inc), 2017.
Available in https://cloud.google.com/network-tiers/. Last visited in 27th November, 2017.

[42] Wikimedia servers. Wikipedia, the free encyclopedia, 2017. Available in
https://meta.wikimedia.org/wiki/Wikimedia_servers. Last visited in 27th November, 2017.

[43] Stringfellow, A. What Is N-Tier Architecture? DevOps Zone, 2017. Available in
https://dzone.com/articles/what-is-n-tier-architecture. Last visited in 27th November,
2017.

[44] Database server. Drupal System Requirements, 2016. Available in
https://www.drupal.org/docs/7/system-requirements. Last visited in 3rd December, 2017.

[45] Berners-Lee, T.. Frequently asked questions - What were the first WWW browsers?
W3C Recommendation, 2017. Available in
https://www.w3.org/People/Berners-Lee/FAQ.html#browser. Last visited in 3rd
December, 2017.

[46] Kindberg, T.; Spasojevic, M.; Fleck, R.; Sellen, Al. The ubiquitous camera: An in-depth
study of camera phone use. IEEE Pervasive Computing, v 4, n 2, pp - 42-50, 2005.

[47] Share of devices used to access the internet at home, in the United States, from
2010 to 2015. Statistic, 2010. Available in
https://www.statista.com/statistics/199055/devices-used-to-access-the-internet-at-home-i
n-the-united-states/. Last visited 25th March, 2017.

[48] Interesting Stats. HTTP Archive, 2016. Available in
http://httparchive.org/interesting.php?a=All&l=Nov%201%202017. Last visited 1th
November, 2017.

[49] Everts, T. Page bloat: The average web page size is more than 2MB. SOASTA,
Akamai, 2015. Available in
https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/. Last visited 3rd
December, 2017.

35

https://www.facebook.com/note.php?note_id=96390263919
http://devopsdictionary.com/wiki/Dark_Launch
https://aws.amazon.com/elastictranscoder/
http://code.flickr.net/2017/01/05/a-year-without-a-byte/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://medium.com/netflix-techblog/announcing-archaius-dynamic-properties-in-the-cloud-bc8c51faf675
https://medium.com/netflix-techblog/announcing-archaius-dynamic-properties-in-the-cloud-bc8c51faf675
https://cloud.google.com/network-tiers/
https://meta.wikimedia.org/wiki/Wikimedia_servers
https://dzone.com/articles/what-is-n-tier-architecture
https://www.drupal.org/docs/7/system-requirements/database-server
https://www.w3.org/People/Berners-Lee/FAQ.html#browser
https://www.statista.com/statistics/199055/devices-used-to-access-the-internet-at-home-in-the-united-states/
https://www.statista.com/statistics/199055/devices-used-to-access-the-internet-at-home-in-the-united-states/
http://httparchive.org/interesting.php?a=All&l=Nov%201%202017
https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/

[50] Average Web Page Breaks 1600K. WebSite Optimization, 2014. Available in
http://www.websiteoptimization.com/speed/tweak/average-web-page/. Last visited 3rd
December, 2017.

[51] Manual: Imagem Administration. MediaWiki, 2017. Available in
https://www.mediawiki.org/wiki/Manual:Image_administration. Last visited 3rd December,
2017.

[52] King, A. B. Website Optimization: Speed, Search Engine & Conversion Rate Secrets.
O'Reilly Media, Inc., 2008.

[53] File:Wikimedia-servers-2010-12-28.svg. Wikimedia, 2010. Available in
https://meta.wikimedia.org/wiki/File:Wikimedia-servers-2010-12-28.svg. Last visited 3rd
December, 2017.

[54] Namiot, D.; Sneps-Sneppe, M. On micro-services architecture. International Journal of
Open Information Technologies, v. 2.9, pp - 24-27, 2014.

[55] Who is using thumbor. Globo.com, 2017. Available in
http://thumbor.readthedocs.io/en/latest/whos_using_it.html. Last visited 3rd December,
2017.

[56] Pinto, H. Go repositories licenses on GitHub. GitHub, Inc., 2017. Available in
https://gist.github.com/henvic/5fa7abcf3518ed5f29a66eaa04e00ea2. Last visited 3rd
December, 2017.

[57] Kinsella, S. Do Business WITHOUT Intellectual Property. Liberty.me, 2014. Available
in
http://www.stephankinsella.com/wp-content/uploads/publications/kinsella-do-business-wit
hout-ip-2014.pdf. Last visited 3rd December, 2017.

[58] Raymond, E. S; Raymond, C. O. Licensing HOWTO. catb.org, 2012. Available in
http://www.catb.org/~esr/Licensing-HOWTO.html. Last visited 3rd December, 2017.

[59] Nimmer, T. R. Open source license proliferation, a broader view. 2005. Available in
www.ipinfoblog.com/archives/licensing-law-issues-open-source-license-proliferation-a-bro
ader-view.html. Last visited 3rd December, 2017.

[60] Schröder, P. Thumbor image loader docs. GitHub, Inc., 2015. Available in
https://github.com/thumbor/thumbor/wiki/Image-loader. Last visited 3rd December, 2017.

[61] JPEGmini Server. Beamr Ltd., 2017. Available in http://www.jpegmini.com/server. Last
visited on 3rd December, 2017.

[62] Unrestricted File Upload. Wikipedia, the free encyclopedia, 2017. Available in
https://www.owasp.org/index.php/Unrestricted_File_Upload. Last visited 3rd December,
2017.

[63] High Efficiency Image File Format (HEIF). Moving Picture Experts Group (MPEG),
2017. Available in https://mpeg.chiariglione.org/standards/mpeg-h/image-file-format. Last
visited 3rd December, 2017.

[64] HEIF Comparison with other formats. Nokia Technologies, 2017. Available in
http://nokiatech.github.io/heif/comparison.html. Last visited 3rd December, 2017.

[65] Alvarez, P. Using Extended File Information (EXIF) File Headers in Digital Evidence
Analysis. International Journal of Digital Evidence, v. 2, 3, 2004.

[66] Pinto, H. Vehikel. GitHub, Inc., 2013. Available in https://github.com/henvic/vehikel. Last
visited 3rd December, 2017.

[67] Pinto, H. Vehikel (video). YouTube BR, 2014. Available in
https://www.youtube.com/watch?v=dML0FQIUcTY. Last visited 3rd December, 2017.

36

http://www.websiteoptimization.com/speed/tweak/average-web-page/
https://www.mediawiki.org/wiki/Manual:Image_administration
https://meta.wikimedia.org/wiki/File:Wikimedia-servers-2010-12-28.svg
http://thumbor.readthedocs.io/en/latest/whos_using_it.html
https://gist.github.com/henvic/5fa7abcf3518ed5f29a66eaa04e00ea2
http://www.stephankinsella.com/wp-content/uploads/publications/kinsella-do-business-without-ip-2014.pdf
http://www.stephankinsella.com/wp-content/uploads/publications/kinsella-do-business-without-ip-2014.pdf
http://www.catb.org/~esr/Licensing-HOWTO.html
http://www.law.uh.edu/faculty/main.asp?PID=29
http://www.ipinfoblog.com/archives/licensing-law-issues-open-source-license-proliferation-a-broader-view.html
http://www.ipinfoblog.com/archives/licensing-law-issues-open-source-license-proliferation-a-broader-view.html
https://github.com/thumbor/thumbor/wiki/Image-loader
http://www.jpegmini.com/server
https://www.owasp.org/index.php/Unrestricted_File_Upload
https://mpeg.chiariglione.org/standards/mpeg-h/image-file-format
http://nokiatech.github.io/heif/comparison.html
https://github.com/henvic/vehikel
https://www.youtube.com/watch?v=dML0FQIUcTY

[68] GD Graphics Library. Wikipedia, the free encyclopedia, 2017. Available in
https://en.wikipedia.org/wiki/GD_Graphics_Library. Last visited 3rd December, 2017.

[69] WeDeploy. Liferay, Inc., 2015. Available in https://wedeploy.com. Last visited 3rd
December, 2017.

[70] Go. The Go Programming Language, 2009. Available in https://www.golang.org/. Last
visited 3rd December, 2017.

[71] Developers Google. Google I/O 2010 - Go Programming (video). YouTube, 2010.
Available in https://www.youtube.com/watch?v=jgVhBThJdXc. Last visited 3rd December,
2017.

[72] Stonebraker, M. The Case for Shared Nothing. University of California, Berkley, Ca.,
1997. Available in http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf. Last visited 3rd
December, 2017.

[73] Horohoe, C. Wikimedia moving to Elasticsearch. Wikimedia Foundation, 2014.
Available in https://blog.wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/.
Last visited 3rd December, 2017.

[74] Help:Images. MediaWiki, 2017. Available in https://www.mediawiki.org/wiki/Help:Images.
Last visited 3rd December, 2017.

[75] Vakali, A.; Pallis, G. Content delivery network status and trends. IEEE Internet
Computing, v 7, 6, 2003.

[76] Krueger, C. Software reuse. ACM Computing Surveys (CSUR), v 24, 2, pp - 131-183,
1992.

[77] Pike, R. Go: Ten years and climbing. 2017. Available in
https://commandcenter.blogspot.com.br/2017/09/go-ten-years-and-climbing.html. Last
visited 3rd December, 2017.

[78] OpenStack project. OpenStack, 2017. Available in https://www.openstack.org. Last
visited 3rd December, 2017.

[79] Open Compute Project. Facebook, 2017. Available in http://www.opencompute.org. Last
visited 3rd December, 2017.

[80] RedHat OpenShift. RedHat, 2017. Available in https://www.openshift.com. Last visited
3rd December, 2017.

[81] Cloud Infrastructure Automation. Hashicorp, 2017. Available in
https://www.hashicorp.com. Last visited 3rd December, 2017.

[82] Docker. Docker Inc., 2017. Available in https://www.docker.com. Last visited 3rd
December, 2017.

[83] Konrad, A. Open-Source Darling Docker Cracks The Billion-Dollar Club With $95
Million Raise. Forbes Media LLC, 2015. Available in
https://www.forbes.com/sites/alexkonrad/2015/04/14/docker-raises-95-million-at-billion-va
luation/. Last visited 3rd December, 2017.

[84] HashiCorp profile. Forbes Media LLC, 2017. Available in
https://www.forbes.com/profile/hashicorp/. Last visited 3rd December, 2017.

[85] Heynemann, B. Thumbor: Escalabilidade em processamento de imagens com
reconhecimento facial para 20 milhões de brasileiros. InfoQ, 2014. Available in
https://www.infoq.com/br/presentations/thumbor-escalabilidade-processamento-de-image
ns. Last visited 3rd December, 2017.

37

https://en.wikipedia.org/wiki/GD_Graphics_Library
https://wedeploy.com/
https://golang.org/
https://www.golang.org/
https://www.youtube.com/watch?v=jgVhBThJdXc
http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf
https://blog.wikimedia.org/author/chad/
https://blog.wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/
https://www.mediawiki.org/wiki/Help:Images
https://commandcenter.blogspot.com.br/2017/09/go-ten-years-and-climbing.html
https://www.openstack.org/
http://www.opencompute.org/
https://www.openshift.com/
https://www.hashicorp.com/
https://www.docker.com/
https://www.forbes.com/sites/alexkonrad/2015/04/14/docker-raises-95-million-at-billion-valuation/
https://www.forbes.com/sites/alexkonrad/2015/04/14/docker-raises-95-million-at-billion-valuation/
https://www.forbes.com/profile/hashicorp/
https://www.infoq.com/br/presentations/thumbor-escalabilidade-processamento-de-imagens
https://www.infoq.com/br/presentations/thumbor-escalabilidade-processamento-de-imagens

[86] Savoia, A. This Code is CRAP. Google Testing Blog, 2011. Available in
https://testing.googleblog.com/2011/02/this-code-is-crap.html. Last visited 3rd December,
2017.

[87] Pinto, H. picel. Travis CI, 2017. Available in https://travis-ci.org/henvic/picel. Last visited
3rd December, 2017.

[88] Pinto, H. picel code coverage report. Coveralls, 2015. Available in
https://coveralls.io/github/henvic/picel. Last visited 3rd December, 2017.

[89] Gonzalez, R.; Woods, R. Digital Image Processing. Pearson Education, Inc, 3rd ed.,
2008.

[90] W3C. Privileged ports. W3C Recommendation, 1995. Available in
https://www.w3.org/Daemon/User/Installation/PrivilegedPorts.html. Last visited 3rd
December, 2017.

[91] Tar. xkcd, 2017. Available in https://xkcd.com/1168/. Last visited 3rd December, 2017.
[92] Kenlon, S. How to manage binary blobs with Git. Opensource.com, 2016. Available in

https://opensource.com/life/16/8/how-manage-binary-blobs-git-part-7. Last visited 3rd
December, 2017.

[93] Pinto, H. picel test assets. GitHub, Inc., 2013. Available in
https://github.com/henvic/picel/tree/test_assets/test_assets. Last visited 3rd December,
2017.

[94] Pike, Q. Device Passthrough (Most notably, GPU) (issue). GitHub, Inc., 2016.
Available in https://github.com/mist64/xhyve/issues/108. Last visited 3rd December, 2017.

[95] Pinto, H. Requests to resize image with picel. GitHub, Inc., 2017. Available in
https://gist.github.com/henvic/458ec4e4cbc60c3b045799d1cbc4abfa. Last visited 3rd
December, 2017.

[96] PLEASE fix over-sharpening!!! Flickr, 2012. Available in
https://www.flickr.com/help/forum/en-us/72157630651445278/. Last visited 3rd
December, 2017.

[97] Command-line Tools: Compare. ImageMagick Studio LLC, 2017. Available in
https://www.imagemagick.org/script/compare.php. Last visited 3rd December, 2017.

[98] Dragoni, Nicola & Giallorenzo, Saverio & Lluch-Lafuente, Alberto & Mazzara, Manuel &
Montesi, Fabrizio & Mustafin, Ruslan & Safina, Larisa. (2016). Microservices:
yesterday, today, and tomorrow. https://arxiv.org/pdf/1606.04036.pdf

[99] Donald, James. Improved Portability of Shared Libraries. (2003). Improved Portability
of Shared Libraries. Princeton, 2003.
https://web.archive.org/web/20070926130800/http://www.princeton.edu/~jdonald/researc
h/shared_libraries/cs518_report.pdf

[100] Jaison Paul Mulerikkal, Ibrahim Khalil. An Architecture for Distributed Content
Delivery Network. School of Computer Science, RMIT University, 2007.
http://ieeexplore.ieee.org/abstract/document/4444113/

[101] Goerge Pallis, Athena Vakali. Insight and Perspectives for Content Delivery
Networks. Communications of the ACM, v. 49, pp - 101-106, 2006.
https://dl.acm.org/citation.cfm?id=1107462

[102] Baliga, Sandeep. Sjöström, Tomas. Not Invented Here. Kellogg School of
Management at Northwestern University August 24, 1997.
https://ksmb55a.kellogg.northwestern.edu/research/math/papers/1213.pdf

38

https://testing.googleblog.com/2011/02/this-code-is-crap.html
https://travis-ci.org/henvic/picel
https://coveralls.io/github/henvic/picel
https://www.w3.org/Daemon/User/Installation/PrivilegedPorts.html
https://xkcd.com/1168/
https://opensource.com/users/seth
https://opensource.com/life/16/8/how-manage-binary-blobs-git-part-7
https://github.com/henvic/picel/tree/test_assets/test_assets
https://github.com/mist64/xhyve/issues/108
https://gist.github.com/henvic/458ec4e4cbc60c3b045799d1cbc4abfa
https://www.flickr.com/help/forum/en-us/72157630651445278/
https://www.imagemagick.org/script/compare.php
https://arxiv.org/pdf/1606.04036.pdf
https://web.archive.org/web/20070926130800/http://www.princeton.edu/~jdonald/research/shared_libraries/cs518_report.pdf
https://web.archive.org/web/20070926130800/http://www.princeton.edu/~jdonald/research/shared_libraries/cs518_report.pdf
http://ieeexplore.ieee.org/abstract/document/4444113/
https://dl.acm.org/citation.cfm?id=1107462
https://ksmb55a.kellogg.northwestern.edu/research/math/papers/1213.pdf

