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Abstract

To simultaneously localise itself and map its surroundings is an es-
sential ability that a robot needs to have in order to perform various
tasks in unknown, dangerous or domestic environments. In this work
we develop a system capable of building globally consistent maps us-
ing a graph-based interpretation of the simultaneous localization and
mapping problem. We use an RGBD sensor to extract visual and
depth information for loop closure detection and relative transforma-
tion estimation. The final system is tested on an openly available
benchmark. Finally, experiments are also performed on a mobile robot
in a domestic environment, yielding promising positive results.
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Resumo

A capacidade de se localizar e mapear o ambiente que o circunda é
uma habilidade essencial um robô precisa possuir para realizar diversos
tipos de tarefas, sejam elas em ambientes domésticos, desconhecidos
ou perigosos para seres humanos. Neste trabalho nós desenvolvemos
um sistema capaz de construir mapas globalmente consistentes usando
uma interpretação baseada em grafos para o problema de localização e
mapeamento simultâneos. Nós usamos um sensor RGBD para extrair
informações visuais e de profundidade para detecção e estimativa de
transformações relativas de loop closure. O sistema final é testado
usando um benchmark dispońıvel na literatura. Finalmente, expe-
rimentos usando um robô móvel em um ambiente doméstico foram
realizados exibindo resultados promissores.
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1 Introduction

I hear and I forget. I see and I remember. I do
and I understand.

Confucius

A classical problem in mobile robotics refers to the ability of a robot to
simultaneously localize itself while at the same time map its surroundings,
a problem often called Simultaneous Localization and Mapping (SLAM).
Already in our daily lives, robots need to solve this problem for performing
various tasks, such as vacuum cleaning, lawn mowing, autonomous driving,
tour guiding, among other tasks [19, 24, 2].

Indeed, one can think of applications that go beyond the domestic con-
text including space and deep sea exploration, navigation in dangerous en-
vironments, and many more. In this work we develop a system capable of
building globally consistent maps using a graph-based interpretation of the
SLAM problem.

Different types of sensors are commonly used to provide input for SLAM
solutions. Classically, laser and sonar sensors have been widely applied for 2D
SLAM, providing distance measurements to obstacles nearby, such as walls
and other objects. Laser sensors have been also used for 3D SLAM, in which
the robot’s position now lies in space and the map becomes a reconstruction
of the whole 3D scene [10, 24]. Throughout the last decade, a number of
researchers began to approach the SLAM problem with mainstream and low
cost sensors, such as RGB cameras [25, 6, 8], and RGBD sensors, such as the
Microsoft Kinect [7, 14]. This initiative opened up a range of new possibilities
in the field, paving the way towards the usage of cheaper hardware for robotic
applications.

Nonetheless, although SLAM is a relatively well studied problem in robotics,
it is still far from being a closed problem. In order to develop a complete au-
tonomous system, a robot must be able to run for very long periods of time.
Therefore, it has to perform mapping, and also manage the generated map
according to some particular task being performed. In this context, there is
still room for discoveries and alternative interpretations with which SLAM-
like formulations might be effectively employed. This application can solve
or aid the solution of a wide range of problems in robotics and computational
vision. In summary, SLAM as a perceptual mechanism that continuously up-
dates the internal model a certain robot has of the world can also be studied
regarding the properties that different exploratory behaviours might yield
with respect to performance and quality of the final generated model. This
is also related to an open problem in robotics called Next Best View Prob-
lem [20] which has applications in autonomous exploration and mapping, 3D
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reconstruction and even object manipulation.

1.1 Objectives

Given this exciting horizon ahead, our main goal in this work was to create
a solid understanding regarding the state of the art solutions for the SLAM
problem. And at the same time, we wanted to implement our own approach
based on the most recent developments in the area.

1.2 Outline

This work can also be seen as an introductory text on the area and it is
organised as follows. In Chapter 2 we start by giving an introduction to the
mathematical tools utilised to model the SLAM problem, which include a
brief discussion about manifolds, Lie Groups and the Maximum Likelihood
Method (ML). Then, in Chapter 3 we give an overview about some related
work on the area. Afterwards, in Chapter 4 we describe in more details the
implemented approach, in particular the two main components of a Graph
SLAM system so called back-end and front-end, each one responsible for a
particular task in the system. In Chapter 5 we examine the experiments
performed on a benchmark and in a domestic environment to test the im-
plemented system and discuss their results, giving an understanding of the
current status of the implemented approach. Finally, we conclude this work
in Chapter 6, also disclosing some future work plans.
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2 Mathematical Background

And everyone must lose his mind, everyone
must! The sooner the better! It is essential — I
know it.

Yevgeny Zamyatin, We

2.1 Manifolds

Many optimisation procedures implicitly make a set of assumptions about
the underlying space they operate, in particular regarding the continuity and
linearity of these spaces. This is the case with well-known techniques such
as the Kalman filter, particle filters and a number of different approaches
designed to work with Euclidean Rn vector spaces, where n denotes the
dimension or number of degrees of freedom of the space. However, it is often
the case that these assumptions are not met. As a consequence, in many
cases one might get suboptimal results, results that do not make sense and,
indeed, the optimisation procedure might even diverge.

In order to solve these problems one has to take into account the true
nature of the underlying space, which is commonly not Euclidean, instead,
it is a manifold. A manifold is a space that might not be Euclidean globally,
but it behaves like an Euclidean space at a local scale [15]. Any Rn vector
space is a manifold itself. Another trivial example of manifold is a line in R2

or a plane in R3, which are manifolds with one and two degrees of freedom,
respectively. We can see, however, that these examples are Euclidean both
at global and local scale. A more representative example is the surface of
the unit circle: we can uniquely identify every point of the circle with a
single angle θ ∈ [0, 2π[. Nonetheless, although this space has one degree of
freedom, it does not behave like an ordinary R1 vector space. For example,
the difference between two angles cannot be found using simple subtraction
of two members of the space, since it is defined to be the shortest angle
between them. We could attempt to change the way we represent a member
of the circle by using unit vectors instead of a single angle, but this would
not solve the problem either: the sum or subtraction of two elements of the
manifold would not yield another member of the manifold, i.e. we would
break the unit constraint unless we apply some normalization after the sum.
These same representations for the unit circle can also be used to represent
rotations in R2, since a single angle θ ∈ [0, 2π[ can also be used for this
purpose. Therefore, rotations in R2 also form a manifold and in this case
they are homeomorphic to the unit circle.
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The meaning behind being “locally Euclidean” is that the manifold is
locally homeomorphic to Rn.

Definition 1. Suppose M and N are topological spaces. M is locally homeo-
morphic to N if for every point p ∈M there is an open set U ⊂M containing

p, for which there exists an open set
−
U ⊂ N and a function ϕ : U →

−
U , which

is a homeomorphism, i.e. ϕ is a bijective, continuous map with a continuous
inverse.

The function ϕ is called a local coordinate map and U is called coordinate
domain. And together they form a coordinate chart.

Definition 2. A pair (Ui, ϕi), such that ϕi is a homeomorphism and pi ∈ Ui
is called a coordinate chart whose domain contains pi ∈ Ui.

It is possible to combine the coordinate charts in order to form a so called
atlas of M .

Definition 3. A = {(Ui, ϕi)}, ∀i ∈ {1, . . . , n} is called an atlas of M if and
only if U =

⋃n
i=1 Ui.

In particular, if the transition between any coordinate chart pair is con-
tinuous

∀(Ui, ϕi), (Uj, ϕj) ∈ A, (1)

then, the combined structure (M,A) is called a smooth manifold. It is also
possible to combine all charts into a single chart ϕ that covers the whole
manifold, and if the charts are smooth compatible (transitions between them
are continuous), then this composite chart will also be. This basically means
we can do calculus on such structures, e.g. compute volumes with integrals
and curvatures with derivatives. We will not enter in more details about such
definitions, but we encourage the reader to refer to [15] for a detailed read
on this topic.

In practical terms, the main idea is to create a continuous relationship
between the two topological spaces M and N , such that we are able to relate
the two spaces and, in a sense, translate in a meaningful way the act of
moving inside M to a movement inside N , and vice-versa. The theory behind
smooth manifolds together with a few other set of mathematical tools plays
an important role on Graph SLAM optimisation, since that is exactly the
nature of the state space operated by this procedure. For this reason we will
define two useful manifold operators in the following section.

10



2.2 Manifold Operators

Following [17, 12, 10], we can define some useful operators to work with
manifolds. The first operator � maps small movements in Euclidean space
to movements in the manifold M . For δ sufficiently small,

� : M × Rn →M, (2)

x� δ = ϕ−1p (ϕp(x) + δ). (3)

The second operator � recovers the Euclidean difference between two
members of M . This operator is defined as follows, for sufficiently close
members x, y ∈M :

� : M ×M → Rn, (4)

y � x = ϕp(y)− ϕp(x). (5)

Note the extra notation for ϕp. This is used to express the fact that the
coordinate chart ϕ was chosen such that ϕ(p) = 0. It means ϕ is centred at
p. Thus, the notation ϕp(x) is used to express this particular choice.

2.3 Groups

A group is a mathematical structure that comprises a set of elements G
together with an operation � which obey three basic axioms:
Closure: If a and b are members of the group, then c = a�b is a member of
the group.
Identity: The group G must contain an identity element I such that I�a =
a�I = a, where a, I ∈ G.
Inverse: Each member a of the group has to have a unique inverse a−1 such
that a�a−1 = a−1�a = I.

2.3.1 GL(n)

A simple example of a group is the general linear group GL(n), which consists
of all non-singular square matrices with dimensions n×n. Showing that this
is indeed a group is straightforward, first because multiplying two square
matrices will always yield another square matrix, so this set is closed under
multiplication. Secondly, it is easy to see that the identity element for this
set exists, i.e. the identity matrix of dimensions n × n. And finally, these
matrices always have unique inverse, because their determinant is always
different of zero by construction.
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In the context of this work we shall consider three groups of interest with
respect to the multiplication operation. The special orthogonal groups SO(2)
and SO(3) - subgroups of GL(n) - and the special Euclidean group SE(3),
which is a subgroup of GL(n + 1). We will see how they actually manifest
themselves in practise and useful ways of representing them for computation
purposes.

2.3.2 SO(n)

The special orthogonal group is defined as the set of all matrices R with
det(R) = 1 that preserves the inner product. In other words,

SO(n) = {R ∈ GL(n)|RTR = I ∧ det(R) = 1}. (6)

In the context of this work, we shall be mainly concerned with SO(2) and
SO(3), which are the groups of rotations in R2 and R3, respectively.

2.3.3 SE(3)

We might not be interested only in rotating but also in moving some rigid
body in space. The SE(3) group comprises the set of all rigid body motions,
i.e. a rotation followed by a translation, that can be applied to some object.
This group can be obtained via the Cartesian product between the SO(3)
and R3, and as such it is also a manifold [12, 17]. Note that, even though
translations clearly form an Euclidean space since t ∈ R3, the SE(3) forms
a non-Euclidean manifold, because its rotational component, the SO(3), is
not an Euclidean space.

This group is often represented using homogeneous transformation ma-
trices of the following form:

X =

[
R t
0 1

]
where X is a 4× 4 matrix. (7)

Thus, the SE(3) can be classified as a subgroup of GL(n+ 1).

2.3.4 Lie Groups

According to [15], it can be shown that in addition to obeying the group
axioms, the GL(n) and, thus, the SO(n) and SE(n) ⊂ GL(n+1) are smooth
manifolds also. For this reason they are called Lie Groups. Lie Groups have
the special property that we can define a coordinate chart ϕp(x) for any
p ∈M as follows:
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ϕx(y) = ϕid(x
−1y), (8)

where ϕid is the coordinate chart centered at the identity id ∈M .
Using ϕp(x) = ϕx(x) and plugging Eq. 8 into Eq. 2, we find the following
simplified expression for the manifold operator �:

� : M × Rn →M, (9)

x� δ = x−1ϕ−1id (δ). (10)

Similarly, the simplified operator for � in Eq. 4 becomes:

� : M ×M → Rn, (11)

y � x = ϕid(x
−1y). (12)

2.4 Representations of Poses

Whenever a rigid body transformation is used to encode the position and
orientation of some object, it is referred to as the pose of this particular
object. We have seen in the previous section that we might represent these
members of SE(3) as 4×4 matrices, but in practise this representation needs
16 floating-point values to be stored in a computer. It would be desirable to
represent members of SE(3) with less memory and still harness the power
of the operations provided by matrix algebra. We cannot do much regarding
the translation part, so it stays as a translation vector t ∈ R3. Next, we
need to find a good way of representing members of SO(3), i.e. rotations.
We could for example use the minimal representation for rotations, which
consists of three Euler angles, e.g. roll, pitch and yaw, each one corresponding
to a rotation in each three-dimensional axis. However, this representation is
known to be problematic as it is prone to the gimbal lock problem, and
also we are not able to compose several rotations very easily. An approach
widely adopted in engineering is to use rotation quaternions. Although this
is not a minimal representation, since quaternions live in q ∈ R4, an over-
parametrised representation, they are a very elegant tool for representing
rotations. They do not suffer from gimbal lock problem, and we can benefit
from quaternion algebra when composing rotations without having to convert
them into matrix form. A rotation of θ around an axis u ∈ R3 can be written
as a unit quaternion as follows:

13



q = e
θ
2
(uxi+uyj+uzk) = cos

θ

2
+ (uxi + uyj + uzk) sin

θ

2
. (13)

If qu is a rotation of 30 degrees around the axis u (clockwise when we
look at the same direction as u), then the composite ququ is a rotation of
60 degrees around the same axis. Also, the inverse rotation qu

−1 is given by

the conjugate quaternion
?

qu.
The rotation matrix corresponding to a unit quaternion q is given by

Rq =

1− 2q2j − 2q2k 2(qiqj − qkqr) 2(qiqk + qjqr)
2(qiqj + qkqr) 1− 2q2i − 2q2k 2(qjqk − qiqr)
2(qiqk − qjqr) 2(qjqk + qiqr) 1− 2q2i − 2q2j

 . (14)

Therefore, a pose can be represented by a vector x ∈ R7, with three
coordinates corresponding to the translation t and four corresponding to the
unit quaternion q, such that

x = (tx, ty, tz, qx, qy, qz, qw)T, (15)

with identity element

id = (0, 0, 0, 1, 0, 0, 0)T. (16)

Finally, observe that we can describe Eq. 15 in matrix form as

X =

[
Rq t
0 1

]
. (17)

2.5 Operations on Poses

When working with poses or rigid body transformations, we can define some
useful notation to refer to common operations we can perform on them. First
we define the motion composition operator ⊕ as

xi ⊕ xj =

[
qi(tj) + ti

qiqj

]
,where qi(tj) = Rqi

tj. (18)
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Lastly, we define the differencing operator 	 as

xi 	 xj =

[
?
qj(ti − tj)

?
qjqi

]
, where

?
qj(ti − tj) = RT

qj
(ti − tj). (19)

These operators are just shorthand definitions to the basic operations
here denoted in matrix form:

Xi ⊕Xj = XiXj, (20)

Xi 	Xj = Xj
−1Xj. (21)

The advantage of using Eq. 18 and 19 is that all operations happen
in the over-parametrised space x ∈ R7 representation defined by us using
quaternions. This facilitates the notation and the probabilistic formulation
of the SLAM problem using the ML method on manifolds, as we shall see
later.

2.6 Maximum Likelihood Method

In the ML method, given a measurement z, we are interested in finding x
such that the posterior probability p(x|z) is maximum assuming no prior
knowledge about the behaviour of x. In other words, we want to find x that
best explains our input measurement z as below:

∗
x = arg max

x
p(x|z). (22)

Using the Bayes rule we can rewrite this statement as

p(x|z) = ηp(z|x)p(x), (23)

p(x|z) ∝ p(z|x)p(x), (24)

where η is a normalizing constant, p(z|x) is our measurement model that tells
how likely it is to make a measurement z given x, and p(x) is the probability
distribution that represents our prior knowledge about x. Since η is a positive
constant that will not influence the maximization, we can rewrite Eq. 23 as

15



Eq. 24. And finally, if we assume we have no prior knowledge about the
probability distribution of x, i.e. p(x) is a uniform distribution, we can
simplify Eq. 24 and write it is as

p(x|z) ∝ p(z|x). (25)

Therefore, under the assumptions of the ML method, we just showed that
in order to solve Eq. 22 we will actually need to solve

∗
x = arg max

x
p(z|x). (26)

We can also assume that z is normally distributed, which means that it
represents a function of x with some added Gaussian noise, as given by Eq.
27:

z = f(x) + ω, where ω v N (0,Ω−1). (27)

We can rewrite Eq. 27, and define

ez(x) = z − ∧z = ω, (28)

where
∧
z = f(x), represents an expected measurement of x.

According to Eq. 27 and Eq. 28, ez(x) v N (0,Ω−1). However, this is
only true if ez(x) is a linear function, which in practise is very commonly
not the case. The reason why ez(x) has to be linear for remaining Gaussian
distributed is because the distortions introduced by non-linearities in ez(x)
destroy the nice bell shape property of the Gaussian distribution. A more
complete demonstration of this fact is given by [23] when deriving the equa-
tions for the Kalman filter, which makes exactly the same assumption. In
order to overcome this issue we linearise ez(x) via a first order Taylor ex-
pansion around x = x0. Note that this approximation is exact when ez(x)
is already linear, thus we are actually generalizing our formulation to accept
non-linearities in ez(x). The linearization is given by

ez(x0 + h) u ez(x0) + Jh, with J =
∂ez(x)

∂x

∣∣∣∣∣
x=x0

. (29)

Since now ez(x) is linearised, then ez(x) v N (0,Ω−1). We can therefore
write p(z|x) as
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p(z|x) = g(ez(x0) + Jh,0,Ω−1), (30)

where g(x, µ,Σ) is a multivariate Gaussian with mean µ and covariance Σ,
and

g(x, µ,Σ) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (31)

Now, because we approximated ez(x) by its first order Taylor expansion,
we are not able to calculate x that maximises g directly, but we can find
the increment h that maximises g. In order to do that, we can take the
log-likelihood of g:

L(x, µ,Σ) = ln g(x, µ,Σ) = −1

2
(x− µ)TΣ−1(x− µ). (32)

As shown in Eq. 30, setting x = ez(x0) + Jh, µ = 0 and Σ = Ω−1,
where Ω is the information matrix of the system, we arrive at Eq. 33. The
reason for making the information matrix explicit will become clear in the
next chapter when we define the Graph SLAM problem. Note that we max-
imise g by minimizing its log-likelihood L. Finally, note that the problem
has now become the least-square minimization of xTΩx, essentially proving
that finding x with maximum probability p(x|z) in an ML sense is the same
as minimizing the quadratic error of xTΩx, thus showing that these two
problems are actually the same.

L(x, µ,Ω−1) = −1

2
(ez(x0) + Jh)TΩ(ez(x0) + Jh). (33)

Thus, in order to minimise L we can take its derivative with respect to h
and set it to 0:

∂L
∂h

= JTΩez(x0) + JTΩJh = 0, (34)

JTΩJh = −JTΩez(x0). (35)

Hence, in order to find the increment h that maximizes g, we need to
solve the linear system of the form Ax = b shown in Eq. 35, where A is a
positive definite symmetric matrix. This allows us to find fast solutions by
using Cholesky decomposition, for example.

Once the increment h is found using Eq. 35, the current estimate x0 is
updated by x1 = x0 + h, and the process is repeated until h is sufficiently
small.
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2.6.1 Maximum Likelihood for Multiple Independent Measure-
ments

It is often the case we have multiple independent measurements at once
instead of just one. In this case we are trying to estimate the posterior as
below:

p(x|z1, . . . , zn) = p(x|z1:n) = ηp(z1, . . . , zn|x)p(x), (36)

p(x|z1:n) ∝ p(z1, . . . , zn|x)p(x), (37)

p(x|z1:n) ∝ p(z1, . . . , zn|x), (38)

p(x|z1:n) ∝
n∏
i=1

p(zi|x). (39)

Similarly as before, we start from the Bayes rule in Eq. 36, then in
Eq. 37 we can drop the constant η since it is not going to influence the
maximization, later in Eq. 38 we drop the term p(x), assuming uniform
prior for x. Finally, we can arrive at Eq. 39 under the assumption that all
measurements z1, . . . , zn are conditionally independent.

If we take the log-likelihood of p(x|z1:n) and follow the same steps as
before, we arrive at the following simplified expression:

(
n∑
i=1

Ji
TΩiJi)h =

n∑
i=1

Ji
TΩiezi(x0). (40)

This simplified Eq. 40 is again a linear system of the form Ax = b and
A is a symmetric matrix. Once more, this system can be solved very quickly
using Cholesky decomposition.
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3 Related Work

Perhaps a lunatic was simply a minority of one.

George Orwell, 1984

In the literature, a large variety of solutions to the SLAM problem were
proposed. These approaches can be classified into two main categories, fil-
tering and smoothing approaches [10]. In this chapter we will briefly discuss
these approaches in order to provide a short overview about the state of the
art.

3.1 Filtering Approaches

Filtering approaches deal with SLAM as a state estimation problem in which
the state vector includes the pose of the robot and all landmark positions,
which are used to represent the map. The state vector is incrementally up-
dated as the robot gathers measurements from the physical world, and these
measurements are integrated into the current state of the robot, yielding a
better estimation of the map and robot’s pose in such map. Approaches like
these are, hence, incremental in nature and also commonly referred to as on-
line SLAM methods. Examples of such methods are particle filters, Kalman
and information filters. In fact, all these filtering methods are different in-
stantiations of the Bayesian filter [23], which is a mathematical framework
that allows us to model our belief about the world and improve this belief
incrementally via measurements performed on the physical world.

Approaches based on filtering were the first practical solutions to the
SLAM problem [17]. EKF SLAM was a popular method among these ap-
proaches and was typically based on landmarks. This approach used an
extended Kalman filter to estimate the posterior probability distribution of
the robot pose together with all landmark positions. Such idea was first pro-
posed and implemented by [21]. More recently, MonoSLAM became popular
by applying the same principles using an RGB monocular camera [6]. How-
ever, EKF-based approaches suffer from serious scalability issues. The reason
is that every time a landmark is re-observed all other landmarks need to be
updated as well, which leads to a computational cost of O(N2) for updating
the state vector, where N is the number of landmarks. This quadratic com-
plexity limits the practical use of such approaches to maps containing only
a few hundred landmarks, although in real scenarios this number reaches a
few millions.

FastSLAM proposed a solution to this scalability drawback by decom-
posing the problem into a robot pose estimation problem and a collection of
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landmark position estimation problems that are conditioned on the estimate
of the robot’s pose [16]. The key idea was the realisation that landmark
measurements are actually conditionally independent given a robot trajec-
tory. Thus, by using a particle filter for estimating the trajectory of the robot
and individual Kalman filters for landmark position estimates, this method
could overcome many issues presented by EKF-based approaches. This is
because landmark updates do not depend on each other anymore, yielding
a final complexity of O(M logK) using a tree data structure for optimisa-
tion, where M is the number of particles in the filter and K the number of
landmarks.

FastSLAM represented a remarkable improvement over EKF-based ap-
proaches. Further optimisations were made by [11], who used a grid map
representation and reduced the number of particles required for a proper
functioning of the approach. Nonetheless, although FastSLAM is theorically
capable of operating in 3D space, the number of particles required to cover
a good proportion of the space becomes prohibitive in practise. Because
of this, EKF-based approaches are usually the easiest choice, despite their
limitation, for achieving practical results, such as the aforementioned work
[6].

3.2 Smoothing Approaches

In contrast to filtering approaches, smoothing approaches optimise the whole
trajectory of the robot based on the full set of measurements gathered through-
out its history. Because of this, these approaches are often said to address
the full SLAM problem, typically using least-square error minimization tech-
niques [10]. The great advantage of these approaches is that the optimisation
can be revised and rectified, since the full set of data is kept throughout the
whole mapping process. In addition, the complexity of these approaches
grows only linearly on the size N of the trajectory, i.e. O(N). Smoothing
approaches commonly represent a robot’s trajectory as a graph, where each
node is a pose, and each edge represents a spatial constraint between these
nodes. The task of these approaches is to construct, manage and finally find
an optimised graph that is the most likely trajectory made by the robot given
the set of measurements, overcoming the cumulative odometry error.

Throughout the last decade a number of successful Graph SLAM ap-
proaches have been implemented following this line of thinking. Many ap-
proaches focused on devising efficient implementations of back-end optimi-
sation techniques, assuming a consistent graph was already constructed by a
front-end, a module responsible for dealing with all incoming sensory data.
Some researchers worked towards the formalisation of the problem and effi-
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cient implementation of solutions considering the theory of smooth manifolds
and the sparse structure of the problem. This was the case with the Sparse
Least Squares on Manifolds (SLoM) back-end [12] and the General (Hyper)
Graph Optimization, so called g2o framework [13]. Other researchers focused
on improving the ability of correcting very large trajectories using stochastic
gradient descent [18] or extending this idea using a tree parametrisation to
improve convergence speed, such as the TORO back-end [11].

A few approaches focused on the construction of a front-end using RGBD
sensors. Examples of such approaches are the RGB-D SLAM [7] and RTAB-
Map [14] systems. The former was based on the g2o back-end, used a Dijkstra
projection approach for computing loop closures, and Iterative Closest Point
(ICP) as odometry source, whereas the latter allowed the usage of either
TORO or g2o as back-end, used a Bayesian classifier for finding loop closures,
and had multiple sources of odometry, including feature-based odometry us-
ing Bag-of-Features (BOW) and ICP. Another Graph SLAM approach that
used g2o as a back-end for graph optimisation was the Large Scale Direct
Monocular SLAM (LSD-SLAM), which used a visual odometry algorithm
based on a photo-consistency energy function [8] and FAB-MAP as loop clo-
sure detector [5].

The FAB-MAP approach is in itself a SLAM approach that operates not
in the metric space, but in the appearance (visual) space [5]. This approach
is widely used for place recognition and topological mapping. And thus, it is
a very useful tool for finding loop closures. In this work we use FAB-MAP
for exactly this purpose.
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4 Graph SLAM System

I always do that, get into something and see
how far I can go.

Richard Feynman

An intuitive way of thinking about SLAM is using a graph data structure,
so called pose graph [10]. In this graph, vertices are poses where the robot
has been and edges connecting these poses represent relative transformations
between them, along with a measure of how certain we are regarding this
relative transform. Every edge in this graph represents a constraint for the
optimisation method, providing evidence regarding the true trajectory of the
robot. An illustration of this pose-graph can be seen in Fig. 1.

Figure 1: Pose graph representation of SLAM. Green links between nodes xt
and xt−1 are odometry edges or constraints. Blue links between nodes xi, xj
represent occasions where nodes in the graph are revisited or seen again from
another position. These edges are called loop closure constraints.

A Graph SLAM algorithm can be divided into two sub-modules respon-
sible for performing two main tasks. The first module is the back-end. This
module is responsible for receiving this abstract representation of the prob-
lem in the form of a pose graph and finding the trajectory or graph that best
explains the measurements represented as constraints in the graph. This
optimisation procedure is formalised in a least-square sense, derived from a
ML formulation. The second module is the front-end. The front-end of a
Graph SLAM algorithm is responsible for dealing with the graph construc-
tion, identification of constraints and its maintenance.

Note that the back-end is completely agnostic to the type of sensors being
used, the hardware and many other details regarding the graph construction
and management. In contrast, the front-end design is very sensor dependant,
since we need to know what kind of sensory data is going to be utilised in
order to devise approaches to transform this incoming data into the graph
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that is later passed to the back-end. Furthermore, it is important to construct
a consistent graph, since the least-square optimisation of the back-end is
very sensible to outliers, e.g. false loop closure links, or wrong constraints in
general. An abstract diagram of the system is depicted by Fig. 2.

Figure 2: Abstract diagram of a Graph SLAM system.

In the remaining of this chapter we will describe how these two modules
are defined and how they work together in our Graph SLAM system.

4.1 Back-end

In this section we will define how the back-end finds the optimal trajectory in
a ML sense. In summary, let C be the set of pairs (i, j) for which a measure-
ment zij exists, then z = {zij|(i, j) ∈ C}, i.e. z = [zi1j1 , zi2j2 , . . . ]. We want
to find x such that p(x|z) is maximum. The vector x is the concatenation of
all poses xi, representing the trajectory of the robot such that

x = (x1
T,x2

T, . . . )T. (41)

Therefore, we want to find

∗
x = arg max

x
p(x|zi1j1 , zi2j2 , . . . ), (42)

which, as we have seen in Section 2.6, under the set of ML assumptions, is
equivalent to

∗
x = arg max

x
p(zi1j1 , zi2j2 , . . . |x). (43)
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4.1.1 Maximum Likelihood Formulation

The central notion of “additive” Gaussian noise in Eq. 28 that enabled us to
derive the equations for the ML method in Section 2.6 does not make sense
anymore, since the + operation is not well defined on manifolds. The ML
method must take into account the fact that we are dealing with members
of SE(3) which, as we have seen, form a manifold. Therefore, since we chose
to represent poses in an over-parametrised space x ∈ R7, and we also defined
the operators �,�,⊕ and 	, we can define our error function as

ezij(xi, xj) = eij(x) = zij �
∧
zij = zij � (xj 	 xi). (44)

Fig. 3 depicts the error function of Eq. 44 in addition to the other
quantities involved in the definition of a graph constraint.

Figure 3: Graph SLAM representation.

Our Taylor expansion from Eq. 44 also needs to be updated using the �
operator to:

eij(x0 � h) u eij(x0 � 0) + Jijh = eij(x0) + Jijh. (45)

Note that

Jij =
∂eij(x� h)

∂h
=
∂eij(x)

∂x
.
∂x� h
∂h

∣∣∣∣∣
h=0

. (46)

Observe that we can obtain the manifold Jacobian of Eq. 46 above simply
multiplying Eq. 29 by the partial derivative ∂x�h

∂h

∣∣
h=0

(using the chain rule
for partial derivatives).
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Therefore, we can show analogously to Section 2.6 that we will need to
solve

(
∑

(i,j)∈C

Jij
TΩijJij)h =

∑
(i,j)∈C

Jij
TΩijeij(x0), (47)

where C is the set of constraints found by the front-end (edges between nodes
xi, xj), and the Jacobian Jij is given by Eq. 46.

At last, we are able to solve the linear system of Eq. 47, which has the
usual form Ax = b. Solving it yields the desired increment h which is used
to update our current estimate, keeping in mind that we are dealing with
a manifold now. Thus, x1 = x0 � h. This process is repeated until h is
sufficiently small.

Some final practical considerations regarding memory allocation and the
sparse structure of the matrices involved in Eq. 47 have to be taken into
account to design an efficient implementation of this optimisation proce-
dure. For this reason we have decided to use the g2o open-source framework
that implements exactly this optimisation method. The framework is called
g2o, which stands for General (Hyper) Graph Optimization [13]. Since this
framework has been widely used by the scientific community [7, 14, 8], reim-
plementing this procedure seemed pointless to our studies. Furthermore, the
decision of using this framework instead of implementing our own enabled us
to focus on practical issues regarding the front-end implementation.

4.2 Front-end

The front-end is equally, or perhaps even more important than the back-end
for a Graph SLAM algorithm. Due to the back-end least-square nature, even
just a single outlier constraint introduced in the graph might compromise
the whole optimisation result. This is because outliers will represent large
squared errors according to the ML formulation. Therefore, it is the role of
the front-end to manage the sensory data, and ensure the consistency of the
generated graph, which will be passed to the back-end.

4.2.1 General Principle

The front-end has the following main tasks to accomplish:

Add odometry constraints Whenever sufficient movement is detected be-
tween two consecutive odometry readings an odometry constraint is
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added to the underlying graph along with a new vertex. The informa-
tion acquired at this particular position (e.g. depth and color images)
is also kept and described for later data association purposes.

Detect loop closures Using the data collected throughout its trajectory,
the front-end needs to be able to tell if a particular place was seen
before and which previous place it was.

Add loop closure constraints Given some candidate loop closure detec-
tion between nodes xi and xj, the front-end has to find a relative trans-
formation between xi and xj using the data collected at these specific
spots.

Evaluate and monitor the graph Because wrong loop closure constraints
(outliers) can be mistakenly added to the graph, it is required to have
a procedure to periodic check the consistency of the added loop clo-
sures. Invalid loop closures must be deleted or disabled. This is a step
suggested by [18, 17]. However, due to time constraints this procedure
was not implemented in this work.

4.2.2 System Design

The Graph SLAM system was implemented using the g2o framework for
graph optimisation [13], and FAB-MAP [5] for loop closure detection. The
final system was deployed and tested on the Robot Operating System [1]
infrastructure. A class diagram of the system is depicted in Fig. 4.

As shown in Fig. 4, the SLAM class comprises the whole Graph SLAM pro-
cedure. Whenever some new data arrive (color and depth images, odometry
and laser readings), this data are incorporated in the DataPool as a DataSpot

object and connected with the previously added DataSpot via an odometry
link. A DataSpot object might have links with others besides odometry
links, that is the reason why a DataPool object has a relationship with a
FABMAP object, which detects loop closures using visual features present in
the color image of a given DataSpot. Whenever a loop closure is found,
the TransformEstimator uses the class DataSpotMatcher for matching two
DataSpots that were said to form a loop by FABMAP, and estimates the rel-
ative transform between them. To estimate this relative transformation, the
class TransformEstimator uses the corresponding 3D points of the matched
2D feature points, and tries to find a transformation T ∈ SE(3) that best
aligns these two sets of corresponding points using Random Sampling Con-
sensus (RANSAC) [9]. The constructed Graph is sent to the GraphOptimiser
back-end periodically for optimisation.
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Figure 4: Simplified class diagram of the system.

4.2.3 Odometry Constraints

The odometry source for the current version of the system comes from the
wheel encoders of the mobile platform utilised (described in Chapter 5).
Each time a new data arrives, the odometry is checked to see if there was
enough movement from the robot. We considered that if the robot moved 1
centimetre or rotated at least 0.005 radians, then it moved enough. If this
is the case, then a new node is added to the underlying graph together with
an odometry link. Thus, if the robot previously was at xt−1 and now the
encoder reports the odometry pose xt, then pose xt will be added as a new
node, along with the data collected at that spot. In addition, the odometry

link (
∧
zt−1t,Ωt−1t) is be added, where

∧
zt−1t = xt	xt−1 and Ωt−1t is computed

as in Section 4.2.4 description of the information matrix computation.

4.2.4 Loop Closure Constraints

The process for adding loop closure constraints can be summarised in the
following steps:

Loop closure detection Whenever a new node xi is added to the graph,
a loop closure detection routine based on FAB-MAP is run. Whenever
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this routine detects a loop closure, then the identifier of node xj is
returned.

Relative transform estimation Having identified a loop between nodes
xi and xj, the relative transform zij between these two nodes is esti-
mated. In order to estimate zij we first extract a set of visual features
f i = {f j1, f j2, . . . } and f j = {f j1, f j2, . . . } from the color images as-
sociated with xi and xj, respectively. We refer to a node xk with its
associated data as a DataSpot, in the context of the system design.
Let S = {(f ik1 , f

j
k1), (f

i
k2 , f

j
k2), . . . } be the set of matching features

between the two nodes (i, j), and let kpi = kpi(f i), kpj = kpj(f j) ∈ R2

be the key-point positions in the images of the nodes (i, j). Because we
also have access to the depth images of nodes (i, j), we can map all key-
points to their corresponding 3D points pi = pi(kpi), pj = pj(kpj) ∈ R3

in space, yielding P = {(pik1 , p
j
k1), (p

i
k2 , p

j
k2), . . . }. Finally, a point-

to-point model registration based on RANSAC method is used to es-
timate the best alignment zij between the matching points in P, i.e.
zij = arg minz

∑n
m=1 ‖pikm − zpjkm‖.

Loop closing If the procedure above converges, then we compute the vari-

ance of the alignment, which consists of σij
2 =

∑n
m=1 ‖pikm−zijp

j
km
‖2

n−1 .

Then, setting the information matrix to Ωij = I 1
σij2

, the resulting loop

closure link will be (zij,Ωij).
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5 Experiments

If it can be destroyed by the truth, it deserves
to be destroyed by the truth.

Carl Sagan

In order to proof test the implemented approach, a sequence of experi-
ments was performed. The first experiment used a well-known benchmark for
RGBD SLAM evaluation [22]. The second one was performed in an indoor
domestic environment. Both experiments and results are described in the
remaining of this chapter. First we will describe the hardware utilised to test
the algorithm, then we will continue to describe the benchmark experiment,
followed by the domestic environment experiment.

5.1 System Hardware

The hardware used to run the implemented system is as follows:

Robot The system was tested on a domestic vacuum cleaner robot, a Neato
XV-14 Signature made by Neato Robotics. A picture of this robot
can be seen in Fig. 5. It proved to be a very cheap and programming-
friendly mobile platform. The robot is equipped with a low-cost LIDAR
and wheel encoders. An open-source driver available for the Robot Op-
erating System [1] interfaced the robot hardware providing odometry
and laser scan readings.

RGBD sensor An ASUS XTion PRO LIVE depth sensor (Fig. 6) was
mounted on the robot, which provided registered depth images and
color images as input to the system.

Computer The computer hardware utilised consisted of a laptop with an
Intel Core i7 @ 1.6 GHz processor, 6 GB RAM and equipped with an
NVIDIA GeForce GT 330M graphics card.

A picture of the robot setup can be seen in Fig. 7.
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Figure 5: Neato XV-14 robot used.

Figure 6: ASUS Xtion PRO LIVE RGBD sensor used.

Figure 7: Robot setup with ASUS Xtion PRO LIVE mounted on top of
Neato XV-14.

5.2 Benchmark Experiment

This benchmark experiment used the publicly available dataset and evalua-
tion tools described in [22]. We particularly made use of the robot SLAM
sequences, making comparisons with the provided ground-truth trajectory.
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5.2.1 Freiburg Dataset Experiment

In this experiment we used the robot SLAM sequence named “freiburg2 pio-
neer slam2”. This sequence was recorded from a kinect mounted on a Pioneer
robot, which was joysticked through a large hall. The ground-truth trajec-
tory length is 21.735 meters. We compared the non-optimised trajectory
error in Fig. 8 with respect to the ground-truth. Then, we compared the op-
timised trajectory shown in Fig. 9 with the ground-truth. Finally, we made a
two-tailed t-test in order to verify if the improvement using the implemented
approach was statistically significant. When we refer to non-optimised tra-
jectory we mean that the trajectory was generated using solely the odometry
of the robot.

5.2.2 Results

The final experiment’s result showed that, although the odometry seemed to
be, unexpectedly, rather precise already, adding our Graph SLAM approach
slightly improved the final trajectory error, making it drop a few centimetres.
Nonetheless this result also showed that our procedure for loop closing could
not handle very well the low number of features provided by the benchmark
dataset: only 4 far-in-time loop closures were found, from a total of 277
loop closures. Since nodes are labelled with increasing integer identifiers, we
defined loops connecting two nodes xi, xj to be far loops if j − i >= 10,
otherwise they are considered near-in-time loop constraints. This limited
number of far-in-time loop closures suggested us to look into more robust
loop closing strategies as future work for this kind of environment. Overall,
the approach seemed to work as theoretically expected given the set of as-
sumptions made during its design, in particular the choice of using a hybrid
approach with a visual-based detection for loop closing and relative transfor-
mation computation. Whenever few far-in-time loop closures are detected,
the system degrades expectedly as if it was using only odometry, although
the overall error is smoothed locally due to the close-in-time (local) loop
closure constraints.
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Figure 8: Non-optimised trajectory statistics: trajectory mean error
0.335751 m, RMSE 0.370089 m, std 0.155682 m, number of pairs 452.

5.3 Domestic Environment Experiment

In this section we perform a few experiments on indoor domestic environ-
ments. We then make a qualitative analysis of the final mapping result and
robot’s trajectory.

32



Figure 9: Optimised trajectory statistics: trajectory mean error 0.305305
m, RMSE 0.330452 m, std 0.126441 m, number of pairs 462. Performed
t-test showed a two-tailed P value equals to 0.0012 with respect to Fig. 8.
This difference is considered to be very statistically significant with 95%
confidence. The total number of far-in-time loop closures was 4 and the total
number of loop closures was 277.

5.3.1 Mapping a Flat

For this experiment we manually navigated the robot through a flat in the
order specified in Fig. 10. The whole trajectory size was approximately 40
meters long. We often turned the robot 360 degrees in order to capture as
much discerning features of the environment as possible, in order to maximise
the chances of finding loop closures as we revisit places of the flat. The total
number of 573 loop closures were found, of those 474 were near-in-time loop
closure constraints (local loop closures), and 99 were far-in-time loop closures
(global loop closures). In the non-optimised trajectory shown in Fig. 11,
the loop closures are labelled in gold color. Far-in-time loop closures are
more evident than near-in-time loops, which can still be spotted by the cyan
squares marking loop closure detections. This distinction was made only for
the purpose of having an idea of how important far-in-time loop closures
might possibly be, since the back-end does not make any such distinctions
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Figure 10: Flat visiting order overlay on top of optimised occupancy grid
map. The flat was visited following the order 1-2-3-4-5-6, and then traced
back its steps going through 6-5-4-3-2-1.

between constraints. It is expected that farther in time loop closures will
reduce the overall trajectory error more noticeably due to the cumulative
nature of the odometry error.

The data collected manoeuvring the robot around the flat were recorded
and played twice. The first time had the graph optimisation turned off, which
means the final map shown in Fig. 11 was made only using robot’s odometry.
The second time the recorded data were played with the graph optimisation
turned on and the optimised trajectory can be seen in Fig. 12.

5.3.2 Results

The final result was quite positive. We can see clearly the cumulative odom-
etry error being shown in Fig. 11, whereas Fig. 12 shows a fairly more
consistent map and trajectory. Another aspect that could be observed dur-
ing the execution of the experiments was that farther in time loop closures
were responsible for large trajectory corrections, which is in accordance to the
mathematical formulation of the back-end and empirical observed behaviour
of odometry error.
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Figure 11: Non-optimised trajectory and occupancy grid map using odome-
try only. Robot trajectory is highlighted in dark blue, loop closure constraints
are golden and loop detection points are cyan.

Figure 12: Optimised trajectory and occupancy grid map using all con-
straints.
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6 Conclusion

But I think of what I have done and thought
during the day. Thus ruminating, patient as a
cow, I ask myself: What were thy ten
overcomings? And what were the ten
reconciliations, and the ten truths, and the ten
laughters with which my heart enjoyed itself?

Friedrich Nietzsche, Thus Spoke Zarathustra

In this work we implemented a complete Graph SLAM system able to con-
struct consistent maps of the environment, as demonstrated by the performed
experiments. More than that, we were able to organise a solid foundation
with which we can move towards in several research directions. The imple-
mented system also needs improvements, particularly regarding the creation
of a more robust loop closure constraint estimation procedure, which proved
to have difficulties in certain environments. The implemented system showed
satisfactory, results working successfully in indoor environments.

6.1 Future Work

The system still has room for improvements. In this final Section we list a
few points that we wish to work in the future.

Improve loop closure computation We noticed that the implemented
system showed low number of far-in-time loop closure constraints. Due
to the good performance the system showed in the indoor domestic
environment, we concluded that this was due to our visual dependant
approach for loop closure constraint estimation. As a future work, it
is a top priority improvement to be done in the system to improve the
robustness of our approach towards featureless environments.

Add other odometry sources Additional sources of odometry will enable
us to test the system this time in a full 3D trajectory. For this reason
we intend to develop visual feature-based procedures, such as BOW
odometry employed by [14] and depth-based approaches such as an
ICP-based odometry employed by [7].

Implement efficient memory management Another potential improve-
ment is to add the ability of dealing with multi-session mapping and
very long trajectories. In order to cope with this, we ponder that we
will need to add a more sophisticated memory management method for
the DataPool. A human inspired mechanism used by [14] based on the
works of [3] and [4] is an example of work in this direction.
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