
���

�����	
���
���
��	�	�������

This chapter presents the general conclusions about the work presented in this dissertation.

Besides observations about the methodology as a whole, extracts from the summaries

shown at the end of each previous chapter are also discussed. At the end, directions

towards future work are also commented.

���� ���������

It is important to stress again the primary objective of this dissertation. The majority of the

co-design approaches developed so far have not stressed issues related to real-time

systems. Partitioning techniques, hardware-software interfacing and co-synthesis, and

software speed-up have been the major topics in the area. Therefore, a primary objective

was set to work in this niche and develop a system able to, from an initial functional

description, produce architectures composed of several software hosts working in a pre-

emptive fashion and co-operating with hardware components able to operate in real

parallelism, and yet fulfilling critical temporal requirements.

S.V. Cavalcante
Chapter 7: Conclusions and Future Work

���

���� �	������������� �

��������

The state-of-the art on hardware-software co-design was described in Chapter 2 together

with an overview of the subject. Several sub-divisions of co-design were presented, namely

co-specification, partitioning, co-synthesis, analysis, as well as co-simulation and

prototyping.

Although the interest in the development of micro-controlled embedded systems,

and as such co-design, is not new, a great deal of attention has been noticed since the

beginning of this decade. This reflects the need in the development of formal techniques

for dealing with the boom in the use of embedded systems, bringing more complexity to

the area but also requiring low cost, short design time, and flexibility (upgradability,

maintainability, etc.).

The development of high-level synthesis, ASICs and FPGAs, on the hardware side,

played a major role in the progress of the area since those techniques and devices made it

possible to treat hardware in a design level similar to what was already common practice in

software development.

Chapter 2 also gave a brief introduction to real-time systems and Petri nets,

necessary to the proper understanding of this dissertation.

Chapter 3 exposed an overview of the co-design approach developed at the

University of Newcastle and described in this dissertation. The system is targeted towards

critical real-time embedded designs and consists of three major sub-parts:

• Specification tool (Time Wizard)

• Pre-runtime-based scheduler

• Hardware-software partitioner

Chapters 4 and 5 presented the scheduling and partitioning techniques, respectively.

The scheduler is based on a pre-runtime technique able to deal with multi-processor

architectures with hard real-time constraints, in the presence of precedence, exclusion, and

pre-emption relations.

The partitioning method is divided in two phases: Pre-partitioning and System

Partitioning. The former deals with contention to the use of the processor caused by task

inter-dependencies, and exploits execution speed-up as a solution. The latter deals with

S.V. Cavalcante
Chapter 7: Conclusions and Future Work

���

contentions related to high processor utilisation, and uses parallelism as primary agent in

the search for feasibility.

Chapter 6 has shown some experiments in the environment use. A mixture of real-

life and academic examples were utilised in order to show different system aspects. The

sections below draw some conclusions about each part separately and their iteration with

the others, followed by plans for future work.

������ �	
��
���������
����

The design starts in a reasonably loose fashion and, based on information given by the

analysis tools, refinements are carried out in order to achieve a consistent model to be used

by the scheduler and the partitioner. The level at which this model is produced is called

��������	
� �����. Specification is based on High-Level Time Petri Nets, with some

extensions added to an already existing formalism. The method has been shown to be quite

simple and yet powerful enough to provide design assessment at both internal and task

interconnection levels.

Although Petri-net based specifications are not new in co-design, their use during

all design stages is. Normally Petri nets are used as internal representation (e.g. [38]) or for

analysis purposes only (e.g. [12]). This uniformity promotes a better understanding and

control of the design process by the user, since there are no awkward internal

representation methods and there is no need to master several different modelling

paradigms. Apart from being used for general system analysis and specification, Petri nets

have also been used in hardware high-level synthesis [3, 15, 121]. This would make it

possible to extend the methodology presented here towards comprising all abstraction,

levels from the initial specification towards the final architecture implementation. It is

possible to translate specifications written using other languages to the formalism

employed here.

The extensions proposed are aimed at increasing the usability of Petri Net-based

design and real-time design analysis. It also promotes the development of automatic tools

towards co-design and scheduling, such as the generation of the scheduling model

presented in Time Wizard. Hierarchical modelling makes it easier to handle complexity

through abstraction of low level details. The restrictions imposed in the hierarchical

constructors guarantee the maintenance of general Petri net analysis properties.

S.V. Cavalcante
Chapter 7: Conclusions and Future Work

���

The specification method used in this dissertation, although meant to be used in

conjunction with the other co-design tools developed here, can be used separately as an aid

for real-time design in general. In particular, the scheduling level output format generated

is suitable to be used by all pre-runtime schedulers which I came across.

Far from being a problem only found here, the approaches used in pre-runtime

scheduling design proved different from common software development techniques. As

such, they are difficult to get used to mainly because here tasks are grouped based on their

triggering event. Software engineering techniques, on the other hand, reward grouping

tasks which are functionally similar or that perform actions over the same type of object,

e.g. in object-orientation languages. This is already been done for real-time systems, such

as in HRT-HOOD [21], but only when using fixed-priority dynamic scheduling policies.

Perhaps, as spotted by Kopetz [74], the best solution would be to join both techniques in

order to keep the advantages of each one.

Time Wizard, the CAD tool which incorporates this specification methodology, is

implemented in 10,790 lines of code using Microsoft Visual C++ v1.52 for Windows

3.1X .

������ ���
����������������

A branch-and-bound algorithm is used as the basis for scheduling. At each node in the

search tree an attempt is made to produce a feasible solution. New nodes are created where

changes (tighter inter-task relations) are incorporated on predecessor nodes data so that

new possibilities are tried. Pruning techniques are employed to promote the early removal

of paths which have no chance of producing feasible solutions.

The branch-and-bound approach, contrary to heuristic approaches, is able to find a

solution whenever one exists. Similar approaches have been used with success in large

real-time systems, such as flight and weaponry (mission) control systems for the F-18

fighter [108].

To the best of the author’s knowledge, there is no other algorithm able to produce a

solution whenever one exists for the pre-runtime scheduling of a set of processes with

deadlines, release times, precedence, exclusion relations, and which allows process pre-

emption, in a heterogeneous multi-processing architecture. Also, this is the first time that a

pre-runtime scheduling algorithm of any sort has been used in co-design.

S.V. Cavalcante
Chapter 7: Conclusions and Future Work

���

The capabilities of scheduling sets of previously allocated tasks on multi-processor

architectures makes it very attractive for a diverse range of problems, from task to

operation-level scheduling, from prototyping (with the use of several software hosts) to the

final implementation. A uni-processor architecture may prevent the full exploitation of

parallelism among tasks, and may overflow the processor utilisation capacity which causes

more operations to be moved to hardware. In designs where the cost of hardware is the

main concern, this may be critical. Further, all-software solutions (where no ASICs are

used) may become unfeasible. These sort of solutions are very important, e.g., for rapid

design prototyping.

The scheduling algorithm is completely separated from the partitioner although the

contrary is not true. It can operate independently from the rest of the system and so can be

used in other real-time design systems that do not feature co-design partitioning. In fact, its

implementation comprises independent input methods to make it able to be used without

Time Wizard.

Co-design particularly benefits pre-runtime approaches by coping with problems

related to highly responsive sporadic tasks. Such tasks can be moved to hardware and dealt

with properly. Transformation techniques can be used so that the bit that requires high

responsiveness may be separated from the rest of the task. Since this part is relatively

small, the onus in moving such a task to hardware would not be big.

At the same time, static schedulers do not require complex operating systems in the

design implementation and context switch can be made short since the exact points of their

occurrence in the processes are known in advance. Thus, this is a very attractive approach

for embedded devices since computational resources are normally scarce.

The current implementation is computationally intensive, requiring large amounts

of memory. As an illustration, the York2 example presented in Chapter 6 required 32MB

of RAM memory in order to execute. However, this is not an optimised implementation

since many intermediate data is being kept to verify the algorithm itself. Also, since the

actual scheduling is calculated prior to the design execution, the time spent on the

production of the solution does not affect the tasks execution times. At the same time, the

branch-and-bound algorithm could be made faster by simply spreading it over several

processors using a processor farm architecture, i.e., a master sends commands to slave

processors requiring some data calculation, in the case here the production of a node

S.V. Cavalcante
Chapter 7: Conclusions and Future Work

���

scheduling [63]. The scheduler is currently implemented in the same software program as

the partitioner. Both together are implemented in 14,540 lines of code using Microsoft

Visual C++ v1.52 for Windows 3.1X .

On the down side the scheduling technique shown offers little flexibility for design

changes and upgradability after design implementation. These characteristics, together with

the handling of sporadic tasks, are better treated on fixed-priority dynamic schedulers.

However, these methods are not good when it comes to systems presenting task inter-

dependencies, which is a feature of pre-runtime schedulers. Again, the solution may be to

join both scheduling techniques.

������ ����������������������

The partitioning algorithm is aimed at finding feasible solutions with regard to real-time

constraints, and as such has temporal requirements as its primary concern. It is divided into

two parts:

• Pre-partitioning - Tasks are analysed regarding their own constraints and their

relations with other tasks. Solutions to this phase require the speed-up of task

execution times, by moving those tasks to hardware or to a faster software host.

• System partitioning - No particular inter-relation is taken into account except for

contention among tasks towards processor utilisation. The result of this phase may

be found only by parallelism exploitation, and so possible solutions could be found

by moving tasks to other processors, even with the same processing power, but

which are less utilised. However, the approach used here attempts only to move

tasks to hardware.

The partitioning method, with its separation in two phases, and incorporation of

scheduling techniques for real-time properties verification and data generation for

automatic or assisted partitioning, is original in the co-design field.

The method of selecting candidates to move to hardware found in the pre-

partitioning algorithm can be used in any sort of real-time system, either using pre-runtime

techniques or not. At the same time, this two-phase separation between solutions that

require execution speed-up and those which can be solved through parallelism, seems a

promising approach for other real-time partitioning and even allocation systems. In

S.V. Cavalcante
Chapter 7: Conclusions and Future Work

���

particular, the incorporation of the techniques developed here for use with rate-monotonic

and other fixed priority real-time systems is left as future work.

The partitioning parameters used are similar to those found in other works, such as

[40]. However they rely more on precise timing data generated by the scheduler, whereas

the normal approach is to perform partitioning at higher abstraction levels. This is

explained by the need to gather more data when it comes to guarantee time critical systems.

Although pre-partitioning uses only data which regards static inter-dependencies, system

partitioning has to do with the dynamic interaction between tasks when executing.

Therefore, the partitioner works closely with the scheduling algorithm shown before in

order to obtain the required information about the dynamic system behaviour.

Not only automatic but also user-assisted partitioning is present in the algorithm

implementation. Whenever partitioning lists or sets are generated, their cost parameters are

calculated and presented to the user, together with a mark on the task chosen by the

partitioning algorithm to be moved to hardware. Then, the designer can accept the hint or

make his own choice of task to move.

��!� �	�	�������

This dissertation provides a starting point for further work in the integration of hardware-

software co-design with time critical systems. Not only this, it opens questions on each

sub-area involved during its development. Although some of these questions were already

presented in previous chapters, this section shows a summary of some possible directions

for future work.

������
!����
�"����!����������#�$�!

Currently, each task that is moved to hardware has a dedicated processor to execute on.

The incorporation of clique partitioning techniques [84] or other clustering techniques (e.g.

[78]) would allow for re-utilisation of hardware processors and improvement of the pre-

partitioning phase. These techniques would be used to group related tasks so that parts of

the design could be used by tasks allocated to the same processor.

Another research direction based on the same idea is the use of dynamic re-

configurable Field Programmable Gate Arrays (FPGAs). Different tasks could use time

multiplexing to execute in the same FPGA. After a task execution, re-configuration would

S.V. Cavalcante
Chapter 7: Conclusions and Future Work

���

make the device suitable to execute another different task. The time separation necessary to

allow re-configuration can be guaranteed by incorporating “dummy” segments to the

design. For example, if two temporal instances A and B of different tasks are to be

executed consecutively in a FPGA, a dummy segment D representing the required re-

configuration time could be added between A and B together with the relations A � D and

D � B. The scheduler would then be used to verify if such a configuration is feasible. Here

again, clustering techniques could decrease reconfiguration time and device size, by

promoting the grouping of tasks which present similar designs.

Still in the same line of thought, the approach used here for system partitioning only

considers moving tasks to hardware, since this is the objective in hardware-software

partitioning. However, techniques used in software allocation over distributed systems

could be useful at this phase, mainly when prototyping is the goal.

������ ������!��������%!�!

Only hard-real-time systems were considered. As such, soft deadline tasks are not properly

considered. Stochastic analysis or queue theory can be used in order to provide limits on

the minimum necessary processor time that need to be made available to those tasks

(examples can be found in [72]). For this purpose, analysis based on stochastic Petri nets

could be useful, since it uses a similar framework as the one presented here.

Probabilistic approaches have been used in conjunction with Petri nets for some

time [90], and due to the similar framework should not present great difficulty for

incorporation in the environment shown here.

������ #���
&��'�()	��!���

The system output is currently presented as separate task sets for hardware and software

and it is user’s responsibility to translate those specifications to formats suitable to be used

by compilers and hardware synthesis tools. It is also user’s responsibility to provide

accurate estimations to be used as worst-case execution times for both hardware and

software.

The utilisation of automatic synthesis techniques, such as [96] would be of great

value to tackle both problems mentioned above. Also, the use of formal parallel languages

for action and predicate textual specification on transitions would allow for automatic

S.V. Cavalcante
Chapter 7: Conclusions and Future Work

���

translations between net and textual specifications whenever necessary. It is intended to

experiment changing the language used for representing transition functionality to a formal

one, possibly a subset of Occam 2, in order to perform automatic refinement.

List partitioning provides a very simple and sometimes ineffective way of choosing

tasks to move to hardware, since it does not consider all possibilities and can easily become

stranded in local minima. Other techniques can be employed over the candidates chosen by

the methods developed here, such as simulated annealing [42] and multi-stage clustering [8].

At the same time, only time-related parameters were considered in this dissertation.

Other parameters targeted to deal with area, power, etc., should be incorporated to the cost

function.

Experience with methodology usage has shown that another sort of abstraction,

even if only visual (such as in Section 3.3.5, and [62, 65], would be desired to encapsulate

related tasks and process nets.

The current environment expansion towards the creation of a customisable

framework where different tools can be incorporated in order to deal with different aspects

of embedded systems design is being considered. As mentioned above, improvements and

additions in phases such specification, analysis, prototyping, and synthesis, are part of the

future work plans. Furthermore, research on the use of fixed-priority dynamic scheduling

together with pre-runtime scheduling is also under consideration.

S.V. Cavalcante
Chapter 7: Conclusions and Future Work

���

