
���

�����	
�

This chapter presents four examples. Although all examples will be shown from

specification to partitioning, each of them has peculiarities which will be used to show

specific details of the methodology proposed in this dissertation.

Two of them are real engineering problems: a mine pump controller and a brushless

DC motor speed controller. The former has been used by several authors to illustrate

specification methods [20, 21, 75, 87, 110]. In the particular case of this dissertation, it is

used to show refinement phases towards producing an output suitable for the scheduling

algorithm, also discussed in Chapter 3. The latter comes from an ASIC controller project

[69, 70] and is used here to stress the hierarchical capabilities that were also presented in

Chapter 3.

The other two are purely academic with no specific meaning in the real world and

both are based on the same example by [115]. They are referred here as ����� and �����,

since the original work was produced at the University of York. Their complexity is used to

show scheduling and partitioning issues discussed in Chapters 4 and 5.

Their partitioning reports (see an example in Appendix D) are not included in this

dissertation due to the amount space it would take.

S.V. Cavalcante
Chapter 6: Examples

���

���� ��
������������		
�

This example possesses many of the characteristics which typify embedded real-time

systems. It consists on the design of a mine drainage system used to pump water from the

sump at the shaft bottom to the surface. Once enabled by a command from the control

room it works automatically based on water level sensors, and environment conditions.

Detection of a high water level causes the pump to run until a low level is detected or

before if requested by the operator.

Environment conditions are monitored so that a detection of methane level (CH4) in

the air beyond which it is not safe to operate the pump causes the system to shut down until

safe levels are reached. The level of carbon monoxide (CO) and air flow in the mine also

need to be measured in order to keep operation safe. Alarms must be raised if dangerous

conditions are detected. A data log is kept during the pump operation and stores

information from all sensors.

������ ���	�
���������
	���

The following devices have their reading periods defined initially:

Sensor Period (seconds) deadline
CH4 5 1
CO 25 1
Water Flow 5 3
Air Flow 60 2

�
����������������	������ ����������	
���

The water level sensor is event triggered. Its minimum inter-arrival time is 100

seconds and the system must respond within 20 seconds. Ten seconds after turning the

motor on or off, a check needs to be made on the water flow to verify if the system is

working correctly. Figure 6.1 shows the initial specification net for the whole system.

Table 6.2 shows the timing specifications of each task.

The transitions ��	
������� and �����
�
�� model operator requests and so are

part of the external environment. All above mentioned periodic tasks are represented by

periodic process nets. The ��
�������������, being event triggered, is represented by a

sporadic task. Notice that all tasks in the system are being represented as super-transitions.

This was done to stress the possibility of further refining each task specification.

S.V. Cavalcante
Chapter 6: Examples

���

�������������������	������ �����	�
����	��������
	���

A ��
�����
��� sporadic process net is being used to represent the control over

the motor switch. This control receives data from several other process nets, some sporadic

and some periodic. In this model, The ����������
���� task is the one responsible for

verifying the CH4 safety level. If necessary it sends a message to ��
�����
��� to turn the

motor on or off.

The tasks ������!�
� and �
���!�
� do not have pre-defined inter-arrival times

or deadlines, but must be able to handle all data generated by other tasks. The ��
��"

���
��� and ��
��#�������� tasks have defined deadlines but no inter-arrival times.

However, they must be able to handle any calls from other tasks. In particular, ��
��"

���
��� must be able to turn the pump off within one second after detection of high

methane level. Also the response time for handling input from the water level sensors is

20s.

Task M.C. WFC Read_WL Read_CH4 CH4 S/NS Read_CO Read_AF Read_WF P_Data S_Data

$%&� Spor. Spor. Spor. Per. Per. Per. Per. Per. Spor. Spor.
� 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
� 0.10 0.15 0.01 0.25 0.05 0.15 0.15 0.15 0.15 0.10
� 1.0 12.0 20.0 5.0 1.0 1.0 2.0 3.0 - -
& - - 100.0 5.0 5.0 25.0 60.0 5.0 - -

�
����������������	������ ��	�������������
	���

S.V. Cavalcante
Chapter 6: Examples

��

������ !�����"��������	

Due to the existence of sporadic tasks, Time Wizard cannot generate a specification file to

be used by the scheduler/partitioner. Therefore, those sporadic process nets need to be

modified and transformed to present a periodic behaviour.

The first change is the elimination of the process nets which answer ��	
�������,

since the ��' command can be considered as a system reset and the ��� command simply

shuts down the whole system. The ��(���
�
�
�� command is also removed from the

model, since it does not present a critical deadline.

The sporadic water level sensor handler (������) can be modelled by the tuple

()	�&S, �, �S) = (100, 0.15, 20). Based on the transformations shown in Section 3.3.6.1, the

following properties must be observed in order to model that task as a periodic one:

� ≤ �P ≤ �S, and &P ≤ �S - �P + 0.015. The values &P = 10 and �P = 10 satisfy the equations

while keeping some flexibility, and so are used here. The same transformation is applicable

to ��
��#��������.

��
�����
��� must respond to sporadic calls from ����������
���� within 1s.

So, the sporadic implementation of ��
�����
��� can be modelled by the tuple

()	�&S, �, �S) = (5, 0.10, 1), since the periodicity of ����������
���� is 5s. Possible

periodic implementations of ��
�����
��� and ��
��#��������' are modelled as

(&MC, �MC, �MC, �MC) = (0.80, 0, 0.10, 0.21) and (&WFC, �WFC, �WFC, �WFC) = (0.80, 0, 0.15, 0.20).

Instead of using these method, ��
��#�������� can be separated from ��
�����
���

and treated as a separate process net. Thus it would not have to stick to ��
�����
���

constraints. Its periodicity is still based on ����������
���� but its deadline is much less

stringent. ��
��#�������� can be modelled by the periodic tuple (&WFC, �WFC, �WFC, �WFC) =

(5, 0, 0.15, 5)6.

 ������!�
� and �
���!�
� are called whenever some event happens in the

system. Since the minimum period among all read-sensor tasks is 5s (from �������), this

is the period that has to be imposed to those log tasks in order to avoid missing any data.

Figure 6.2 and Table 6.3 show the refined model specification.

5 The value 0.01 is used instead of 1 since this is the smallest scheduling unit in this example.
6 Actually, these changes are not necessary since test results have shown that the schedule would be feasible
even without them. However, they are used here to illustrate techniques for handling such problems.

S.V. Cavalcante
Chapter 6: Examples

���

�������������������	�������
	�	#����#����������$��

Task M.C. WFC Read_WL Read_CH4 CH4 S/NS Read_CO Read_AF Read_WF P_Data S_Data

$%&� Per. Per. Per. Per. Per. Per. Per. Per. Per. Per.
� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
� 0.10 0.15 0.01 0.25 0.05 0.15 0.15 0.15 0.15 0.10
� 0.20 5.0 10.0 5.0 1.0 1.0 2.0 3.0 5.0 5.0
& 0.80 5.0 10.0 5.0 5.0 25.0 60.0 5.0 5.0 5.0

�
������%���������	������ ����������	�������������
	���

����%� "����	�

This example is especially difficult to deal with by pre-runtime approaches, since only

periodic tasks are allowed. Although a feasible system was produced, the processor

utilisation is much higher than what would have been achieved if fixed-priority scheduling

techniques were employed.

In particular, the periodic implementations of ��
�����
��� use the processor

much more than in a fixed-priority implementation. Nevertheless, this example is valuable

to illustrate how to handle such systems using transformation techniques. Also, it enhances

the fact that co-design partitioning has a lot to offer to pre-runtime based design, since

threads which require high responsiveness can normally be split in two parts, as shown in

S.V. Cavalcante
Chapter 6: Examples

���

the example. The small but highly demanding tasks can then be analysed and, if necessary,

automatically moved to hardware.

Figure 6.3 shows the first 1.36 seconds of the schedule, which are the most utilised

during the scheduling period. The scheduler produced 782 segments, and solved the

problem at the root node. The maximum lateness is -0.1s in a scheduling period of 300s.

.70 .90

MC

1.10.35 1.250 .50 .55

Read_CO

.95

Read_CH4 Read_AF P_Data

Read WLCH4 Safe-N.Safe

.10 .80

MC WFC

1.35

Read WF

1.36

S Data

���������%���������	������ ��
�	�
����#�������������	�

���� �����������		
�

The example shown here is based on a real study case where ASIC technology was used to

build a brushless DC motor controller [69, 70] in a highly integrated arrangement, thus

requiring a small number of external components. The controller incorporates both torque

and speed control loops. A host computer provides operation supervision.

The controller is intended to work with three-phase permanent-magnet motors and a

power drive produces the required commutation of the motor excitation and power

necessary to drive the motor (see [70] for a more detailed explanation). Speed control is

produced by a proportional-integral-derivative (PID) control algorithm, which produces a

current reference level for the torque control algorithm. Torque control is achieved through

a proportional-integral (PI) current control, which compares the reference level supplied by

the speed controller with the instantaneous current value.

������ ������
	���

The speed controller produces a current reference (REF* based on the following formula:

	 +
��
�

+ � + � �
REF D
S

P S I S= + + ∫. . . . where+D, +P, and +I are constants,

�S = speed error.

S.V. Cavalcante
Chapter 6: Examples

��%

In practice, these values are calculated as follows:

1. Measure time between interrupts (
M) generated by the position sensors by counting

clock cycles.

2. Calculate interrupt frequency �M = 1/
M.

3. Compare with desired frequency �REF.

4. Calculate speed error �S','�REF'"'�M.

5. Calculate differential error ��S��
','(�REF'"'�M)'-'�M

6. Calculate integral error � �
 ��	 � �
S S REF M M. ().∫ = + − , with ��	S = old integral error

The torque controller produces a voltage reference based on the equation below. These

values are calculated in a similar way to 	REF.

. � � � � �
REF P C I C= + ∫. . . where �P and �I are constants,

ec = 	M - 	REF , 	M = instantaneous current value.

������ �����
��"�&�������	�

The actual implementation of these algorithms using ASICs produced a WCET of 200µs to

each speed control iteration, and 4µs to the torque control loop. It is assumed that the

software implementation of such algorithms would be 10 times slower than the dedicated

hardware implementation. Due to the need to maintain control loop stability, the speed

control has a minimum period of 500µs and the torque control has a minimum period of

12.5µs. The table below presents a summary of the temporal specifications.

Task Speed Torque
µ Sw Sw
� 0 0

�(�����) 2000/200 40/4
� 500 12.5
& 500 12.5

�
������'��!�	���	�������������
	����

����%� �(�	����������
	���

Figure 6.4 shows the model produced using Time Wizard at the scheduling level. The host

computer interface was not modelled since its timing constraints are considered to be soft,

and so it is assumed that it can be executed as a background task.

S.V. Cavalcante
Chapter 6: Examples

��'

���������'��!�	������	����)�	

The Speed Controller and the Torque Controller are further refined in the subnets

shown in Figure 6.5 and Figure 6.6. The Torque Controller has a further refinement, as

shown in Figure 6.7. During system assessment, the specification can be fully or partially

flattened and sent for profiling in the Cabernet environment.

���������*����������	���������	

S.V. Cavalcante
Chapter 6: Examples

��*

���������������&������	���������	 ���������+����	���
	��������	

������������!�	�����
	���	

Figure 6.8 shows a partially flattened version of the system where the Torque

Controller subnet was replaced by its subnet specification, and the Speed Controller subnet

and the integrator subnet were not flattened but only replaced by a simple transition.

S.V. Cavalcante
Chapter 6: Examples

���

During production of the output specification to the scheduler/partitioner, those sub-levels

are abstracted and only the level shown in Figure 6.4 is of importance.

����'� �
�	�	������

The partitioning based on the data shown in Table 6.4 and Figure 6.4 has successfully

found a solution by moving both tasks to hardware processors. Independent of the

partitioning parameter weights chosen both the Speed Control and the Torque Control are

moved to hardware during pre-partitioning. This happened since �’I + �I > �’I for both tasks.

A second execution of the partitioner, this time using the ����/$ of both tasks

and again allocating them to the same processor, shows that it would be possible to share

the same hardware processor and still guarantee the timing constraints. In fact, even adding

50% of extra time to allow for context switch on the Torque Control algorithm, there is still

60µs of idle time in the processor, throughout the 500µs of scheduling period, which leaves

12% of spare processor utilisation. The use of a single hardware processor could be useful

if reusability is possible between the operators used to implement both algorithms, which

would reduce the area of ASIC produced in the design.

����*� ,��
	������#�������

An experiment of the use of the scheduler for operation-level scheduling was performed

over the Speed Control algorithm. This sort of scheduling is useful not only for high-level

synthesis of hardware but also to define precisely start and end times of tasks, e.g., for

communication protocols. A slightly different Speed Control specification was produced

for the operational-level scheduling, as seen in Figure 6.9.

Two possibilities are considered:

Case 1: A non-parallel implementation, with all operations sharing the same arithmetic

and logic unit (0�1�). It is considered that each addition/subtraction takes one

time unit and each multiplication/division takes two time units. Also, in this

case, all operations are mutually excluded so that no pre-emption is allowed,

which is normal for operation-level scheduling. This is the subject of study of

several authors such as [31, 54, 77] although their methods are heuristic and as

such cannot guarantee to find a feasible solution whenever one exists.

S.V. Cavalcante
Chapter 6: Examples

��+

Case 2: A parallel implementation, with two ALUs, one for addition/subtraction

(0�1�) and another for multiplication/division (0�1�). The execution time is

considered here as before. All operations sharing a same processor mutually

exclude each other. In this case the scheduler could be used as part of a high-

level synthesis system where allocation and binding are performed by other

tools.

��������������������	�����������
	�����������
	���-��$�����#�������

����*��� ,��
	���-.�$�����#��������"����	�

Figure 6.10 and Figure 6.11 show the schedules produced. In Case 1, the minimum

execution time is 16 time units, whereas in Case 2, this time goes down to 13 units.

S.V. Cavalcante
Chapter 6: Examples

���

���������� ����#����������
����

���������������#����������
����

���� ����	

This example is based on the work on task allocation at the University of York [115]. Its

value to this dissertation is in the fact that it presents real-time constraints and it is not

possible to execute in a single processor. Since its primary purpose was to show allocation

problems, its original data would only exercise the system partitioning algorithm, and not

the pre-partitioner. Therefore, modifications were made in other to allow for some activity

during the pre-partitioning phase. Figure 6.12 shows the net specification of York1 (which

is equal to York2) and Table 6.5 shows the timing specification relevant to York1 only.

S.V. Cavalcante
Chapter 6: Examples

���

�������������/�����
���/������������
	����)�	

S.V. Cavalcante
Chapter 6: Examples

�%

Task Period SwWCET HwWCET µ Messages

T0 60 4 4 sw1 50→1, 150→2
T1 60 4 4 sw1 60→3, 70→4, 30→5
T2 60 2 2 sw1 20→3
T3 60 2 2 sw1
T4 60 2 2 sw1 60→6
T5 60 4 4 sw1 80→6
T6 60 12 6 sw1
T7 35 2 2 sw1 40→8
T8 35 2 2 sw1
T9 35 8 8 sw1 90→11
T10 35 28 14 sw1 250→11
T11 35 8 4 sw1
T12 14 2 2 sw1 150→13, 150→14
T13 14 2 2 sw1 50→15
T14 14 2 2 sw1 50→15
T15 14 2 2 sw1
T16 14 2 2 sw1 50→17
T17 14 2 2 sw1
T18 35 1 1 sw1 50→19
T19 35 1 1 sw1
T20 14 1 1 sw1 40→21
T21 14 2 2 sw1
T22 14 1 1 sw1 40→23
T23 14 1 1 sw1 40→24
T24 14 1 1 sw1 20→25
T25 14 1 1 sw1 20→26
T26 14 2 2 sw1 20→27, 40→28
T27 14 1 1 sw1 50→29
T28 14 5 1 sw1 30→29
T29 14 4 1 sw1
T30 14 1 1 sw1 50→31
T31 14 2 2 sw1 70→32
T32 14 2 2 sw1
T33 20 3 3 sw1 50→35
T34 20 2 2 sw1 50→35
T35 20 2 2 sw1 60→36, 60→37
T36 20 2 2 sw1
T37 20 2 2 sw1
T38 20 3 3 sw1 50→40
T39 20 2 2 sw1 50→40
T40 20 2 2 sw1 60→41, 60→42
T41 20 2 2 sw1
T42 20 2 2 sw1

�
������*��/������������
���0��#�	��	��
���������
	���

S.V. Cavalcante
Chapter 6: Examples

�%�

��%��� �
�	�	�����������
�(

The partitioning parameter Par4 provided the best solution in most of the experiments

performed with the partitioner, and in this example as well. As such, the report presented

here refers to all weights set to zero, but W4 which is set to one.

1. Scheduling period: 420

2. Number of temporal instances: 913

3. Twelve partitioning lists based on temporal instances of tasks {T10, T11}, and

thirty based on instances of tasks {T22, T23, T24, T25, T26, T28, T29} were

created during pre-partitioning.

4. Tasks T10 and T28 were chosen to move to hardware.

5. The scheduling of the root node proved to be unfeasible, presenting a lateness of

1446 time units, with a lower bound of the same value.

6. The partitioning set was created from which a minimum of 1442 time units needed

to be removed.

7. The following tasks were chosen to move to hardware (in the order of removal by

the automatic partitioner): T29, T9, T11, T6, T33, T38, T26, T12, T13, T14, T16,

T31, T15, T17, T21, T32, T34, T39, T35, T40, T36, T37, T41, T42.

8. This move released a total of 1458 time units.

9. Another scheduling attempt based on this new configuration was successful in the

root node. This solution presented a very small software host idle time of 12 units

over the whole scheduling period (420 units), representing 97.1% of software host

utilisation.

��
� �����

Since all other examples in this chapter were solved in the root node, this example was

created to show the branch-and-bound scheduling capabilities. The tasks are distributed

over several processors and all have fixed implementation, i.e., cannot be moved to

hardware (see Table 6.6). An idle time of only 10 units on the busiest processor (��0,

97,6% utilisation) provides a tough target to the scheduler.

S.V. Cavalcante
Chapter 6: Examples

�%�

Task Period SwWCET µ Task Period SwWCET µ
T0 60 4 swA T22 14 1 swN
T1 60 4 swB T23 14 1 swN
T2 60 2 swC T24 14 1 swN
T3 60 2 swD T25 14 1 swN
T4 60 2 swE T26 14 2 swN
T5 60 4 swA T27 14 1 swN
T6 60 6 swA T28 14 1 swK
T7 35 2 swF T29 14 1 swN
T8 35 2 swD T30 14 1 swM
T9 35 8 swA T31 14 2 swL
T10 35 14 swA T32 14 2 swM
T11 35 4 swA T33 20 3 swO
T12 14 2 swG T34 20 2 swI
T13 14 2 swG T35 20 2 swL
T14 14 2 swH T36 20 2 swM
T15 14 2 swI T37 20 2 swP
T16 14 2 swH T38 20 3 swP
T17 14 2 swI T39 20 2 swD
T18 35 1 swJ T40 20 2 swP
T19 35 1 swK T41 20 2 swL
T20 14 1 swL T42 20 2 swO
T21 14 2 swM

�
���������/������������
���0��#�	��	��
���������
	���

��'��� ��#��������"����	�

The root node schedule presents a lateness of 2 with a lower bound of -6. A search tree

containing 189 nodes is produced, which took around 20 minutes on an Intel Pentium -

based computer with 32 MB of RAM. The algorithm was not able to execute in a 16MB

RAM computer, but the current implementation retains many data that are being used only

for assessment of the algorithm itself, and not of the results.

���� ������

This chapter presented four examples. The first was directed towards showing the

specification method defined in Chapter 3. In particular, it presented some of the

difficulties faced when using pre-runtime based methods in specification which comprise

sporadic tasks with high responsiveness. Time Wizard was able to model the system from

the initial specification through to the generation of a model suitable for

scheduling/partitioning.

S.V. Cavalcante
Chapter 6: Examples

�%%

Hierarchy constructors were seen in action on the Motor Controller example. In

particular, issues of processor reusability after partitioning and applicability of the

scheduling algorithm in high-level synthesis of hardware were discussed. Techniques such

as clique partitioning [84] should be able to help promote this reusability.

Examples York1 and York2 targeted mainly the partitioner and scheduler,

respectively.

In all examples, Par4 produced the best results. This is explained by the fact that

Par4 encompasses many of the other parameters in a single equation which attempts to use

the best on each one. At the same time, the method used to chose tasks to move to

hardware is based on a simple list partitioning. Although this technique is used in some co-

design approaches [52], there are other methods which produce better results at the expense

of processing power, such as simulated annealing [40, 42] and multi-stage clustering [8].

Nevertheless, the algorithms used to define candidates for partitioning, i.e., generation of

partitioning lists and sets proved very efficient, only selecting segments which really could

help improving the overall lateness when moved to hardware.

During the design the lack of a modularisation scheme was felt such as the

approach shown in Section 3.3.5 for CP-nets. Also noticed was the absence of support for

soft deadline tasks.

S.V. Cavalcante
Chapter 6: Examples

�%'

