
���

�������	
��
����	�������������

The partitioning algorithm is described in this chapter. The main objective is to implement

in hardware the minimum that allows the design to meet its constraints. By using an

approach which tries to maximise the use of software components, hardware processors

area is decreased at the expense of software host memory, which is considered acceptable.

Real-time constraints are the primary concern here. The final design must be able to

guarantee the schedulability of all tasks in the system. Hence, the partitioning method is

developed to work closely with, in fact involve, the scheduling algorithm.

���� ������������	���	�

Two definitions are key to the proper understanding of the partitioning approach proposed

(this work is partially presented in [24]).

1. ����������	�
�
�

�: A process implementation is considered feasible if, in the

absence of resource constraints, its related time constraints are met.

2. ���
�����	�
�
�

�: A whole system is considered feasible if all its processes are

feasible and there exists a scheduling such as the time constraints are met.

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

The approach used deals separately with each feasibility level described above. The main

advantage of this method is the fact that, as it will be seen later, process feasibility can be

guaranteed without the need of actually analysing the whole scheduling. A task-level

partitioning method is being used which is divided in two main steps (see Figure 5.1):

• Pre-partitioning:

Performed just once; it is devised to perform a process-feasibility based

partitioning.

• System Partitioning:

Performed interspersed with process scheduling; it takes into account system

feasibility, as defined above.

Choice of Architecture

Process
Scheduling

Pre- Partitioning

refinement

System Specification
Architecture Selection

���������	

���	�������

Constraint Analysis
Consistency / Profiling

System
Partitioning

Success
Hardware Synthesis Software Compilation

Failure

Change
Analyses

�����������������

�����
����
���	�	������
�������
���������	���

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

���� ��	
������������

In this phase, segment timing constraints are analysed first individually and then inside

process nets. Initially all relations and constraints are reset to express the original

requirements (see Figure 5.2). Then, a test similar to the consistency check (see section

4.4.2) is performed in each task and whenever possible inconsistent tasks are moved to

hardware. This means that if a task
 has �’I + ������I > �’I, and its implementation is

not fixed in software (see Section 3.3.2), then
 is moved to hardware in order to decrease

its WCET, so that �’I + ������I ≤ �’I,. However, if the implementation is fixed in

software or if �’I + ������I > �’I, then the design has failed since either the task cannot

be moved to hardware or even if moved it does not meet its deadline, and so there is no

possible solution for this set of constraints and temporal parameters.

The function PrecedenceAdjustOrPartition() attempts to adjust precedence relations

in the same way performed by function AdjustRelations() in Section 4.4.1, i.e., if
 � � then

�’J = max(�’I + �I, �’J), and �’I = min(�’J - �J, �’I). However, if
 causes an adjustment in � (or

vice-versa) which leads to an inconsistent timing constraint, such as �’J + �J > �’J , then

PrecedenceAdjustOrPartition() creates a �	�

��
����
�
 (PL) consisting of
 and �, which

become candidates to be moved to hardware. Each PL contains a set of segments which are

candidates to be moved to partitioning, since their inter-dependencies have induced timing

constraint inconsistencies among them. Therefore, at least one of those segments should be

moved to hardware in order to speed up its execution time and make it possible for all

segments to meet their deadlines. Both tasks
 and � are put in a PL because if
 causes � to

become inconsistent, then � causes
 to become inconsistent too. This can be shown by

noticing that if
 � � then �’I + �I + �J must be smaller or equal to �’J, otherwise � is

inconsistent. Considering that
 causes � to be inconsistent, then �’I + �I + �J > �’J ⇒

�’I + �I > �’J - �J ⇒
 cannot end before � starts. But from the initial condition
 � � and so

should finish before � starts, which implies that
 is also inconsistent.

In fact, since precedence relations are transitive, if
 � � and � � �, and
‘s timing

constraints lead to inconsistent constraints in �, what in turn lead to inconsistencies in �,

then a PL is created containing
, �, and �, and so on for any other segment in the same

conditions.

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

Similar to the function PrecedenceAdjustOrPartition(), the function Exclusion-

AdjustOrPartition() attempts to adjust exclusion relations in the same way performed by

function AdjustRelations() in Section 4.4.1, i.e., if
 ⊗ � ∧ �’J + �J + �I > �’I then the relation

 � � can be used if �’I + �I + �J ≤ �’J . However, if �’I + �I + �J > �’J, then neither
 can

precede � nor vice-versa, and so
 and � are put in a PL so that one of them can be moved to

hardware in order to execute faster and its execution time becomes smaller enough to make

 and � consistent, otherwise no feasible solution exists and the design has failed.

No

Yes

No

Success on Pre-Partitioning

Yes

No

No

Yes

Yes

No

Reset Relations and Constraints

Inconsistent tasks ?

ExclusionAdjustOrPartition()

Any PL ?

PrecedenceAdjustOrPartition()

Any PL ?

Yes

Any Changes ?

ExclusionAdjustOrPartition()

Any PL ?

No
Yes

Failed

No

Yes

ChooseTasksTo MoveToHw()

Any Changes ?

Success ?

�����
����
�������	�	������
������	��

PLs contain sets of segments whose inter-dependencies induce timing constraint

inconsistencies among them. Therefore, from each PL at least one segment needs to be

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

moved to hardware in order to improve the chances of satisfying the constraints, which is

done by the function ChooseTasksToMoveToHw(). Every time tasks are moved to

hardware the algorithm re-starts from the beginning in order to re-consider the initial

timing constraints without adjustments plus the temporal characteristics of the tasks moved

to hardware. Notice that when a task is moved to hardware, all its temporal instances (i.e.,

segments) are moved as well. So, suppose that there exist two PLs {a1, b, c} and {a2, e},

with a1 and a2 being temporal instances of the same task A. If A is moved to hardware, then

the condition that at least one segment needs to be moved from each PL is satisfied, since

a1 and a2 are both moved.

The functions PrecedenceAdjustOrPartition() and ExclusionAdjustOrPartition() are

executed in a loop until no more adjustments are made or the partitioning has failed. The

algorithm stops either if at any iteration no adjustments are made in any relation or

constraint (again, similar to the function AdjustRelations()), or if the function Choose-

TasksToMoveToHw() (see Section 5.4) fails to move tasks to hardware. Each function is

explained in detail in the sub-sections to follow.

�����
 ������	����� ����
���	�	������

This step analyses each task (not segments) considering their original timing constraints,

i.e., before performing relation adjustments. The algorithm can be seen below (the notation

used here is defined in previous chapters).

∀
 ∈ ��:

1) if µI is a software host ∧ �I + ������I > �I:

if ¬ �
������I ⇒ move
 to hardware.

otherwise no feasible solution exists.

2) if µI is a hardware processor ∧ �I + ������I > �I ⇒ no feasible solution exists.

�����
 ���	�	������
!��	�
����	���

As discussed in section 4.4.1, adjustment relations can be performed in two cases:

1. ∀
, � ∈ �� |
 ⊗ � ∧ �’I + �I + �J > �’J ⇒ � cannot precede
 and so the relation
 � �

can be used instead of
 ⊗ �.

2. ∀
, � ∈ �� |
 � � ⇒ �’J = max(�’I + �I, �’J), �’I = min(�’J - �J, �’I).

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

��"

However, the new relations and constraints existing after the adjustments may

present timing inconsistencies. Suppose that two segments A and B have �! = �" = 0,

�! = �" = 60, �! = �" = 100. Although A and B are individually consistent, if A � B, the

adjustments using (2) would lead to �’" = 60, and �’! = 40. Also, if A ⊗ B and the

adjustment in (1) is used the same problem would result.

The functions ExclusionAdjustOrPartition() and PrecedenceAdjustOrPartition()

attempt to perform the above mentioned adjustments. Whenever an adjustment leads to

inconsistent segments, PLs are created as detailed in the next sections.

�������
 ����������� ����
���	�	������
!��	�

This step takes into account the influence of precedence relations on time constraints and is

implemented by PrecedenceAdjustOrPartition().

A �������������	�� is one where vertices represent segments and edges represent

the precedence relations among segments. A traversal algorithm is used to adjust

constraints and test for inconsistencies on each possible path in the precedence graphs

existing on the design (a specification may have more than one precedence graph). The

complete algorithm is shown below.

1. Identify non-preceded segments, i.e., those which have no predecessors.

2. For each path starting on a non-preceded segment:

2.1. Walk through the path adjusting the constraints.

2.2. Test for inconsistencies: create a PL containing all inconsistent segments on

that path.

2.3. Return constraints to previous values (this avoids interference from a path

search to another).

3. If there are no PLs adjust all constraints based on precedence.

The example of Figure 5.3 is used to illustrate the algorithm execution. The

precedence graph to be searched can be seen in Figure 5.3.a and the initial timing

constraints in Figure 5.3.b. A and D are non-preceded segments. Figure 5.3 (c) to (g)

highlight the paths searched, and the constraint adjustments associated with each path. In

Figure 5.3 (e) and (g) all segments in the highlighted paths become inconsistent, which

results in the creation of two PLs: {B, C, D}, and {D, E, F}.

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

��� �#� ��� ���

A

B

C

D

E

F

r = 30
d = 60

r = 60

d = 30A

B

C

D

E

Fr = 60

d = 20

r = 30
d = 50

A

B

C

D

E

F

r = 30
d = 60

r = 70

d = 20

��� ��� ���

�����
����
$������	���
��
	��
����	���
����������$�%��	&����	�	�����

�������
 '(�������� ����
���	�	������
!��	�

Two different approaches are used here: one employed only first time the function

ExclusionAdjustOrPartition() is called, and another used when called from inside the pre-

partitioning loop (see Figure 5.2). In the first call, mutual exclusion relations are tested so

that ∀
, � |
 ⊗ � , if �I + �I + �J > �J ∧ �J + �I + �J > �I ⇒ PL = {
, �}.

When called from the pre-partitioning loop the algorithm proceeds in the following

manner:

∀
, � |
 ⊗ � ∧ �’I + �I + �J > �’J ∧ �’J + �I + �J > �’I :

1. Add relation
 � � , use the algorithm to create PLs based on precedence

relations, remove relation
 � � .

2. Add relation � �
 , use the algorithm to create PLs based on precedence

relations, remove relation � �
 .

At any iteration, if no PLs are added and ∃
 | �’I + �I + �J > �’J but �’J + �I + �J ≤ �’I,

then the relation � �
 is added and the pre-partitioning loop proceeds. This corresponds to

the relation adjustment shown in Chapter 3.

The reasoning behind the approach used in the first call is simple. If two segments

and � mutually exclude each other and �’I + �I + �J > �’J ∧ �’J + �I + �J > �’I, then even if one

Task A B C D E F

� 0 0 0 0 0 0

� 20 30 20 30 40 30

� 70 70 70 90 90 90

A

B

C

D

E

F

A

B

C

D

E

F

r = 20
d = 50

r = 50

d = 20 A

B

C

D

E

F

r = 20
d = 60

r = 50

d = 30

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

��)

of them was allocated to another identical processor (with same WCET) the inconsistency

would persist. So, the only solution is to reduce the WCET of
 or �, which may be achieved

by implementing it in hardware.

Nevertheless, this approach cannot be used during the remaining iterations since it

could lead to wrong results. This occurs due to the fact that it does not take into account

any changes made in previous iterations. For example, suppose a set of segments {A, B, C}

with the characteristics described in Figure 5.4 (a) and (b). Initially all segments are

allocated to the same software host �� and the only segment able to move to hardware is

C. No new precedence relations are added to the design by applying ExclusionAdjustOr-

Partition().

��� �#� ���

�����
��"�
$������	���
��
	��
����	���
'(�������$�%��	&����	�	�����

The next step is to apply PrecedenceAdjustOrPartition(), which performs the

adjustments shown in Figure 5.4.c, but generates no PLs. Since there were changes,

ExclusionAdjustOrPartition() is applied again. If the same algorithm used in the first call is

used again, a PL containing A and B is created. Given that A and B have fixed

implementations and so cannot be moved to hardware, it would seem that there is no

possible solution for the partitioning. However, it can be observed that if C is moved to

hardware the system becomes feasible.

Consider again the example of Figure 5.4. Using the approach proposed for calls

from inside the pre-partitioning loop, the relation A � B is added and the function

PrecedenceAdjustOrPartition() is called. The PL {A, B, C} is created. Then the relation

A � B is removed and the same procedure is used with the addition of B � A, which

A ⊗ B

A � C

B � C

Task A B C

µ sw1 sw1 sw1

�
������ ✓ ✓

�’ 0 0 45

������ 25 35 50

������ n/a n/a 10

�’ 40 40 90

Task A B C

µ sw1 sw1 sw1

�
������ ✓ ✓ ⇒

�’ 0 0 30

������ 25 35 50

������ n/a n/a 10

�’ 90 90 90

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

��*

results in the creation of the PL (A, B, C} again. Since A and B have fixed implementation,

C is chosen to be moved to hardware and the feasible solution shown in Figure 5.5 is

achieved.

35 60

60

A

C

Relations: A ⊗ B
A � C, B � C

Sw1

Hw1

80

70

�’
#

�’
#

B

0

90

35

�’ , �’
!��������"

�’ , �’
!��������"

�����
����

����#��
���	�	������

���� ����	
���
���������

A similar approach to the creation of set �(�) is used here. When searching for a feasible

schedule using the branch-and-bound algorithm, the ������������	
��� (���) is used instead

of the latest segment, where if �� is the set of segments with lateness > 0, then

��� = { � | �I = max{ �J |
 ∈ ��}}. If there is a late segment ���(�) at a node �, a set called

�����������	���� - ����(�, ���(�)) - is created which, similar to �(�), contains all segments

which influences this lateness. The argument here is the same used for lateness

improvement discussed in section 4.5.

If a successor node � has a schedule which is not feasible but no segment in

����(�������(��)) is late, where �� means parent node, the following may happen:

1. If ���(�) was not late in the root node, then during the branch-and-bound search

some segment in ����(�������(��)) caused ���(�) to become late. So, ����(������(�))

is created and combined to ����(���� ���(��)) to continue the search, i.e.,

����(������(�)) = ����(������(�)) ∪ ����(�������(��)).

2. Otherwise, ����(������(�)) is created but not combined to ����(�������(��)).

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

��+

Similar to pre-partitioning, this approach also enables several partitioning sets to be

created during any branch-and-bound scheduling attempt, since each node may have a new

����(������(�)).

����	����������������
{
1. ���(�) ∈ ����(�!����(�))

2. ∀
 :
∃ � ∈ ����(�!����(�)) |
�I = �K ∧ �’K < �I ∧

 µI = µK ∧ (�’I ≤ �’K ∨
 � � ∨
 ⊗ � ∨
 ∇ �)
 ∨
 µI ≠ µK ∧ (
 � � ∨
 ⊗ �)

⇒
 ∈ ����(�!����(�))

3. If lateness(���(�)) < 0 in the root node
⇒ ����(�!���(�)) = ����(�!���(�)) ∪ ����(��!����(��)).

}

At the end of a non-successful branch-and-bound scheduling iteration, several

partitioning sets may have been created throughout the search tree nodes. The partitioning

set which ���(�) appears earlier in the root node schedule is chosen for partitioning, since

this means that a feasible schedule was found for segments in partitioning sets of

predecessor nodes (which appear later in the schedule). In case of ties, the node with

minimum lateness is chosen.

The total time units (��") that need to be freed on ���(�) software host is calculated

and used to define a lower bound on the number of tasks that need to be moved to

hardware in order to make feasible the schedule of the segments in ����(�!����(�)). TTU is

calculated as follows:

TTU = #�� + ��� - $��, where: #�� = min{ �’I |
 ∈ ����(�!����(�)) }
$�� = min{ �’I |
 ∈ ����(�!����(�)) }
��� = ∑ �I |
 ∈ ����(�!����(�))

If TTU > 0, tasks are moved to hardware so that ∀
 ∈ ����(�!����(�)) and
 is moved

to hardware, ∑ ������I ≥ TTU. If TTU ≤ 0, only one task is moved to hardware.

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

��,

���� �������������

Time-based parameters are used as terms of the cost function, since the main objective is to

find a feasible solution in regards to time constraints. Other authors have covered other

aspects of partitioning costs, such as [8, 40].

Although segment information is used to define the candidates to be moved, the

cost-function comparison is done at the task level. This is so because, as explained later,

when a task is moved to hardware all its temporal instances are moved as well.

Let ����A be the number of segments derived from a task % that belong to PLs or to

the partitioning set, depending on the current phase. For each task % which has a segment

belonging to any PL, and % is not already in hardware and does not have a fixed

implementation in software, calculate the partitioning parameters �	�1 to �	�5 as

described below. They are used to evaluate the cost in moving a task to hardware, as it will

be seen shortly.

�	�1A is proportional to the improvement in moving task % to hardware, when

considering all time freed by %�in its former software host, i.e.:

�	�2A is proportional to the improvement in moving % to hardware, when

considering only the time gain by decreasing WCETA (from ������A to ������A).

This is important when considering that, even though % has been moved to another

processor, not all time freed in the former software host may be available for use due to

mutual exclusion and precedence relations. So, Par2A is calculated as:

�	�3A is a measure of the potential parallelism among the segments derived from

task %� and segments derived from other tasks. The definitions below are necessary to

understand how to calculate �	�3A:

• D(
) = �I / (�’I - �’I), is the probability of a segment
 execute at any time unit

within the period [�’I, �’I).

• OP(
, �) is the execution overlapping period between two segments
 and �, and it is

equal to min(�’I, �’J) - max(�’I, �’J), if �’I < �’J ∧ �’J < �’I, otherwise it is zero.

�	�1A = ������A . ����A

�	�&A = (������A - ������A) . ����A

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

• ��(
,�) = D(
).D(�).OP(
, �), is the average number of time units during which
 and �

may be able to execute in parallel if either is moved to hardware.

• PET(
) is the average number of time units of
 during which another segment � is

executing in parallel. If this value is not bigger than ������I, then

PET(
) = ∑ PE(
, �), otherwise it is equal to ������I. If
 � � ∨ � �
 ∨
 ⊗ �, the

result is further multiplied by (������I - ������I) / ������I since these

segments cannot operate in parallel, and so � can only use any part of the execution

time of
 that become available.

All values are calculated using data from the root node, since data from other nodes

are altered during the branch-and-bound scheduling and may not represent all possibilities.

Finally, �	�3A is calculated as:

�	�4A takes into account the fact that in an unfeasible system scheduled by the

earliest deadline algorithm, all segments satisfy release-time constraints, although some

segments do not satisfy their deadline constraints (see eligibility rules on section 4.4.3). So,

segments that are scheduled earlier have a greater effect when moved to hardware than

other that come later. For example, suppose that segments
, � and � precede each other, and

that all three are late. If � is moved to hardware, it may become consistent. However, this

will have no effect on the lateness of
 or �. On the other hand, if
 were moved to hardware

and �’J < �I ∧ �’J < �J, all three tasks would benefit from the change. PET(
) is used since it

is necessary to consider if there exist another segment which may benefit from moving
 to

hardware.

During pre-partitioning, �	�4A cannot be calculated by the above equation since no

scheduling information exists at that stage. Therefore, during pre-partitioning release times

(�’I) are used instead of start times (�I). �	�4A is calculated as follows:

�	�5A corresponds to the number of bytes transferred between task % and tasks in

other processors. The reasoning for this parameter is that communication between tasks in

the same software host is faster and less expensive in terms of design time and hardware

cost than communication between processors.

�	�3A = ∑ ���(
), where
 is a temporal instance of task %.

�	�4A = ∑ �I . PET(
), where
 is a temporal instance of task %.

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

The final cost of moving a task % to hardware is calculated as follows (where W1-5

are weights defined by the user):

���� ������������������
���
	

There are two methods of moving tasks to hardware: automatic and manual. In automatic

mode, tasks are selected based on the cost of moving them to hardware and the task with

minimum value is chosen to move. In the pre-partitioning phase, one segment from each

PL needs to be moved to hardware. So, one task at a time is moved, and all PLs are

verified. If there are PLs which did not have any segment moved, other task is chosen. This

continues until all PLs have at least one segment moved to hardware.

During system partitioning, tasks from the partitioning set are moved to hardware in

turn until ∑ ������A ≥ TTU, where % is a moved task.

In manual mode, the designer is presented with all tasks belonging to a PL or a

����(�!� ���(�)), depending on the current design phase. Each task is shown with its

respective cost parameters and final value, and the task which has the minimum cost is

displayed with an identification tag. The designer may accept the partitioner choice or

refuse and choose another task to be moved.

There are two reasons for design failure when moving tasks to hardware. If during

pre-partitioning there is a PL whose segments cannot be moved to hardware, or if during

system partitioning it is impossible to make ∑ ������A ≥ TTU, the design is not feasible.

This may happen if all candidate tasks are already in hardware or if their implementation is

fixed. Such a failure would mean that it is impossible to provide a feasible system with the

initial requirements, and so the design must be changed.

���� �������	� 	�����

Due to the precedence and exclusion relations which are the driving force during pre-

partitioning, tasks that are moved to hardware during that phase imply the need for

CTA = - Par1A.W1 - Par2A.W2 - Par3A.W3 - Par4A.W4 + Par5A.W5

�	�5A = ∑ nBytes(A,
) . ����A, with µI = µA

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

reducing their execution times, i.e., moving those tasks to other processors is not important

if their execution times are not reduced.

For example, if
 � � and �I = �J = 0, �I = �J = 30, �I = �J = 50, after constraint

adjustments these values would become �’I = 0, �’I = 20, �’J = 30, �’J = 50, and both

segments would not be feasible. If
 is moved to another processor with the same execution

time, the problem would persist. The only solution is to reduce
 or �‘sexecution time by

moving one of them to a faster processor, which would mean a move to hardware. A faster

software host could be used instead, but in this case the move would have to be done by the

user, since the approach used here do not allow automatic moves across software hosts.

At the same time, system partitioning is concerned with problems derived from

excessive software host utilisation. At this phase, the speed-up gain when moving a task to

hardware is interesting but not strictly required. The parallelism acquired and the decrease

of processor utilisation that occurs when moving tasks to other hardware processors is

enough to solve the problems dealt with by the system partitioning algorithm. This could

be used to help rapid prototyping of systems. After pre-partitioning, the specification can

be changed so that all remaining tasks allocated to software hosts have their

������ made equal to their ������. At the end of the partitioning, all tasks moved to

hardware during system partitioning could be allocated to processors identical to their

previous software hosts, and no special hardware would be necessary for those tasks.

Therefore, pre-partitioning can be related with execution speed-up whereas system

partitioning could be solved by parallelism. Actually, this is not exactly so. In order to

consider all segment inter-dependencies during pre-partitioning, mutual exclusion relations

among more than two segments need to be considered. To do so, techniques such as clique

partitioning [84] would have to be used to group tasks that mutually exclude each other,

and permutation would be necessary to verify all possible scheduling ordering. However,

this is left as future work since it involves only known algorithms.

The partial results obtained during each partitioning phase may help the designer in

order to alter the specification and tailor it to specific purposes, such as rapid prototyping.

These solutions are summarised in the table below. In the ���'�	�

��
�� and ���
��

�	�

��
�� columns, the possible results of each phase are shown. It is assumed that the

initial architecture is composed of only one software host in order to assist with the

comprehension of this table.

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

�������	�	������ -��	��
���	�	������ �����#��
-���	����

All in software No changes All software / Uni-processor
All in software Changes required All software / Multi-processor or

Sw-Hw / Uni-processor
Hardware required No changes Sw-Hw / Uni-processor
Hardware required Changes required Sw-Hw / Uni-processor or

Sw-Hw / Multi-processor

.�#��
����
�����#��
-���	����

��!� "#�
$�	

A simple example is presented here in which the system specified in Figure 5.6 is

partitioned. The original timing information is summarised on Table 5.2. The changes

made in temporal requirements after executing the function ExclusionAdjustOrPartition()

are shown in Figure 5.7 and Table 5.3 (all highlighted cells in the tables below refer to

changes in constraints when compared to the original specification). Tasks {T11, T12, T21,

T22, T23} are grouped in a PL and so are candidates to be moved to hardware. T21 is

chosen and moved to hardware (here represented by processor Hw1, see Table 5.4), where

its computation time is 10 time units. However, the scheduler fails to find a feasible

solution with the current solution and task T0 becomes 20 time units late (see Figure 5.8).

The system partitioning then occurs (Table 5.5) and T23 is moved to hardware (processor

Hw2). The scheduler is executed again, producing the feasible result shown in Figure 5.9.

Some intermediate steps were omitted from the explanation. A full description of the

partitioning process in this example can be seen in the automatically generated report in

Appendix D.

�����
��)�
-��	��
���������	���

Task T0 T11 T12 T21 T22 T23
µ Sw Sw Sw Sw Sw Sw

�
������ ✓

� 0 1 40 60 0 90
�(��(��) 50 40/20 10/10 50/10 20/10 50/30

� 151 51 91 140 140 140

.�#��
����
.��/�
���	���
	�����
�������	���

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

��"

�����
��*�
$�%��	��
-��������	���

Task T0 T11 T12 T21 T22 T23
µ Sw Sw Sw Sw Sw Sw
�’ 41 1 41 60 110 130
� 50 40 10 50 20 50
�’ 151 10 20 70 90 140

.�#��
����
0������
	����
���
���������
��	��

��%��	���	�

Sw

Hw1

1 171140905141

T0

7060

T21

T11 T22 T0T12

70

�’T0

�

�

T23

�����
��+�
-�������
��	��
�������	�	������

Task T0 T11 T12 .�� T22 T23
µ Sw Sw Sw 12� Sw Sw
�’ 51 1 41 60 70 90
� 50 40 10 10 20 50
�’ 151 51 90 70 90 140

.�#��
��"�
�������	�	�������

3�����
��	��
��%��	���	

Task T0 T11 T12 T21 T22 .��
µ Sw Sw Sw Hw1 Sw 12�
�’ 51 1 41 60 70 90
� 50 40 10 10 10 30
�’ 151 51 91 90 110 140

.�#��
����
-��	��
���	�	�������

3�����
��	��
��%��	���	

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

���

Sw

Hw1

Hw2

1 12190

12090

7060

5141

T0 T22

T21

T11

T23

T0T12

�

�

�

70

�����
��,�

����
����������
�����	�

��%� ��

�
�

The techniques developed in this dissertation to provide automatic and manual partitioning

when considering real-time issues were shown in this chapter. Partitioning is divided in

two phases: pre-partitioning and system partitioning. Pre-partitioning deals with task’s

inter-dependencies, and is more concerned with attaining execution time speed-up. System

partitioning is directed towards processor utilisation and achievement of parallelism, and

works closely with the scheduling algorithm shown in Chapter 4.

The cost function parameters used were developed to represent time-related features

such as speed-up, parallelism, and processor utilisation. Other parameters targeted to deal

with area, power, etc., may be incorporated to the cost function but are out of the scope of

the current work.

The design of systems based on pre-runtime scheduling techniques particularly

benefits from the use of co-design since the problems related to providing resources to

highly responsive sporadic tasks may be solved by moving those tasks to hardware. In

general those tasks can be transformed so that the part that requires high responsiveness is

implemented separately from the rest of the task. Since this part is generally small, the onus

in moving this task to hardware would not be great.

The ability to work with uni- and multi-software-host architectures opens the

possibilities of using the system described in the development of embedded systems. It is

S.V. Cavalcante
Chapter 5: Hardware-Software Partitioning

��)

useful from the specification phase, through prototyping, to the final product

implementation.

On the down side, the complexity of the scheduling algorithm makes each system

partitioning iteration slow and memory hungry. Nevertheless, the techniques shown here

are able to move several tasks at each iteration, which decreases the number of iterations

necessary to find a solution. Also, the system partitioning algorithm works very closely

with the scheduler and so is dependent on the methods used by it. This would make it

difficult to change the system partitioning algorithm to work with rate-monotonic based

schedulers.

