
���

������	
��
����

This chapter presents the scheduling algorithm developed to deal with special needs

imposed for the co-design methodology proposed in this dissertation. It is a pre-runtime

scheduler in the sense that all scheduling decisions are made off-line before the actual

system execution takes place (see Chapter 2).

���� ������������������

In this work, the algorithm is tailored to heterogeneous multi-processor applications having

pre-emptable periodic processes with release times, maximum execution times, deadlines,

and inter-process precedence and exclusion constraints. The objective is to find a feasible

schedule for all processes in the system, where all timing and dependence constraints are

satisfied.

The need to deal with heterogeneous multi-processor applications comes directly

from the co-design target architecture composed by hardware processors and several,

possibly different, software hosts. The implication of this in the scheduler is made clear in

the following example. Suppose that the target architecture is composed only of identical

processors. If this is the case, there is no change in the maximum execution times of

processes, when disregarding communication issues, if they are moved from one processor
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to another. In fact, this characteristic is used by some authors [118] in order to perform

allocation and scheduling simultaneously. However, in a co-design environment possibly

composed of ASICs, FPGAs, and several different software hosts, such as transputers,

DSPs, and general purpose processors, the processes execution times depend on the

processor to which they are allocated.

Garey has shown that the problem of finding a feasible schedule for a set of non-

pre-emptable processes, with release times and deadlines in a uni-processor or multi-

processor architecture is NP-complete in the strong sense [45]. Any algorithm targeted to

scheduling uni-processor systems with mutual exclusion relations among tasks also has to

consider the special case where all tasks mutually exclude each other. This is identical to

the NP-complete problem studied by Garey. Thus, any such algorithm has to be able to deal

with the complexity involved in solving that special case (for an introduction to NP-

completeness see [45]).

The problem becomes more complex when multi-processor architectures are

considered. Process allocation and scheduling, even when the only goal is the minimisation

of the overall execution time, i.e. no independent release times and deadlines are

considered, with or without communication costs, is a NP-complete problem [109]. Instead

of dealing with the high complexity which would incur for tackling allocation and

scheduling of a set of tasks with release times, deadlines, precedence and mutual exclusion

constraints, in a heterogeneous multi-processor architecture, the algorithm described in this

Chapter is aimed to find a feasible scheduling to those tasks and leaves the allocation to be

done by the designer.

���� �������
��� �� ��!

The algorithm presented here is based on a pre-run-time scheduling method for single

processor architectures developed by Xu and Parnas [119]. Although they have proposed

another algorithm for multi-processor applications with non-pre-emptable processes [118],

this is not suitable for our purposes since it is applicable to architectures comprised of a set

of identical processors which is not the case in co-design.

A best-first branch-and-bound technique is being employed where each node in the

search tree uses an earliest-deadline-first method to produce what is called a �����

�����	
�. If such a schedule is not feasible, the task with maximum lateness in that node is
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searched for and ������
 ���� consisting of pairs of tasks are created which, by changing

their scheduling priorities, may produce a better solution than the current one. Scheduling

priorities are changed by introducing new inter-task dependencies, such as precedence

relations. For each tuple a new node is created containing the corresponding new

dependency as well as all its parent dependencies.

In order to optimise the search for a feasible schedule, a prune method is applied in

which a Lateness Lower Bound (LLB) is calculated using the current node schedule and the

branch set information. It is a estimation of the minimum lateness that can be achieved

from successors of the actual parent node. If a leaf node’s LLB is equal to or greater than

the least lateness among all tree nodes, it is clear that none of its successor nodes can

improve the solution, and so this leaf node is pruned. The technique is called best-first

since it is considered that the non-pruned leaf node holding the minimum LLB is the one

with the best chance of  having a feasible successor and that node is chosen to proceed the

search [119].

��"� �������������#��������

The original problem is to find a feasible schedule of a set of periodic processes. So, let � 

be the process set to be scheduled with each process3 � characterised by a tuple (�P, �P, �P,

�P, ΜP), where �P  is its release time, �P the computation time, �P the deadline, �P the

period, and ΜP the assigned processor, ΜP ∈  � (the processor set). All values are integers

and �P and �P are relative values that refer to the beginning of the period.

Instead of dealing directly with periodic tasks and considering an infinite

scheduling time, the algorithm deals with sets of segments over a finite time length equal to

the least common multiple (LCM) of all task periods in the process set, which is called

�����	
�
 ������ (��). Any feasible schedule found over �� is also feasible at any time

greater than ��, since all constraints can be considered by analysing the task interactions

over that period of time, and so the schedule can be repeated infinitely.

Each execution of a process � over the schedule period is called a ����
�������� or

������� of �, and �� is the set of segments of all � ∈  �. Each segment � ∈  �� is defined

                                                
3  Over this chapter the terms ��������� and ����� are used interchangeably.
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by a tuple (�A, �A, �A, µA) where �A  is its release time, �A the computation time, �A the

deadline, and µA the assigned processor, µA∈  �, �A and �A are absolute values and refer to

the beginning of ��. Considering that ∀ � ∈  �, �P ≤ �P, the number of ����
��������� of � is

(��
�
�P).

By extending the relations defined above to segments, the original set � can be used

to create a set �� and the problem becomes to find a feasible schedule of �� over the time

defined by ��. The symbols � and ⊗  are used to model precedence and mutual exclusion,

respectively, between process pairs. It is considered that (� ⊗  �) ⇔ (� ⊗  �). To generate ��

from � the following rules are used, which preserve inter-dependencies:

1. ∀ � ∈  �, a series of segments �K ∈  ��, 1 ≤ � ≤ �� /�P, is created so that
µPK = ΜP,

�PK = �P, �PK = (�P . �), �PK = (�P . k)

2. ∀ �, � ∈  �, � � � ⇒  �K � �H, 1 ≤ � ≤ �� /�I ∧  1 ≤ � ≤ �� /�J.

3. ∀ �, � ∈  �, � ⊗  � ⇒  �K ⊗  �H, 1 ≤ � ≤ ��/�I ∧  1 ≤ � ≤ ��/�J.

Therefore, the above rules can be used to produce data for the search-tree root node.

The procedure which generates the root node using those rules is called ��������������.

���� ��������$���	��	
��
��

Bearing in mind the transformations above, all considerations are now focused on the

problem of scheduling a set of segments �� while regarding their inter-dependencies, time,

and allocation constraints. The earliest-deadline-first (EDF) strategy has been shown to

produce optimal or near optimal results in several specific scheduling problems [57] and so

it was chosen to serve as basis of the scheduling method proposed here.

Given that all values are integers, a segment � can be split into a sequence of

indivisible time units (�, 0), (�, 1), ..., (�, �I-1), where (�, 0) is the first and (�, �I-1) is the last

unit in the sequence, each of them requiring exactly one processor time unit to execute.

Let � be the set of all time units of all segments in ��, and � be the set of tuples

that denote all time units in all processors in �, so that:

� = { (�, �)   � ∈  �� ∧  0 ≤  � < �I-1 }

� = { (µ, �)   µ ∈  � ∧  � ∈  [0, ∞) }
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A schedule is a total function π : � → � where:

1) ∀ (�1, �1), (�2, �2) ∈  �, ∀  (µ, �) ∈  ��

π(�1, �1) = (µ, �) ∧  (�1 ≠ �2 ∨  �1 ≠ �2) ⇒   π(�2, �2) ≠ (µ, �)

2) ∀ (�, �1), (�, �2) ∈  �, ∀ (µ1, �1), (µ2, �2) ∈  �:

�1 < �2  ∧   π(�, �1) = (µ1, �1)  ∧   π(�, �2) = (µ2, �2)   ⇒    �1 < �2

Statement 1) assures that no more than one segment can be executing on the same

processor at the same time. Assertion 2) states that the ordering of segment time units must

be conserved.

Based on the schedule function above several assertions may be derived. A segment

� ����	��� at time � on processor µ iff ∃ (�, �) ∈  �, (µ, �) ∈  ��| π(�, �) = (µ, �). If no segment

executes on that processor at time � then µ is ��
�. A segment � executes from �1 to �2 on

processor µ iff it uses all processor time units in the interval [�1, �2), i.e., ∃ (�, �+�1),

(�, �+�2-1) ∈  � ∧  ∀ �, �1 ≤ � <  �2: π(�, �+�) = (µ, �). A ��� exists from �1 to �2 on processor µ

iff µ is idle in the interval [�1, �2), i.e., ∃  (�, �) ∈  � ∧  ∀ �, �1 ≤ � <  �2: π(�, �+�) = (µ, �). In a

schedule, the execution time of the first and the last time unit of a segment � is called �����

���� �I, and ����
�����
���� �I, respectively, so that π(�, 0) = (µI, �I,) and π(�, �I) = (µI, �I-1),

µI
∈  �. The lateness of a segment � is defined as 
�������(�) = �I
�
�I. The �����	
�

�������

is the maximum lateness among all segments in that schedule.

The symbol ∇  is used to represent another relation between segments called ����

�������, so that � ∇  � implies that if � is executing and � is able to start executing then �

suspends its execution and � starts. Pre-emption cannot be used among segments in

different processors and it is not a relation that can be specified by the user but instead is

used by the branch-and-bound algorithm to improve partial results, as it will be seen later.

�����	 
���
�	�������
	��������
��

Timing relations are adjusted according to the existent inter-dependencies. These

adjustments improve the basic scheduling algorithm efficiency in the search for �
����
�

segments and also helps in the node pruning process.

Precedence relation adjustments are such that if � � � then �’J = max(�’I + �I, �’J),

since � cannot start executing before � finishes and before it own release time. Conversely, �
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must stop executing before � starts executing and before its own deadline, so

�’I = min(�’J - �J, �’I).

Mutual exclusion relation adjustments are used to make the relations tighter by

introducing new precedence relations. For example, if � ⊗  � ∧  �’J + �J + �I > �’I then � cannot

execute before � and the relation � � � can be used instead4. Adjustments made in a

segment � may affect other segments which are related to �. So, precedence and mutual

exclusion adjustments are performed interspersely until no adjustments exist to be done.

���	����
������(�) is the name given to the function which performs the above

transformations to adjust all segments relations in a node � in the search tree. The example

below shows the application of this function. The original data is shown in Figure 4.1 (a)

and (b). Initially, precedence relations are verified. The earliest time � stops executing is

�’! + �! = 20. Since � � �, task � cannot start before � stops executing and before its own

release time, which is 15. Then �’s release time can be adjusted to be the maximum

between 20 and 15, which results in the new �’# = 20. The same applies to �, since � � �,

but given that �’$ = 55 which is already greater than 20, �’s release time is not changed.

Conversely, since � � � and � � �,  task � need to finish before � and � start

executing and before its own deadline, which is 100. The latest time � can start executing

and still meet its deadline is �’# - �# = 80. The same applies to � and �’$ - �$  = 85. Then

the deadline of � can be adjusted to be the minimum between 100, 80, and 85, which

results in the new �’! = 80. The changes due to precedence relations are highlighted in

Figure 4.1.c.

Now consider the values in Figure 4.1.c and the mutual exclusion relations shown

in Figure 4.1.a. Since � ⊗   , either � executes before   or vice-versa, i.e., they cannot be

executing at the same time. However, if � executes before  , then �’! + �! + �" must be

smaller or equal to �’", otherwise B will stop executing after its deadline, which is not

allowed. Since �’! + �! + �" = 50 is greater than �’" = 40, � cannot be allowed to execute

before   and the only option left is   to execute before �, which is possible since �’" + �" +

�! ≤ �’!. So the relation   � � can be added to the design in order to better define the

partial execution order between � and  . The result of this step is in Figure 4.1.d.

                                                
4 If �’I + �I + �J  > �’J  then � cannot precede � either. In this case, � and � would candidates for partitioning, as it
will be explained in the next chapter.
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Since the application of precedence and mutual exclusion adjustments above have

changed the system specification, it is necessary to reapply them again in order to verify if

these changes affect other timing constraints and inter-dependencies. So, precedence

adjustments are applied again which results in the changes highlighted in Figure 4.1.e.

Mutual exclusion adjustments lead to the changes shown in Figure 4.1.f and another

application of precedence adjustments cause the changes emphasised in Figure 4.1.g. No

further changes are possible and no further attempts are made to adjust relations or

temporal constraints.

��� ��� ���

��� ��� ��� ���

 ���!�	����	
���
�	��
��!��
��	��������
��

����"	 #�
�����
�$	#%��&

Timing constraints can be inconsistent. For example, each segment must have �’I + �I ≤ �’I,

otherwise no feasible solution exists. Also, some of the original and derived constraints

may be redundant, e.g., ∀ ���� ∈  ��, if �’I < �’J and the relations � � � or � ⊗  � exist, they can

be removed to improve the algorithm implementation. Another example is (� � � ∧  � ⊗  �)

which can be reduced to � � �. This consistency analysis is used for node pruning and for

reducing the algorithm complexity.

Task A B C D

�’ 0 10 "� 55

� 20 30 20 30

�’ �� 40 105 110

A � C

A � D

A ⊗  B

C ⊗  D

Task A B C D

�’ 0 10 15 55

� 20 30 20 30

�’ 100 40 105 110

Precedence adjustments:

�’# = max(20, 15) = 20

�’! = min(85, 80, 100) = 80

A � C

⇒ A � D  ⇒

B � A

C ⊗  D

Task A B C D

�’ �� 10 �� ��

� 20 30 20 30

�’ 80 40 105 110

A � C

⇒ A � D  ⇒

B � A

C � D

Task A B C D

�’ 40 10 60 ��

� 20 30 20 30

�’ �� 40 �� 110
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The marked relations among processes or segments shown below are also

considered inconsistent, and so are avoided by the algorithm.

µI ≠ µJ � ⊗  � ���
� � ∇  �

� ⊗  � �

� � � � �

� ∇  � � � � �


����	����	�������
�	�
��
�����
����

The function ����������(�) is defined as ��	� if a node � in the search tree is

consistent when all considerations above are taken into account, and !�
�� otherwise.

����'	 (����
�	)���������$

A segment � is said to be �
����
�
 to execute at time � if the following properties are

observed:

1. a)
�’I ≤ � ∧  ¬ (�I ≤ �)

b) ∃  � | � ⊗  � ∧  �J < �  ∧  ¬ (�J ≤ �)

c) ∃  � | � � � ∧  ¬ (�J ≤ �)

2. ∃  � | � holds the properties described in 1), above, and

  � ∇  �
a)
µI = µJ ∧     ∨   � J
< � I

  ¬  (� ∇  �) ∧      ∨
  �’J = �’I ∧  �J > �I

   ∨

  �’J < �’I

b) µI ≠ µJ ∧   � ⊗  � ∧     ∨
  �’J = �’I ∧  �J > �I

Conditions 1.a, 1.b, and 1.c deal with time constraints and segment inter-

dependencies, respectively. So, a segment � is only eligible to execute if � is greater than the

release time of � and � has not completed yet. Also, if there is a segment � which has not

finished yet and � must precede �, or � has already started and excludes �, then � must wait

until � completes.
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Condition 2 merely deals with priorities, i.e., if two segments satisfy Condition 1

then Condition 2 is used to determine which of them is the eligible one.

Pre-emption relations are added by the branch-and-bound algorithm to change the

scheduling order of the segments, in an attempt to find a feasible solution. So, if two

segments � and � in the same processor have a true Condition 1, and there exists a relation

� ∇  �, then segment � will execute even if �’J < �’I.

�����	 *����	(�%�����

A �����
�����	
� of a set of segments �� is one where segments start after their start times,

and which obeys all precedence, exclusion, and processor allocation requirements, and the

allocation obey the �
����
� rules. A !�����
�
�����	
� is one that satisfies the properties of a

basic schedule and ∀ � ∈  ��, �I ≤ �’I. An ������

 �����	
� is one that has the minimum

lateness among all schedules. The list below summarises the rules of a basic schedule.

∀  �, � ∈  ��:

1. �I ≥ r’i

2. � � � ⇒  �I ≤ �J

3. � ⊗  � ⇒  �I ≤ �J ∨  �J ≤ �I

4. � is allocated to µI ⇒  ∀ �" 0 ≤  � < �I - 1, ∃  (µ, �) ∈  �: µ ≠ µI ∧  π(�, �) = (µ, �)

5. � executes at time � iff � is �
����
� at time �.

The algorithm shown next computes a basic scheduling in a node � based on the

above rules, and considers a problem containing �	���� segments and �	�� processors to

schedule. Comments start with the symbol “//” and continue until the end of line. The

following variables are used:

• t : current time value

• lastT : time value used on the previous iteration

• s and e are size �	���� arrays so that s[�] and e[�] represents �I and �I, respectively.

• started : size �	���� array; started[�] is set to ��	� if �I ≥ �, and !�
�� otherwise

• completed : size �	���� array; completed[�] is ��	� if �I ≤ �, and !�
�� otherwise.

• compTimeLeft : size �	���� array; compTimeLeft[�] holds the amount of

remaining execution time for segment � at time �.
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• seg : size �	�� array; seg[�] holds the identity of the segment currently executing

on processor � at time �.

• idle : size �	�� array; idle[�] is ��	� if processor � is idle at �, and !�
�� otherwise.

ProduceBasicSchedule(�)
{
lastT = -1;
∀ � ∈  ��:

{
started[�] = !�
��;
completed[�] = !�
��;
compTimeLeft[�] = �I�;
}

∀ � ∈  �:
idle[�] = ��	�;

While (∃ i ∈  �� | ¬completed[i])
{
if ∃ �’I > lastT, t1 = min{�’I | �’I > lastT }, otherwise t1 = ∞;
if ∃ � ∈  � | ¬ idle[�], t2 = min{compTimeLeft[seg[�]] + lastT | ¬ idle[�]}, else t2 = ∞;
� = min(t1, t2);
∀ � ∈  � | ¬ idle[�]

{
// seg[m] is executing from lastT to �, so decrease its compTimeLeft by
// the amount (t - lastT):
compTimeLeft[seg[�]] = compTimeLeft[seg[�]] - (t - lastT);
if (compTimeLeft[seg[�]] = 0)      // if seg[�] completed on time �

{
e[seg[�]] = t;
completed[i] = ��	�;
idle[�] = ��	�;
}

}
∀ � ∈  �� | � is eligible at time �

{
seg[µI] = �;
if ¬ started[�]

{
started[�] = ��	�;
s[�] = t;
}

}
lastT = t;
}

}
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Consider that the basic schedule is not feasible, i.e., there is at least a segment � with


�������(�) = �I - �’I > 0. In order to improve any segment lateness it is necessary to re-

schedule that segment to finish earlier. Hence, to improve the lateness of the latest process


, and so improve the schedule lateness, 
 has to be scheduled earlier. If there are more than

one latest segment, 
 is considered to be the one, among those, that completed last.

Although it is possible to find a feasible solution, if one exists, by exhaustively

changing all segment pairs relative execution order, this is a very expensive method. Not

every change will lead to a lateness improvement and others may be redundant. Let �(
) be

the set of segments whose completion time precedes and includes 
’s completion time in a

period of continuous execution, i.e., within that period there does not exist any instant �

when all processors in � are idle. �(
) is a first attempt to reduce the number of relevant

segments for scheduling improvement.

�(
) can be defined as (notice below that � may be equal to 
):

1. 
 ∈  �(
)

2. ∀ �, if ∃  � ∈  �(
) | �’K < �I  ∧  �I < �L

⇒   � ∈  �(
)

The following theorems are used to limit the number of number of changes that

need to be tried in order to improve the a schedule.


%��!��	���: �(
) is a set of segments whose completion time precede and include 
’s

completion time and which execute within a period of time that stretches from

���{ �’I | � ∈  �(
) } to �L where there does not exist any instant � when all processors

in � are idle.

,!���� See Appendix C.


%��!��	��"� If the schedule is not feasible then a feasible schedule can only be found if it

is possible to change the relative execution order of segments in �(
) such that 
 is

scheduled earlier.

,!����	See Appendix C.
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If the schedule is not feasible, the latest segment 
 has to be scheduled earlier. In

order to do this, let’s define two subsets of �(
), such that ��(
) = {� | � ∈  �(
) ∧  µI = µL}and

�	(
) = {� | � ∈  �(
) ∧  µI ≠ µL}.

��+��	 -
�./!������!	(�%�����	0�/!�1���
�

First consider the case of a uni-processor architecture, so that ��(
) = �(
) and �	(
) = Ø.

There exist two properties of a basic schedule which are important here [119]:

1. �L is the earliest possible completion time for the entire set of segments in �(
).

2. Any non-optimal schedule can be improved on only by scheduling some segment

� ∈  �(
) | �’L < �’K .

A consequence of Theorem 5-1 when applied to a uni-processor architecture is that

there is no gap in the interval (���{�’I | � ∈  �(
)}, �L), since there is only one processor and

it cannot be idle within that period. So, taking into account property 1 above and Theorem

5-2, it is clear that the only way of improving 
’s schedule is by making it use some

processor time units that was being used by another segment in �(
). However, there is no

advantage in changing the relative execution order between 
 and another segment � ∈  �(
)

if �’I ≤ �L, since from property 1 this would make � more or as late as 
. Also, it is

impossible to change the relative execution order of two segments if a precedence relation

exist between them.

Thus, for a segment � ∈  �(
) with �’I > �L, if � ⊗  
 and it is possible to change (�, 
)

relative execution order (i.e., �’L + �L + �I ≤ �’I) then create a child node with the added

relation 
 � �, if this addition does not cause any inconsistency with any relation that may

already exist (see Section 4.4.2), and try scheduling again. On the other hand, if ¬ (� ⊗  
)

and all other considerations hold, and ∃ � | � executes between (�I, �L) ∧  (� � � ∨  � ∇  �), then

create a child node with the added relation 
 ∇  �. In this later case, ∀ � that executes between

�I and �L, if � ⊗  � then add the relation � � � otherwise add � ∇  �, and try scheduling again.

These relations need to be added so that the execution of � starts just before the execution

of 
, and the pre-emption may occur. This is why � cannot precede or pre-empt �, otherwise

no relation could be added to � and �, and the occurrence of pre-emption would not be

guaranteed.
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A summary of the above described method is found below. To this summary the

sets 
� and 
" of segment pairs are defined, such that 
� holds the pairs (�, �) whose

relative execution order changes by adding the relation � � �, and 
" holds the pairs to

which the relation  � ∇  � is added. These sets are also called ������
����.

1. ∀ � ∈  ��(
) | �’I >  �L  ∧  ¬ (�  � 
)  ∧   ¬ (� ∇  
) ∧

a) � ⊗  
  ∧   �’L + �L + �I  ≤ �’I

⇒  (�, 
) ∈  
�.

   ∨

b) ¬ (� ⊗  
) ∧  ¬ (
 ∇  �)  ∧  �’I + �I + �L ≤ �’I  ∧

∃  � ∈  ��(
) | � executes in the interval (�I, �L) ∧  �I ≤ �J  ∧   �J ≤ �L  ∧  (� � �  ∨   � ∇  �)

⇒  (�, 
) ∈  
".

2. ∀ (�, �) ∈  
�, try a new schedule with all previous relations plus (� � �).

3. ∀ (�, �) ∈  
", try a new schedule with all previous relations plus (� ∇  �).

∀ � ∈  ��(
) | � executes in the interval (�I, �J)

  � ⊗  � ⇒  add relation (� � �)

∧      ∨

  ¬  (� ⊗  �) ⇒  add relation (� ∇  �)

��+�"	 2����./!������!	(�%�����	0�/!�1���
�

In a multi-processor architecture, the scheduling effects that segments in �	(
) cause over

segments in ��(
) need to be taken into account. From the eligibility rules (see Section

4.4.3) it is possible to verify that only those segments � ∈  �	(
) that precede or exclude

segments � ∈  ��(
) are of importance. Also only those segments � and � such that � executes

before � (i.e. �I ≤ �J) and �’J < �I are directly affected (from eligibility Conditions 1.a and

1.b). For example, Figure 4.2 shows some of those effects by showing a gap created by

segment � ∈  �	(
). Segment � does not exert any direct influence on segment  , but it

does on segment �. So, a possible improvement may exist if � and � change their relative

scheduling order. In this example, this is exactly what happens as it is shown in Figure 4.3.
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Any segment � that executes after �H (i.e. �I ≥ �H) and have �’I < �H may be able to use

some processor time units in the interval (�’I, �H) if:

Case a. The relative execution order between � and some segment � ∈  ��(
) which it

excludes is able to change, e.g. if � ⊗  � ∧  �H ≤ �I, then a change is possible if

�’I + �I + �H  ≤  �’H, or

Case b. If � is scheduled earlier, since � would finish earlier than the current �H,

leaving more processor time units to be used by segments with �I ≥ �H ∧

�’I < �H.

Suppose that an attempt to provide an earlier schedule to � (Case b) would also

consider changing the relative scheduling order of any process that � excludes and that

executes before �. If this is the case, a solution to case a) does not need to consider any
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segment � ∈  ��(
) such that � ⊗  � ∧  �I ≤ �H. Considering the above and the previous section

explanations, the case described in a) can be taken into account by the following method:

∀ � ∈  �	(
), if ∃  � ∈  ��(
) | � ⊗  � ∧  �I ≤ �J ∧  �’J < �I  ∧  ¬ (� � �)  ∧   �’J + �J + �I  ≤  �’I

⇒  (�, �) ∈  
�

Case (b) can be considered by noticing that it is required from � exactly the same

that is desired to the latest segment 
 in order to improve an unfeasible schedule, which is

to have it scheduled earlier. Therefore, a recursive call using � as parameter to the

procedures developed to 
 solves the problem, and also validates the assumption made to

solve Case a).

Since segments not allocated to µL can influence the scheduling of 
 only if they

precede or exclude some segment in µL or yet if they exert influence on the scheduling of

some segment � as described in case b above, set �	(
) definition can be made more

restrictive to consider only those segments with the aforementioned characteristics. Thus,

the general improvement method can then be described as:

#!����*!�
�%(����	
	�
{
Create ��(
), and �	(
):
1. 
 ∈  ��(
)

2. ∀ �, if ∃ � ∈  ��(
) | �’K < �I  ∧  �I < �L
  ∧  µI  = µL ⇒  � ∈  ��(
)

3. ∀ �, if ∃ � ∈  ��(
) | �’K < �I  ∧  �I < �K  ∧  (� ⊗  �  ∨   � � �) ∧  µI  ≠ µL ⇒  � ∈  �	(
)
Create 
� and 
":

1. ∀ � ∈  ��(
) | �’I >  �L  ∧  ¬ (�  � 
)  ∧   ¬ (� ∇  
) ∧

a) � ⊗  
 ∧   �’L + �L + �I  ≤ �’I

⇒  (�, 
) ∈  
�.

b) ¬ (� ⊗  
)  ∧  ¬ (
 ∇  �)  ∧  �’I + �I + �L  ≤ �’I ∧

∃  � ∈  ��(
) |  � executes in the interval (�I, �L) ∧  �I ≤ �J  ∧  �J ≤ �L  ∧  (� � � ∨  � ∇  �)

⇒  (�, 
) ∈  
".

2. ∀ � ∈  �	(
): if ∃  � ∈  ��(
) | � ⊗  � ∧  �I ≤ �J  ∧   �’J < �I  ∧  ¬ (� � �)  ∧   �’J + �J + �I ≤ �’I

⇒  (�, �) ∈  
�.

3. ∀ � ∈  �	(
): if ∃  � ∈  ��(
) | (� ⊗  �  ∨   � � �)  ∧   �I ≤ �J  ∧   �’J < �I
⇒  CreateBranchSets( � ).

}
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#!����#%���3�����	
	�
{
CreateBranchSets( 
 );

∀ (�, �) ∈  
�, create a child node with all relations in 
 plus (� � �);

∀ (�, �) ∈  
", create a child node with all relations in 
 plus (� ∇  �) and

∀ � ∈  ��(
) | � executes in the interval (�I, �J)

  � ⊗  � ⇒  add relation (� � �)

    ∧      ∨

  ¬  (� ⊗  �) ⇒  add relation (� ∇  �)
}

���� ����	����
�����
����������

A search tree is used where in each node an attempt is made to produce a feasible schedule.

If a node does not hold a feasible solution, child nodes are created where each one holds

new relations based on the pairs (�, �) belonging to the branch sets 
� and 
" associated to

the current node schedule, in order to improve the previous result. Therefore, each node

� ∈  �� (the search tree node set) has a segment set �(�) containing its parent node

information plus new information added by the branch-and-bound algorithm. To improve

the algorithm efficiency, the order in which child nodes schedules are produced is related

to the value of �’I from the greatest to the smallest. The reasoning behind this comes from

the fact that in the child node schedule the segments � and � change their execution order,

i.e. � will finish after the time � was previously finishing, and so there is a greater chance of

not causing � to become unfeasible for larger values of �’I.

The #�������(�) of a node � is defined as the lateness of the schedule in �, i.e.,

#�������(�) = max{lateness(�) | � ∈  �(�)}. A node is considered !�����
� if its schedule is

feasible.

�����	 3���	,!�
�
�

There are ways of making the algorithm more efficient by identifying nodes which do not

lead to feasible solutions. Since new relations are added to each node, timing relation

adjustments need to be carried out (see Section 4.4.1). However, the consistency check (see
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Section 4.4.2) can reveal any problems caused by the introduction of those relations and

prune any inconsistent node.

Another way of increasing the algorithm efficiency is by predicting how good the

solutions found by any successor node can be based on the current node schedule, and

pruning nodes which lead to bad results. Let ## (�) be a lower bound on the lateness of

schedules derived from node �, i.e., no successor node of � can provide a solution with a

lateness smaller than LLB(�). If a node � is unfeasible (i.e., lateness(�) > 0) and

lateness(�) ≤ LLB(�) or LLB(�) > 0 then � is pruned, since none of its successor nodes will

be able to produce either a schedule better than � or a feasible one. Even stronger, if the

minimum lateness among all nodes created so far (named ���#�������) is less than or

equal to LLB(�), then � can be pruned since none of its successor nodes can produce a

better schedule than the one with ���#�������. Also, let �
 be the set of all non-pruned

leaf nodes. If during the search the minimum lateness among all nodes (named

���#�������) is less than or equal to the minimum LLB of all nodes in �
 (named

���## ), the node holding ���#������� has an optimal schedule.

The above descriptions can be summarised as follows:

• ���#������� = min{lateness(�) | � ∈  �� }

• ���##  = min{ LLB(�) | � ∈  �
}

• ∀ � ∈  ��, if ¬ (consistent(�) ∨  minLateness ≤ LLB(�) ∨  LLB(�) > 0 ⇒  � ∉  �


• At any time during the execution of the branch-and-bound algorithm, if

���#������� ≤ ���##  ⇒  the global optimal schedule has already been found

(although it may not be feasible).

����"	 #��������
�	������

For a node �, if 
� = Ø ∧  
" = Ø then there is no way of improving lateness(�) and so

LLB(�) = lateness(�). However, if this is not the case, three methods are used to calculate

the values LLB1(�), and LLB2(�), and the maximum value between them is assigned to

LLB(�). In the estimation of LLB(�) a trade-off between accuracy and speed is considered.

The better the accuracy the greater the amount of time to calculate LLB(�). In fact, an exact

estimation would be as hard and computation intensive as generating all possible solutions [107].
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LLB1(�) is a trivial lateness lower bound which takes into account each segment individual

time constraints. It is calculated by noticing that each segment must execute after its release

time and before its deadline. So, LLB1(�) can be calculated as:

LLB1(�) = max{�’I + �I - �’I  | � ∈  ��(�)}.

����"�"	 55*"���

LLB2(�) takes into account segment interaction by considering the processor utilisation

during an interval of time by several segments, and any possible improvements that can be

made to the current schedule. Firstly, suppose that a set of segments � allocated to a same

processor µ3 execute within the interval [�1, �2). Instead of considering each segment timing

constraints separately, consider that each � ∈  � has a modified release time �*
I and deadline

�*
I, so that �*

I = min {�’J | � ∈  �}, and �*
I = max {�’J | � ∈  �}. The total computation time �S

of all segments in � is 3

3

C cj
j

= ∑
∈

. Therefore, if no other constraints are considered, the

lateness of the last segment 
 ∈  � can be calculated as lateness( 
 ) = �*
L + �S - �

*
L, and this

value can be used as a lower bound since at least one of the segments in � will be at least as

late as 
 when all constraints are considered.

The evaluation described above, although useful can be made better by considering

gaps in the schedule which cannot be closed. For example, consider the problem shown in

Figure 4.4. Processor 1 is idle from time 40 to 60. No matter how the schedule order

changes, the minimum size that gap may become is 10, since no segment executing before

the gap (i.e. A or B) can be scheduled later than the maximum of their deadlines, which is

�’! = 45, and no segment executing after the gap (i.e. C or D) can be scheduled earlier than

the minimum of their release times, which is �’$ = 55. Thus, the lower bound evaluation

proposed in the above paragraph should be performed separately on the set of segments {A,

B} and {D, E}, and the greatest of them be considered as LLB2. If �’! ≥ �’", the gap could

be closed completely and the evaluation should consider the set {A, B, D, E}.
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The complete description of LLB2(n) follows. Let (�1, �2, ..., �N) represent the 3

periods of time in processor µL, such that µL is idle during each �i, and �i occurs within the

interval of time when segments in ��(�) are executing, i.e. between min{�U | � ∈  ��(�)} and

�L, and ∃  �	
� | �’K  ≤ �’J, �’K = min{�’V | �V ≥ ��(�i) ∧  � ∈  ��(�)} and �’J = max{�’V | �V ≤ ��(�i)

∧  � ∈  ��(�)}, where ��(�i) and ��(�i) are the start and the end of �i, i = (1,...,3),

respectively. Define:

• �
(�i) = min{�’J | �J ≥ ��(�i) ∧  � ∈  ��(�)}, i = (0, 1,...,3).

• �
(�i) = max{�’J | �J ≤ ��(�i) ∧  �
∈  ��(�)}, i = (1,...,36	37�).

• ��(�0) = min{�J | � ∈  ��(�)}.    ��(�N+1) = �L  (i.e. max{�J�| �
∈  ��(�)})

• 
(�i) = ∑�J
| � ∈  ��(�) ∧  ��(�i-1) ≤ �J ≤ ��(�i)

• LLBg(�i) = �
(�i-1) + 
(�i) - �

(�i)

Then   LLB2 = max{LLBg(�i) |  i = (1,..., N+1) } and finally,

In the example of Figure 4.4, LLB1 = max {-25, -15, -15, -5, -5} = -5, LLB2 =

max {0 + 40 - 45, 55 + 40 - 95} = 0, and LLB = max{-5, 0 } = 0.

LLB(�) = max{LLB1(�), LLB2(�)}
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The following procedure takes into account all ideas and procedures previously discussed

in this chapter in order to implement the branch-and-bound algorithm. �
 represents the

child node set of a given node, which initially contains the root node. All variables and

functions used have already been discussed or may be easily understood from the context.

CreateRootNode ����
�
 = Ø
�
 = {����}

���/: node � has a 
         feasible solution

ProduceBasicSchedule( �
)

�
 = �
�∪ {�}

���/: ∃ � ∈ �� |
          lateness(�) = minLateness 
          ∧ � has an optimal but 
             unfeasible solution

�������������
 = Ø ∨
minLateness ≤ minLLB

LLB( � ) < minLateness
      ∧ LLB( � ) ≤ 0

lateness(�) ≤ 0

∀ �
| � ∈  �

AdjustRelations( �
)

∀ �
| consistent(�) = true

parentNode = � | ( LLB(�) = min ( LLB(�) | � ∈ �
�) )
�
 = �
���{parentNode}
CreateBranchSets(parentNode)
�
 = CreateChildNodes(parentNode)

Yes

Yes

No

No

Yes

No

 ���!�	��+�	*!�
�%.�
�.*��
�	����!��%�
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The only possible time a segment switch may take place is either at the adjusted release

time or at the completion time of a segment. Furthermore, each segment can pre-empt any

other segment just once [119]. So, it is possible to consider context switching by the

addition of the following terms to each segment’s computation time (notice that only term

3 is specifically added due to pre-emption):

1. the time required to save the status of a pre-empted segment;

2. the time required to load a new segment;

3. the time required to restart a pre-empted segment.

���� ��������

In the examples below, the algorithm was allowed to produce all branches, not stopping

when a feasible schedule was found.
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All solutions for the examples proposed by Xu and Parnas in their article [119] are

improved using the algorithm proposed here and solved in the root node due to the use of

the ���	����
������() function. For example, even though their fifth example is the one

which generates the biggest number of nodes when using their algorithm, it can be seen in

Figure 4.8 that here it is solved in the root node due to the adjustments in the initial

specifications shown in the tables below.

��� ��� ��� ���

20 500 10 60 7040 8030
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$
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	���	 Lateness(root) = 0, LLB(root) = 0.
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The scheduling algorithm shown in this chapter achieves the special requirements for co-

design mentioned in the introduction section. To the best of the author’s knowledge, there

is no other algorithm able to produce a solution whenever one exists for the pre-runtime

scheduling of a set of processes with deadlines, release times, precedence, exclusion

relations, and which allows process pre-emption, in a heterogeneous multi-processing

architecture. A mathematically sound branch-and-bound technique is proposed to solve the

problem. Another original point is the use of a pre-runtime scheduling algorithm in a co-

design environment.

By using static scheduling, 100% processor utilisation can be obtained, there is no

need for complex operating systems (in some cases no operating systems at all), and

context switch can be made short since the exact points of their occurrence in the processes

Task A B C D

�’ 0 20 30 90

� 60 20 20 20

�’ 122 121 120 110

A ⊗  D ⇒ A � D ⇒

Task A B C D

�’ 0 20 30 90

� 60 20 20 20

�’ �� 121 120 110
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are known in advance. These characteristics make this approach very attractive for

embedded devices, mainly because of the fact that computational resources are normally at

a premium on these systems.

Although for big designs the time to obtain a solution may be quite long, it is

important to notice that there is no burden for the actual processors that implement the

system since the whole scheduling is done beforehand, possibly by using powerful

computers. This characteristic also guarantees that the schedule is sound without doubt

before marketing the product. Of course this guarantee is dependent on how good the

worst-case estimations are. However, the damage caused by a system crash is proportional

to the criticality of that system. For safety critical systems it is reasonable to argue that no

event should be unpredicted and that schedulability should be guaranteed before execution [6].

The algorithm described here can also be used for other purposes. For example,

introducing simple modifications to avoid pre-emption would allow it to be used for

scheduling operations for high-level hardware synthesis, for synchronous or asynchronous

approaches.

On the other hand, pre-runtime schedulers are not very flexible when it comes to

dealing with sporadic tasks or system upgrading. Although some work has been done to

overcome these deficiencies [19], much more is still needed. On-line schedulers may

provide some of this flexibility, for example by providing better processor utilisation when

sporadic tasks are considered [105, 113]. Nevertheless, more complex operating systems

are required in this approach which reduces the available time to run application tasks.

Also, complex process interactions are not dealt with properly. For example, high

overheads are incurred for precedence relations [106].

The use of co-design partitioning can help solve the problem of low software host

utilisation due to sporadic task responsiveness found in pre-runtime scheduling methods,

since during partitioning those tasks can be moved to hardware processors, whenever

necessary.


