
���

�����	
���
����������

This chapter provides an overview of the co-design system proposed in this dissertation. In

particular, it presents details of the co-specification methodology that has been employed in

the co-design environment shown in this thesis.

A specification tool called Time Wizard [25] was built to help enforce this

methodology and is also presented in this chapter.

���� �����	
�����	���������
��

The co-design method proposed here is tailored to the development of hard real-time

embedded control systems consisting of several processes that execute over a set of

software hosts and hardware processors. Given the need for deterministic timing analysis

required for hard-real-time designs, a hardware-driven approach is utilised. Partitioning in

the system is performed automatically. A formalism based on Petri nets is being used as an

initial specification medium and internal representation language. Formal transformations

are not being employed although this formalism gives room for its use in the future.

Besides the features mentioned above the system presents the following

characteristics:

S.V. Cavalcante
Chapter 3: Co-Design Methodology

��

• Full exploitation of the parallelism present in the design, while keeping all timing

and inter-process dependencies;

• Maximum use of software hosts (minimum hardware implementation);

• Use of a single, simple, graphical specification formalism.

������ ��	
���
����		

Figure 3.1 exhibits a general outlook of the proposed environment. The design process

starts with the specification phase, during which timing requirements and inter-task

dependencies are specified, and analysis (simulation, profiling, etc.) is carried out [26].

Analysis tools are also employed in order to guide the transformations and refinements so

that the output of this phase is a set of processes with timing information and requirements,

as well as process inter-dependencies, in a format suitable to be used by the scheduling and

partitioning algorithms. A tool called Time Wizard was built in order to aid the

specification process [25].

The architecture selection is also carried out during the specification phase. The

number of software hosts and hardware processors in the initial architecture is defined.

Although the number of software hosts remain the same throughout the co-design process,

more hardware processors may be created when tasks are moved from the software to the

hardware partition. Each task initial allocation is also defined here.

In the next step partitioning and scheduling are performed in a loop. Partitioning is

accomplished in two phases. The first phase occurs just once and takes into account only

the data related to timing requirements and task inter-dependencies. Then scheduling is

performed and analysed. If the solution found is not feasible, the second partitioning phase

takes place where scheduling generated information is also considered, and the loop starts

again. The process continues until a feasible solution is found or no tasks are available to

move to hardware, in which case the design has failed and may need re-design.

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

��

Choice of Architecture

Process
Scheduling

Pre- Partitioning

refinement

System Specification
Architecture Selection

���
������

�
����
����

Constraint Analysis
Consistency / Profiling

System
Partitioning

Success
Hardware Synthesis Software Compilation

Failure

Change
Analyses

�
����������
����	��������	
������
�������

���� ��	
������
!
 ��
��

This section concentrates on the specification phase. Petri nets are used as the basis of the

formalism, although some extensions are proposed in order to make it more suitable to the

target applications. The basic idea is to allow the user to design the system in a relatively

free way and guide the refinements towards the production of a final model suitable to be

used by the scheduling algorithm shown in the next chapter. This suitability should be

checked by automated tools, thus helping the designer during the refinement stages.

At the same time the model must be able to provide a unified treatment for

hardware and software modules, and this is achieved by keeping the design at a high

abstraction level and by considering both software hosts and hardware components as

processors. The basic difference between them is in the fact that the number of software

hosts is known a priori, what does not happen with hardware processors.

S.V. Cavalcante
Chapter 3: Co-Design Methodology

��

���
�
�
������� ��������	
������ is the level at which the design is suitable to be used as

input by the scheduler.

At the scheduling level the specification must be completely deterministic, i.e., all

computation times are based on worst-case scenarios and no conditionals are allowed.

���� ��	����
�����
��

It is considered that the description of a set of tasks with the following characteristics is

sufficient to model the design for scheduling purposes:

• inter-task dependencies: precedence and mutual exclusion relations;

• timing information: release times, execution times, deadlines, and periods, since all

tasks are periodic at the scheduling level.

Nevertheless, in order to calculate the worst-case execution time and have a better

knowledge of the system, it is also necessary to express and possibly simulate the internal

data transformations performed by each task. Moreover, it is desirable that the

methodology does not restrain the designer’s creativity by allowing only periodic tasks at

the initial specification levels. Sporadic tasks, although possible to be transformed to

periodic tasks (see Section 3.3.6.1), should be available to the designer since they provide a

more natural way than periodic tasks of specifying some events, such as interactions with

the external environment from which not much knowledge may be known at such an initial

design stage. Therefore, the specification method also needs to allow for sporadic task and

data transformation modelling.

TER nets are being used as the starting point of the formalism proposed here [48]

(see Appendix A). Some additional structures were incorporated and their graphical

representation can be seen in Figure 3.2.

�
���������������
���������	�����
��	��������
���
� ����!���	
��	

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

��

Each proposed constructor can be modelled using basic TER net primitives and so

does not inflict any loss in analysability when compared with pure TER nets. The TER

equivalents of the extensions shown above are not important to the understanding of this

chapter and so are explained separately in Appendix B. The semantics and importance of

each of these extensions will be informally explained in this chapter.

������ "�	
�� ��

Tokens carry data values which can be used in predicates and actions. Places have

associated data types and can only hold tokens with a matching type. Each transition has an

associated
�������� which may be dependent on the value of the tokens in its input places.

The evaluation of predicates produce boolean values which are used in the enabling of

transitions. When it fires, a transition performs an �����	 which may use the values of the

tokens in its input places to define the values of the tokens generated to its output places.

Only one single edge is allowed in each direction between a place and a transition.

������ #���
��������$���
�
���
��

Each user-defined processor is declared by specifying its name and whether it is a software

host or a hardware processor. If necessary, new hardware processors will be automatically

created during partitioning (see chapter 5). Each transition also carries information about

the name of the processor to which it is allocated, and a tag called �������
 which

determines if this transition can be moved from the current processor to another one.

Transitions allocated to software hosts may be moved to hardware if their fixedImp tag is

�����. Tasks allocated to hardware processors cannot be moved to software hosts and so

have their fixedImp tag always marked as ����.

������ %
�
���$���
�
���
��

Each transition carries timing information representing �������� ����, software-host

maximum execution time (������), hardware maximum execution time (������), and

������	�. All these values are integers and added by the designer. ������ is the

maximum time a task would take to execute if implemented in software. Conversely,

������ is the maximum time a task would take to execute if implemented in hardware.

This timing information is similar to the model for real-time systems presented in Section

2.4.1.

S.V. Cavalcante
Chapter 3: Co-Design Methodology

�&

All timing information is supplied by the user, including WCET values since there

are no estimators present in the system. Therefore, ������ and ������ need to be

supplied by the user, e.g. by retrieving them from component libraries.

A time variable is attached to each token, representing the time it has been

produced. Tokens created during the firing of the same transition carry the same value on

their time variables and the firings occur in a monotonically non-decreasing sequence. A

transition is enabled if there exists at least one token in each of its input places, its

predicate evaluates to ����, and the current time is within the interval [������������,

������	��������), where ���� is equal to ������ or ������, depending on whether

the transition’s processor is a software host or a hardware processor, respectively.

A transition’s deadline and release time is expressed in relation to the triggering of

the process net to which it belongs. All deadlines and release times internal to subnets are

disregarded at the scheduling level.

����&�
����		� ��	

The design is represented as a set of interacting
��������. A
������ is specified as a

�������	�� which is composed of a set of ����� that are triggered by the same triggering

action. There are two sorts of process nets (see Figure 3.3):

• ���������	�
� triggered at periodic intervals of time by the firing of a
�������

���	�����	.

• �
������� 	�
� triggered at times not previously defined every time a token

arrives on its �	
������� .

 a) Periodic Net b) Sporadic Net

�
����������
����		����	

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

��

A
��������
�������	�� is composed only of
�������������, and a �
�������
������

	�� comprises only �
������� �����. Tasks are represented by super-transitions or yet by

simple transitions, depending on the desired hierarchical representation (see section 3.3.5).

����&���
��
��
��%���	
�
��	�

Each
��������
�������	�� has a
�������� ���	�����	. A periodic transition fires at regular

time intervals and has no input places. Periodic transitions govern the periodic execution of

the associated process nets, and their presence in a process net specification characterises

the nature (periodic or sporadic) of that process net. Because the definition of the triggering

mechanism is external to tasks, a separation between functionality and time behaviour is

achieved that makes it possible to reuse the task definition more easily in different

triggering contexts.

����&��� '���������(������
����	�

Each �
�������
������� 	�� starts with an �	
���
����. Its main purpose is to explicitly

define the beginning of that sort of process net, and so facilitate not only visualisation by

the designer but also the development of consistency check tools. ��
���
����� are used as

an output medium between the design and the external environment, when the user wants

to emphasise that the token put in that place should not be overwritten, as it would happen

if a ����� was used, as it will be explained later. Both input and output places help define

the boundaries of process nets and semantically they are similar to common places.

����&���)������*!���	
���

In order to facilitate not only consistency analysis but also task inter-dependencies

representation, another special node called ���������������	 was created. As its name says,

it is used to represent mutual exclusion among tasks so that all tasks connected to a same

mutual exclusion node share a common resource and so cannot operate in parallel.

Figure 3.4.a shows an example of the correct utilisation of the construct. Figure

3.4.b shows an structure which is not allowed due to problems it would bring to the

scheduling algorithm. The solution is then to merge tasks T1 and T2 into a single task and

use an approach similar to Figure 3.4.a or to Figure 3.4.c, if it is possible.

S.V. Cavalcante
Chapter 3: Co-Design Methodology

�+

b) Inconsistent specification c) Consistent specification

E
T1

T2

E

T1

E

T2

a) Consistent specification

�
�������&��)�������!���	
��������	�����
��

������ ,
������-

As shown in Chapter 3, Petri nets have been extended to allow for more concise

representations which would permit a better handling of complex system specification and

analysis. In this direction, two main extensions were proposed: Coloured Petri Nets (CP-

nets) [66] and Predicate/Transition Nets (PrT-nets) [46], which can be considered as “two

slightly different dialects of the same language” [67]. These extensions rely basically on

folding techniques in order to reduce design complexity. However, folding does not

provide abstraction since all parts of the design remain explicitly defined in the

specification, just in a more concise way. Also, as pointed out in [62] “folding is well

suited, when we have exactly identical objects, but less suited for asymmetrical

arrangements”.

Special hierarchy constructs were introduced for CP-nets [62] in an attempt to

overcome the limitations in complexity handling. Nevertheless, these constructs are better

tailored for modularisation purposes than for handling analysis capabilities in complex

systems. Consider the design shown in Figure 3.5.a below. The subnet associated to the

��!��������	����	�����	 ST1 (as it is called in [62]) is shown in Figure 3.5.b.

Although this hierarchy may work as a visual aid, it cannot be directly used if an

analysis of the system behaviour is required, since the reachable markings at the higher

abstraction level (when the ST1 internal subnet is disregard) is different from the markings

that can be reached when the subnet description is used instead of the transition. For

example, if the net above is analysed considering ST1 as a simple transition, it is

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

�.

impossible that the marking shown in Figure 3.5.b occurs, although it becomes possible

when the subnet specification is considered.

p1 p2

TrST1

p3 p5

p1 p2

Tr
T1 T2

$%�

p4 p3 p5p4

a) ST1 as a single transition. b) ST1 subnet.
Marking before firing. Marking after firing.

�
����������/
����	��
������-

�������� $�����%���	
�
��	

In order to overcome those problems, a possible solution is to consider that all subnet

inputs occur at once and the same is also true for its outputs. Although this may seem

restrictive, it is exactly the same consideration used in programming languages for

functions and procedures. In this work the structure used to provide this hierarchy

capabilities is called ��
������	�����	. When it comes to real-time modelling, those

structures are equivalent to the ones used in other real-time design approaches (e.g. see [72,

120]) for encapsulation of temporal behaviour. It is common practice to abstract from the

inner details of processes and concentrate specifically on the timing constraints associated

with each process as a whole. If a process internal time constraint is important, then it

cannot be abstracted from and should be explicitly represented at a higher hierarchical

(abstraction) level. In this sense, the highest hierarchy level (which here is called

Scheduling Level, as explained in section 3.2) is composed of a set of objects (in this work

transitions and super-transitions) with each one having a defined worst-case execution time

and resource amount needed for execution.

Loops are also expressed by using super-transitions as well, as shown in section

3.4.2. Recursion is not allowed and loop iteration is bounded in order to allow for worst-

case estimations. Other parallel languages (e.g. Occam) also rely on limitation of recursion

S.V. Cavalcante
Chapter 3: Co-Design Methodology

�0

and non-determinism of loop constructors in order to have a better knowledge of the

maximum resources needed during program execution.

If it is necessary to specify a design that cannot fit into the restrictions imposed by

super-transitions, e.g., the need of specifying several input or output points at different

places (as in the example of Figure 3.5), then that design cannot be abstracted and so

cannot take place in a hierarchical construct, and should be explicitly specified at the

Scheduling Level.

Tasks are represented either as simple transitions or as ��
������	�����	�. These

special transitions have associated subnets which are characterised by having two special

transitions called �	
�����	�����	, and ��
�����	�����	, and a special place called

��	���������. Super-Transition subnets are safe nets (assured by the ControlPlace), i.e., it

is not possible to have more than a token in any place at any time. All synchronous

communication between internal and external media goes through the InputTransition and

OutputTransition (see Figure 3.6). The use of ControlPlaces are not exactly necessary to

keep the subnets safe in the approach used in this dissertation, since only a task deadline

smaller or equal to its period is allowed, which guarantees safeness. However, they are

used to remind the user of the non-reentrant nature of those subnets, and also because it is

desired to use this work in the specification of other kind of system which may require the

removal of this limitation (e.g. in designs where it is allowed to have task overloads for

small periods of time).

�
�������+��,
������
����������
������	���������	
�
�������
�	�	�1���

Each super-transition also has an associated transition specification with the

purpose of providing descriptions that are functionally equivalent to the super-transition

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

�2

subnet. Therefore, super-transitions can be replaced by their functional and time equivalent

transitions, and carry on analysis over the collapsed Petri Net, such as a multi-level

simulation. This feature also permits to attach different subnets to the same functional

specification, which makes it possible to try different implementation alternatives for the

same super-transition. During analysis, the designer chooses whether to use either the

subnet specification or its associated transition specification.

Super-transitions may have nested super-transitions. This allows for a reasonable

decrease in the number of states to analyse since these nested super-transitions may also be

collapsed into their functionally equivalent transitions whenever necessary. This

hierarchical capability also permits the use of top-down or bottom-up design approaches, or

yet a combination of both.

�������� $����	

In order to provide a higher level of abstraction, another kind of node called a ����� was

devised which is based on places. However, differently from a place, a store cannot carry

more than one token at a time. Every time a task wants to send data to a store the store’s

previous data is removed. Also, operations over stores take a negligible amount of time.

Therefore, a store acts as a device that contains data that may be overwritten when new

data arrives, and perform asynchronous communications. By being safe, stores do not

overload any task by accumulating data for computation. In other words, places trigger the

transitions execution, since anytime a token arrives in a place it should be consumed as

soon as possible, whilst stores carry information that is retrieved only when needed.

The non-blocking communication model for hard-real-time tasks provided by stores

is in agreement with other works in the area (e.g. [4]), allowing for the decoupling of

process nets in order to provide a more predictable time behaviour.

Stores can also be used to carry information between transitions internal to super-

transitions and external transitions without passing through the InputTransition and

OutputTransition, as shown in Figure 3.7.

S.V. Cavalcante
Chapter 3: Co-Design Methodology

+�

S

$�1����� $�1�����

�
�������.��3	
���	����	�����	�1����������
���
��

����+� ��	
���/��	
	����-

A process net specification is considered inconsistent if its triggering mechanism is not

properly defined. For example, a periodic process net cannot receive data from other

process nets through places. Due to the Petri nets firing rules, the status of a place (empty

or not) defines transition firing conditions. So, a place connecting one net to another could

interfere in the latter net execution timings by acting as a triggering control. Therefore,

periodic tasks can only receive data from tasks belonging to other process nets through

stores (since they cannot interfere in the firing rules) whereas sporadic tasks may also

receive data sent directly to their InputPlaces.

Stores play a major role in the definition of the control flow among process nets.

They decouple the communication among process nets leading to a better definition of their

triggering mechanism.

For example, in Figure 3.8 transition �" is being driven by both places �# and �".

Hence it is required that both have tokens in order to enable �" to fire. So, �" is dependent

on both events, the firing of the Periodic Transition �����	� and the arrival of a token in

the InputPlace ���	
��, and not only on the firing of �����	�, as it would be desirable, and

constitutes an inconsistent design. This sort of error can be easily spotted by automated

consistency check tools.

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

+�

a) Inconsistent specification

PrTrans SPInput

P0

T1

T2

P1

b) Consistent specification

S

PrTrans SPInput

P0

T1

T2

S1

�
�������0��
��
��
��	�����
��������
���
������	
	����-

The consistency checks become tighter as the design process moves towards the

production of the scheduling level output. All nets at the scheduling level need to be

acyclic when Mutual Exclusion places and Stores are disregarded. Furthermore, the

specification must be completely deterministic, i.e., all computation times are based on

worst-case scenarios and no conditionals are allowed.

Figure 3.9.a shows a situation in which a periodic task sends data to a sporadic task

via an input place. This structure is acceptable during the initial specification stages.

However, at the scheduling level only periodic tasks are allowed and so the net would have

to be transformed. Figure 3.9.b shows a possible transformation which leads to a consistent

specification at the scheduling level.

a) Although this specification is accepted at
the initial level, it is considered inconsistent
at the scheduling level

PrTrans

SPInputP0

TP1 TS1

PrTrans

P1
P0

TP1 TS1

S

b) Consistent specification

�
�������2��$�1���	����	
	����-���������	������
��

Figure 3.10.a shows a design inconsistency since place P3 is being driven by both

transitions T1 and T2, which belong to distinct process nets. There are many possible ways

of correcting this inconsistency, e.g. the one shown in Figure 3.10.b.

S.V. Cavalcante
Chapter 3: Co-Design Methodology

+�

a) Inconsistent specification

SPInput

PrTrans1

P1

T1 T2

P2

PrTrans2

Sub1

PrTrans1

P1

T1 T2

P2

PrTrans2

Sub1

b) Consistent specification

P3

�
������������������
����
���
����	
	����-

����+��� $�����
��%�	4	�%���	������
��

As explained in Chapter 2, sporadic tasks are those which may request execution at any

time, although a minimum inter-arrival time (��	
) between consecutive invocations

exists. Since the scheduling algorithm proposed in this dissertation do not deal with

sporadic tasks, those need to be converted to periodic tasks. Mok has shown that a sporadic

task � represented by (��	
S$� �S$� �S) can be replaced by a periodic one
 represented by

(
P, �P, �P, �P) as long as the following conditions are satisfied [92] (for an explanation

about these tuples, see Section 2.4.1):

1. �S ≤ �P ≤ �S

2. �P = �S

3.
P ≤ �S - �P + 1

Suitable transformation rules are �P = 0, �P = �S ,
P = min(��	
S, �S - �S + 1), �P = �S,

if �S ≥ 2.�S, and �P = �P =
P = �S otherwise [101]. This transformations are not unique but

are optimal in the sense that no other transformation exists that would provide a period

greater than
P [92].

��"� �
����
����

Time Wizard is a design tool which uses the model proposed in former sections. It takes

advantage of the extended constructors proposed to provide automatic consistency checks.

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

+�

Its main features are:

• 5�6�
������	� �������� timing constraints and inter-task dependencies can be

easily expressed by means of dialogue boxes and graphical representations.

• 7��
���
����������
�
���
��� Simulation and consistency check tools are available

for verification and assessment. Profiling tools can be used for the improvement of

worst-case bounds.

• �����
����
��������� Time Wizard follows the trend in the use of graphical

formalisms for specification to facilitate the design and analysis process, and

provide a neutral specification approach.

•
���
���������#��
���$���
�
���
���8�������� In order to define these features,

C++ is being used since there is a strong link between Time Wizard and Cabernet,

and the later uses C++. Cabernet is being used as a simulation tool for designs

specified in Time Wizard. An automatic translator is built in Time Wizard which

performs the necessary model transformations in order to allow it to be simulated in

Cabernet. In the future, when Time Wizard has its own simulator built in, a formal

language, such as Occam, is intended to be used in place of C++.

��&��� ��	
������9

The design starts by defining the places and tokens data classes (in C++). Data classes are

defined in a special window which keeps information about the classes interfaces and

methods (or member functions, as they are called in C++) implementations. All classes

have to be defined using a template called ��%�&'�()��*+ which is used to incorporate a

special variable used to represent time (see Section 3.3.3 and Appendix A).

TIMED_CLASS() creates a new class based on the class used as parameter. For example,

Figure 3.11 shows a Time Wizard window used to define a very basic class called ,-����.

All tokens must have a class and so NKvoid is useful when tokens with no specific values

(e.g. integers or floating point variables) are required. After using TIMED_-

CLASS(NKvoid) and TIMED_CLASS(int), two new classes name �����',-���� and

�����'�	� are created. These classes carry the same information as their basic classes plus

an extra variable named ���� which is used to represent the time when a token was

produced after a transition firing. Since all
����� have associated data types (see Section

3.3.1), timed_NKvoid is the default class associated by Time Wizard to every new place.

S.V. Cavalcante
Chapter 3: Co-Design Methodology

+&

�
�����������/��		����
�
�
��	

��&�����
����		��	����
�
�
��

The second design step is the initial processor set definition. At this stage the user only

needs to specify the processors names and implementation, either software or hardware.

The implementation paradigm information is used later during partitioning, since all tasks

that are initially allocated to hardware processors cannot be moved to software by the

partitioning tool. Figure 3.12 shows an example of processor definition where there are two

software hosts named DSP1 and GP1 and one hardware processor named FPGA. Since

DSP1 is selected, its implementation paradigm (software) is shown in the right-hand side

of the figure below.

�
�����������
����		��	����
�
�
��

��&����� ��	
���$���
�
���
��

When starting a design the user is presented with two main options: to design a net or a

subnet. The basic difference is that a subnet starts with a default structure which is

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

+�

automatically placed by Time Wizard and which cannot be removed by the user. This

structure consists of the InputTransition, OutputTransition, and ControlPlace primitives

mentioned in Section 3.3.5.1, which have the function of guaranteeing the safeness

property of a subnet, i.e., its non-reentrant nature (see Figure 3.6 in Section 3.3.5.1 for an

example).

The designer can use the drawing buttons present in Time Wizard in order to

produce a system specification, as in Figure 3.13 (the design shown has some

inconsistencies that will be used later for illustration purposes). There are many auxiliary

options, such as zoom in and out, drawing grid, and print preview. The definition of each

primitive’s attribute (such as transitions release times and deadlines, or places data types)

are performed by double clicking over the desired object, which opens the respective

attribute window.

�
�����������%
���:
;������
��9
���9�	��9
������
�
�
���	�������	
��

For example, Figure 3.14 shows the transition attributes window associated to

super-transition ST1 shown in Figure 3.13. This window includes the transition’s name,

internal identifier, firing predicate and action (in this case it uses tokens coming from

places IP1 and S2, and produces tokens to place P2 and P3), release time, software and

hardware WCETs, deadlines, allocated processor and implementation. All data is input by

the designer. Although Time Wizard provides tools to help the user estimate the WCET of

S.V. Cavalcante
Chapter 3: Co-Design Methodology

++

process nets and subnets (see section 3.4.2), it does not produce this information

automatically.

�
��������&��%���	
�
�������
1���	�9
���9

Super-transitions, as explained before (see Section 3.3.5.1), have associated subnet

and simple transition descriptions. These descriptions are equivalent (although this

equivalence is not validated formally). Textual descriptions are used, for example, when

the designer wants to simulate the system without regarding the internal details of a super-

transition. In this case, the super-transition is replaced by a simple transition which uses the

super-transition textual definition with its predicate and action. Figure 3.15 shows the

attributes window of a super-transition named ST1. Its associated textual description is

stored in its transition equivalent, which was already shown in Figure 3.14.

Some parameters are similar to those found in simple transitions, such as name,

internal identifier, action and predicate. However the �����	 parameter is used here to

create a link between the formal and the actual parameters used when a super-transition

fires and data (tokens) have to be taken form outside to inside the super-transition subnet,

and vice-versa. The names in the �������
���������� list are used inside the subnet. For

example, consider again the simple design shown previously in Figure 3.13 which includes

super-transition ST1 and its associated subnet. If the designer wants to simulate the system

using ST1’s transition equivalent, the option ���� ���	�����	� �����!���� ���� ���������	� in

ST1’s attributes window should be selected, which would cause the generation of a file

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

+.

which disregards ST1’s subnet details and uses its associated transition specification.

However, if the designer opts to simulate in a more detailed level and use the associated

subnet (i.e. not selecting the option ���� ���	�����	������!���� �������������), Time Wizard

uses ST1’s formal parameters to link ST1’s subnet to the net where it is embedded. In

systems with many super-transitions or with nested super-transitions the user may choose

different abstraction levels to different super-transitions during simulation.

�
�����������$���������	
�
�������
1���	�9
���9

��&����� $-	����
���
�
�������$
�����
��

After the initial specification is done by the designer, the system may be simulated in order

to gather more information about the system’s dynamics and temporal requirements. The

technique proposed here for system profiling is based on the premises of reactive systems

[14], in which the only behaviour of interest is that related to its responsiveness to

environment demands. So, the surrounding environment is modelled as timed nets while it

is considered that the system under development is being executed over a computer

architecture with infinite computation capacity, i.e., all task execution times are zero to all

tasks that are part of the system. The only system transitions that keep their execution times

are periodic transitions.

S.V. Cavalcante
Chapter 3: Co-Design Methodology

+0

Consider that the designer wants to simulate the example shown in previous sub-

sections using ST1’s subnet description. Then, using the option ��
���������!��	�� (under

the FILE menu) Time Wizard automatically creates a flat net where ST1 is replaced by its

subnet and all other subnets are replaced by simple transition equivalents containing

textual descriptions of their intended behaviour. Figure 3.16 shows the resulting flat net

which is generated automatically by Time Wizard (some objects were moved from their

original position to promote a better understanding).

In order to consider the infinite computation capacity mentioned before, the

execution times are removed from all transitions except periodic ones2. As explained in

Section 3.4, Time Wizard does not incorporate a simulator but uses the one found in the

Cabernet environment instead. So, the flat net description is translated to a format that can

be understood by Cabernet, where the simulation occurs. Cabernet was modified in order to

accommodate a simulation recorder which stores all data generated during simulation for

later analysis.

�
��������+������������	���
�
���
��

��&���&� /��	
	����-�����5��
������	

Time Wizard is tailored to produce an output that can be used by the scheduling and

partitioning tool to be presented in Chapters 4 and 5. However, not all system

2 The user can override this removal for simulation purposes.

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

+2

specifications are suitable to generate such an output. Although currently refinements are

done manually by the user, Time Wizard has an analysis tool based on the consistency rules

defined in Section 3.3.6 which may help the designer to adapt and refine the design

towards the production of a suitable format. It searches all InputPlaces and Periodic

Transitions and verifies if there is any net node, other than stores and InputPlaces, which is

connected to more than one process net. The algorithms used for consistency checking are

based on a simple depth-first traversal algorithm.

For example, if the consistency check tool is used on the design shown in Figure

3.13, the result would be the following warnings:

1. “The node named ��	�&����is inconsistent. It is connected to the nets starting in

���.�and ��" .

2. “The node named ��"�starts a sporadic net. When generating scheduling data, all

sporadic nets must be transformed to periodic nets” (this warning is only

generating when the user wants to produce scheduling data, since sporadic nets

are only considered inconsistencies at the scheduling level).

These warnings help the designer to spot any structure that would prevent the

production of a proper output. Figure 3.17 shows a possible solution to avoid the above

warnings and from which is possible to produce data for the scheduler and partitioner.

�
��������.��/��	
	�����	���
�
���
��

S.V. Cavalcante
Chapter 3: Co-Design Methodology

.�

��&��� #��
�
������������	��'�����%�	4�#		�		����

Much work has been done for worst-case analysis, such as [50, 88]. Time Wizard does not

attempt to produce worst-case execution time estimations and relies on information

generated externally. Nevertheless, Time Wizard provides tools to help closing the gap

between average and worst-case computation times, in order to avoid over-allocating the

processor to tasks that in the general case will not use all the allocated resources. The less

this difference is the more efficiently the processor is used in a hard real time system

implementation.

In order to do this, Time Wizard uses simulation data in order to find branching

correlations and maximum number of loop iterations. It gives a good understanding of

tasks’ dynamic behaviour, and as such allows for refinements of the system with more

knowledge than by using only static information. This is not a perfect solution since

simulation results always depend on the input data set, which for large systems normally

does not cover all possibilities. Other techniques have been proposed, e.g. [1], which uses

symbolic execution to avoid false paths. It provides a trade-off between analysis results and

analysis efforts and as such does not produce exact results. Integer linear programming

(ILP) and user annotations have also been used [88]. However, these technique suffer from

the huge complexity when dealing with large systems which is also the problem when

trying to find exact solutions. The technique used in Time Wizard gives some insight into

the problem and yet is very simple.

As an example of its use, consider that there is some dependency between the two

conditionals shown in Figure 3.18 such that only the paths PT1={inTrans, T1, T3, T4,

outTrans} and PT2={inTrans, T2, T3, T5, outTrans} can occur. Now consider et1 = et5,

et2 = et4, and et1 >> et2, where eI is the execution time of transition (or path) �. It is clear,

from the above assumptions, that the worst case execution time of the task as a whole is

ePT1 (which is equal to ePT2). Time Wizard tries to find the possible paths through

simulation and these can then be used in the calculation of the worst case computation

time. If only the graph description had been considered, then the paths PT3 = {inTrans, T1,

T3, T5, outTrans} and PT4 = {inTrans, T2, T3, T4, outTrans} would also be regarded as

possible. In this case, the worst case execution time would be ePT3, which is equal to ePT4, and

is much greater than ePT1.

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

.�

�
��������0��
��������
�������-	
	

Figure 3.19 shows another simple example in which two parallel conditionals are

analysed. Transitions T0, T1, T2, and T3, fire depending on their predicates. The design is

automatically exported to Cabernet’s simulation tool, and a specially designed tracing tool

which was incorporated to Cabernet is used in order to perform profiling analysis of the

nets (see Appendix A). A tracing file is generated which is read and analysed by Time

Wizard in order to produce a Firing Correlation Matrix, which relates the number of times

two transition fires at the same cycle, as depicted in Figure 3.20.

�
��������2��/���
�
���������
�������-	
	

S.V. Cavalcante
Chapter 3: Co-Design Methodology

.�

�
������������
�
���/�������
���#���-	
	

This ability of exporting nets to Cabernet enables the designer to use the analysis

capabilities present in that environment. For more details on the sort of analysis available

in Cabernet please refer to [112].

A tentative bound for the number of iterations of loops may also be found by Time

Wizard. Although all graphs connected by places are acyclic (excluding the control place of

tasks), loop representations are an exception. Loops are represented as shown in Figure

3.21. The maximum number of iterations is defined as the maximum rate of firings

between the transitions TL and inLoop. Since simulation may not cover all possible cases,

the final decision of accepting or not the analysis results produced by Time Wizard remains

up to the designer.

�
�����������8����
�����
�������-	
	

Results of the Firing Correlation Analysis

Net name:
Net file: D:\SERGIO\PROJETO\EDITPN\TESTE\ANATEST1.NET

Control Transition: InTrans

Place: P2
Transitions:

T2 fired 11 times
T3 fired 13 times

Place: P0
Transitions:

T0 fired 14 times
T1 fired 10 times

Correlation Matrix:
 T0 T1
 T2 8 3
 T3 6 7

S.V. Cavalcante
Chapter 3: Co-Design Methodology
__

.�

��#� �$�����

This chapter has shown a brief overview of a new co-design process for the development of

hard-real-time embedded applications. Other considerations of the method as a whole are

drawn in Chapter 7.

A co-specification methodology was also presented as well as the CAD tool that

encompasses it. It has shown to be quite simple and yet it provides mechanisms for design

assessment at both internal and task interconnection levels. Other examples of its use can

be seen in Chapter 6.

It is the first time that Petri nets is used as a specification medium from the initial

specification to the output level in the co-design field. It is also the first time a Petri net

methodology is used to help the designer specify real-time systems in a format suitable to

be used by the major scheduling algorithms, mainly pre-run-time schedulers.

The main difficulties in using Petri nets not only for analysis purposes but at all

specification abstraction levels rely mainly on the lack of hierarchical, and modular

constructs found in Petri nets, which lead to highly complex specifications when moving

down the abstraction level. For the purposes of real-time systems, the lack of temporal and

data representation is also paramount. These difficulties were overcome by using a high-

level timed Petri net as the basic formalism in conjunction with extra primitive constructors

which allowed for better hierarchical specifications and analysis tools.

The use of a single language for initial and internal representations permits a better

understanding and control of the design process by the user. In systems with separate

representations either the inner details are hidden, or the internal representation may be

awkward and difficult to be understood by the designer. Also, the designer would need to

know different modelling paradigms to follow the design process.

Although Time Wizard was initially thought for using as part of the co-design

environment presented in this dissertation, it can be used separately as an aid for real-time

design in general, providing outputs which can be used as input for schedulers in general,

and mainly for pre-runtime schedulers, such as the one devised by Xu and Parnas [119].

Time Wizard does not provide automatic refinements and so does not attempt to

transform sporadic nets to periodic ones automatically. However, this could be easily

accomplished by using the transformations shown in Section 3.3.6.1.

S.V. Cavalcante
Chapter 3: Co-Design Methodology

.&

The Petri Net extensions proposed here have the intent of increasing the usability of

Petri Net-based design and analysis in practical real-time designs, and promoting the

development of automatic tools. At the same time they provide hierarchical modelling

while keeping the analysis capabilities found in TER nets.

