
����������

	
�����
�
���������
�

Cabernet is a customisable environment developed at the Politecnico de Milano

specifically to research the benefits of formal techniques in the development of real-time

systems [112]. The Cabernet formal kernel (Cab Nets) is based on a HLTPN called TER

Nets (Time Environment/Relationship nets) [48, 100]. In Cab Nets, C++ is used as

annotation language to specify actions and predicates, which are associated to transitions,

and data types which are associated to places, and indirectly to tokens. Actions perform

data transformations, removing and producing tokens when a transition fires. Predicates act

on top of the basic Petri net firing rules, defining the token selection policy to be used on

firings.

Tokens carry data values and a special time variable, called �������, which

represents the time when the token was produced [47]. Tokens are seen as ���	���
����

with associated values (that are carried by them) to variables (present in action

declarations). Tokens created on a transition firing have the same value on their chronos

variables. The firing policy guarantees a �	�	�
� ���������
������	�	��, i.e., the chronos

values assigned in any firing sequence are monotonically non-decreasing with respect to

the order in which they were produced. Figure A.1 shows a Cab net example where a

transition �� is allowed to fire if there are tokens in its input places and the value (����) of a

token from �1 is smaller than the value (����) of a token from ��. When �� fires, it

produces a token to place �� which corresponds to the addition of ���� and ����.

p1 p2

Tr

p3

predicate(tr)::p1.x < p2.y
action(tr):: p3.y = p1.x + p2.y

��������	
	������
����������	

S.V. Cavalcante
Appendix A: Cabernet and TER Nets

��

Cab nets have inherited the formal semantics of the time model present in TER

nets. So, besides the common analysis techniques that can be carried out over the

underlying pure Petri net, other formal techniques developed for proving temporal

properties can also be used.

������
���������

Since Cabernet does not offer any facilities for recording data generated during simulation,

the execution analysis of big complex systems becomes very difficult and tedious without

the possibility of using automated analysis techniques which could be carried out later.

Nevertheless, Cabernet is a customisable environment and so is able to be adapted

to specific user needs. In fact, Cabernet has a �����
�������� which permits the designer to

create tools using safe untimed Cab nets as an agent to glue together primitive operations

available in the system or even other tools already defined by the user.

Thus, a simulation recording tool was created using these primitives together with some

new primitives that were developed specially to this case in order to enable file creation

and handling. These new primitives were incorporated by the author of this dissertation

thanks to the Politecnico de Milano, which made the Cabernet source code available.

Nowadays, these new primitives are an integral part of the Cabernet environment as it is

distributed by the Politecnico de Milano. Figure A.2 shows the simulation recording tool

developed. The new added primitives are:
�������	
�(),
����������
�(), and

��	���	��(). Also, the primitive �	��() had some modifications. Details of each primitive can

be found in [112].

S.V. Cavalcante
Appendix A: Cabernet and TER Nets

��

��������	�	��������������������������

S.V. Cavalcante
Appendix A: Cabernet and TER Nets

��

����������

��
�����
���
����������
�
���

The figures below show the TER net equivalents to the extensions proposed in this

dissertation. The symbols � and � are used to represent execution time and action,

respectively. All extensions proposed appear on the left-hand side of the symbol “≡“, and

the equivalent TER net representation appear on the right-hand side.

S

T, A

≡T, A

P1 P1
t = 0

S ≡T, A

P1
T, A

P1t = 0

��������	
	�������� ��!�������"#��������$�����
���������
��	

S
T, A≡T, A

P1 P1

t = 0

t = 0

≡P t = P

�%�������������$�����
����������
��	� ��������%�&�������������������

��������	�	�����������
�������������������

S.V. Cavalcante
Appendix B: Petri Net Extension Semantics

'(

E
T, A≡T, A

P1 P1

≡

≡

��������)	�*�������+�������,���
����������
���
�����	

T, A

≡
ControlPlace

t = 0

T, A

InTrans

OutTrans

��������	�	��������� ��!�����	

���������	

��������

�#������
- �(�) is a set of segments whose completion time precede and include �’s

completion time and which execute within a period of time where it does not exist any

instant � when all processors are idle.

&���$- �% The first part comes from the definition of �(�) (Section 4.5).

����% In order to prove the second part it is necessary to prove that ∀ 	 than there is

no instant �, �’I ≤ � < �I, when all processors are idle. The proof is done using contradiction

with the following assumption:

�����
����- There is an instant � inside the given interval when all processors are

idle.

Using the eligibility conditions (Section 4.4.3), and since �’I ≤ � < �I, than it is clear

that Condition 1.a is true. So, either Condition 1.b, or 1.c, or 2 must be false, otherwise 	

would be eligible for execution, and the initial assumption would become false.

If Condition 2 is false, then there exist a segment 1 which satisfies Condition 1 and

makes Condition 2 be false for 	. But from the initial assumption, 1 is not executing either

and the same reasoning can be applied recursively. So, it would be necessary an infinite

number of segments with a false Condition 2 to keep one of these segments from

executing, which is impossible since the segment set is finite.

If Condition 1.b is false, i.e., ∃ | ⊗ 	 ∧ �J < � ∧ ¬ (�J ≤ �), than has started its

execution before � and has not finished yet. Since at instant �J all conditions were true for ,

then Condition 1 is true at time � ∈ (�J, �J) as well, since Condition 1.a is true and

Conditions 1.b and 1.c must be true, otherwise would not have started in the first place.

Hence, the only reason for not execute at time � is if Condition 2 is false for . Then again

the argument used for Condition 2 above can be used and so some segment is executing.

If Condition 1.c is false, i.e., ∃ 1 | 1 � 	 ∧ ¬ (�J1 ≤ �), and using the release

adjustment rule (Section 4.4.1) �’J1 ≤ �’I, than �’J1 ≤ � < �J1. This corresponds to the initial

S.V. Cavalcante
Appendix C: Theorems

'�

argument used for segment 	. Then again recursion, but this time applied over the whole

proof, can be used to show that an infinite number of segments is necessary.

Since all possibilities proved impossible, the initial assumption cannot be true.

����% From �(�) definition, ∀ 	 ∈ �(�), 	 ≠ �, ∃ ! ∈ �(�) | �K < �I, and from 		�� it is clear

that there is no time � ∈ (�I, �K) where all processors are idle. Applying recursively from �, it

follows that there is no time � ∈ (�I , �L) where all processors are idle, and the proof is

finished.

�#�������- If the schedule is not feasible then a feasible schedule can only be found if it is

possible to re-schedule some pair of segments in �(�) such that � is scheduled earlier.

&���$- It is obvious that since � is the latest segment the only way to improve the result is

to have � scheduled earlier. From Theorem , �(�) comprises all segments that execute

between min{ �’I | 	 ∈ �(�) }and �L.

To prove that re-scheduling segments that are not in �(�) do not improve �’s

schedule, it is necessary to notice that if 	 ∉ �(�) ⇒ ∀ �∈ �(�), �I ≤ �’J ∨ �I ≥ �L (from �(�)’s

definition). No segment can start executing before its release time. So, since �I ≤ �’J, no

 ∈ �(�) can be scheduled before �I. So, if 	 changes its execution order with , then 	 would

have to start executing in a time � ≥ �’J. The execution of 	 among segments in �(�) would

bring two possibilities:

1. 	 executes in a processor that was previously idle during that time. If 	 does not

change the scheduling of any other segment (e.g. through precedence or exclusion

relations), then nothing changes and no improvements were made. Otherwise, those

affected segments would be pushed to execute later, since they cannot use processor

time units previously used by 	, resulting in a worse schedule.

2. 	 uses processor time units which were used by segments in �(�), and again since

these segments cannot use processor time units previously used by 	, they would be

pushed to execute later and a worse schedule would result.

Now consider that �I ≥ �L. If 	 is brought to execute before �L, the contention for the

processor utilisation would increase which would bring no benefits to the schedulability.

����������

�
�
�
������������

An example of an automatically generated report produced by the partitioner tool is shown

here. The report below describes the partitioning process to which the example shown in

section 5.7 was submitted.

**
PARTITIONING RESULTS

**

**
TASKS INITIAL ATTRIBUTES

**

TASK ID: 1
Name: T0
Processor: sw
Implementation: SW and FIXED
Period : 200
Rel.Time: 0
WCET SW: 50
WCET HW: 50
Deadline: 151

TASK ID: 2
Name: T11
Processor: sw
Implementation: SW and NOT FIXED
Period : 200
Rel.Time: 1
WCET SW: 40
WCET HW: 20
Deadline: 51

TASK ID: 3
Name: T12
Processor: sw
Implementation: SW and NOT FIXED
Period : 200
Rel.Time: 40
WCET SW: 10
WCET HW: 10
Deadline: 91

TASK ID: 4
Name: T21
Processor: sw
Implementation: SW and NOT FIXED
Period : 200
Rel.Time: 60
WCET SW: 50
WCET HW: 10
Deadline: 140

S.V. Cavalcante
Appendix D: Partitioning Report

'�

TASK ID: 5
Name: T22
Processor: sw
Implementation: SW and NOT FIXED
Period : 200
Rel.Time: 0
WCET SW: 20
WCET HW: 10
Deadline: 140

TASK ID: 6
Name: T23
Processor: sw
Implementation: SW and NOT FIXED
Period : 200
Rel.Time: 90
WCET SW: 50
WCET HW: 30
Deadline: 140

EXCLUSION RELATIONS

(1, 2) (1, 3)
(2, 1) (2, 4)
(3, 1) (3, 4) (3, 6)
(4, 2) (4, 3)
(6, 3)

PRECEDENCE RELATIONS

(2, 3)
(4, 5)
(5, 6)

COMMUNICATION DATA: (task1, task2, num.Bytes)

**
COST FUNCTION WEIGHTS

**

weight 1 = 1
weight 2 = 1
weight 3 = 1
weight 4 = 1
weight 5 = 1

TASK CONSISTENCY CHECK RESULTS:

All tasks are consistent.

SCHEDULING PERIOD: 200

NUMBER OF SEGMENTS: 6

S.V. Cavalcante
Appendix D: Partitioning Report

''

**
PRE-PARTITIONING:

**

INDIVIDUAL TASK PARTITIONING:

PRECEDENCE ADJUSTMENT AND PARTITIONING BASED ON EXCLUSION:
New relation (seg/task): (2/3) -> (3/4)
New relation (seg/task): (2/3) -> (5/6)
New relation (seg/task): (1/2) -> (0/1)

CONSTRAINT ADJUSTMENT AND PARTITIONING BASED ON PRECEDENCE:

Partitioning List (seg/task) = (5/6) (4/5) (3/4) (2/3) (1/2)
Tasks Moved to Hw:

Task 4

PRECEDENCE ADJUSTMENT AND PARTITIONING BASED ON EXCLUSION:
New relation (seg/task): (2/3) -> (5/6)
New relation (seg/task): (1/2) -> (0/1)

CONSTRAINT ADJUSTMENT AND PARTITIONING BASED ON PRECEDENCE:
Constraint adjustments performed

PRECEDENCE ADJUSTMENT AND PARTITIONING BASED ON EXCLUSION:
New relation (seg/task): (2/3) -> (0/1)

CONSTRAINT ADJUSTMENT AND PARTITIONING BASED ON PRECEDENCE:
Constraint adjustments performed

PRECEDENCE ADJUSTMENT AND PARTITIONING BASED ON EXCLUSION:
No changes made

**
SYSTEM PARTITIONING

**

BRANCH AND BOUND SCHEDULING

EDF SCHEDULING OF NODE 0

CONSTRAINT ADJUSTMENT BASED ON PRECEDENCE:
No changes made

PRECEDENCE ADJUSTMENT BASED ON EXCLUSION:
No changes made

Lateness = 20
Lowerbound = 20

Last Late Segment/Task = 0/1

Partitioning Set (seg/task):
(0/1) (4/5) (5/6)

Lateness P.S. = 20

The scheduling is NOT FEASIBLE

The scheduling is OPTIMAL

S.V. Cavalcante
Appendix D: Partitioning Report

'�

SYSTEM PARTITIONING ITERATION No. 1

Partitioning Set from Node No. 0
Minimum time to be moved: 20
Tasks Moved to Hw:

Task 6

Total moved time: 50

BRANCH AND BOUND SCHEDULING

EDF SCHEDULING OF NODE 0

CONSTRAINT ADJUSTMENT BASED ON PRECEDENCE:
Constraint adjustments performed

PRECEDENCE ADJUSTMENT BASED ON EXCLUSION:
New relation (seg/task): (2/3) -> (5/6)
New relation (seg/task): (1/2) -> (0/1)

CONSTRAINT ADJUSTMENT BASED ON PRECEDENCE:
Constraint adjustments performed

PRECEDENCE ADJUSTMENT BASED ON EXCLUSION:
New relation (seg/task): (2/3) -> (0/1)

CONSTRAINT ADJUSTMENT BASED ON PRECEDENCE:
Constraint adjustments performed

PRECEDENCE ADJUSTMENT BASED ON EXCLUSION:
No changes made

Lateness = -10
Lowerbound = -10

The scheduling is FEASIBLE
The scheduling is OPTIMAL

**
SCHEDULING RESULT OF FEASIBLE NODE 0

**

Time: 0
Segment : The processor is IDLE
TASK ID: NONE
Processor: sw

Time: 0
Segment : The processor is IDLE
TASK ID: NONE
Processor: _hw1

Time: 0
Segment : The processor is IDLE
TASK ID: NONE
Processor: _hw2

Time: 1
Segment : 1
TASK ID: 2
Processor: sw

Time: 41
Segment : 2

S.V. Cavalcante
Appendix D: Partitioning Report

'�

TASK ID: 3
Processor: sw

Time: 51
Segment : 0
TASK ID: 1
Processor: sw

Time: 60
Segment : 3
TASK ID: 4
Processor: _hw1

Time: 70
Segment : The processor is IDLE
TASK ID: NONE
Processor: _hw1

Time: 70
Segment : 4
TASK ID: 5
Processor: sw

Time: 90
Segment : 0
TASK ID: 1
Processor: sw

Time: 90
Segment : 5
TASK ID: 6
Processor: _hw2

Time: 120
Segment : The processor is IDLE
TASK ID: NONE
Processor: _hw2

Time: 121
Segment : The processor is IDLE
TASK ID: NONE
Processor: sw

**
TASKS FINAL ATTRIBUTES

**
TASK ID: 1

Name: T0
Processor: sw
Implementation: SW and FIXED
Period : 200
Rel.Time: 0
WCET SW: 50
WCET HW: 50
Deadline: 151

TASK ID: 2
Name: T11
Processor: sw
Implementation: SW and NOT FIXED
Period : 200
Rel.Time: 1
WCET SW: 40
WCET HW: 20
Deadline: 51

S.V. Cavalcante
Appendix D: Partitioning Report

'�

TASK ID: 3
Name: T12
Processor: sw
Implementation: SW and NOT FIXED
Period : 200
Rel.Time: 40
WCET SW: 10
WCET HW: 10
Deadline: 91

TASK ID: 4
Name: T21
Processor: _hw1
Implementation: HW and FIXED
Period : 200
Rel.Time: 60
WCET SW: 50
WCET HW: 10
Deadline: 140

TASK ID: 5
Name: T22
Processor: sw
Implementation: SW and NOT FIXED
Period : 200
Rel.Time: 0
WCET SW: 20
WCET HW: 10
Deadline: 140

TASK ID: 6
Name: T23
Processor: _hw2
Implementation: HW and FIXED
Period : 200
Rel.Time: 90
WCET SW: 50
WCET HW: 30
Deadline: 140

