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Abstract

Minimum Interference Routing algorithms are designed to reduce rejections of future
requests for the establishment of Label Switched Paths (LSPs) but make no assump-
tion about specific patterns of arrival request. This paper introduces a novel mini-
mum interference routing algorithm, Light Minimum Interference Routing (LMIR),
which is based on a new approach to the identification of critical links. This ap-
proach reduces the computational complexity involved in finding a path for the
establishment of an LSP. The LMIR is shown to have the same precision as existing
algorithms but with less computational complexity.
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1 Introduction

In spite of the increase in Internet link capacity, congestion is still common.
One of the main reasons for this is an unbalanced use of resources, and Traffic
Engineering is often employed to balance this use by mapping flows onto
network links. MultiProtocol Label Switching (MPLS) [1] is of paramount
importance to Traffic Engineering [2,3], since it promotes path establishment,
thus guaranteeing the Quality of Service (QoS) required by networks flows [4].

The use of traditional Internet routing algorithms based on the shortest path
in MPLS networks leads to a rapid saturation of network links. As a conse-
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quence, new alternative algorithms, among them minimum interference rout-
ing algorithms, have been proposed to promote a more balanced utilization
of resources. The criterion for path selection, adopted by these algorithms,
considers those paths which will result in the least impact on the rejection
of future requests. However, such a criterion, with multiple independent QoS
requirements, leads to NP-complete problems [5–7]. As a consequence, various
heuristic algorithms have been proposed to deal with this criterion [8–13].

Most minimum interference algorithms are based on the use of the maximum
flow to identify critical links, since these links, which belong to the minimum
cut set of a pair of nodes, are what is responsible for a reduction in the maxi-
mum flow between that pair of nodes. In such algorithms, a max-flow algorithm
is typically executed for all ingress/egress node pairs of a network domain for
each LSP establishment request, although this increases the computational
complexity of these algorithms.

This paper introduces a new heuristic, the Light Minimum Interference Rout-
ing (LMIR) algorithm [14], which guarantees minimum interference, but with-
out the need for the execution of repeated maxflow algorithms. Instead, this
algorithm uses a modified version of Dijkstra’s algorithm, which is less compu-
tationally complex than maxflow algorithms, while producing similar results.
The LMIR algorithm is also independent of the pattern of arrival of LSP
establishment requests.

The rest of this paper is structured as follows. Section 2 introduces the defini-
tion of the minimum interference routing problem and describes existing algo-
rithms. Section 3 introduces the Light Minimum Interference Routing (LMIR)
algorithm. Section 4 evaluates the performance of the algorithm proposed via
simulations. Finally, Section 5 presents the conclusions.

2 Minimum Interference Routing Algorithms

Prior to the presentation of the minimum interference problem itself, certain
relationships must be defined. Table 1 summarizes the mathematical symbols
used in the paper.

Let the graph G = (V, E) represent a network, where V (G) is the set of
vertices (or nodes) and E(G) the set of edges (or links). The flow, f(u, v), is
the amount of data transmitted between nodes u and v through a link. The
capacity of a link connecting a pair of nodes, c(u, v), is the maximum amount
of flow that can pass through this link. The residual capacity of a link, cr(u, v),
is the amount of data that, when added to the current flow in a link, results in
the maximum flow allowed in that link. The graph Gr(V, Er), composed of the
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nodes of the graph G and the set of links Er with non-null residual capacity,
constitutes a residual graph.

The capacity of a path is the flow that can be accommodated by the links
composing that path. Thus, the least capacity link of a path determines the
capacity of the entire path. Moreover, the link of least capacity between the
pair of nodes s and d belongs to the path of least capacity between these two
nodes. This path of least capacity is represented by f i

(s,d) with f 0
(s,d) being the

actual path of least capacity, f 1
(s,d) being that of the next smallest capacity

and so on.

The path with the ith smallest capacity is denoted by f i
(s,d), i.e., f 0

(s,d) is the

least capacity path between s− d, f 1
(s,d) is the path with the second smallest

capacity and so on. The maximum flow (θ(s,d)) is the largest amount of flow
that can go through any path connecting source and destination nodes in G.

The problem to be solved by minimum interference routing algorithms is the
choice of a path for the establishment of an LSP which minimizes the reduc-
tion in maximum flow of other source-destination (S-D) pairs. The aim is to
increase the number of paths which will be available to accommodate future
requests for LSP establishment. The minimum interference routing problem
can be stated as follow:

“Find a path for the establishment of an LSP from a source node to a destina-
tion node such that each link along the path has a residual capacity value of at
least the requested amount of bandwidth. The chosen path should minimize the
reduction of the maximum network flow, with the condition that flow splitting
is prohibited”.

Four major algorithms have been proposed for dealing with this minimum
interference routing and will be presented in this section: the Minimum Inter-
ference Routing Algorithm (MIRA), Wang, Su and Chen’s algorithm (WSC),
the Residual Network and Link Capacity (RNLC) algorithm and Kumar, Kuri,
and Kumar’s algorithm.

2.1 The Minimum Interference Routing Algorithm

The maximum flow of an S-D pair is reduced whenever the available band-
width of a link belonging to the minimum cut set is reduced. The Minimum
Interference Routing Algorithm (MIRA) [15] avoids links belonging to the
mincut set of other S-D pairs when establishing an LSP between a pair of
nodes. It also assumes that the network topology and the residual bandwidth
of the links are known at the time of LSP establishment.
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Table 1
Table of used symbols

Symbol Meaning

G Graph representing the network.

V(G) Set of vertices of G.

E(G) Set of links of G.

l = (u, v) Link connecting u to v.

c(u, v) Capacity of the link (u, v), i.e., the maximum flow

that can pass through the link (u, v).

f(u, v) Flow transmitted through the link (u, v).

cr(u, v) Residual capacity of the link (u, v), i.e., the difference between the capacity of the link (u, v)

and the amount of flow being transmitted over it.

P Set of source-destination pairs of G.

θ(s,d) Maximum flow between s and d, i.e., maximum amount of flow that can be

transmitted from a source node s to a destination node d.

f0
(s,d) Amount of flow along the least capacity path in G between the source-destination pair (s, d).

f i
(s,d) Amount of flow along the i-th least capacity path between the source-destination pair (s, d).

w(u, v) Weight of the link (u, v).

r(s, d, bw) Request of bw bandwidth units from s to d.

αsd Weight of the source-destination pair (s, d) .

Csd Set of critical links (Specific to the MIRA algorithm).

f s′d′

(u,v) The contribution of the link (u, v) to the maximum flow of the source-destination pair (s ′, d′)

(Specific to the WSC algorithm).

Nc
∑

(u,v)∈Er
cr(u, v) represents the sum of all residual capacities in G

β Determines whether or not the algorithm for the

shortest path should be used (Specific to the RNLC algorithm).

K(θ) Upper bound for the number of least capacity paths to

be identified by the LMIR algorithm.

λ(s, d) Number of internally disjoint paths between s and d, i.e. ,

the number of paths which have no link, except the initial and final ones, in common.

dg(v) Degree of a vertex v ,i.e, number of links incident to v in G.

κ′(G) Minimum size of a disconnecting set of G,

i.e, the smallest number of links which disconnect G by their removal.

C(S,D) Capacity of a cut S −D|s ∈ S ∧ d ∈ D,

representing the sum of all edges belonging to that cut.
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MIRA consists of three steps, the first involving the computation of the maxi-
mum flow between all S-D pairs, and the second involving the identification of
critical links and the assignment of weights representing priorities in relation
to other S-D pairs. These weights are computed according to the following
equation:

w(u, v) =
∑

(s,d)|(u,v)∈Csd

αsd, ∀(u, v) ∈ E, (1)

The third step of the algorithm involves the execution of the Dijkstra algorithm
using w(u, v) as weights.

Kodialam and Lakshman [15] have shown that the number of rejections re-
sulting from the use of MIRA is lower than when such minimum interference
criteria are not used. The improvement is due mainly to the avoidance of
links which would reduce the maximum flow of other pairs as this limits the
rejection of future requests. Evidence of the impact of a reduction in maxi-
mum flow on blocking probability was presented in their seminal paper [15],
which showed that their algorithm produces lower blocking probability than
do algorithms which do not take interference into account.

2.2 The Wang, Su and Chen Algorithm

The algorithm proposed by Wang, Su and Chen (WSC) [16] is based on MIRA
but adopts a different criterion for the identification of critical links in the
computation of weights.

According to Wang et al. [16], the major drawback of MIRA is that critical
link identification focuses on a single S-D pair and does not detect the critical
nature of a link for a group of pairs. Such a drawback can potentially lead
to the denial of various requests, especially in networks with concentrating
vertices.

In Figure 1, a graph with concentrating vertices is presented. Suppose that
n + 1 requests arrive to the pairs (S0, D0), (S1, D1),..., (Sn, Dn). The first
request demands an LSP with n bandwidth units, while all the rest require
LSPs with a single bandwidth unit.

When the first request arrives, MIRA computes the maximum flow and iden-
tifies the critical links for all other source-destination pairs, i.e., (S1, D1),...,
(Sn, Dn). The critical links after the arrival of this first request and, therefore,
the only ones with w(u, v) 6= 0 will be (S1, C),..., (Sn, C), since none of the
other links are in the minimum cut set of any source-destination pair. Thus,
the weights for all the links of the four available paths connecting S0 to D0

will be the same. The chosen path would be the one passing through one of
the black vertices (C or D in the figure), since these involve the fewest hops.
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Fig. 1. Graph with concentrating vertices.

Once an LSP using this path is established, its residual link capacities are
updated to 0, and no subsequent request will be accepted.

In order to avoid the use of paths containing concentrating vertices, Wang et
al., proposed an algorithm with a weight function that takes into consideration
the contribution of a link to the maximum flow. There are two cases to be
considered. In the first, the link contribution to the maximum flow is less
than its residual capacity, which means that the link does not belong to the
minimum cut set and will, therefore, receive smaller weighting. In the second
case, the link contribution is equal to its maxflow contribution. In this case,
the link belongs to the min cut set. Higher weighting are assigned to these
links.

In their algorithm, link weights are computed as

w(u, v) =
∑

(s′,d′)∈P

f s′d′

(u,v)

θ(s′,d′) · cr(u, v)
, (u, v) ∈ E, (2)

Links with residual capacities smaller than the requested bandwidth are elim-
inated and the Dijkstra algorithm is executed using weights (w(u, v)) as link
costs [16]. Results derived via simulation indicate that the algorithm of Wang
et al. produces slightly fewer rejections than does MIRA, although it avoids
denials resulting from both concentrating and distributing vertices.

The crucial step in relation to the efficiency of these algorithms is the use
of maxflow algorithms for the identification of critical links. MIRA [15] uses
maximum flow in conjunction with the minimum cut set to identify critical
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links, whereas the WSC algorithm [16] detects critical links from their contri-
bution to the maximum flow. Executing such maxflow algorithms, however,
is prohibitively expensive for large networks. The Edmonds-Karp algorithm,
which is the most well known implementation of the Ford-Fulkerson maxflow
computation method [17], uses a breadth search to find the augmenting paths.
It has a complexity of O(V ·E2). For networks such as the Internet, which has
an average node degree of about 3.5 [18], the number of links is significantly
greater than that of vertices, and the Edmonds-Karp algorithm performs very
inefficiently in such dense graphs.

Goldberg’s algorithm, which is the fastest known maxflow algorithm, still in-
volves a prohibitively high complexity for problems involving large networks.
It has a complexity of O(min(V 2/3, E1/2) ·E · log(V 2/E) · log(U)) for networks
with |V | vertices and |E| links, with capacities in the interval [1,U] [19]. Other
approaches that do not use maxflow computation are necessary to reduce the
complexity of minimum interference algorithms.

2.3 The Residual Network and Link Capacity Algorithm

Hendling et al. [20] proposed an algorithm for dynamic routing of LSP’s with
a guaranteed bandwidth. This Residual Network and Link Capacity (RNLC)
algorithm applies a penalty function given by:

w(u, v) =
Nc

cr(u, v)
+ β, (3)

The value of β determines whether or not the algorithm for the shortest path
should be used. If β is high, the algorithm implements shortest path routing;
otherwise, the link weight variance is increased and the residual capacities are
reflected in link weight values.

If a network is underloaded, the links with small residual capacities are more
highly penalized than those with larger capacities. In this case, paths with
greater residual capacities are chosen. When the links have approximately the
same weights, however, the algorithm behaves like a shortest path algorithm.
RNLC presents a low computational complexity, but it fails to take into con-
sideration interference in the maximum flow of the other S-D pairs.

2.4 Kumar, Kuri and Kumar’s Algorithm

The two-step algorithm proposed by Kumar, Kuri, and Kumar [21] guarantees
the requested bandwidth. The first step, executed at any time the network
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topology changes, computes all the paths between source-destination pairs
and, for each pair, identifies a set of links, weighted to reflect sharing with
other source-destination pairs, for use in flow routing with higher weights
assigned to the shortest paths. The proposed weight function is:

w(u, v) =
∑

sd|(u,v)∈Ssd

αsd, (4)

where Ssd represents the set of links between s and d.

The second step is executed upon the arrival of a new request. Link weights
are then updated according to the available residual capacity of each link. The
proposed updating equation is

w(u, v) =
w(u, v)− I(u,v)∈Ssd

αsd

cr(u, v)
, (5)

where I can assume values of either 0 or 1. If the link (u, v) is in the link set
of Ssd, the value is 1; otherwise it is 0. Dijkstra’s algorithm is then executed.

Although the Kumar, Kuri and Kumar algorithm accepts a relatively large
number of LSPs, the execution time can be prohibitively long since all paths
between S-D pairs must be computed with each topology change. The proce-
dure is particularly problematic in dense networks involving frequent topology
changes.

3 Light Minimum Interference Routing Algorithm

In this section, the Light Minimum Interference Routing (LMIR) algorithm
is presented. The main advantage of this algorithm is that its computational
complexity is lower than that of other existing minimum interference algo-
rithms. This reduced computational complexity is achieved by avoiding nu-
merous executions of maxflow algorithms for the identification of critical links.

The central idea of the LMIR algorithm is the selection of links for the estab-
lishment of LSPs which exert the least impact on the maximum flow between
other S-D pairs by identifying the links with the smallest available capacity as
critical links. Such links are close to saturation and are likely to be included
in any minimum cut set of the network. To identify critical links, the LMIR
algorithm identifies the paths of least capacity, since all critical links belong
to those paths, although a single least-capacity path may involve more than
one critical link.

The first step of the LMIR algorithm involves the identification of K least
capacity paths with the use of the LowestCapacities algorithm, a variation of
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the Dijkstra algorithm. This LowestCapacities algorithm compares the flow at
a node v with the smaller of the two values represented by the possible flow
of the link (u, v) and the actual flow at the node u. The algorithm stores the
information about the distance between a source node and any other node as
a function of the number of hops between these nodes (di[]), as well as the
minimum capacity of all paths between that source node and all other nodes
(F []), and the precedence vector involved in reaching a specific destination
(π[]).

Initially, all non-source nodes are attributed an infinitely large value for both
flow and distance, whereas these values are considered to be zero at the source
node; the node prior to the source node is not considered (Steps 2 to 4).

The first adjacent node v is then analyzed. The flow value at the node v (F [v])
is established to be the lower of the two values representing either 1) the cur-
rent value of F [s] or 2) the flow value of the link (Step 11). The distance
(number of hops) is then increased by one (Step 12), with s becoming the
new predecessor (Step 13). Additional adjacent nodes are queued according
to increasing distance values for future adjacency analysis (Step 14). The al-
gorithm progresses as nodes are removed from the queue using the procedure
extract min(Q) and their adjacent nodes processed.

For each step of the LowestCapacities algorithm, the values associated with
the adjacent nodes of any specific source node are updated This updating
occurs whenever the value of the flow which begins at the source node (s) and
ends at the adjacent node (v) and has passed through the target node (u) is
either smaller than the value of F [v] or is the same, but located at distance
at least one hop shorter than that between the source and the destination
distance, di[u] < di[v] − 1. Removing the links with the least capacity from
the network makes it possible to identify other paths with critical links so that
paths with ever-increasing capacities will be identified.

Once the paths with least capacity are identified, weights are assigned to their
edges according to the following formula(Step 2):

w(u, v) =

K−1
∑

∀(s,d)∈P :i=0

f i
(s,d)

cr(u, v)
,∀(u, v) ∈ f i

(s,d), (6)

The weights assigned to the links of the paths found in Step 1 are thus inversely
proportional to the residual capacity. The next step (Step 3) involves the
removal of links with a residual capacity smaller than the required level (Step
3). Finally, the Dijkstra algorithm is executed using w(u, v) as the weight to
select non-a-less critical links (Step 4). The LMIR algorithm is presented as
Algorithm 2.
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Algorithm 1 LowestCapacities

1: for all (v ∈ |V |) do

2: F [v], di[v] =∞
3: π[v] = NIL
4: F[s], di[s] = 0.0
5: Q← s
6: while (Q) do

7: u← extract min(Q)
8: for all v ∈ ADJ [u] do

9: γ = min[c(u, v), F [u]]
10: if [(γ < F [v]) ∨ ((γ == F [v]) ∧ (di[u] < di[v]))] then

11: F [v] = γ
12: di[v] = di[u] + 1
13: π[v] = u
14: Q← Q

⋃

v

Algorithm 2 LMIR

INPUT
A residual graph Gr = (V,Er) and r(s, d, bw) a request for bw bandwidth units
between pair (s, d).
OUTPUT

A path (route) with bw bandwidth units connecting s to d.
LMIR

1: Find K least capacity paths ∀(s, d) ∈ P (applying LowestCapacities algorithm).

2: Compute weights according to Equation (6) for all links belonging to the paths
identified.

3: Eliminate all links with residual capacity smaller than bw.
4: Execute the Dijkstra algorithm using w(u, v) as the weights.
5: Create an LSP connecting s to d and update the capacity of the links.

Both the LowestCapacities algorithm and maxflow algorithms need to store in
memory the representation of a graph either for computation of the shortest
path or for the computation of the maximum flow. Thus, both algorithms
require O(V 2) storage space, where V is the number of nodes of the graph [22].

The computational complexity of the LMIR algorithm can be analyzed as fol-
lows. Step 6 of the LowestCapacities algorithm is executed |V | times, since all
vertices are visited. Step 8 is also executed |V |, times resulting in a complexity
of O(V 2). The function extract min(Q) involves a complexity of O(Er) in the
worst possible case, which would happen when the queue of vertices with non-
visited adjacent vertices is implemented as a linked list. Thus, the complexity
of the LowestCapacities algorithm is, O(V 2 + Er) = O(V 2) [17].

Since each pair requires K executions of the LowestCapacities algorithm, the
complexity of the LMIR algorithm for identifying critical links is O(|P |·K ·V 2)
= O(V 2), whereas in other existing minimum interference algorithms the com-
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Table 2
Algorithm Complexity

Algorithm Critical Link Weight Dijkstra Algorithm Total

Detection computation

LMIR O(V 2) O(Er) O(V 2) O(V 2 + Er)

MIRA O(MaxF low) O(Er) O(V 2) O(MaxFLow + V 2 + Er)

WSC O(MaxF low) O(Er) O(V 2) O(MaxFLow + V 2 + Er)

plexity involves the performance of a maxflow algorithm which has a complex-
ity of O(|P | ·min(V 2/3, E1/2

r ) ·Er · log(V 2/Er) · log(U)) = O(min(V 2/3, E1/2
r ) ·

Er · log(V 2/Er) · log(U)). The complexity of weight computation is O(Er) for
LMIR, WSC and MIRA since all edges of a graph may be involved. Since
the complexity of the Dijkstra algorithm is O(V 2), the total complexity of
the LMIR algorithm is O(2 · V 2 + Er) = O(V 2 + Er). while the complexity of
WSC and MIRA is O(min(V 2/3, E1/2

r ) ·Er · log(V 2/Er) · log(U)+Er). Table 2 1

summarizes the computational complexity of the three algorithms.

As mentioned above, Steps 2 to 5 of the LMIR algorithm are common to WSC
and MIRA. It is quite clear from Table 2 that the great advantage of LMIR is to
reduce the complexity of the identification of critical links procedure which is
the most costly step in all minimum interference routing algorithms. Moreover,
the following theorem establishes a relationship between the complexity of
LMIR and of the other algorithms:

Theorem 1 The computational complexity of the LMIR algorithm is upper-
bounded by the complexity of the MIRA and WSC algorithms.

Proof See Appendix A.

The number of least capacity paths considered by the LMIR algorithm has
an impacts on its performance. Although it is not possible to determine an
optimum value for the number of least capacity paths to be identified, an
upper bound for that value can be established (Theorem 2).

Theorem 2 An upper bound, K(θ), for the number of least capacity paths to
be identified by the LMIR algorithm is given by:

K(θ) = dg(s), if θ(s,d) =
∑

∀i|(s,i)∈E(G)

c(s, i), (7)

1 In this table, O(MaxF low) = O(min(V 2/3, E1/2) · E · log(V 2/E) · log(U)) which
gives the complexity of the fastest known maxflow algorithm
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or

K(θ) = dg(d), if θ(s,d) =
∑

∀i|(i,d)∈E(G)

c(i, d), (8)

or

K(θ) =









θ(s,d)

f 0
(s,d)









. (9)

where: f 0
(s,d) is the flow along the path of least capacity between s and d, θ(s,d)

is the maximum flow between them and dg(s) and dg(d) represent the degree
of nodes s and d, respectively.

Proof

See Appendix B.

4 Comparison of LMIR and other existing minimum interference
algorithms

Simulation experiments were carried out to compare the performance of the
LMIR algorithm with that of both the MIRA and WSC algorithms. Although
the Minimum Hop Algorithm (MHA) and the Widest Shortest Path algorithm
(WSP) do not take interference into account, they were also included in the
simulation experiments so that the benefits of a non-interference approach
could be assessed. MHA is practically the same as the Dijkstra algorithm
while the WSP algorithm identifies the path with the least number of links
and if there are two or more of the links, the algorithm picks that with the
maximum available capacity.

The reduction in maximum flow, the blocking probability for requests and the
degree of interference were used as performance indicators for comparison. A
reduction in maximum flow provides a measure of the reduction in total avail-
able bandwidth 2 given by the total maxflow of all pair of nodes. Moreover,
the degree of interference indicates the maxflow reduction of a specific pair.

The same seeds are used for the random number generators of all the algo-
rithms used. Intervals with 95% of confidence were derived using the replica-
tion method.

Both, large and small networks were considered in this study. The small net-
work with 15 vertices used in both [15] and [16] was utilized so that a com-

2 This definition of total available bandwidth is used for comparison with [15, 16].
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parison could be made with previously published results, while the topology
for the large networks was randomly generated.

Simulations were conducted using networks with 30, 40, 50, 100 and 150 ver-
tices. For these large networks, both sparse and dense, only results furnished
by the minimum interference algorithms are shown. Networks are modeled as
non-oriented graphs in which each link has a non-negative capacity. For these
simulations, network topologies were created using Waxman’s method [18,23]
in which the probability of the existence of a link between u and v is given by
the following

P (u, v) = αe−d/(βL),

where 0 < α, β ≤ 1 are model parameters, d is the Euclidean distance between
u and v, and L is the maximum Euclidean distance between any two vertices
of the graph. Links are bidirectional, and an equal number of choices for each
bandwidth size (1,200 or 4,800) was made. For all networks, the number of
least capacity paths to be searched by the LMIR algorithm was 5.

LSPs are assumed to be long-lived so that once one is accepted, resources
are held until the end of the experiments. Either 8, 000 (15-vertex network)
or 30, 000 (30,40 and 50-vertex networks) requests were generated among the
source-destination pairs, with the bandwidth requests uniformly distributed
in the interval [1, 4]. In large networks, scenarios with low (between 0 and
10, 000), intermediate (between 10, 000 and 20, 000) and high (between 20, 000
and 30, 000) loads were considered.

4.1 15-Vertex Network

The topology used in the 15-vertex network experiments, as well as the source-
destination pairs, is shown in Figure 2. The lighter bi-directional links repre-
sent a capacity of 1,200 bandwidth units each, while the darker ones have
a capacity of 4,800 bandwidth units, corresponding to transmission rates of
OC-12 and OC-48, respectively.

Figure 3 shows the reduction in total bandwidth available as a function of the
number of requests. It can be seen that the minimum interference routing al-
gorithms produce lower reductions than do the WSP and the MHA algrithms,
since the latter do not consider how critical a link is when choosing a path.

Up to 3,000 requests, the results of the LMIR and MIRA algorithms are equiv-
alent, both resulting in less bandwidth reduction than found for the WSC
algorithm, but between 3,000 and 5,000 requests, the decrease in reduction is
greater for the LMIR algorithm.

The advantage of the non-interference approach is clear from the large re-
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Fig. 2. Topology used for simulations of small networks.

duction resulting from the application of the WSP and MHA algorithms. This
reduction is a direct consequence of the unnecessary allocation of critical links,
which greatly increases the impact on the maximum flow.
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Fig. 3. Total bandwidth for all network source-destination pairs (15-vertex network).

Figure 4 shows the number of requests rejected as a function of the number of
requests arriving. The WSP algorithm starts rejecting connections only after
the arrival of 5,000 requests. However, since it does not take link criticality
into consideration, it may choose paths that include critical links of various
pairs, thus leading to saturation. The LMIR and MIRA algorithms result in
a low number of rejections, thus proving the benefits of the non-interference
approach.
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The two previous examples have illustrated the performances of different al-
gorithms in relation to the total flow in a small network. Another interesting
question is how these algorithms influence the flow of an individual S-D pair.
To shed some light on this question, the pair (S1, D1) was chosen as the object
of this analysis. Figure 5 shows the reduction in maximum flow of this source-
destination pair as a function of the other S-D pairs. It is clear that the use of
the MHA and WSP algorithms leads to a reduction in maximum flow as soon
as the first request arrives. When using the MHA algorithm network satura-
tion is reached immediately after the arrival of the 2, 000th request and from
then on, the path is saturated. The WSP algorithm takes a somewhat longer
period to reach saturation, since a path approaching saturation is passed over
from another with a higher capacity.

The minimum interference algorithms do not provide any interference under
low-load conditions (up to the arrival of 2,500 requests), but both the LMIR
and MIRA algorithms produce less interference than the WSC algorithm for as
many as 5, 000 requests, although in the long run the use of the WSC algorithm
results in less reduction in maximum flow for the pair than do the LMIR and
MIRA algorithms. These both produce similar interference up to the 5, 000th

request since they identify the same set of critical links, but after the arrival
of 5,000 requests the MIRA algorithm identifies fewer paths not interfering
with the maximum flow of pair (S1, D1) than does the LMIR algorithm.

The choice of the number of least capacity paths to be identified in Step 2 is
the key to the performance of the LMIR algorithm, since the selection of a
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value for K which differs significantly from the number of links in the minimum
cut set may lead to the misidentification of critical links and the attribution
of high weight to them. Figure 6 shows the number of requests rejected as
a function of the choice of K, which reveals that the minimum number of
rejection is reached for K = 5. Increasing the value of K does not lead to any
improvement; moreover, it makes the identification of critical links difficult.
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Fig. 6. Influence of the parameter K in the number of rejected connections.
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In order to evaluate the execution time, the algorithms were tested for 8,000
requests measured with the Linux time command in an Intel Celeron machine
with a 1.2 GHz clock, and 256 MB of RAM. Table 3 shows the values measured.

Table 3
Execution times for 8,000 requests.

WSC MIRA LMIR LMIR LMIR LMIR LMIR LMIR

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

Time 7.23s 7.24s 5.017s 5.67s 6.54s 6.94s 7.01s 7.14s

Both the WSP and MHA algorithms require execution times of approximately
4 seconds. Although these are the fastest results, the algorithms are not satis-
factory because they lead to an excessive number of rejections. As expected,
the time required for the LMIR algorithm is less than that for both the WSC
and MIRA algorithms, although the numerical results produced are the same
for all three. Actually, there is a trade off between precision and execution
time involving the number of least capacity paths chosen. The lower the value
of K is, the faster the execution time. However, the results tend to differ sig-
nificantly from the optimum. Selecting a larger number of least capacity paths
than the optimum only increases execution time.

4.2 Dense 30-vertex networks

Figure 7 shows the maximum flow reduction for the selected source-destination
pairs for dense 30-vertex networks, with all three algorithms evaluated per-
forming at a similar level. This performance worsens under high loads, how-
ever, since links belonging to the minimum cut set may be used to establish
LSPs. With high loads, 70% of the requests are rejected (Figure 8). Both LMIR
and MIRA algorithms block roughly the same number of requests, fewer than
those blocked by the WSC algorithm. Only towards the end of the simulation
does the LMIR algorithm produce slightly lower blocking probabilities than
does the MIRA algorithm.

Under high loads, only a small number of paths have enough capacity to be
available for allocation. The difference in the performance of the algorithms
can be attributed to the way they identify critical links, which leads to different
approaches to saturation.
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4.3 Sparse 30-vertex networks

Figure 9 illustrates the maximum flow reduction between source-destination
pairs for sparse networks with 30 vertices. The behavior of the three algorithms
(WSC, MIRA, and LMIR) is very similar whatever the load condition.
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This happens because of the reduced number of paths existing for each source-
destination pair, as this obviously reduces the number of alternative paths for
each algorithm. Moreover, the blocking probability values (Figure 10) become
almost indistinguishable under high loads. However, under low and medium
loads, the LMIR algorithm produces blocking probabilities which are 0.17 and
0.1 lower than those produced by the WSC and MIRA algorithms, respectively.

19



4.4 Dense 50-vertex networks

The dense 50-vertex networks used here have 544 links which implies a large
number of paths to choose from. As a consequence, saturation was not ob-
served in the simulation experiments. To reach saturation in these networks,
all of the links were assigned a capacity of 1,200 bandwidth units.

The behavior of the WSC, MIRA, and LMIR algorithms was found to be quite
similar for up to 20,000 requests (Figure 11). For medium loads the LMIR
algorithm produced the lowest probability of blocking (Figure 12), whereas
for light loads the probability of blocking was null for all three algorithms,
and for high loads their performance were almost indistinguishable.
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Fig. 11. Total bandwidth (dense 50-vertex networks).

The number of rejections in these dense 50-vertex networks is substantially
lower than in the sparse networks or those with a smaller number of available
links, due to the large number of paths available to establish LSPs.

4.5 Sparse 50-vertex networks

Sparse networks with 50 vertices are subject to a slower reduction in the
maximum flow with the use of the LMIR algorithm than of the WSC and
MIRA algorithms (Figure 13). With sparse 50-vertex networks, saturation is
reached rapidly due to the saturation of critical links. This rapid saturation
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means that the maximum flow reduction is more intense in sparse than in
dense networks with the same number of nodes.

The use of links belonging to the minimum cut set implies the absence of alter-
native paths and consequently leads to a high number of rejections (Figure 14).
Nonetheless, the choice of paths pursued by the LMIR algorithm produces the
lowest number of rejections of requests, whereas the WSC algorithm produces
the highest number.

Figure 14 shows the probability of blocking in sparse networks with 50 ver-
tices. The critical links are used intensively due to the lack of alternative
paths, which leads to a high number of request rejections. The lowest blocking
probability is produced by the LMIR algorithm.

4.6 100-vertex networks

Figure 15 shows the reduction in maximum flow for networks with 100 ver-
tices and 1150 links, with the three algorithms producing the same bandwidth
reduction.

Figure 16 displays the blocking probability as a function of the number of
arrivals. LMIR results in the lowest blocking probability with a difference of
10% in some cases.
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4.7 150-vertex networks

Figure 17 shows the maximum flow reduction for networks with 150 vertices
and 2484 links. As with other netwrok sizes, the reduction of the maxflow
is about the same for the three algoritms. In this case, and for the interval
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Fig. 16. Blocking Probability (100-vertex networks).

of 2, 000 to 2, 500 arrivals, LMIR showed a slightly lower reduction than did
MIRA and WSC algorithms.

Figure 18 plots the blocking probability, with the use of LMIR leading to
slightly lower blocking probability for requests in excess of 3, 000.
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The relative execution time for the minimum interference algorithms investi-
gated here was determined and is shown in Table 4. The highest value (pro-
duced by the MIRA and WSC algorithms) is used as a reference value. Neg-
ative values in this table mean that the execution time was less than this
reference value. These results show that the LMIR algorithm is the fastest,
with reductions of up to 42% when five least capacity paths are involved,
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Table 4
Relative execution time for individual connections

150 100 50 (D) 50 (E) 40 (D) 40 (E) 30 (D) 30 (E)

Reference 4.1×10−2 1.5×10−1 6.8×10−3 5.7×10−3 4.8×10−3 5.7×10−3 4.1×10−3 6.5×10−3

Value

MIRA -1% 0.00 0.00 -1% -1% 0.00 0.00 0.00

WSC 0.0 -7.2% -2% 0.0 0.00 0% -2% -20%

MHA -86% -85% -76% -79% -82% -85% -84% -88%

WSP -79% -78% -68% -69% -75% -77% -77% -80%

LMIR K =5 -42.7% -33.7% -39% -17% -13% -36% -2% -28%

LMIR K =6 -36.4% -25.7% -30% -12% -5% -23% +1% -22%

LMIR K =7 -31.7% -18.8% -28% -5% +7% -18% +6% -19%

LMIR K =8 -27.2% -9.1% -27% -3% +9% +1% +11% -11%

LMIR K =9 -18.3% -1.0% -10% 0% +22% +6% +20% -4%

LMIR K =10 -4.2% +4.5% -2% +6% +24% +6% +29% +2%

although this performance deteriorates for a larger number of paths. For all
simulations, the most efficient was five path as this resulted in the fastest
execution time while producing blocking probability values similar to those
obtained using the MIRA and WSC algorithms.

5 Conclusions

This paper has presented a new minimum interference routing algorithm which
does not use maxflow algorithms for critical link identification. This LMIR
algorithm uses a modified Dijkstra algorithm to identify the paths with the
least capacity, and these paths are then used to identify the critical links.
Weights are then assigned to the links of these paths, and the shortest path is
identified. The number of critical paths to be identified when using the LMIR
algorithm has an impact on its performance with the best results in simulation
experiments obtained when this is limited to five.

The results obtained using the LMIR algorithm are similar to those obtained
with the MIRA and WSC algorithms. Although, for large dense networks,
it produces the lowest probability of blocking, as well as minimal reductions
in maximum flow. Furthermore, the LMIR algorithm involves some 42% less
computational time than do the MIRA and WSC algorithms. In general, this
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novel algorithm thus seems to be the best candidate for adoption in on-line
procedures for the establishment of LSP’s in MPLS networks.

As future work, the use of maximum flow trees [24,25] should be investigated
to reduce the computational complexity of minimum interference routing al-
gorithms.
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A Theorem 1

This appendix furnishes proofs for the theorems presented in the paper.

Theorem 1 The computational complexity of the LMIR algorithm is upper
bounded by the complexity of the MIRA algorithm.

Proof

Since Steps 2 through 5 of the LMIR algorithm (see Algorithm 2) are the same
as those executed by the MIRA and WSC algorithms, and since the complexity
of these steps is a function of the procedure used to identify the critical links,
it is sufficient to show that the complexity of the LowestCapacities algorithm
is less than that of Goldberg’s algorithm, the least complex maxflow algorithm
known.

The proof is carried out for both sparse and dense graphs. For dense graphs
it is assumed that |Er| = |V |

2. Goldberg’s algorithm has the following com-
plexity:

O((V 2/3) · V 2 · log(V 2/V 2) · log(U)),

while the LowestCapacities algorithm has the complexity of O(V 2). Assuming
that some of the terms involved in log(V 2/V 2) have been omitted (since the
complexity cannot be zero), and given the fact that log(V 2/V 2) · log(U) > 1,
it follows that

Goldberg’s maxflow = O(V 2/3 · V 2 = V 8/3), and

(V 8/3 > V 2) = LowestCapacities algorithm.

Hence, V 2 = O(V 8/3)⇒ LowestCapacities algorithm = O(Goldberg’s maxflow)
2.

For sparse graphs it is assumed that |Er| = |V |. In this case, Q (the queue
of non visited nodes) can be implemented as a heap [17]. Therefore,

LowestCapacities algorithm = O(V · log V ),

since the step of extract min(Q) evidences a complexity of O(log V ). Assuming
that log(V 2/Er) · log(U) > 1, using the first two factors of O(min(V 2/3, E1/2

r ) ·
Er · log(V 2/Er) · log(U)), it can be shown that

Goldberg’s maxflow = V 1/2 · V , and

LowestCapacities algorithm = O(V · log V ).
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Discarding V in both algorithms and taking the log gives:

LowestCapacities algorithm = log(log V ), and

Goldberg’s maxflow = log V 1/2 = 1/2 · log V.

Hence, log(log(V )) = O(1/2·logV )⇒ LowestCapacities algorithm = O(Goldberg’s maxflow).
2

This shows that critical links detection with the LMIR algorithm involves a
lower computational complexity than does any other minimum interference
algorithm using maxflow algorithms.
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B Theorem 2

Theorem 2 An upper bound, K(θ), for the number of least capacity paths
identified by the LMIR algorithm is given by:

K(θ) = dg(s), if θ(s,d) =
∑

∀i|(s,i)∈E(G)

c(s, i),

or
K(θ) = dg(d), if θ(s,d) =

∑

∀i|(i,d)∈E(G)

c(i, d),

or

K(θ) =









θ(s,d)

f 0
(s,d)









.

where: f 0
(s,d)G

is the flow along the path of least capacity between s and d, θ(s,d)

is the maximum flow between them and dg(s) and dg(d) are the degree of nodes
s and d respectively.

Proof To find the lower bound for the number of links in the minimum cut
set, it is necessary to identify the minimum number of links which forms
a disconnected graph. Before showing the proof for this lower bound value,
however, certain definitions must be introduced.

Definition 1 Let G = (V, E) be a graph and let V (G) and E(G) be its vertex
and edge sets, respectively. A disconnecting set is a set F ⊆ E(G) such that
G− F has more than one component. A graph is said to be k-edge-connected
if every disconnecting set has at least k edges. The edge-connectivity, κ′(G),
is the minimum size of a disconnecting set [26].

Definition 2 Two paths from s to d are internally disjointed if they have no
common internal vertices (edges) [26].

Theorem 3 Let λ(s, d) be the number of s, d- internally disjointed paths; then

λ(s, d) ≤ min{dg(s), dg(d)},

where dg(s) and dg(d) are the degrees of s and d, respectively.

Proof Let P and P ′ be two internally disjointed paths between s and d. For
the proof suppose that λ(s, d) > min{dg(s), dg(d)} which would imply that
at least one edge incident to s or d has been included in both of the internally
disjointed paths, P and P ′. However, if P and P ′ had an edge in common,
they would not be internally disjointed thus contradicting the hypothesis. 2
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The following theorem establishes a relationship between the cardinality of a
set of disconnecting links and the number of disjointed paths of a graph.

Menger’s theorem [26] uses these concepts of disconnecting sets and disjointed
paths:

Theorem (Menger-1927) 4 Let s and d be two vertices of a graph G and
(s, d) /∈ E(G). Then, max(κ′(G)) = min(λ(s, d)).

Proof See [26].

The relation between Theorem 3 and Menger’s Theorem suggests an upper
bound for K, since it indicates the maximum number of edges a minimum size
disconnecting set can have.

However, as we shall see, this is not true. Figure .1 illustrates a graph with only
two disjointed paths but with four edges in the minimum cut set. This graph
can be transformed into an equivalent one to which Menger’s Theorem can
be applied. The transformation involves changing each edge with a capacity
x into x edges each with a capacity of one.
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Fig. .1. Number of dis-
jointed paths less than the
number of edges in the min
cut set.
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1

Fig. .2. Transformation in
the original network.

u v

Fig. .3. Transformed net-
work for Figure .1.

This leads to a new theorem relating maximum flow and Menger’s theorem
(Theorem 4):

Theorem 5

λ(s, d) ≥ θ
(s,d)
(G′) = min C(S, D) ≥ κ′(G′),

where λ(s, d) is the number of internally disjointed paths between s and d, θ
(s,d)
(G′)

is the maximum flow between s and d in G′, C(S, D) represents the capacity
of a cut (S,D) such that s ∈ S and d ∈ D, while κ′(G) is the minimum size
of a disconnecting set of G.

Proof See [26].
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Theorem 6 Let f 0
(s,d)G

be a flow passing through a path of least capacity be-

tween s and d in G, thus n = f 0
(s,d)G

=
∑n

i=1 f 0
(s,d)

G′
.

Proof In G′, each edge has a capacity of 1 unit of flow. Thus, in order to send
n units of flow, we have to use n distinct paths. Furthermore, the capacity
of a path in G is limited by the flow of the edge of least capacity on that
path. Since G′ is built from G, including an edge with a capacity of R in G is
equivalent to using R edges with the same endpoints in G′. Thus the equality
holds. 2

Case 1:
θ

(s,d)
(G) =

∑

∀i|(s,i)∈E(G)

c(s, i).

The Maxflow Mincut theorem [26] implies that the maximum network flow is
bounded by the minimum capacity of a source-sink cut. Thus if

θ
(s,d)
(G) =

∑

∀i|(s,i)∈E(G)

c(s, i),

the maximum network flow is bounded by the capacities of the edges incident
to s.

Case 2:
θ

(s,d)
(G) =

∑

∀i|(i,d)∈E(G)

c(i, d).

This can be proved using reasoning analogous to that for Case 1.

Case 3:

Let
n = θ

(s,d)
(G′) = θ

(s,d)
(G) ,

It is known that all paths have capacity of 1 in G′. Therefore,

n = θ
(s,d)
(G) = n · ω

(s,d)
(G′) =

n
∑

i=1

f 0
(s,d)

G′
,

if b and K(θ) are chosen so that b ·K(θ) ≤ n, then

n = θ
(s,d)
(G) ≥ K(θ) ·

b
∑

i=1

f 0
(s,d)

G′
. (.1)

The application of Theorem 6 in Equation .1 gives the following:
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K(θ) · f 0
(s,d)G

≤ θ
(s,d)
(G) . (.2)

Since in G both θ
(s,d)
(G) and f 0

(s,d)G
are known, we can define K(θ) for a network

G:

K(θ) =









θ(s,d)

f 0
(s,d)









.

2
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