

A Pattern System to Supervisory Control
of Automated Manufacturing System

Paulo Cézar Stadzisz1, Jean Marcelo Simão1,2 & Marcos Antonio Quináia1,3

1 Federal Center of Technological Education of Paraná
Post-Graduation Program in Electric Engineering and Industrial Computer Science

Av. Sete de Setembro, 3165 - CEP 80.230-901 - Curitiba-PR – Brasil
http://www.cpgei.cefetpr.br

{simao, quinaia}@cpgei.cfetpr.br
stadzisz@lit.cpdtt.cefetpr.br

2 Université Henri Poincaré (UHP)

Centre de Recherche en Automatique de Nancy (CRAN)
Présidence - 24-30, rue Lionnois BP 60120 - 54003 Nancy Cedex

http://www.cran.uhp-nancy.fr
 simao@cran.uhp-nancy.fr

3 State University of Center-West

Rua Presidente Zacarias, 875 - CEP 85015-430 - Guarapuava - PR
http://www.unicentro.br/

quinaia@unicentro.br

Abstract
Software patterns represent a promising research area in reason of the benefits happened of its

application, mainly in terms of productivity reached with the reutilization. In automatics, patterns can be applied
to recurring problems involving many types of computational systems. A complex domain of application, for
which patterns can bring great contribution, is the Supervisory Control of Automated Manufacturing Systems
(SC-AMS). This article proposes a system of patterns that aim to be applied in SC-AMS domain. The system is
composed by an architectural pattern and three design patterns.

1. Introduction

Nowadays, a useful technique to compose computational systems is the architectural

pattern. It expresses an organization or structural scheme, foreseeing a set of predefined
subsystems, specifying its responsibilities and including rules and general principles to their
organizations and relationships [6]. In fact, as general principle, the proposition of an
architectural patterns is not a simple task, once a trade-off between efficiency in the
performance of the instances and generality of the solution is needed.

To obtain a better organization and reusability degree in architectural patterns, a good
practice is to define its subsystems in terms of design patterns, once these last ones are already
well specified and possibly tested.

Architectural patterns based on the design patterns, can be applied in many application
domains, as in telecommunications and automatics. In automatics, patterns are applicable, for

example, on the development of Supervisory Control of Automated Manufacturing Systems
(SC-AMS). In fact, considering the typical complexity and dimension of SC-AMS, the
development and use of architectural patterns can bring an important contribution to the
developers.

Despite the numerous studies evolving SC-AMS [8][10][18][19], a lack of specific
researches to the development of architectural patterns to these computational systems is
noted [22]. This lack is especially related to aspects of the composition and execution of the
control decision and consequent co-ordination of elements in the factory [24].

The conceiving process of an architectural pattern to SC-AMS is not a simple task
because besides conceiving a strategy of factory control, it is necessary to generalize it in a set
of situations of similar factory control.

Some approaches have been proposed in the literature as computational architectures
or same as patterns to compose (in a certain way) SC-AMS [5][11][16][22][23], but none as
architectural pattern composed by design patterns, regarding and solving the decision and co-
ordination issue.

In this paper it is proposed an architectural pattern to this important area in
computation and automatics called as Supervisory Control of Automated Manufacturing
System (SC-AMS). The architectural pattern is based on design patterns, which are
improvements of a computational architecture, which proposes strategies to effectively solve
issues pertinent to SC-AMS, as the Monitoring & Command and the Regency (including the
Decision and Co-ordination) [24][25].

The solution is agent based, where the agent classes specify a Generic Rules Based
System (GRBS) [25]. Each instance of the architectural pattern is an Expert System (ES) with
an advanced inference process, reached by the agent collaboration that results in incremental
time growth in relation to the number of rules.

The proposed patterns are conceived from the analysis of supervisory controls of
factories, including the simulated factory, modeled in the ANALYTICE II simulation tool
[24]. ANALYTICE II allows expressing the fundamental characteristics of real industrial
systems [14][23].

The architectural patterns is described following the POSA [6] format, whereas design
patterns are presented as a mix of the two approaches very used called Alexandrian from [1]
and GOF from [13].

The organization of this article is the following: section 2 is an overview about SC-
AMS and its context; in section 3 there is an explanation over the design pattern Monitoring
and in section 4 another explanation over the design pattern Command, while in section 5
presents the design pattern Regency and, finally, the section 6 presents the architectural
pattern of SC-AMS in function of the presented design patterns.

2. An overview of SC-AMS

Before propose design patterns and an architectural pattern to SC-AMS composed by

them, would be interesting a contextualization more detailed about Automated Manufacturing
Systems (AMS), as well as about the Supervisory Control to AMS. In this sense, as example,
this section presents simulated manufacture cell, its features and the related computational
decisional system (specially the Supervisory Control).

The presented manufacture cell in Figure 1 is a system simulated in ANALYTICE II
tool [14][23]. This manufacture cell is composed of various machines and their function is to
produce fictitious parts of the types A and B.

Each processed part in this AMS has a process plan generated in another decision
system called Planning. The plan specifies which machines the part must visit and which
operation must be carried on through it [5][15]. The process plan for A part is {<Store>
<Table 1> <Machine-Tool> <Table 2>} and for B parts is {<Store> <Table 1> <Table 3>
<Lathe> <Table 3>}. There could still be an alternative of manufacture in the process plan, in
case of an existing Dynamic Scheduler (with a dispatcher) to carry out the elections in
execution time [23].

The Supervisory Control software role is to make the constituent elements of AMS
(e.g. lathes and robots) work in a harmonic way to carry out the manufacture of the parts
following the process plans [18][19]. In a general manner, the elements of an AMS can be
classified in equipment, hierarchical elements and process elements.

A common division of the equipment is to classify them as execution (carry out
operations over parts), transport (carry out the transport of parts) and storage (carry out
storing parts). In the proposed example both Lathe and Machine-Tool are classified as
execution equipment, while Puma, Kuka 386 and ER III as transport and, finally, Store and
Tables as of storage.

Lathe Machine-Tool

Kuka 386

Table2-Pos2

Table2-Pos1

Table1-Pos2
Table1-Pos1

Table3-Pos2
Table3-Pos1
Store

ER III

AGV

Puma 560

Lathe Machine-Tool

Kuka 386

Table2-Pos2

Table2-Pos1

Table1-Pos2
Table1-Pos1

Table3-Pos2
Table3-Pos1
Store

ER III

AGV

Puma 560

Figure 1 - Manufacture cell simulated in ANALYTICE II

The hierarchical elements are subsystems of an industrial plant, as the workstation (i.e.
an equipment set), the manufacture cell (i.e. equipment set and workstations) and the plant
(i.e. equipment set, workstations and cells). As example, the AMS illustrated in Figure 1,
could have three workstations {<Lathe> <Table3> <ER III>}, {<Machine-Tool> <Table2>
<Kuka 386>} and {<Store> <Table1> <Puma>}. The AMS as a whole could be considered as
a composite cell by the three stations and the equipment of transport < AGV > (i.e. auto-
guided vehicle).

This hierarchical division provides the SC-AMS development in several levels, known
as “Hierarchical Supervisory Control” [15]. For example, a Hierarchical SC can determine
that some parts go to a cell and not to another one. Once the parts are in the cell, another
coordination level of this SC-AMS will determine which elements of that cell will process the
parts.

The last type is the process element, which includes the parts (or products), the lot of
parts and the pallets. One lot of parts consists of a parts group of the same type that advances
in conjunction in the manufacture system. One lot has a processing priority and a production
plan (to know which lot must visit which cell), allowing extending the scopes of supervisory
control. Finally, one pallet is an element on which one or more parts (depending on the
model) are placed for the purpose of protection and standardization in the transport. The
pallets are limited resources in the AMS. Depending on the morphology of the parts, the AMS
may not use pallets, as occurred in the studied example.

3. Design Pattern: Monitor

3.1 Intent

The intent is to propose a design pattern, called Monitor, as a generic solution to

facilitate the creation of monitoring module in the design of the Supervisory Control of AMS.

3.2 Context

In the scope of Supervisory Control of AMS there exist the monitoring, which consist

in to observe the discrete states of factory elements. The context of this design pattern
Monitor is proposed a generic solution (regarding the reusability) to monitoring problem in
SC-AMS. The idea is generically represent and specify the monitoring of the factory
elements, in terms of their attributes.

To solve the question of monitoring it is needed to monitor the discrete states of the
factory elements (e.g. equipment, work-stations and manufacturing-cells) and notify these
states to interested elements (e.g. specially the Regency). In fact, to know these states it is
fundamental to allow carry out the Regency and consequently the Command [5][24] as is
argue after.

More detailed examples of AMS elements are equipment (e.g. robot, lathe and auto-
guided vehicle), hierarchical elements (e.g. station-works, manufacturing cells and plants) and
process elements (e.g. parts, lot of parts and pallets).

Each AMS element has attributes that specify its characteristics. As an instance, the
robot can have an attribute to specify its state of work (i.e. free or busy) or another to specify
the state of operation (e.g. turned in, turned off or out of order). All these states must be
monitored in the SC-AMS and the Regency keep track of it.

3.3 Problem

The AMS elements, in the line of time, can assume different discrete states (e.g. robot

moving, robot stopped, lathe free and lathe processing) to each attribute. These states can
have strong influence over the process of decision (inside of the Regency), and then it is
fundamental to monitor them. The monitoring problem consists in observing the most diverse
equipment discrete states (that can be viewed as facts) and informing them to other elements
of the Supervisory Control, specifically to the decision elements, in a standardized way [2][3]
[5][7].

In a more detailed way, the main forces founded in monitoring problem are:

- Interface with a lot of different kind of elements (e.g. production cells,

equipments and products) to know its discrete states.
- Deduce some discrete state when the monitored element does not have a

direct feedback.
- Standardize the discrete states in a way that other elements (e.g. Regency)

can understand and work with them in an easy way and in a high level.
- For each element, separate the standardized discrete states (that are

correlated) in little sets (that can be called “attributes”). As example, in the
case of a robot, the attribute “general state” can assume the states “busy or
free” and the attribute “gripper” can assume the state “open” or “closed”.

- Quickly inform (notify) the interested elements (and only the interested ones)
about the discrete states (or facts) of elements attributes, having as objective
to allow the system to be more reactive.

In terms of pattern, the problem is to find a generic way (respecting a trade-of with the
applicability) to carry out the monitoring in agree with these cited forces.

3.4 Solution

To expose the solution, it is proposed the use of computational (classes of) agents.

These agents are weak-deliberative, cognitive, reactive and cooperative. The solution comes
from agents responsible by monitor each viewed element and directly notify the interested
ones, for example other agents from the Regency.

In the sense of determining the meaning of the agent in this work, a computational
agent can be defined as a software module, with high degree of cohesion, with well-defined
scope, with autonomy and taking part in a certain context whose changes are perceived by the
agent. These perceptions may change the agent behavior and it may promote other changes in
the context [12] [20][21][26].

The referred agents are cohesive objects instanced from a hierarchy of classes created
to treat classes of factory’s elements. In fact, in the pattern instance, the instantiated agents
(from low levels of the hierarchy of classes) permit to better specify specific characteristics,
whereas the higher level of classes of agent gives the generic behavior of them. Each agent
captures the states of the monitored elements by interfacing with feedback elements (e.g.
sensors, hardware and software) or by deduction of states using determined artifice (e.g.
watchdogs or information correlation) [24][25].

3.5 Structure

The agents responsible for monitoring are divided into two main classes (of a

hierarchy of classes) entitled as FBA (from Fact Base Agent) and AT (from Attribute Agent),
which the instances are respectively called fba and at.

Each type of feature observed regarding an element is kept by an at, e.g. the state of
work from a robot (free or transporting) or the general state of this same robot (active or out
of order). While the whole element (e.g. a robot) is managed by a fba (which computationally
represents the element) that aggregates the concerned ats, monitors the information from the
element, standardizes the information (e.g. in a predefined set of symbols) and sends the
standardized information to the interested and aggregated ats.

The name fba was chosen considering that each discrete state observed by the
aggregated at is, also, fact. Then, the set of fba with its ats is considered as base of facts, like
those from Expert System (ES).

In the diagram of Figure 2, the FBA is specialized in equipment-oriented, hierarchy-
oriented and process element-oriented agents. And each level can be specialized in more
specific levels, as the case of the Equipment_FBA a possible derivation is the classes to treat
equipment to store, process and transport the parts.

1

0..*

1 0..* Instigate

1

0..*

Equipment FBA ProcessElement FBA Hierarchy FBA

FBA

MT AT

Figure 2 - Class Diagram to Monitoring.

3.6 Dynamics

A scenario for the execution (in a generic way) of the structure previously exposed

could be the following:
- The fba monitors the characteristics of the elements of AMS and

standardizes the information.
- The fba notifies the interested ats responsible for maintaining, one by one the

state of an attribute of the monitored elements.
- The ats notify the pertinent Decision Elements and wait by a confirmation

about the information treatment from these Decision Elements.

3.7 Consequences

The adoption of the Monitoring design pattern brings the following benefits:
- It “makes easier” to rewrite the monitoring component to work in a new SC-

AMS. All the code that has to deal with specific characteristics of the
environment elements is concentrated in the more specific levels of the
hierarchy that has a standard interface (i.e. ats). If it is required a specific
change in the environment elements, it is expected that the changes in the
code will be restricted to the code of the low levels. This allows a “quicker”

adaptation (in terms of project) to the new environment with the largest reuse
of existing code.

- In sense of the instanced solution:
o Monitoring is encapsulated in well-contained elements, with functional

independence in relation to the other SC-AMS elements.
o Monitored information is mapped as a set of symbols common to all the

other SC-AMS elements, transforming the heterogeneous ones in
homogeneous ones.

o The use of ats brings a special advantage, the notification mechanism that
permits notifying the changes happened to the Decision Elements, avoiding
traditional searches looking for states or facts.

- As liability:
o To a simpler AMS this solution can be so robust and maybe could be not

compensatory use it. Therefore, the solution is indicated to complex AMS
where there exists a great number of information to be processed
(monitored).

o To compose the Monitoring agent-classes in lower level demand expert
people and high level of technology integration, being imperative (to real
case) study the solution applicability with the actual technology.

4. Design Pattern: Command

4.1 Intent

The intent is propose design pattern, called Command, as a generic solution to

facilitate the composition of command module in the design of the Supervisory Control of
AMS.

4.2 Context

The context of the design pattern Command consists in to specify (in a general way)

the send of commands to some kinds of elements (e.g. cells, workstations or equipments),
using appropriate protocols and information (e.g. process parameters). It is also part of the
context some synchronization of commands given by the co-ordination (from Regency) to the
factory’s elements.

4.3 Problem

The force in the Command question consists in to give commands to the factory’s

elements targeting some activities (e.g. a lathe machining a part). However, these commands
must be exposed in high level of abstraction (to facilitate the instigation from co-ordination)
and after, each command, must be transformed into a command of low level (comprehensible
by the commanded element), respecting specific protocols and with the appropriate
parameters, to be sent to the target element. All this process is called command-refinement.

Another problem (or force) pertinent to the Command is the synchronization of
activities ordered by the co-ordination. The synchronization occurs when an element will

receive an order, but it will not be executed because the element depends that another task be
finished before (in one other element, which is its cooperator).

In the terms of design pattern, this problem must be exposed in a generic way, but also
respecting a trade-off with the specific aspects needs to “easily” create instances of
Command.

4.4 Solution

As solution to the command-refinement it is proposed generic class of agents,

permitting derive more specific classes (therefore, a hierarchy of classes), which the
consequent agents instantiated can work with specific and specialized knowledge. In fact, in
the instances, there is an agent to treat each command applicable over an element of the
factory and these agents are aggregated in the same fba responsible by the monitoring process
of this element.

The synchronization is carried out by the fba, once that the solution is modeled
(encapsulated) in classes of high level in the FBA hierarchy. In a generic way, this solution
consists in knowing what the prerequisites to an activity are, and always that a prerequisite is
not available, it must consider the possibility of synchronization. In this case, the fba asks to
its collaborator if, in a determined low space of time, someone will make the prerequisite true.
If the response is positive then the fba wait for its collaborator, or else this is the beginning of
the solution to the fault detection by the correlation.

A didactic instance of synchronization (in a specific case) is a fba responsible for a
machine that receives an order to process a part, but the part is not yet in its scope because a
recent order given by a robot to transport the part to it is still in execution. Therefore, this
order given to the machine will be possible to be executed in few instants of time,
demonstrating the importance of the fbas communication to know the future possibility of
execution and making the consequent synchronization of their activities.

4.5 Structure

Each agent responsible by a command-refinement is called mt (acronym of method

agent), instanced from the some class derived from the MT (i.e. Method Agents). As more
specialized is the agent, more levels of derivations can have its class. In other words, the
specialized knowledge to apply a command over an element is encapsulated in a mt (from a
low level class in the MT hierarchy).

Also are the fbas, being each one responsible not only by the monitoring and the
synchronization problems, but also by aggregate each mt that treat some command to the
element over its responsibility.

4.6 Dynamics

In a general way, the dynamic of the Command design part is:

- A mt is activated by someone (in fact, by an oa - order agent - defined inside

of next pattern) as a high level order.

- The mt, once activated, translate the high level order in low level order
dependent of the context, i.e. dependent of the specific knowledge pertinent
to the element that will receive the order.

- The fba, that aggregate the mt in question, verify the prerequisite and solve
any possible synchronization.

- The mt gives the low command to the fba that “transport” it to the
equipment, respecting the specific protocol and some possible
synchronization.

4.7 Consequences

- The specific knowledge about command of AMS’ elements is encapsulated

in agent instantiated from a low level class (derived “from” the root class
Method Agent), generating functional independence.

- As the specific knowledge and responsibility about each command of an
element is embedded in a mt, then the oa needs only activated the mt, which
out considers its specific details.

- The synchronization is made by the cooperation of mts, following a generic
idea.

- The command and the monitoring are modeled inside of the same FBA class
(or hierarchy of FBA classes), but independently because the subclasses MTs
and ATs encapsulate the most responsibilities of each one.

- As liability, to develop the interfaces between the agents (from low level
MTs) and the targeted elements (e.g. equipments) is still hard and
dependently of specific knowledge and technology from the element. It is
imperative (to real case) study the solution applicability with the actual
technology state.

5. Design Pattern: Regency

5.1 Intent

The intent is to propose a design pattern, called Regency, as a generic solution to

facilitate the composition of the “decision”, “conflict-solution” and “co-ordination” integrated
modules in the design of the Supervisory Control of AMS.

5.2 Context

The Regency (Decision, Conflict-Solution and Co-ordination) in SC-AMS.
The Regency responsibility is, regarding the facts monitored, to decide if some actions

(pre-determined by the Planning) can be executed, resolve possible conflicts (using many
information, included the arbitration from Scheduling) and co-ordinate the actions (pre-
determined by the Planning), as well as given the orders that make part of the each action.

5.3 Problem

The problem can be divided in three sub-problems: decision, conflict and co-

ordination.
Concerning to decision, the problem consist in relate or correlate observed facts by the

monitoring (respecting the ways allowed by the Planning), make a logic calculus with the
result of relations (and correlations) and decide what co-ordinations can be execute based in
the resulting of the calculus and in the alternatives proposed by the Planning.

Related to Conflict, the problem is to identify conflicts (i.e. to know when there are
two or more alternatives mutually exclusives) and solve it (i.e. to choose an alternative). More
precisely, it is necessary identifies conditions where there are elements in competition by
shared resources (e.g. a robot) and, based in some kind of parameter (e.g. from Scheduler), to
decide what is the better option.

Finally, about Co-ordination, once having the conflict solved, it is needed to co-
ordinate the orders (pre-defined) to instigate a certain number of (high level) commands [24].

In terms of design pattern, it is needed propose a generic solution to solve the Regency
(Decision, Conflict and Co-ordination) problem, where to create instances be needed only
give specific information to guide the generic solution.

5.4 Solution

The solution embedded in design pattern Regency is a sharing of responsibility, being

the regency solved by a lot of computational (weakly-deliberative, cognitive, cooperative and
reactive) agents, instantiated from a group of classes, that implement the knowledge of rules
and also implement a conflict solver.

The solution generality is met in the structure of the group of agent classes, which
allow instantiated agents only with the knowledge gave in rules, in a straightforwardly way, in
the scope of the Supervisory Control targeted. In other others, the same structure can be used
to any SC-AMS, being only needed give the parameters (e.g. knowledge of rules) to the
generic structure. Still, is the knowledge of rules that will make to respect the restriction of
Planning and Scheduling, once that this is specific to each system.

Each of these agents from rule is divided in others two to treat the condition and the
action. The set of condition is the Decision sub-pattern1 and the set of Action is the
Coordination sub-pattern. Still there is the agent called Conflict-Solver justly to work over the
conflict question.

In fact, the structure and interaction of agents compose the main solution of the
regency. This solution is a new approach if compared with a lot of others solutions [23] [25].

5.5 Structure

The regency model is composed by the class RA (from Rule Agent) and SA (from

Solver Agent). The RA instances are called ras and the SA instance is the sa. The class RA has
an aggregation relation to class CA (from Condition Agent, whose instances are the cas) and

1 A sub-pattern is a well-identified and well auto-contained part of a pattern, but that cannot be separated because
the cohesion with others parts of its pattern.

the AA (from Action Agent, whose instances are the aas). A ca is responsible by a fraction of
the decision, as well as, an aa is responsible by a fraction of the coordination.

A ca is connected with pas (that are instances of Premise Agents), which collaborate
with it to carry out its responsibilities. Each pas has the discrete value of an at (received by
notification) called Reference, a logical operator (to make comparisons) called Operator and
another value, called Value, that can be a constant. The pa makes a logic calculus comparing
the Reference with the Value, using the Operator. The Value can be, still, other at value
permitting, therefore, to correlate values of at.

An aa is connected with oas (that are instances of Order Agents), which collaborate
with it to carry out its responsibility. Each oa instigates changes in the factory elements by
means of mts activations.

The way used to express the knowledge of the agents is a set of well-structured rules
(oriented by agents attributes) as the exemplified in the Figure 3. In fact, the proposed
approach is also a new way to compose the expert system, once each instance of the all
architecture pattern is itself an expert system carried out by distributed agents [25].

The rule in Figure 3 is carry out by a ra (and its ca and aa). The ca has the cooperation
of tree pas and the aa has the cooperation of two oas. These agents make a robot transport a
part from storage to a workstation when this workstation is free, the robot is free and the
storage has a part.

agent fba.station1 attribute at.state = free and
agent fba.robot1 attribute at.state = free and
agent fba.storage1 attribute at.has-part = true

pasRule 1

agent fba.robot1 method mt.transport-part(fba.storage1, fba.station1).
agent fba.station1 method mt.process-part ().

oas

if
(ac)

(aa)

then

ValueReference Operator ra1agent fba.station1 attribute at.state = free and
agent fba.robot1 attribute at.state = free and
agent fba.storage1 attribute at.has-part = true

pasRule 1

agent fba.robot1 method mt.transport-part(fba.storage1, fba.station1).
agent fba.station1 method mt.process-part ().

oas

if
(ac)

(aa)

then

ValueReference Operator ra1

Figure 3 - Knowledge of agents in a rule format.

Expert agents that would create the ras can extract the knowledge from the rule. A
way to implement this kind of agents is using linguistic comprehension or a friendly
environment to rules composition.

Still there is the SA, which is created to generated an instance to work in the conflict
moments. A conflict is established when two ars are in true state have an exclusive premise.
An exclusive premise is one that has the Reference as being the “expression” of an
exclusively shared resource, e.g. a robot that can serve two workstations, but in different
times slice.

The sa is structured by a mechanism where each conflict established by Premises has
a sub-agent responsible by taken the priority of the ras or other decision parameters (if the
priorities are the same) and resolve the question. These alternative parameters can be, as
instance, the values specified by a dynamic scheduler.

The Figure 4 is a UML class diagram of the proposed design pattern, where all the
relation of the class agents (stated above) is expressed, included the class SA. These classes
will allow to instance objects, which are a way to implement agents

Figure 4 – Regency class diagram.

5.6 Dynamics

The pas receive notifications from the ats (i.e. from its References and, when it is the

case, from its Values) about the state change, once that the ats know what pas have interest in
its state. After the pa has received the notification with the new state, it uses this information
to make a comparison (i.e. logical calculus), generating a boolean value to itself.

If the new boolean value is different from the last one, this is notified to the interested
cas, that use this boolean value to make or re-make a logical calculus by conjunction with the
boolean values of all connected pas. If the result of this calculus is true, then the ca put it
respective ra in a true value.

After the at has notified all interested pas, it wait by a confirmation that the
information was propagated by the pas. But the pa only confirms the propagation after the
interested cas have confirmed their propagations. Evidently if (after a predetermined time)
someone has not confirmed, it need to solve the problem (e.g. to notify again). This
guarantees that all interested ras will be contemplated by the new facts.

abf1

abf 2

ca.1

at.2.n ar.1ca.2

ar.2aa.1

aa.2
oa.3mt.2.1

mt.1.1
abfs

pas

ras

oas

casats

ams aasoa.n

oa.1

pa.n
pa.3
pa.2
pa.1

mt.1.n

mt.2.n

at.2.2
at.1.n
at1.1

oa.2

abf1

abf 2

ca.1

at.2.n ar.1ca.2

ar.2aa.1

aa.2
oa.3mt.2.1

mt.1.1
abfs

pas

ras

oas

casats

ams aasoa.n

oa.1

pa.n
pa.3
pa.2
pa.1

mt.1.n

mt.2.n

at.2.2
at.1.n
at1.1

oa.2

Figure 5 – The dynamic collaboration of agents (ellipses) using notifications (arrows).

When a ra has value true, it aa is passible of execution. To an aa be executed, its ra
firstly verifies if all the ats referenced in the collaborative pas are with the propagation
confirmed. Then, after the resolution of a possible conflict, the ra activate its aa. The aa is
executed by the activation of the connected oas. Each oa instigates works in the mts.

The Figure 5 represents the notification process allowed by the agent structure of the
architectural pattern, which this design pattern makes part.

11

1..*1
Change

1..20..*Notify1..*

1..*
Notify

11..* Solve

Causal Relation

0..*1
Instigate

1..*

1..*
Notify

1..* 1..*

CA AA

SA

PA AT OAMT

FBA

RA

11

1..*1
Change

1..20..*Notify1..*

1..*
Notify

11..* Solve

Causal Relation

0..*1
Instigate

1..*

1..*
Notify

1..* 1..*

CA AA

SA

PA AT OAMT

FBA

RA

Other relevant dynamic is the conflict identification. Once that a pa with exclusive
attribute as Reference has been approved, and it collaborates to prove a rule it has a counter
incremented. This counter represents the number of rules that it collaborates to be approved.
Being this counter greater than one, the pa by itself notifies the sa to resolve the conflict.
Once that sa is notified, some of its subagents take the priorities rules to decide impasse. But,
if the priorities are the same, the sa demand a solution for whoever (e.g. the Dispatcher from
Scheduler) or, in the absence of one interlocutor, it can choose randomly (being a default
politics). The rule choose has the true from the exclusive premise confirmed and being
approved, while the others have the true from the exclusive premise disapproved and,
consequently, are disapproved too.

5.7 Consequences

The adoption of the Regency design pattern brings the following benefits:
- It makes easier to express the causal relation (to carry out the decision and

coordination) by means of rules that work over objects attributes (or other
methods that have mapping to this kind of rules, e.g. Object Petri nets) [4].

- It distributes the responsibilities in agents inside of the net.
- It resolves a complex problem with generic and simple classes of agents,

where the complexity solution coming from the relations and cooperation
among the instantiated agents that works following the relation established
between the classes, mainly the relation called notification mechanisms.

- It better carries out the IE (Inference Engine), once that in an architectural
instance the inference process works by notification relationship between
agents, where the computational complexity is incremental in reaction to the
number of the premises, because only the interested agents are notified and it
is possible share information (by the share of pas among ras).

- It allows quickly identify the conflicts and resolve them by many ways.
- It promotes a well conjunction, cooperation and function separation of the

decision and coordination, as well as, a good cooperation between
monitoring and decision and between coordination and command.

- The respect about the determination of the Planning and Scheduling are
implicit in the rules composition, letting the SC model more independently of
this relation.

- As liability, in fact, it is a little complex to understand all the cooperation
among the agents. But, happily, it seen “easy” to apply the solution only
understand as compose the rules (it considered that the Monitoring &
Command can be composed by expert people).

6. Architectural Pattern: Supervisory Control

6.1 Intent

Define the SC-AMS in three Designing Pattern: Monitor, Command and Regency.

Each one carries out macro-functions in the subject system and works in an interactive way
with each one, forming the whole Supervisory Control. The idea is “divide to conquer”, i.e.

divide the SC-AMS allow better understand its functions and presents solutions more
functionally independent.

6.2 Motivation

In this section it is proposed an architectural pattern to an important area in

computation and automatics, known as Supervisory Control of Automated Manufacturing
System (SC-AMS). Effectively, contributions to conceive the systems in supervisory control
are necessary due to the development complexity of this kind of computational system.

6.3 Known Uses

The ideas of the proposed architectural pattern can possibly be used in Supervisory

Control of Automated Manufacturing System (SC-AMS) and it has been used in SC of
emulated AMS. Also, there are efforts to demonstrate the model generality, as well as the
major applicability of the solution [25].

To be more specifically, the robustness of the constituted architectural pattern, as well
as the efficacy of the instanced systems of this pattern, have been observed inside the
supervisory control systems applied over the industrial plant simulations made in
ANALYTICE II. These tests include the presented plant as an example in this work (in
section II).

6.4 Structure

The architectural pattern is composed looking for the maximum high degree of

functional independence between the parts (i.e. design patterns). To each design pattern, it
was adopted a policy “divide to achieve”, being the functions distributed in separated
elements with simple action, maintaining the complex cooperation among them.

The diagram of Figure 6 shows the structure of the solution proposed. These elements
present the follow (generic) dynamic:

- The Monitor knows the states of the factory’s elements (e.g. equipment) and
notifies them to the Regency.

- The Regency, respecting the Planning and Scheduling, decides what to do
(based in a set of options and solving possible conflicts among alternative
solutions) and when to do the action to start the work, and make the
coordination of orders to the factory’s elements.

- The Command, instigated by the orders from the Regency, effectively gives
the command to the element (with all needed parameters) and can also make
some needed synchronizations.

After that, the factory elements receive the commands, the Monitor makes new
observation, instigating the Regency and, consequently, stimulating the Command to become
a cycle or work regime.

6.5 Problem Forces

The plant’s elements need to receive discrete orders to carry out actions that allow the

factory to work. However, these orders must be given in the appropriate moment, respecting
the decision elements (planning and scheduling) and the viabilities of the elements (i.e. its
discrete states), resulting in a harmonic interrelation among the commanded elements.

In terms of Architectural Pattern, all these functions exposed above must be modeled
in a generic way, but allowing easy instantiation and generate robust, efficacy and efficient
instances.

Supervisory
Control

Regency Command Monitor

Production Planning Process Planning

Supervisory
Control

Production Planning Process Planning

Command RegencyMonitor

Plant’s Equipment

Figure 6 - Supervisory Control architectural pattern structure.

6.6 Benefits

The proposed architectural pattern is an improvement of the essay presented in the last

SugarLoafPLoP 2002 [24]. The evolution is met in the specification of the architectural
pattern in terms of design patterns, as well as the own advancement of the solution, like in the
specification of the Conflict-Solver or in the aggregation of this conflict solver with the
Decision and Co-ordination inside the unique element called Regency.

The solution presented includes concepts of artificial intelligence, once the model
adopted is a kind of generic rule based system (GRBS), which instances allow carrying out
CS-AMS. This model employs the agent concept in the instantiation of classes and uses an
advanced and unique inference mechanism, by means of notification, reached by the agent
collaborations (that permit the knowledge expansion) with an incremental time in the
inference process.

In fact, the class agent concept utilization allows abstracting sub-systems that are
cohesive, allowing creating well-defined frontiers and specifying the interrelation among
them. As consequence, this agent-based solution still facilitates the archetype exposition in
terms of design pattern. And then, the design pattern use make easier the reutilization, once
the ideas are better explained inside a well-known standardization.

The utilization easiness is more evident observing the process to conceive instances.
The instantiation of the Monitoring & Command takes place by the derivation of classes from
the predefined generic hierarchical classes. Actually, in the case of the physics elements (e.g.
equipment and its controls devices), this job would be easier if there were a well-defined way
(e.g. protocol) to communicate with a computer, or else some artifices should be applied (e.g.
deduction or sensors). While, the instantiation of the Regency is divided into the Decision &
Co-ordination and Solver Conflict. To the first one it is enough to express the dynamic by
rules (or other kind of compatible expression, like object Petri net) and transfer the knowledge
to the predefined agent. To the last one it is possible to use the default solution specified, as
well as, derive another one (like use of dispatcher agent).

As the architecture has well-defined interfaces, this facilitates the work of Planning
and Scheduling, once they have to generate rules in the format predefined and standardized.
Also, the incremental inference engine solution permits the use of a great number of
alternatives without great effect over the SC-AMS performance.

6.7 Liabilities

Still, it was not developed a complete study about the availability (or weak features) of

the solution to real cases in the industry.

6.8 See Also

As parallel work, it is being realized experiments to demonstrate that the architectural

pattern can be viewed as a Petri net player, because it is known that exist a strong similarities
between the syntax and applicability of rules of expert systems and Petri nets [4]. If the
instances of the proposed Architectural Pattern can play any kind of ordinary Petri net, this is
an interesting way to demonstrate the possible major range of applicability of the solution,
once that Petri net are applicable to great number of discrete event controls.

Still in the theme of generality, one article was proposed in a congress called Logic
Applied to the Technology – 2002 [25]. The article underlines a computational architecture as
a generic and advantaged alternative form to compose expert systems. The idea consists
basically in the use of more generic levels of the Monitoring & Command, as well as the use
of the Regency. However, the article was not presented as an architectural pattern and even
the architecture was less developed.

Another aspect already developed (and being improved) is a solution to compose rules
oriented to class, and not only to objects, following and improving this good practice already
known in the literature. However, it is still necessary to write this solution (called Formation
Rules) in terms of a design pattern, in agreement to the explained architectural pattern.

An objective, as future work, is to (study the possibility) and applies the proposed
architectural pattern to real systems. Future work also includes: (i) defining a distribution
computational model of the design pattern; (ii) refining the framework, enveloped by a
friendly computational environment to constitute the Expert Systems (to SC-AMS), following

the proposed architectural pattern; (iii) exposing the design patterns, from the proposed
structural pattern, in terms of the existent standardizations in the literature, like the Gamma’s
Patterns [13]; and (iv) developing other architectural patterns for the conception and
realization of other decision systems to the AMS, e.g. Planning, Scheduling and Fault
Supervision, in an integrated way with the proposed architectural pattern to SC-AMS.

7. References

[1] ALEXANDER C., ISHIKAWA S. and SILVERSTEIN M., A Pattern Language: Towns Buildings,

Constructions, Oxford University Press, New York, 1977.

[2] AARSTEN A., BRUGALI D. and MENGA G. Designing Concurrent and Distributed Control
Systems: an Approach Based on Design Patterns. In Communications of the ACM - Special Issue
on Design Patterns. 1996.

[3] AARSTEN A., ELIA G. and MENGA, G. G++: A Pattern Language for the Object Oriented
Design of Concurrent and Distributed Information Systems, with Applications to Computer
Integrated Manufacturing . In Pattern Languages of Program Design. Coplien, J. e Schmidt, D.
(eds.). Addison-Wesley, 1995.

[4] BAKO V. and VALETTE R. Towards a decentralization of rule-based systems controlled by Petri
Nets: an application to FMS. Fourth International Symposium on Kowledge Engineering,
Barcelona - Spain. 1990.

[5] BONGAERTS L. Integration of Scheduling and Control, In Holonic Manufacturing Systems.
(Ph.D. Thesis) KatholiekeUniversiteit Leuven, 1998.

[6] BUSCHMANN F., MEUNIER R., ROHNERT H., SOMMERLAD P. and STAL M. Pattern-
Oriented Software Architecture - A System of Patterns. Wiley and Sons Ltd., 1996.

[7] BRUGALI D., MENGA G and AARSTEN A. The Framework Life Span: A Case Study for
Flexible Manufacturing Systems. In Communications of the ACM. Out 1997.

[8] CHAAR J. K., TEICHROEW D. and VOLZ R. A. Developing Manufacturing Control Software: A
Survey and Critique. The International Journal of Flexible Manufacturing Systems. Kluwer
Academic Publishers. Manufactured in The Netherlands, pp. 53-88. 1993.

[9] COPLIEN J. and SCHMIDT D. (eds.) Pattern Languages of Program Design. Addison-Wesley,
1995.

[10] CURY J. E. R., De QUEIROZ M. H. e SANTOS E. A. P. Síntese Modular do Controle
Supervisório em Diagrama Escada para uma Célula de Manufatura. V Simpósio Brasileiro de
Automação Inteligente, Canela, RS, Brasil. 2001.

[11] FLETCHER M., BRENNAN R. W. and NORRIE D. H. Modeling and reconfiguring intelligent
holonic manufacturing systems with Internet-based mobile agents. Jounal of Intelligent
Manufacturing, 2003. Kluwer Academic Publishers in The Netherlands.

[12] FRANKLIN S. and GRAESSER A. Is it an Agent, or Just a Program? A Taxonomy for
Autonomous Agents, Institute for Intelligent Systems – University of Memphis, In Proceedings of
the Third International Workshop on Agent Theories, Architectures and Languages, Springer-
Verlag. 1996.

[13] GAMMA E., HELM R., JOHNSON R. and VLISSIDES, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

[14] KOSCIANSKI A., ROSINHA L. F., STADZISZ P. C. and KÜNZLE L. A. FMS Design and
Analysis: Developing a Simulation Environment. In Proceedings of the 15th International

Conference on CAD/CAM, Robotics and Factories of the Future, Águas de Lindóia, v.2. p.RF25 -
RF210, 1999.

[15] KÜNZLE L. A. Controle de Sistemas Flexíveis de Manufatura - Especificação dos níveis
equipamento e estação de trabalho (Dissertação de mestrado) CEFET/PR, 1990.

[16] LANGER G., SORENSEN C., SCHNELL J. and ALTING L. Design of a Holonic Shop Floor
Control System for a Steel Plate Milling-Cell, In 2000 Int. CIRP Design Seminar on Design with
Manufacturing: Intelligent Design Concepts Methods and Algorithms, Israel, 2000.

[17] MCFARLANE D., SARMA S., CHIRN J. L., WONG, C.Y. and ASHTON, K. The Intelligent
Product in Manufacturing Control and Management. IFAC 2002, 15th Triennial World Congress,
Barcelona, Spain. 2000.

[18] MENDES R. S. Modelagem e Controle de Sistemas a Eventos Discretos - Manufatura integrada
por computador, Belo Horizonte, Fundação CEFET-MG, 1995.

[19] MIYAGI P. E. Controle Programável – Fundamentos do Controle de Sistemas a Eventos
Discretos, Edgard Blücher, 1996.

[20] PRADO J. A., ABE J. M. and ÁVILA B. C. Inteligência artificial distribuída; Aspectos. Série
Lógica e Teoria da Ciência, Instituto de Estudos Avançados – Universidade de São Paulo. 1998.

[21] SCHMEIL M. A. H., Sistemas Multiagente na Modelação da Estrutura e Relações de
Contratação de Organizações. Faculdade de Engenharia Universidade do Porto. (Tese de
doutorado). 1999.

[22] SCHMID H. A. Creating the Architecture of a Manufacturing Framework by Design Patterns.
Fachbereich Informatik, Fachhochschule konstanz. OOPSLA’95, 1995.

[23] SIMÃO J. M. Proposta de uma arquitetura para sistemas flexíveis de manufatura baseada em
regras e agentes. (Dissertação de mestrado). CPGEI/CEFET-PR. Brasil, 2001.

[24] SIMÃO J. M., QUINAIA M. A. e STADZISZ P. C. Um Padrão Arquitetural para Sistemas
Computacionais de Controle Supervisório. In Segunda Conferência Latino-Americana em
Linguagens de Padrões para Programação (SugarLoafPLoP), Itaipava, RJ, Brasil, 2002.

[25] SIMÃO J. M. and STADZISZ P. C. An Agent-Oriented Inference Engine applied for Supervisory
Control of Automated Manufacturing Systems. Advances in Logic, Artificial Intelligence and
Robotics, Volume 85, IOPress Ohmsha - 3rd Congress of Logic Applied to Technology -
LAPTEC 2002, São Paulo, Brazil. 2002.

[26] YUFENG L. and SHUZHEN Y., Research on the Multi-Agent Model of Autonomous Distributed
Control System, In 31 International Conference Technology of Object-Oriented Language and
Systems, IEEE Press, China. 1999.

