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Abstract

Recently we have witnessed a welcomed increase in the amount of empirical evaluation of Software Engineering methods and concepts. It
is hoped that this increase will lead to establishing Software Engineering as a well-defined subject with a sound scientifically proven
underpinning rather than a topic based upon unsubstantiated theories and personal belief. For this to happen the empirical work must be
of the highest standard. Unfortunately producing meaningful empirical evaluations is a highly hazardous activity, full of uncertainties and
often unseen difficulties. Any researcher can overlook or neglect a seemingly innocuous factor, which in fact invalidates all of the work.
More serious is that large sections of the community can overlook essential experimental design guidelines, which bring into question the
validity of much of the work undertaken to date.

In this paper, the authors address one such factor — Statistical Power Analysis. It is believed, and will be demonstrated, that any body of
research undertaken without considering statistical power as a fundamental design parameter is potentially fatally flawed. Unfortunately the
authors are unaware of much Software Engineering research which takes this parameter into account. In addition to introducing Statistical
Power, the paper will attempt to demonstrate the potential difficulties of applying it to the design of Software Engineering experiments and
concludes with a discussion of what the authors believe is the most viable method of incorporating the evaluation of statistical power within

the experimental design process.
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1. Introduction

Empirical research in software engineering is a difficult
undertaking. Perhaps the most critical points are in the
formulation of the hypothesis and the framework for evalua-
tion of the hypothesis. Frequently this framework is based
around statistical significance testing of the Neymann-—
Pearson type. In fact in our informal review of the software
engineering subject-based empirical literature, it is difficult
to find articles adopting other approaches. At first glance,
this type of significance testing seems very straightforward,
but if the researcher is going to derive meaningful con-
clusions from their work, then this technique has a number
of parameters which must be carefully controlled — such as
setting of significance levels, the choice of test.

One such parameter is the statistical power of the test
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being undertaken. Any test without sufficient statistical
power is effectively meaningless, as the experiment simply
does not have enough information to allow the researcher
to draw any reliable conclusions using statistical signifi-
cance testing. Our informal review of the software engineer-
ing empirical literature failed to find many articles which
report the statistical power of the described experiment;
in fact we failed to find any articles which suggested that
statistical power had been considered when establishing the
evaluation framework. From this one could conclude that
the field is in crisis — how many of the reported works are
valid? Unfortunately, any meaningful post-analysis is
impossible due to the lack of details concerning statistical
power and its sub-components. One can only guess at the
impact this regrettable omission has had on the conducted
work.

In the following sections, the importance of statistical
power will be addressed. Section 2 will discuss statis-
tical significance testing and its relationship to statistical
power and section 3 details how to use and calculate the
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statistical power for future empirical undertakings. Much
of the following discussion uses examples applicable
to parametric equality of means testing; for examples of
other statistical procedures, see Cohen [1] or Kraemer and
Thiemann [2].

2. Statistical significance testing

Significance testing of the Neyman—Pearson type is the
form of rejecting or accepting a null hypothesis (denoted
H,), where the null hypothesis is stated simply for the pur-
pose that it may be rejected allowing the researcher to
accept the alternative hypothesis (denoted H,) and conclude
that an effect exists. For example, an experiment concerned
with programmer productivity might have a null hypothesis

Hy: the mean programmer productivity of group A (treat-
ment) is the same as that of group B (control)

with the alternative hypothesis stated as

Hy: the mean programmer productivity of group A (treat-
ment) is greater than that of group B (control).

From the many articles read by the authors, it is clear that
the majority of researchers within software engineering use
this type of significance testing as their primary means to
detect the presence of an effect within the phenomena being
empirically investigated.

Statistical power analysis, an inherent part of significance
testing, is defined as: the probability that a statistical test
will correctly reject a false null hypothesis [3], i.e. the
chance that if an effect exists it will be found.” For example,
a power level of 0.4 means that if an experiment is run ten
times, an existing effect will be discovered only four times
out of the ten experimental runs. An adequate power level
(that is, one at which the cost of running the experiment is
deemed to be worth the chance of not detecting an existing
effect) is usually quoted at 0.8, i.e., the chance you will not
detect an existing effect is one in five (this is explained in
more detail in Section 2.1.) Any researcher not undertaking
a power analysis of their experiment has no idea of the role
that luck or fate is playing with their work and consequently
neither does the Software Engineering community.

In theory, integrating statistical power analysis into
an experimental design is a relatively straightforward
process, involving only the following three components
and the required power level (unfortunately, as we will
see later the evaluation of the effect size component is not
straightforward):

 The significance criterion («): the chosen risk of com-
mitting a Type I error, that is the probability of incorrectly
rejecting the null hypothesis (Hy), when performing

% The statistical power has also an indirect implication on the study’s
ability to accept the true null hypothesis.

significance testing. The directionality of the test (the
test can be directional or non-directional) is also of impor-
tance. Power can be increased at the expense of a larger
probability of committing a Type I error, e.g., raising o
from 0.05 to 0.10, or by using a directional statistical test
(these concepts are explained in detail in Section 2.1.1.).

* The sample size (NV): the larger the number of subjects,
the smaller the error, the greater the accuracy, and there-
fore the higher the power of the test.

* The effect size (y): the degree to which the phenomenon
under study is present in the population. If all other
factors are constant, then the larger the effect size, the
greater the probability the effect will be detected and
the null hypothesis is rejected.

The power level and these three determinants are related
in such a manner that given any three values, the fourth
can be easily calculated. Ideally, the researcher should esti-
mate or anticipate the effect size, set the significance cri-
terion, and specify the power level desired. The number
of subjects needed to meet these specifications can then be
derived from the appropriate statistical tables, such as the
ones presented by Cohen [1].

The above is the ideal scenario, but how often is it used?
Unfortunately any post-analysis of the Software Engineer-
ing literature is nearly impossible. Inadequate reporting
or consideration of the experimental design implies that
significant information is normally missing. How often do
we see the effect size reported? This makes post-calculation
of the statistical power impossible. Some researchers in
other disciplines have attempted a post-analysis of their
respective literature by examining each experiment at
three typical power levels (small, medium and large). For
example, Baroudi and Orlikowski [4] report in their study of
the Management Information Systems literature for the per-
iod 1984—89, covering 57 articles, that if it is assumed that
all the studies have:

* a small effect size, then 99% of the studies have
inadequate power.

* a medium effect size, then 66% of the studies have inade-
quate power.

* a large effect size, then 34% of the studies have
inadequate power.

Although it is difficult to draw any reliable conclusions
from this analysis, it certainly paints a worrying picture for
the MIS discipline. Any analysis of the Software Engineer-
ing literature will suffer from the same reporting problems,
and hence we are left to guess at the impact of ignoring
this critical design parameter on the existing Software Engi-
neering empirical research literature. This picture is not
particularly surprising as articles such as Tiller [5], Basili
and Reiter [6], and Pfleeger [7] which present a general
overview on experimental design and analysis, and intro-
duce controlled experiments, fail to detail statistical power
or the importance it holds prior to, and after, the running of
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an empirical study. Even MacDonell [8] who reviews
the lack of experimental rigour in software complexity
measurement, only briefly touches statistical power, stating

“‘they simply do not have the power to identify false
hypotheses’’

probably leaving the reader confused and uncertain of the
importance of the issue. Researchers are, therefore, unlikely
to consider their experiments’ power levels which subse-
quently, as demonstrated by Baroudi and Orlikowski [4],
are likely to be inadequate. As a consequence, articles
may produce results which have a reasonable chance of
being reported as:

* inconclusive, that is no significant findings were demon-
strated in the study,

* incorrect due to accepting the false null hypothesis,

* of no real interest due to the effect size being particu-
larly small, that is the phenomenon under study does
not hold any real degree of importance: it has no clinical
significance.

Yet these failings can be and, indeed, should be avoided.
Researchers who are prepared to spend time performing
empirical work should not waste their efforts by poor
experimental planning or poor statistical analysis. Conven-
tional wisdom suggests that the concept of statistical power
analysis must be seriously considered.

2.1. The significance criterion (o)

It is essential that the researcher guards against the two
types of errors which can occur during statistical signifi-
cance testing. First, Type I error: the probability of incor-
rectly rejecting the null hypothesis (Hy). Second, Type 11
error: the probability of incorrectly accepting H,. Essen-
tially, a Type I error is committed when an effect is thought
to have been found even though one does not exist. Con-
versely, a Type II error is committed when an existing effect
remains undetected. The risk associated with committing
a Type I error is represented by « and, similarly, a Type
II error is represented by (3. Furthermore, the power of a
statistical test, defined as the probability that the statistical
test will correctly reject the null hypothesis, is represented
by 1 — 8.

Typically, « is set at a prudently low level of 0.05 to
guard against Type I error, i.e. there is a 1 in 20 chance
of incorrectly rejecting Hy. However, the § value is often
ignored by researchers. If the 8 value is preset researchers
can ensure that their statistical tests will have sufficient
power to detect whether the phenomenon being examined
exists. It is for this reason the 8 value should not be over-
looked (remembering power = 1 — ). « and 3, however,
are not independent. Hence, with « set the value of 8 (and
thus power) will be constrained. Setting the « at a vanish-
ingly small level of 0.001, given an arbitrary effect size
and number of subjects, may reduce the power level to 0.1

and, consequently, 8 error to 0.9. From this example, two
points are worth mentioning:

* the power of such a test is exceedingly small and any
researcher would have to think twice about their experi-
mental plans if they calculated such numbers.

* the implication of relative seriousness of Type [ to Type I
error is f3/cc which is 0.90/0.001 = 900 to 1, i.e., false
rejection of Hy is 900 times more serious than erroneously
accepting it.

There are times when such conditions do occur, for example
Baroudi and Orlikowski [4] cite a paper by Mazen et al.
(p. 89) where the risk of incurring a Type II error far out-
weighed that for a Type 1. Mazen et al. discuss the ill-fated
Challenger Space Shuttle, where NASA officials had to
make a choice between two assumptions

““The first assumption was that the shuttle was unsafe to fly
because the performance of the O-ring used in the rocket
booster was different from that used on previous missions.
The second was that the shuttle was safe to fly because there
would be no difference between the performance of the
O-rings in this and previous missions. If the mission had
been aborted and the O-ring had indeed been functional,
Type 1 error would have been committed. Obviously the
cost of the Type II error, launching with a defective
O-ring, was much greater than the cost that would have
been incurred with Type I error.””

Perhaps a more realistic example, in terms of software
engineering, is to set &« = 0.05, power = 0.8 thus producing
a f error of 0.20, i.e., false rejection of H, is 4 times
more serious than erroneously accepting it. Presetting of
the criterion factor at this level has, according to Baroudi
and Orlikowski (4], Sawyer and Ball [3], and Stevens [9],
become widely accepted as the norm.

Many researchers, however, fall into the trap of setting
their « value after the experiment. It is common to read
the findings of statistical tests reported by researchers at
the level of * (p <0.05) as significant, ** (p < 0.01) as
very significant and *** (p < 0.001) as extremely signifi-
cant (see for example [10,11]). According to Slakter et al.,
this is ‘‘a statistical nonsense’’ [12]. Standard statistical
procedures demand that o must be preset and not changed
after the experiment has been performed.

2.1.1. Direction/non-direction of a statistical test

Another element of the significance criterion is the direc-
tionality or non-directionality (one tailed/two tailed) of the
statistical test. For example, if the researcher is comparing
the means from two groups of subjects, A and B say, the
phenomenon under study can be defined in two ways:

* the phenomenon exists if and only if the means of A and
B differ. No direction — for example, the mean of A is
larger than the mean of B, is given so deviations in either
direction from the null hypothesis constitute as evidence
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against it. Because either tail may contribute to « this is
termed a two-tailed test.

* the phenomenon exists if and only if the means of A and
B differ in a direction specified in advance, for example
the mean of A is larger than that of B. In this case, evi-
dence against the null hypothesis comes from only the
direction specified, hence the term one-tailed test.

When the experimental results are in the predicted direction,
and all other things are equal, a non-directional two-tailed
test will have less power than a directional one-tailed test.
This is because, although there is a rejection area equal to
a/2 in each tail of a two-tailed test, one of these tails is
meaningless in the case of predicted direction results. It
is important to note, however, that this concept only holds
when the sample result is in the predicted direction. It is also
important to note that if the direction of the effect is differ-
ent from that hypothesised, all that can be said is that the
data did not support the hypothesis. In the case of Lucas and
Kaplan (cited by Korson [13] p. 20) who performed a struc-
tured programming experiment, however, the hypothesis
was changed after the experiment because the results were
not in the predicted direction. This approach is incorrect.

2.1.2. Parametric and non-parametric tests

A parametric statistical test requires the estimation of one
or more population parameters. For example, in the ¢ and F
tests the calculated within-group sample variance presents
an estimate of the actual within-population variance [14]. A
non-parametric test, however, does not involve such an esti-
mation. Furthermore, a parametric test requires assumptions
about the distribution curve of the population, for example,
the sample of the population should be normally distributed
for the £ and F tests; having said this, the ¢ test and F test are
extremely robust and moderate normality deviation does
not seriously influence their validity, and hence decisions
about their validity of application are not straightforward. In
advance of a parametric test, it is common practice to apply
a normality test. Brooks [15] provides one source of tables
for skewness and kurtosis to apply such tests.

The obvious advantage that non-parametric tests hold
over parametric ones is they do not require the sample popu-
lation to be normally distributed. This does not, however,
make a non-parametric test superior. Non-parametric tests
do not have the same statistical power of their counterparts.
When the sample is normally distributed, the statistical
power of the non-parametric test will be less than the corres-
ponding parametric test (Power-Efficiency) and as a conse-
quence, a Type II error is more likely to be committed.
Briand [16] also warns against the inappropriate use of
non-parametric statistics when conducting Software Engi-
neering experiments and provides sample figures comparing
Pearson’s product moment correlation against Spearman’s
rank correlation. Selecting a parametric test can also be
erroneous, an experiment with a small data set can only
produce a normality test with relatively low power, and

hence has a greater risk of inappropriately selecting a para-
metric test.

In conclusion, in many circumstances the choice between
parametric and non-parametric analysis is not straight-
forward, a non-parametric test should only be used when
the parametric assumptions are not met, or when it is wished
to be particularly conservative on the side of Type I errors.
In general, there is some loss of power, but this loss is
normally small. (For a more general discussion of the rela-
tive performance, in terms of power, of parametric and
non-parametric metrics, see Gibbons [17].)

2.2. The sample

The sample size, represented as N, is an important feature
of an empirical study. Given the effect size and the signifi-
cance criterion are constant, the power level of the test is
directly dependent upon the sample size. As N increases, the
probability of error decreases, thus the greater the precision
and the higher the chance of rejecting the false null hypo-
thesis, assuming that the sample is a representative cross-
section of the entire population.

2.2.1. The sampling procedure

There exists doubt as to whether any sample, no matter
how large, can be extrapolated to allow the conclusion ‘this
can be applied to the population as a whole’. Regardless
of the characteristic under investigation, the software engi-
neering field has no defined sampling frame (i.e. description
of the entire population) for its practitioners, and hence
we cannot know if the sample is truly representative of
the underlying population. For example, Brooks [18] reports
differences from 4 to 1 to 25 to 1 across experienced pro-
grammers with equivalent backgrounds, and Curtis [19]
reports 25 to 1 or 30 to 1 differences in performance
among programmers. These results can have a major impact
on any experiment investigating programmer performance.
But we have no way of knowing how representative (of the
entire programmer population) the samples used in these
studies were. This problem is compounded if these per-
formance estimates are not qualified by a description of
the population from which they were obtained. Careful
experimental design is required to control this sampling
problem. Random sampling the population for subjects
is probably the best option to obtaining a cross-section of
the general populace. It is, however, extremely costly both
in terms of time and money. An alternative to random
sampling is availability sampling [20]. The researcher
conducting the study collects data from subjects who are
willing to participate in it; since the decision is left to
the subject, however, it is difficult to know how random
or representative the sample population is. Consequently,
although this type of sampling has the advantages of
economy of time and money, the findings of a study using
this technique are less able to generalise their results to
larger populations. The widespread use of availability
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sampling, within software engineering experimentation, is a
major source of concern.

2.2.2. The sample size

Given appropriate sampling, as N increases the power
level increases. It is therefore imperative to calculate the
sample size needed for the desired power level. If this is
not carried out the researcher tends to end up with a sample
size of convenience, something which should be avoided if
at all possible as often the power level will be inadequate.
Although it is possible to increase the power level of the
experiment by increasing the homogeneity of the sample, it
is important to realise that what is gained in statistical power
is lost in generalisability.

Once the required sample size has been calculated (see
Section 2.4.) and the subjects recruited it is important to
separate into groups of approximately equal numbers, N;
say. If this is not exercised, the skewed distribution of sub-
jects results in a lower power of statistical test because a
subset of subjects will contribute nothing to the study [21].
The harmonic mean:

_(2ZxN;xNy)
OED)

is used to calculate how many subjects this subset includes.
For example, Baroudi and Orlikowski [4] offer the follow-
ing example: a researcher has 108 subjects, distributed
across two groups; one group receives training (N = 86
cases) and the other does not (N = 22 cases). The harmonic
mean for this study would be 35 subjects.4 The harmonic
means should roughly equal half the total number of
subjects in the study. Thus, in the above example, with a
harmonic mean of 35, the study is equivalent to one with
equal group size of 35 rather than 54. The skewed distribu-
tion of the subjects between groups has meant that 38 subjects
have not been fully utilised. If the subjects had been divided
equally into two groups, statistical power would then have
been maximised for that number of subjects. The problem of
not equally dividing the subjects into groups has been
encountered in software engineering, for example Shneider-
man et al. [22] and Sinha and Vessey [11]. Admittedly, how-
ever, it is not always possible to split subjects into even
groups. In such cases it is always better to use the ‘extra’
subjects rather than simply to discard them. They could, for
example, help identify relationships during an inductive ana-
lysis which may have otherwise gone unnoticed [23].

@)

2.3. The effect size (vy)

The effect size is the degree to which the phenomenon
under study is present in the population. Thus, the larger
the effect size the greater the degree a phenomenon is likely
to be detected and H, rejected. In comparison to the signifi-
cance criterion and sample size, however, it is a poorly

4 (2 x 86 x 22)/(86 + 22) = 35.

understood concept. Sawyer and Ball [3] found in their
marketing research paper that effect size was not considered
to the same extent as the concepts of sample size and sig-
nificance criterion. Similarly, Baroudi and Orlikowski [4]
found the same trend arising in the area of MIS. This is a
cause of concern, as the effect size, as stated by Baroudi and
Orlikowski, plays a critical role

‘“... in the determination of the power of a statistical test
[which] is fundamental to adequate interpretation and appli-
cation of research results.”’

Reporting the effect size allows other researchers in the
field to judge the importance of the study’s results, while
at the same time allowing comparison to the findings of
previous studies. Moreover this information will facilitate
meta-analyses and cost-effective planning for future
research in related areas [2].

Unfortunately, the effect size is not a measure easily
predicted, especially if the area of research is new, or if little
experimental work has been performed (as in most areas of
software engineering). Usually, effect size of a phenomenon
can be estimated from previous empirical results, but in the
case of software engineering, due to a lack of empirical
studies, the best option for a reasonable estimation is by
expert judgement — this approach is explored in Section
3.2. Post power analysis of the experimental data will allow
an estimation of the effect size index, v, which can be used
as the effect size index for calculating the power level of a
replicated experiment. Potential researchers considering
embarking upon replicating a study should note that this
effect size will, in general, differ from the original experi-
menter’s estimate and furthermore is highly error-prone,
being deduced from a single source. (This problem is illu-
strated further in Section 3.1.) v is expressed in the measure-
ment unit of the dependent variable by dividing it by the
standard deviation of the measures in their respective popu-
lations. For a directional test using two independent samples
the formula is:
y= KB~ Ka (2)

g
where p, and pp are the means of the populations, o is
the standard deviation of either population, assuming they
are equal, and the alternative hypothesis is pg > p4. For
a non-directional test using two independent samples the
formula is:

y = IHA #B| (3)
¢
where py and pp are the means of the populations, o is the
standard deviation of either population, assuming they are
equal, and the alternative hypothesis is u4 # ug. If 64 # 05
for Egs. (2) and (3) then the definition of the effect size
index will be slightly modified. Since there is no longer a
common within-population variance, v is defined as in Egs.
(2) and (3), but instead of ¢ as the denominator, the root
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mean square of o4 and o5 is required, i.e., the root mean
square of the two variances (¢'):

2 2
o' = /%4t B ;03) @)

The use of Eq. (4) produces an average within-population
standard deviation. This standardises the difference between
the means and the calculation of the power remains
unaffected.

This process is the standard formulation for parametric
equality of means tests. Formulations for non-parametric
tests are relatively straightforward, but are obviously in
terms of the entire population distribution rather than the
parameters (means, variances) of the distribution, see Cohen
[1] for other formulations. Again care must be taken to make
sure the correct formulation is chosen (see Parametric and
Non-parametric Tests Section 2.3.).

An alternative method requires deciding whether the
effect size of the phenomenon under study is small, medium
or large, as proposed by Cohen [1]. Once decided, the
effect size index is set to one of the following: y = 0.2 for
a small effect, y = 0.5 for a medium effect, and v = 0.8
for a large effect, where the measurement is expressed in
standard deviations, i.e., 0.2 of a standard deviation and
so on. This common conventional frame of reference is,
however, rather generalised and Cohen recommends its
use only when no better basis is available for accurately
estimating vy.

Accurately estimating v is not easy, however. For a given
dependent measure and a given difference between the
treatment and control conditions on that measure

““the effect size will be larger or smaller depending on the
relative values of the difference between the means, on
the one hand, and the variance, on the other.”” [23]

As a result, factors which influence either the variance
or the mean in relation to one another can produce a large
change in the overall effect size. Fig. 1 displays such a
scenario. In part (i) the variance of the population is large
and the means differs by u, — p. (y = 0.5, a medium effect).
In part (ii) the variance is much smaller, although the mean
difference has remained the same. This has led to a much
increased effect size (y = 1.2, a large effect). In part (iii) the
variance remains the same as in (ii), but the difference in
means is smaller, in turn, producing a smaller effect
(v = 0.5). Essentially, poor estimation of either the standard
deviation or difference in means will produce a poor estima-
tion of the effect size.

Finally, it is important to try to achieve an effect size which
will provide statistical significance and allow conclusions to
be made that have clinical significance — practical mean-
ingfulness. Cohen summarises these two points rather nicely,

““‘Small effect sizes must not be so small that seeking
them amidst the inevitable operation of measurement and

(i) v=05

Treatment

pe ut
(ii) y=1.2
Control Treatment
Re pt
(iii) y=05
Control Treatment
pe Wt

Fig. 1. Effect size is dependent on the relative magnitude of the difference
between the means and the variance.

experimental bias and lack of fidelity is a bootless task, yet
not so large as to make them fairly perceptible to the naked
observational eye.”” [7]

An example is a test of significance where p < 0.05 is not
necessarily less significant than a case where p < 0.001. For
example, the experiment with the hypothesis that using a
particular design guideline saves one month over a twelve
month project produces a test of significance, p < 0.05, com-
pared to a similar experiment and hypothesis which provides
a one day reduction over the same time-scale, test of signifi-
cance p < 0.001 leaves few doubts as to which result is of
more significance. The first hypothesis provides clinical
significance to a high degree: a substantial saving in time
has been found to exist when using one particular guideline
over another. In the second case, however, is there clinical
significance? Hardly: nobody will be very much interested
in a result which saves only one day over a twelve month
period, even if it is almost certainly correct. In conclusion, it
is very important to realise a small p value does not imply a
large effect size or a strong relation [12].

2.4. Power determination

The fact that the phenomenon being empirically investi-
gated exists, far from guarantees that a statistically significant
result will be produced. Statistical power analysis is a method
of increasing the probability that an effect is found in the
empirical study: a high power level means a statistical test
has a high probability of producing a statistically signifi-
cant result. In other words, a high power means if an effect
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exists, there is a high probability that it will be found; a Type
IT error is unlikely to be committed. Similarly, if an effect
does not exist, the researcher has a solid statistical argument
for accepting the null hypothesis — this is not the case, if the
study has low power.

The power of the statistical test becomes a particularly
important factor when Hj is not rejected; that is the effect
being tested for is not found. The lower the power of the test
the less likely Hj is accepted correctly. Consequently, when
H, is not rejected and the statistical test is of low power,
the only conclusion that can be made, because the results
produced are ambiguous, is that the effect examined has not
been demonstrated by the study. Studies with a high power,
on the other hand, offer the advantage of an interpretation
of the results when there is insignificance. There exists
strong support for the decision not to reject the null hypo-
thesis, something a low powered, statistically insignificant
study cannot give.

A fact of greater concern is the inconsistency which can
arise across the many existing studies due to low power. For
example, in a paper by Robins [24], who was interested in
determining why so much inconsistency existed in the area
of clinical depression, of the 87 studies he examined, he
found that only 8 of these had adequate power. The high
power studies all reported a significant relationship, while
the low power studies tended not to support the relationship.
As a consequence, what seemed to be a large number of
studies with inconsistent findings was actually a small num-
ber of studies which provided consistent, meaningful and
reliable conclusions.

3. Calculating statistical power

The calculation of the power level requires the values of
the significance criterion (), the sample size (N) and the
effect size (7y). Once these values are available, power can
be easily calculated using 6 where
6 =vf(N) (5)
which combines the effect size and sample size into a single
index, that can then be used, along with the o value, to
obtain the power level from the appropriate tables. For the
comparison of two means, the most frequently performed
test in the behavioral sciences (and extremely common in
subject-based Software Engineering experiments), the value
of 6° is calculated by:

N
b=1v > (6)
where N is the harmonic mean of the two samples. Having
calculated 8, set o and chosen the appropriate version of
the statistical test (one- or two-tailed), the statistical

% The calculation of & changes with each statistical test, fortunately the
calculation of this intermediatory value can be omitted; see the last para-
graph of this section.

power of the system can be found by simply consulting
the relevant table in a suitable statistics book (for example
Table H, p. 309 of [14]). As an example, if we require a
power level of 0.8 and have set « to 0.05, then if we are
conducting a two-tailed test we require 6 to be at least 2.8
(2.5 for a one-tailed test).

Often when the power level is calculated, the estimated
power is inadequate. In this case, the experimental design
must be altered to increase the power, unfortunately the
experimenter has only one parameter to manipulate to
achieve this increase in power — the sample size.® Hence
if the power level calculated is inadequate, the number of
subjects required to meet the desired power level can be
obtained from the formula:

2
N = z@ o

where the value of § is retrieved from the appropriate table
using the desired power level and the specified o value (see
for example Table I, p. 310 of [14]). This relationship is
discussed in detail in the next section.

3.1. Statistical power analysis: an example

To illustrate how to calculate the power level of a statis-
tical test, a statistical power analysis of Korson’s [13] first
experiment, for use in replication of this study is detailed.’
The experiment was designed to test if a modular program
used to implement information hiding, which localises
changes required by a modification, is faster to modify
than a non-modular but otherwise equivalent version of
the same program. Korson used two groups, each with
N =8 cases. The test was performed at o = 0.05 (one-
tailed), and the mean of each group were as follows:
X, =19.3 with S, = 8.1, and X = 85.9 with Sp = 47.8.%
First, calculate the root mean square of the two variances
using Eq. (4)

8.1) 47.8)2
S = 1/(_£2(_ﬂ:34_28

Second, calculate the effect size index using Eq. (2)

859-19.3
=——=1%
34.28 19

Third, using Eq. (6), calculate

6=LMXV§=3%

6 Alternatively, the researcher could increase their « level, but in general
this is a risky practice and should only be considered as a last resort.

7 The reader should note that the following calculations are error-prone,
this is discussed later in this section.

8 In standard statistical notation, p and o are used when discussing the
population, X and § are used when discussing a sample of the population.



292 J. Miller et al./Information and Software Technology 39 (1997) 285-295

which allows the power level of the test, 0.98, to be derived
from the appropriate table.

It is essential to note that the above calculation doesn’t
form an estimation of what Korson considered to be the
statistical power in his experiment. We have no way of
knowing or even guessing this, unless the author reports
the relevant information. The above post-analysis is not
an acceptable alternative. Like a statistical test’s « level,
statistical power must be estimated before the experiment
is carried out, post-analysis is statistical nonsense within
an experiment. Any well conducted experiment can start
off with an acceptable estimation of statistical power, and
subsequently find no significant effect. A subsequent post-
analysis of statistical power will often claim that: ‘The
experiment had insufficient power’. This is not the case:
at the start of the experiment the power was believed to
be sufficient and hence the experiment is not invalid. The
lack of a significant result and resulting low post-analysis
could be caused by a myriad of reasons, such as an uncon-
sidered variable in the experimental design or a breakdown
in the experimental procedure or a myriad of other causes or
effects, obviously including the possibility that only a weak
relationship exists between the items under investigation.
Hence simply to claim that the power was inappropriate is
a naive statement. So why the post-analysis? As part of an
on-going body of research it was decided to replicate this
experiment. (Sadly the replication of experimental work is
not often carried out within the Software Engineering com-
munity, this is another major deficiency, see Brooks et al.
[25] for a discussion on the benefits of replication.) In
reviewing this work, the authors found a number of potential
defects, which the authors believe would have influenced
the results. Despite these reservations, the authors undertook
the above analysis as their power estimation. The authors
subsequently decided not to alter their estimation of the
effect size due to the difficulty in quantifying the impact
of the defects — again this illustrates the dangers of deriv-
ing an effect estimate from a single source. Note this esti-
mation took place before our replication. Given the large
power rating, the authors were happy to conduct the experi-
ment with the same sample sizes as the original. In fact one
of our groups had 9 people and the other group had 8, all
other design parameters remained consistent with the origi-
nal experiment. Full details of the findings can be found
in [26].

Unfortunately the results of our replication differed sig-
nificantly from the other experiment, hence it is difficult to
draw reliable conclusions from either piece of work. Further
replications are required to resolve the debate between the
two experiments. An undertaking anyone replicating these
experiments must attempt is an estimation of the statistical
power of their replication. This new replication has evi-
dence from two sources: the original experiment and the
first replication. An obvious approach is a post-analysis
of the two experiments. A post-analysis of the replication
follows the same procedure as before.

Two groups were used, one with N = 8 cases, one with
N =9 cases. First, calculate the harmonic mean from Egq.

(1)
2x8x9

N=""""
8+9

= 8.47

The test was performed as above with o = 0.05 (one-tailed),
and the means of each group were as follows: X, =480
with §, = 25.4, and Xp = 59.1 with Sz = 27.0. Calculating
the root mean square of the two variances using Eq. (4)

/2. 2 4 (27.0)*
S = LS—‘D—;—(&=26.2

Then calculate the effect size index using Eq. (2)

591480

Y= =042

Finally, using Eq. (6), calculate

6=O.42x‘/§'§—7=0.86

This derives a power level for the test of 0.22 from the
appropriate table.

Calculating the required number of cases for the conven-
tional power level of 0.8 using the appropriate table, it is
found that for a power level of 0.8, and the test with « set at
0.05 (one-tailed), the value of 8 = 2.49. Now using Eq. (7),
calculate the required number of subjects

249 \?
N=2x (0‘424) = 68.98
Hence, 69 cases are required for each group (138 cases
in all).

Any group undertaking a new replication now has an
enigma. What should they use as their power estimation
— the post-analysis of the original, the post-analysis of
the replication or some sort of merging of the two analyses.
Their first thought should be to look for differences between
the experiments or any indications that the experiments
revealed any problems or limitations in the experimental
design. In this case, the replication attempts to show that
an uncontrolled parameter affected the results (an ability
effect) causing the difference and calling into question the
completeness of the experimental design. The group must
arrive at a value judgement of upon which study to place
the greater weight. We would advise caution during this
process, the old adage ‘safety in numbers’ is a good guiding
principle — it is better to overestimate the required sample
size than to conduct an experiment with insufficient power.
This example illustrates further the inadequacy of deriving
a power estimate from a single source — multiple, even if
inaccurate, sources are nearly always a safer proposition.

In fact, the above power calculations are unnecessarily
detailed, for illustrative purposes. Given the effect size,
the desired power, the o level, whether the test is one- or
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two-tailed and a decision on which test to apply, an experi-
menter needs simply to consult the correct table in Cohen [1].

3.2. Evaluating effect size

Undoubtedly the most difficult component in producing
a statistical power estimation is evaluating the effect size.
Any researcher embarking upon an evaluation has two
major categories of approaches: judgemental and norma-
tive. Currently, due to the limited number of empirical
studies within Software Engineering, normative approaches
are difficult to apply. Normative approaches rely on either
other related empirical studies or the establishment of an
empirical norm for the subject of the experimentation, see
Jeffrey et al. [27] or Smith and Glass [28] for good examples
of the use of normative techniques in other disciplines. The
most likely use of a normative approach within Software
Engineering is when conducting a replication (see above for
an example), and this usage only just qualifies as a norma-
tive approach unless the experimenter is replicating a study
replicated by many other researchers. Hence, the remainder
of this section focuses on judgemental approaches.

Probably the most common method of evaluating the
magnitude of an effect is by guesswork — researchers find-
ing an interesting result, which they hope is large enough,
decide to follow up their initial findings. Although intuitive
guesses are undoubtedly superior to the uncritical accep-
tance of all statistically significant effects as important or
the assumption that results that are not statistically signifi-
cant are unimportant, it does not provide a solid foundation
for reliable scientific investigation.

The judgemental approach to the estimation and evalua-
tion of effect sizes can simply be regarded as a consensus
opinion of experts within a field of experimentation. Since
experts have a realistic set of expectations about what con-
stitutes significance (within their field), one may ask them
to determine the degree of impressiveness of research
results and data. The difficulty of this task may be com-
pounded within Software Engineering as the experts will
often not fully understand the concepts of significance
and effect size, and hence their opinion may only address
these concepts in a relatively indirect manner. Hence the
researcher is more likely to extract qualitative rather quanti-
tative opinions on these topics.

Sechrest and Yeaton [29] in their excellent paper give
many examples of judgemental approaches leading to
successful conclusions. They also report research results
showing that experts have shown a significant ability to
provide accurate estimates of effect sizes into the Psycho-
logical Sciences. The authors believe that these concepts are
sufficiently unknown that any attempt to replicate directly
these findings for the Software Engineering community
would currently fail. Hence a more indirect approach to
obtaining effect size information is required, such as the
use of formal structured interviewing and formal question-
naire surveys of experts to elicit their opinions on the

concept under investigation. The authors have recently
undertaken both approaches as a form of expert knowledge
elicitation and effect size estimation.

The authors were interested in the effect of object-
oriented software construction on the maintenance process.
Rather than simply embarking upon an experiment, they
chose to conduct a series of formal structured interviews
[30], followed by a formal questionnaire survey [31] to
gain insight into what the experts (i.e. practitioners)
believed were the concepts displaying large effects
(i.e. causing major effects in terms of positive or negative
alterations to the maintenance process).

The structured interviews were carried out with 13
experienced object-oriented developers. The interviews
elicited information about the perceived advantages and
disadvantages of the paradigm with regard to the mainte-
nance phase of the life-cycle. Subsequent analysis was
undertaken by transcribing and summarising each inter-
view and tabulating each subject’s answer to each question.
From this the authors were able to identify several hypo-
theses with relatively large effects. This was followed up
by a questionnaire study, undertaken to increase the authors’
confidence in the experts’ opinions by taking a larger
sample. The questionnaire survey was completed by 275
object-oriented practitioners. Again the responses were
tabulated and analysed to find concepts with large effects.
The authors are confident that this process has identified
several concepts with large effects sizes within this domain,
and would recommend this approach to anyone considering
conducting experimental investigations. This initial pro-
cedure has been concluded by a series of experiments
where the authors were able to show statistically a direct
cause and effect relationship between object inheritance
and maintainability [32].

The main difficulty with this procedure is that the investi-
gators are gathering qualitative statements from the experts
about the perceived effect size. This in turn must be trans-
lated by the investigators into a normal effect size metric
using their own experience at interpreting the qualitative
statements. The authors would recommend that inexper-
ienced investigators simply translated this information
into one of Cohen’s [1] three categories: small (0.2),
medium (0.5) or large (0.8); again investigators must
show caution in the aspect of overestimating the effect
size during this translation process.

Although the process is extremely inexact, the authors
would urge every empirical investigator to undertake this
type of process. If such a process is not undertaken, the
investigator is in grave danger of producing meaningless
metrics, even if they produce statistical significant results.
Once an effect estimation has been produced, the statistical
tests have been defined and the o level set, the investigator
is ready to calculate the last piece in their power puzzle —
the sample size. The following section gives a brief
overview of the relationship between the effect and sample
sizes.
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Table 1
Sample size required for variable effect size

Sample size  Effect size (Power 0.8, a 0.05)

0.1 02 03 04 05 06 07 08 09 10

One-tailed
Two-tailed

1240 310 138 78 50 35 25 19 15 12
1568 392 174 98 63 44 32 25 19 16

3.3. A quick numeric guide to sample size with respect to
effect size

When any researcher is embarking upon an experiment
it is vitally important that they ensure that the experiment
has sufficient power. In achieving this desired state, the
researcher will often have only one parameter to manipulate
— the sample size. Often the directionality and type of the
statistical tests, the « value and the effect size are all defined
by the experiment, leaving the researcher to select a suitable
sample size to ensure a meaningful experiment. Although
defined by the experiment, the effect size must be estimated.
Regardless of the estimation vehicle, this estimate is likely
to have a certain degree of error and any researcher who
places their belief in this exact number is jeopardising their
experiment. Now armed with their estimation it is a simple
case of referring to the relevant tables as outlined above. As
an illustrative example, Table 1 shows sample size (or more
accurately harmonic mean) against effect size for common
effect sizes and one- and two-tailed tests. The tables assume
that a power of 0.8 is required, that « level is set to 0.05 and
that the experiment plans to use parametric equality of
means test, and displays the required sample size rounded
to the nearest digit.

4. Conclusions

This paper has discussed the importance of statistical
significance testing to empirical software engineering. In
particular it has focussed on one aspect of significance
testing — statistical power. It has attempted to demonstrate
that consideration of statistical power must be an essential
component of any experimental design. Any experimenter
which ignores this factor, even if they obtain a significant
result, is not in a position to claim that their study will
necessarily have any impact upon the real world, because
the experimenter does not know if the experiment contained
sufficient information to ensure the statistical tests were
significant in terms of having a real, sizable impact on the
concept under investigation. Producing and conducting
experiments which demonstrate clinical significance is
much more demanding than simply achieving a statistically
significant result via some experimental procedure.

The paper has also shown that although theoretically
straightforward, the calculation of statistical power is, in
practice (especially with Software Engineering and other

immature empirical disciplines) a difficult, inexact and
error-prone process. The authors would urge researchers
not to be put off by this fact. For Software Engineering
empirical research to become a mature discipline, it is
vital that the use of statistical power becomes standard
practice. The authors concede that this places an extra
burden upon empirical researchers, but as discussed by
Robins [24], see Section 2.4., the alternative is a subject
in disarray with researchers being unable reliably to com-
pare experiments on the same topic or even with the same
hypothesis.

The principal difficulty in calculating the statistical
power of an experiment is in estimating the size of the effect
under investigation. Currently we would recommend that
a judgemental approach to effect size estimation is the
most viable procedure into Software Engineering. But hope-
fully as the field matures, normative approaches can be
adopted and the field can reap the benefits available to
mature empirical disciplines such as the medical sciences
and social psychology.
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