

A Semantic-based Ontology Matching Process for PDMS

Carlos Eduardo Pires¹, Damires Souza², Thiago Pachêco¹, and Ana Carolina Salgado¹

¹ Federal University of Pernambuco (UFPE), Center for Informatics, Brazil {cesp,tpap,acs}@cin.ufpe.br

² Federal Institute of Education, Science and Technology of Paraíba (IFPB), Brazil damires@ifpb.edu.br

http://www.cin.ufpe.br/~speed/SemMatch/index.htm

Motivation

- Peer Data Management System (PDMS) [Adjiman et al., 2007]
 - Each peer is an autonomous data source that makes available a local schema
 - Schema mappings (correspondences between schema elements) are generated to allow information exchange between peers
- Ontologies
 - Make explicit the content of data sources (peer ontologies)
 - Enhance information integration

Motivation

- Peer ontologies
 - Designed and developed autonomously
 - Contain several forms of heterogeneity
- Ontology matching techniques [Euzenat and Shvaiko, 2007]
 - Deal with the diverse concept meanings existing in peer ontologies
 - Reconcile peer ontologies and find correspondences between their elements

Goal

- Propose a semantic-based ontology matching process which has been instantiated in a PDMS
- Contributions
 - Identification of semantic correspondences between two peer ontologies
 - Taking into account a domain ontology as background knowledge
 - Determination of the global similarity between two peer ontologies

Outline

- Ontology Matching
- Using a Domain Ontology to Define Semantic Correspondences
- Semantic-based Ontology Matching Process
- Calculating the Global Similarity Measure
- Experiments and Results
- Related Work
- Conclusions and Further Work

Ontology Matching

- Process of finding correspondences between elements of different ontologies [Euzenat and Shvaiko, 2007]
 - Normally describing the same or similar domains
- An element is a concept, property or instance
- Ontology Alignment
 - Set of correspondences indicating which elements of two ontologies logically correspond to each other
 - Produced by one or more matchers which are executed sequentially or in parallel

Working Scenario

Semantic Community of Peers

* Education Domain *

Working Scenario

Our focus

- Identify semantic correspondences between
 O₁ and O₂ elements
- Determine if P₁ and P₂ are semantic neighbors
 - Two peers are semantic neighbors if their global similarity is higher than a certain threshold

Using a Domain Ontology to Define Semantic Correspondences

- Domain Ontology (DO)
 - Reliable reference available on the Web
 - Used as Background Knowledge
 - Bridge the conceptual differences or similarities between two peer ontologies

Using a Domain Ontology to Define Semantic Correspondences

- Definition. A semantic correspondence is represented by one of the following expressions:
 - \bigcirc $O_1:x \Rightarrow O_2:y$, an *isEquivalentTo* correspondence
 - \circ $O_1:x \to O_2:y$, an *isSubConceptOf* correspondence
 - \bigcirc $O_1:x \supseteq O_2:y$, an *isSuperConceptOf* correspondence
 - \bigcirc $O_1:x \triangleright O_2:y$, an *isPartOf* correspondence
 - \circ $O_1:x o O_2:y$, an *isWholeOf* correspondence
 - $O_1:x \approx O_2:y$, an *isCloseTo* correspondence
 - \bigcirc $O_1:x \to O_2:y$, an *isDisjointWith* correspondence
 - (*) x and y are elements belonging to the peer ontologies

Using a Domain Ontology to Define Semantic Correspondences

- O₁:k and O₂:z are close if
 - They share a common ancestor in the DO
 - □ The common ancestor is not the root (⊤)
 - The concepts do not hold neither subsumption nor disjointness
 - The measured depths
 (thresholdRoot and thresholdCommonAncestor)
 are evaluated to true

Example: O_1 .Notebook \cong O_2 .MacintoshPC

Semantic-based Ontology Matching Process

Semantic-based Ontology Matching Process

										•		
			(а	1)	A	Ls	and A _{SE}					
	01 ⊑lement		O2 ⊑lement		Relationship		Simi arity					
Hybrid	UndergraduateStudent		Monitor		-		0.30			(b)		Aco
Semantic	UndergraduateStudent		Monitor		isSuperConceptOf		0.80		O1 Element	O2 Element	Relationship	Comb ned
Hybrid	UndergraduateStudent		GraduateStudent		-		0.70					Similarity
Semantic	UndergraduateStudent		GraduateStudent		is⊃isjoint W ith		0.00	Similarity Values Combination	UndergraduateStu	dent Vonitor	rsSuperConceptOt	0.60
Hybrid	UndergraduateStudent		Student		-		0.50		UndorgraduatoStu	dont GraduatoStudont	isDisjointWith	0.28
Semantic	UndergraduateStudent		Student		isSubConceptOf		0.80		UndergraduateStu	dent Student	isSubConceptOf	0.68
Hybrid	GraduateStudent		Student		-		0.60	LS weight = 0.4	GraduateStudent	Student	isSubConceptOf	0.72
Semantic	GraduateStudent		Student		isSubConceptOf		0.80	SE weight = 0.6	GraduateStudent	GraduateStudent	isEquivalentTo	0.84
Hybrid	GraduateStudent		GraduateStu	dent	-		0.60					•••
Semantic	GraduateStudent		GraduateStu	dent	lent isEquivalent		1.00					
									ondence			
							Kar	nking	(a')			
	1-1-			001	1	(c)			0.4.51	(C')	B 10 11	- II I
	O1 Elerre		nt O2 Elem		Liement	Relationship		Combined Simi arity	O1 Element	O2 Elemen:	Relationship	Combined Similarity
	Undergrad		luateStudent Stud		dent	isSubConc		0.68	Monitor	UndergraduateStuden:	isSubConceptOf	0.60
	Undergrad		luateStudent Mon		n tor	IsSup	erConceptQ1	0.60	GraduateStudent	GraduateStudent	IsEquivalentTo	0.84
	Undergrad		duateStudent Grad		duateStudent	isC	isjointWith	0.28	GraduateStudent	UndergraduateStuden:	isDisjoin tWi th	0.28
	Graduate\$		Student Grad		duateStudent	isEquivalent		0.84	Student	GraduateStudent	isSuperConceptOf	0.72
	Graduates		Student Stude		dent	isSu	bConceptOf	0.72	Student	UndergraduateStuden:	isSuperConceptOf	0.68

	Correspond Selection				ence (d)			A ₁₂	Correspondence Selection (d')			A ₂₁
	O1 Elem		ent	O2 Element		Relationship		Combined Similarity	O1 Element	O2 Elemert	Relationship	Combined Similarity
	Undergra		aduateStudent	nateStudent Student		isSubConceptOf		0.68	Monitor	JndergraduateStudert	isSubConceptOf	0.60
	Graduate		Student GraduateStud		sduateStudent	isEcuivalentTo		0.84	GraduateStudent	GraduateStudent	isEquivalentTo	0.84
								***	Student	GraduateStudent	isSuperConceptO*	Ü. 7 2
		-		=				-		i i i i	Ī.,,	

Calculating the Global Similarity Measure

- Uses the alignment sets A₁₂ and A₂₁
- Existing similarity measures can be adapted
 - □ Dice [Aümuller et al., 2005], Weighted average [Castano et al., 1998] and overlap [Rijsbergen, 1979]
- All of them consider the size of the input ontologies
- The size of an ontology (|O|) is determined by the number of its elements

Calculating the Global Similarity Measure

Weighted Average
$$(O_1, O_2) = \frac{\sum_{i=1}^{|A|2|} n + \sum_{j=1}^{|A|2|} n}{|O_1| + |O_2|}$$

Alignment A₁₂

- (1, Person, Person, isEquivalentTo, 1.0)
- (2, FullProfessor, FullProfessor, isEquivalentTo, 1.0)
- (3, UndergraduateStudent, Course, isPartOf, 0.3)
- (4, Student, Person, isSubConceptOf, 0.8)
- (5, Professor, Faculty, isSubConceptOf, 0.8)

Alignment A₂₁

- (1, Person, Person, isEquivalentTo, 1.0)
- (2, FullProfessor, FullProfessor, isEquivalentTo, 1.0)
- (3, Course, UndergraduateStudent, isWholeOf, 0.3)
- (4, Worker, Person, isSubConceptOf, 0.8)
- (5, GraduateStudent, UndergraduateStudent, isDisjointWith, 0.0)
- (6, Faculty, Professor, isSuperConceptOf, 0.8)
- (7, MasterStudent, Student, isSubConceptOf, 0,8)

Weighted Average
$$(O_1, O_2) = \frac{(1.0 + 1.0 + 0.3 + 0.8 + 0.8) + (1.0 + 1.0 + 0.3 + 0.8 + 0.0 + 0.8 + 0.8)}{|6| + |7|} = 0.66$$

Experiments and Results

- The semantic-based ontology matching tool
 - Implemented in Java
 - Jena has been used to provide ontology manipulation and reasoning
 - H-Match has been used as the hybrid matcher
- Correspondence identification has been restricted to concepts
 - Properties are not included
- http://www.cin.ufpe.br/~speed/SemMatch/index.htm

Experiments and Results

Experiments and Results

Correspondences for O ₁ :Faculty							
O_1 :Faculty $\equiv O_2$:Faculty	O_1 :Faculty $\supseteq O_2$:PostDoc						
O_1 :Faculty $\sqsubseteq O_2$:Worker	O_1 :Faculty $\approx O_2$:Assistant						
O_1 :Faculty $\supseteq O_2$:Professor	O_1 :Faculty $\approx O_2$:AdministrativeStaff						

Related Work

- Only a few semantic-based approaches consider the use of background knowledge to improve ontology matching
 - S-Match, TaxoMap, CTXMatch
- Correspondences are usually restricted to equivalence
 - CTXMatch considers other ones (specialization and generalization)
- We also identify other types of semantic correspondences
 - E.g., disjointness and closeness

Related Work

- Global Similarity Measure
 - Not produced by the previous works
 - [Castano et al., 1998] propose a kind of such measure
 - Concerned with ER schemas
 - □ COMA++ [Aümuller et al., 2005] argues that calculates a global measure
 - Considering the version we performed our tests, we were not able to find out such feature explicitly

Conclusions and Further Work

- Our matching process tries to overcome limitations of linguistic and structural approaches by using domain ontologies as background knowledge
 - A semantic matcher identifies, besides traditional types of correspondences, other ones (e.g., closeness and disjointness)
 - Determination of a global similarity measure between two ontologies (not only between their elements)

Conclusions and Further Work

- The combination of different matchers can improve the alignments produced by ontology matchings tools
 - Taking out incorrect or meaningless correspondences and including relevant ones
- Further work
 - Extend our tool to consider properties
 - Include an alignment-reuse matcher

A Semantic-based Ontology Matching Process for PDMS

Carlos Eduardo Pires¹, Damires Souza², Thiago Pachêco¹, and Ana Carolina Salgado¹

¹ Federal University of Pernambuco (UFPE), Center for Informatics, Brazil {cesp,tpap,acs}@cin.ufpe.br

² Federal Institute of Education, Science and Technology of Paraíba (IFPB), Brazil damires@ifpb.edu.br

http://www.cin.ufpe.br/~speed/SemMatch/index.htm

