
Pointcut Rejuvenation:
Recovering Pointcut Expressions

in Evolving Aspect-Oriented Software
Raffi Khatchadourian, Member, IEEE, Phil Greenwood,

Awais Rashid, Member, IEEE, and Guoqing Xu

Abstract—Pointcut fragility is a well-documented problem in Aspect-Oriented Programming; changes to the base code can lead to join

points incorrectly falling in or out of the scope of pointcuts. In this paper, we present an automated approach that limits fragility

problems by providing mechanical assistance in pointcut maintenance. The approach is based on harnessing arbitrarily deep structural

commonalities between program elements corresponding to join points selected by a pointcut. The extracted patterns are then applied

to later versions to offer suggestions of new join points that may require inclusion. To illustrate that the motivation behind our proposal

is well founded, we first empirically establish that join points captured by a single pointcut typically portray a significant amount of

unique structural commonality by analyzing patterns extracted from 23 AspectJ programs. Then, we demonstrate the usefulness of our

technique by rejuvenating pointcuts in multiple versions of three of these programs. The results show that our parameterized heuristic

algorithm was able to accurately and automatically infer the majority of new join points in subsequent software versions that were not

captured by the original pointcuts.

Index Terms—Software development environments, software maintenance, software tools.

Ç

1 INTRODUCTION

ASPECT-ORIENTED Programming (AOP) [23] has emerged
to reduce the scattering and tangling of crosscutting

concern (CCC) implementations. This is achieved through
specifying that certain behavior (advice) should be
composed at specific (join) points during the execution of
the underlying program (base code). Join point sets are
described by pointcut expressions (PCEs), which are
predicate-like expressions over various characteristics of
“events” that occur during the program’s execution. In
AspectJ [22], such characteristics may include calls to
certain methods, accesses to particular fields, and mod-
ifications to the runtime stack.

Consider an example PCE execution(* m*(..)) that selects

the execution of all methods whose name begins with m,

taking any number and type of arguments and returning

any type of value. Suppose that in one base code version the

above PCE selects the correct set of join points in which a

CCC applies. As the software evolves, this set of join points

may change as well. We say that a PCE is robust if in its

unaltered form it is able to continue to capture the correct set

of join points in future base code versions. Thus, the PCE

given above would be considered robust if the set of join
points in which the CCC applies always corresponded to
executions of methods whose name begins with m, taking
any number and type of arguments, and so forth. However,
with the requirements of typical software tending to change
over time, the corresponding source code may undergo
many alterations to accommodate such change, including
the addition of new elements in which existing CCCs should
also apply. Without a priori knowledge of future main-
tenance changes and additions, creating robust PCEs is a
daunting task. As such, there may easily exist situations
where the PCE itself must evolve along with the base code;
in these cases, we say that the PCE is fragile. Hence, the
fragile pointcut problem [25] manifests itself in such circum-
stances where join points incorrectly fall in or out of the
scope of PCEs.

Several approaches aim to combat this problem by
proposing new pointcut languages with improved expres-
siveness (e.g., [6], [24], [31], [36], [37]), limiting the scope of
where advice may apply through more clearly defined
interfaces (e.g., [14]), or enforcing structural and/or
behavioral constraints on advice application (e.g., [13],
[19], [40]). Yet others make points where advice may apply
more explicit in the base code [17], or remove PCEs
altogether [33]. However, each of these tend to require
some level of anticipation and, consequently, when using
PCEs there may nevertheless exist situations where PCEs
must be manually updated to capture new join points as the
software evolves.

Programmer-defined source code annotations can also be
used to “mark” relevant locations in the source code where a
CCC applies. PCEs then use these annotations to accurately
select the appropriate join points. If used properly, i.e., if all

642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

. R. Khatchadourian and G. Xu are with the Department of Computer
Science and Engineering, Ohio State University, Columbus, OH 43210.
E-mail: {khatchad, xug}@cse.ohio-state.edu.

. P. Greenwood and A. Rashid are with Computing Department, Lancaster
University, Lancaster LA1 4WA, United Kingdom.
E-mail: {greenwop, awais}@comp.lancs.ac.uk.

Manuscript received 27 Feb. 2010; revised 23 Aug. 2010; accepted 26 Jan.
2011; published online 7 Feb. 2011.
Recommended for acceptance by T. Tamai.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-02-0054.
Digital Object Identifier no. 10.1109/TSE.2011.21.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

locations where the CCC applies are correctly annotated and
if the corresponding PCE correctly selects these elements,
this scheme can produce PCEs that are robust to changes
such as refactorings since names and organization of
program elements may change but the associated annota-
tions remains intact. However, refactoring is not the only
reason for PCE breaks. For example, adding a new element
but neglecting to annotate it properly with all CCCs that
apply to it will break an annotation-based pointcut.

It is important to note that, although this paper deals
with the particular case of AspectJ, a system written in any
language that allows developers to declare composition
specifications (like PCEs in AspectJ) is susceptible to this
predicament. Furthermore, this problem unfortunately
develops into a vicious cycle where these new PCEs may
also exhibit similar fragility problems.

To alleviate such problems, we propose an approach that
provides automated assistance in rejuvenating PCEs upon
changes to the base code. The technique is based on
harnessing unique and arbitrarily deep structural common-
alities between program elements corresponding to join
points selected by a PCE in a particular software version. To
illustrate, again consider the example PCE given earlier and
suppose that, in a certain base code version, the PCE selects
the execution of three methods, m1, m2, and m3. Further
suppose that facets pertaining to these methods exhibit
structural commonality, e.g., each of the methods’ bodies
may (textually) include a call to a common method y, or that
each includes a call to three other methods x, y, and z,
respectively, all of which have method bodies that include
an assignment to a common field f. Likewise, each method
may be declared in three different classes A, B, and C,
respectively, all of which are contained in a package p.
Moreover, if such characteristics are shared between
program elements corresponding to join points selected
by a PCE in one base code version, it is conceivable that
these relationships persist in subsequent versions. Conse-
quently, our proposal involves constructing patterns that
describe these kinds of relationships, assessing their
expressiveness in comparison with the input PCE, and
associating them with the PCE so that they may be applied
to later base code versions to offer suggestions of new join
points that may require inclusion.

Our insight into the fragile pointcut problem is as
follows: CCCs tend to crosscut traditional module bound-
aries. Thus, CCCs affect many heterogeneous modules
across a software system. Despite their differences, these
modules have at least one facet in common, i.e., that a
particular CCC applies to them. Our hypothesis is that
places in the source code corresponding to where a CCC
applies share a similar structure, and that this information
can be leveraged to maintain PCEs.

Our key contributions are as follows:

1. Commonality identification. We present a parame-
terized heuristic algorithm that automatically derives
arbitrarily deep structural patterns inherent to pro-
gram elements corresponding to join points selected
by the original PCE. This allows join points to be
suggested that may require inclusion into a revised
version of the PCE, ensuring that evolutionary

changes can be correctly applied by mechanically
assisting the developer in maintaining PCEs.

2. Correlation analysis. We empirically establish that
join points selected by a single PCE typically portray
a significant amount of unique structural common-
ality by applying our algorithm to automatically
extract and thereafter analyze patterns using PCEs
contained within single versions of 23 AspectJ
programs. We found that the derived patterns, on
average, were able to closely produce the majority of
join points selected by the analyzed PCE in the
original base code version with low � (false positive)
and � (false negative) error rates of 18 and 16 percent,
respectively.

3. Expression recovery. To ensure the applicability and
practicality of our approach, we implemented our
algorithm as an Eclipse (http://eclipse.org) IDE
plug-in and evaluated its usefulness by rejuvenating
PCEs in multiple versions of three of the aforemen-
tioned programs, which were of varying sizes and
domains and representative of typical AO software.
We found that, in exploiting the extracted patterns,
our tool was able to accurately and automatically
infer 90 percent of new join points that were selected
by PCEs in subsequent software versions that were
not selected by the original PCE, with a standard
deviation of 24 percent. This demonstrates that the
approach is indeed useful in alleviating the burden of
recovering PCEs upon base-code modifications that
took place in our subject programs, and the results
advance the state of the art in automated tool support
for coping with the evolution of AO programs.

A brief introduction of this work originally appeared in
[20], and a demonstration of our preliminary tool, along
with details of the implementation, appeared in [21]. In this
paper, we fully describe our complete approach, which has
been built upon the aforementioned previous work. This
complete approach includes thoroughly developed ideas
that have been incorporated into our initial algorithm. We
also present a new dimension of our experimental results to
comprehensively and accurately assess the overall useful-
ness of our approach.

The remainder of this paper is organized as follows:
Section 2 presents a motivating example that features a
fragile PCE. Section 3 highlights the key algorithmic facets
of our approach, while Section 4 discusses the details of our
implementation and evaluation. In Section 5, we compare
our proposal with related work and explore future work, as
well as conclude, in Section 6.

2 POINTCUT FRAGILITY EXAMPLE

Fig. 1 shows an example AspectJ code snippet for a
hypothetical drive-by-wire programming of an all-wheel
drive, hybrid vehicle (line 2) which draws power from two
different sources, namely, a diesel engine (line 25) and an
electric motor (line 30), both of which contribute to the
overall speed (line 3).1 Fuel is distributed to the engine via

KHATCHADOURIAN ET AL.: POINTCUT REJUVENATION: RECOVERING POINTCUT EXPRESSIONS IN EVOLVING ASPECT-ORIENTED... 643

1. This example was inspired by one of the authors’ work at the Center
for Automotive Research (CAR) at Ohio State University.

the method DieselEngine.increase(Fuel) (line 27), while
electricity is distributed to the motor via the method
ElectricMotor.increase(Current) (line 32), whose method
bodies are abbreviated. The classes conform to the Observer
pattern, with the DieselEngine and ElectricMotor notifying
the HybridAutomobile of any change made to the energy
consumption of the respective components. The HybridAu-

tomobile in turn computes its new overall speed (lines 7-8,
13-14) and updates any attached observers, e.g., the Dash-
board (line 35). An accessor method (line 22) retrieves the
value of the private instance field overallSpeed, which
the method Dashboard.update() invokes (line 38) as part of
the design pattern to refresh the driver’s display.

Suppose now that roadways exhibit a new feature that
notifies traveling vehicles of the speed limit. As a result, an
aspect SpeedingViolationPrevention (Fig. 2) is introduced to
augment the existing functionality of the programming
depicted in Fig. 1 by limiting the vehicle’s energy intake by
declaring appropriate around advice (lines 2-4), which
conditionally bypasses the execution of methods that
contribute to the vehicle’s overall speed.2 The points at
which this advice is to apply are specified by its bound PCE
(line 3) that selects join points corresponding to the
execution of two of the aforementioned methods, namely,

DieselEngine.increase(Fuel) and ElectricMotor.increase
(Current). These methods have been underlined in Fig. 1.
Class Energy (not shown) is an abstract super class of which
both classes Fuel and Current (also not shown), parameters
to the methods, extend. The type pattern Energy+ is a wild
card that denotes object references of type Energy and its
subclasses. Note that facets related to the advice body are
abbreviated here to focus on the applicability of the advice.

Further suppose that the base code (Fig. 1) evolves to
accommodate a new vehicle energy source, namely, a fuel
cell, resulting in the creation of a FuelCell class (Fig. 3).
Contrary to the existing energy sources, requests to increase
power from the FuelCell require passing a numerical
(double) parameter, which is the amount of acceleration (in
miles/hour) that should result from the FuelCell internally
generating power, to a method (line 4) that, in turn, notifies
the HybridAutomobile of the change directly (line 5).

Intuitively, the SpeedingViolationPrevention aspect
should also apply to the execution of this method; however,
the PCE fails to select this new but semantically equivalent
join point. Although the new method’s signature is
consistent with the other join points, with only the
parameter type differing, i.e., double is a primitive type
that could not hold references to type Energy or any of its
subclasses, this difference causes the PCE not to select this
method’s execution. Worse, many such join points may
silently exhibit similar problems in evolving software with
larger code bases. It would be helpful to developers if join
points that may have been overlooked when manually
updating PCEs to reflect new changes in the base code
could be mechanically suggested. It would also be helpful
to mechanically suggest join points that should no longer be
selected by a PCE. We will continue to use this example to
demonstrate how our proposed approach can assist devel-
opers with these issues in an automated fashion.

3 HARNESSING COMMONALITY

We present a parameterized heuristic algorithm that assists
developers in maintaining PCEs upon changes to the base
code by inferring new join points that may require
inclusion by discovering structural commonality between
program elements corresponding to join points captured
by a PCE in a particular software version. For instance,
notice in the previous example that the two methods,
namely, DieselEngine.increase(Fuel) and ElectricMotor.in-
crease(Current), whose corresponding method executions
were selected by the PCE listed on line 3, Fig. 2, are both

644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

Fig. 1. Hybrid automobile example.

Fig. 2. Speeding prevention aspect.

Fig. 3. A new fuel cell class.

2. For this advice to properly function, the pointcut must expose
appropriate context pertaining to the join point. Specifically, both the
implicit and explicit arguments of the increase(Energy)method would need
to be exposed, perhaps by using the pointcut designators this() and args() to
perform the checks. We have omitted these designators for presentation
purposes.

declared in classes contained in package p. Additionally,
considering solely the code snipped characterized in Fig. 1,
both method bodies contain calls to methods, namely,
notifyChangeIn(Fuel fuel) and notifyChangeIn(Current cur-
rent), respectively, that read from the field HybridAutomo-
bile.overallSpeed. We capture such commonality by
constructing patterns that abstractly describe kinds of
relations that program elements have in common. Ex-
tracted patterns are then applied to later versions to offer
suggestions of new join points that require inclusion as
similar commonality may be exhibited in the future.

3.1 High-Level Overview

Our approach is divided into two conceptual phases:
analysis and rejuvenation. The analysis phase (Fig. 4) is
triggered upon modifications to or creation of advice-bound
PCEs (step 1). Named-PCEs are analyzed when they are
referred to in advice-bound PCEs. A graph is then computed
which depicts structural relationships among program
elements currently residing in the base code (step 2). Next,
patterns are derived from paths in which vertices and/or
edges representing program elements and/or relationships
are associated with join points selected by the PCE (steps 3
and 4). The patterns are then analyzed to evaluate the
confidence (inspired by [7]) we have in using the pattern to
identify join points that should be captured by a revised
version of the PCE upon base code evolution (step 5).
Subsequently, results produced by the pattern are correlated
with and ranked by this value when presented to the
developer. Finally, patterns along with their confidence are
linked with the PCE and persisted (step 6) for later use in the
next phase.

Our approach is most helpful in scenarios where a
developer performs a series of changes to the base code and
then, prior to deployment/testing, proceeds to update PCEs
to reflect those changes, ensuring that new join points are
captured correctly. The rejuvenation phase (Fig. 5) is
triggered previously to the developer manually altering
the PCE so that automated assistance in performing the
updates correctly can be provided (1). Patterns previously
linked with the PCE are retrieved from storage and matched
against a graph computed from the new base code version
to unveil the suggested join points (2). These join points are
the ones related to program elements that share structural

commonality with program elements related to join points
previously selected by the PCE in the original base code
version. Each suggestion is presented to the developer with
the confidence of the pattern used to produce the suggestion
(4), and the list of all suggestions is sorted in decreasing
order of confidence (as a result of 3). The developer then
adjusts the PCE to either incorporate or exclude the desired
join points (5, 6) based on the suggestions.

3.2 Assumptions

We first state several simplifying assumptions about the
underlying source code to be analyzed; we discuss in
Section 4.1 how much of these have been relaxed in our
implementation and how others can be dealt with in future
work in Section 6. First, we assume that the input PCE is
initially correctly specified, i.e., it selects (and only selects)
intended join points. This ensures that the structural
commonality exhibited by the corresponding program
elements is correctly related to the input PCE. Furthermore,
we assume that intertype declarations (ITDs) (static cross-
cutting) are not utilized by the analyzed aspects. Intertype
declarations allow aspects to introduce and modify facets of
the base code, e.g., member introduction, existing at
compile time. This assumption helps simplify the algorithm
presentation. Adding intertype declarations to the current
algorithm would be reasonably straightforward.

Although it is possible for a PCE to select join points
associated within an advice body (possibly the one it is
bound to), we adopt the perspective that aspects are separate
from the base code; advice may only apply to join points
associated with classes, interfaces, and other Java types. This
assumption also helps simplify the algorithm presentation

KHATCHADOURIAN ET AL.: POINTCUT REJUVENATION: RECOVERING POINTCUT EXPRESSIONS IN EVOLVING ASPECT-ORIENTED... 645

Fig. 4. Phase I: Pointcut analysis.

Fig. 5. Phase II: Pointcut rejuvenation.

since it reduces both the kinds of entities and relations

between the entities existing in the input program that need

to be considered. Moreover, it frees us from resolving the

targets of proceed calls, which may exist in around advice.

We discuss adding advice bodies in Section 6. Last, we

assume that we can accurately resolve the declaration of the
advice a PCE is bound to across varying versions of the

software. This may be invalidated via the use of refactorings,

e.g., member relocation, being applied in between software

versions. Section 6 discusses plans for how our approach can

be made to cope with this issue.

3.3 Concern Graphs

To abstract the details of the underlying source code, a

representation of the program is first built using an

adaptation of a concern graph [35]. Concern graphs have
been used in previous work [34] to discover, describe, and

track concerns in evolving source code as they allow for

succinct program representations. We have chosen to use

concern graphs since they include information about the

structure of programs, and we are interested in unveiling

underlying structural patterns. We extended concern graphs
with several elements found in current Java languages, e.g.,

annotations, and adapted them for use with AOP.
We specify an extended concern graphCGþ to be a labeled

multidigraph consisting of a 4-tuple CGþ ¼ ðV ;E;R; ‘Þ. The
vertices V represent program elements contained within the

analyzed program, specifically, packages, classes, interfaces,

enumeration types, annotations, methods, and fields. We do

not consider local variables and other parameters in our
analysis as crosscutting concerns tend to crosscut a larger

granularity of program elements. E is a multiset of directed

edges that connect vertices in V depending on various

relations that may hold between them as depicted in the

source code. For example, HybridAutomobile and over-

allSpeed (Fig. 1) are related in that the classHybridAutomobile

declares the field overallSpeed. In this case, there would exist

an edge connecting the vertex that represents HybridAuto-

mobile to the vertex representing overallSpeed.R is the set of

all such (binary) relations thatwe consider. Since twovertices

maybe related in severalways, i.e., they satisfymore thanone

relation, there may exist multiple edges between them. As
such, ‘ : E ! R serves as a labeling function that distin-

guishes edges by labeling them with the satisfied relations.

Fig. 6 portrays a subset of the graph computed from the

example given in Section 2.

Table 1 portrays the complete set of binary relations that
we consider as well as the program entity types in which
they relate. Either of these relations may hold in a structural
sense, e.g., field declarations, or possibly during a particular
execution of the program, e.g., method calls. Section 4.1
discusses how we conservatively approximated the truth
value of these relations in our implementation by using
exclusively static information, i.e., through examination of
the program text, while Section 6 touches upon future work
which could result in a more accurate approximation. Many
kinds of relations may be formulated; however, we mainly
focus on popular relations as used in previous work [5], [7],
[35], with the addition of relations useful for AO languages,
e.g., Annotates. Section 4 reports on the appropriateness of
using such relations for PCE rejuvenation in AspectJ
programs; adding additional relations is discussed in
Section 6.

3.4 Concern Graph/Pointcut Association

The next step in our approach involves discovering graph
elements (vertices and edges) that represent program
elements corresponding to join points captured by the
input PCE so that patterns capturing commonality existing
between these elements can be later extracted. Recall that a
PCE describes a set of join points, which are well-defined
points in the program’s execution. Thus, a join point is very
much dynamic in nature. A join point shadow, conversely,
refers to base code corresponding to a join point, i.e., a point
in the program text where the compiler may actually
perform the weaving [29]. Whether the base code is advised
at that point is dependent on advice being applicable and
possible dynamic conditions being met. We treat a program
as consisting of a set of join point shadows that may or may

646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

Fig. 6. A graph subset computed from the example.

TABLE 1
Analyzed Program Entity Types and Relations

not be currently advised. This definition differs slightly
from those typically given in the literature [16], [43] and
helps simplify the algorithm presentation. Moreover, we
treat a PCE as selecting a subset of these shadows, i.e., we
assume that the PCE is free of dynamic conditions. This
allows us to exploit solely static information in our analysis.
Section 4.1 discusses how our implementation conserva-
tively relaxes this assumption so that PCEs utilizing
dynamic conditions may nevertheless be used as input to
our tool. The evaluation results reported in Section 4.4
indicate that the impact of this limitation is minimal and
that our current approach can be useful. There is evidence
that suggests that most PCEs do not take advantage of
dynamic conditions [2].

Shadows corresponding to method declarations enable
method vertices, i.e., for a graph CGþ ¼ ðV ;E;R; ‘Þ we say
that a vertex v 2 V is associated with (or enabled w.r.t.) a
PCE iff v represents a method whose corresponding method
execution-join point shadow is selected by the PCE. Thus, a
vertex representing the method m would be considered
enabled w.r.t. a PCE that selects a method execution-join
point for m.

For a graph built from the example in Fig. 1, the vertices
representing the methods DieselEngine.increase(Fuel) and
ElectricMotor.increase(Current) would be considered en-
abled w.r.t. the PCE found on line 3, Fig. 2. The graph
subset in Fig. 6 illustrates this; the vertices representing
these methods are shaded.

While shadows corresponding to method declarations
enable method vertices, shadows corresponding to sites
(call-sites, field access, etc.) enable edges. We say that an
edge ðu; vÞ 2 E is enabled w.r.t. a PCE iff

. the edge is labeled as either a method call,
i.e., CallsMethodðu; vÞ holds, a field read, i.e.,
GetsFieldðu; vÞ holds, or a field write, i.e.,
SetsFieldðu; vÞ holds, and

. there exists a corresponding method call-, field get-,
or field set-join point shadow selected by the PCE
such that the called method, the read field, or the
written field, respectively, is the one represented by
vertex v, and the shadow resides within the body of
the method represented by vertex u.

For example, an edge representing a call from a method
m to a method n would be considered enabled w.r.t. a PCE
selecting a method call shadow for n originating in the body
(or in AspectJ terminology, withincode) of m. Note that the
difference between a method execution-join point and a
method call-join point is that in the former, the correspond-
ing shadow lies at the declaration of the invoked method,
while in the latter, it lies at the site of the method invocation,
i.e., the client code. Section 4.1 discusses how our
implementation leverages existing tool support to deduce
enabled graph elements.

3.5 Pattern Extraction

Once we associate (enable) graph elements with the input
PCE, (see Section 3.4), we analyze structural commonality
between these elements with the hope that future elements
whose shadows should be included in a new version of the
PCE may exhibit similar structural characteristics with a

particular level of confidence. Note that we only take
advantage of structural commonality between program
elements and not other kinds of commonality, e.g., string
similarity of method names. We are interested in exploiting
information pertaining to the structure and organization of
the base code when related to PCEs.

Recall that (increase(Fuel) and increase(Current)), whose
corresponding execution was selected by (execution(void
increase(Energy+))), both contained calls to (notifyChange-
In(Fuel) and notifyChangeIn(Current)), which read from
(overallSpeed). Deliberately, this information is expressed
by two paths (sequences of connected edges) increase(Fuel)

e

> overallSpeed and increase(Energy)
e

> overallSpeed in
Fig. 6. We capture commonality associated with such graph
elements by extracting patterns from paths in which they are
contained. These patterns, which convey general “shapes”
(in terms of paths) of the graph surrounding the enabled
graph elements, i.e., graph elements representing program
elements corresponding to join point shadows selected by
the input PCE, will ultimately be applied to graphs
computed from subsequent versions to uncover new
elements displaying the captured commonality.

For each enabled (w.r.t. the input PCE) vertex v and edge
ðu; vÞ, we extract patterns from finite, acyclic paths of length
(in terms of edges) � k passing through v and along ðu; vÞ,
respectively. The maximum analysis depth parameter k, an
input to the algorithm, controls tractability by restricting
the depth of satisfied relations analyzed and, conse-
quently, limits the length of the patterns derived. Section
4.2 discusses our choice for k in our evaluation. An
example of such a path when taking the enabled vertex
v ¼ increaseðFuelÞ a n d k ¼ 2 i s increaseFuelðFuelÞ cm

�!
notifyChangeInðFuelÞ gf

�! overallSpeed, where edge labels cm
and gf refer to the satisfied relations CallsMethod and
GetsField, respectively.

Intuitively, patterns are constructed from paths so that
paths matching the pattern are ones that share common
origins or sinks with the original path. Also, vertices in the
matching paths are connected via similar (in terms of labels)
edges as the vertices in the original path.

We consider two kinds of patterns, those derived from
enabled vertices, called vertex-based patterns, and those
from enabled edges, called edge-based patterns. A vertex-
based pattern is obtained from a path by replacing vertices
along the path with vertex wild cards. Vertex-based patterns
are used for suggesting method execution join points. An
edge-based pattern is obtained by not only replacing
vertices with vertex wild cards, but also a certain edge
with an edge wild card. Edge-based patterns are used for
suggesting site-based (e.g., call-site, field-set) join points.
The replacing edge wild card is related to the site-based
shadow to be suggested.

Vertex-based patterns will contain all but one (nonwild)
concrete vertex; this is the element representing the
common source or sink. Every edge in a vertex-based
pattern is concrete so that paths containing similarity
connected vertices can be matched with the pattern. There
are no edge wild cards in a vertex-based pattern. Edge-
based patterns are similar to vertex-based patterns with the
exception of the single edge wild card mentioned above.

KHATCHADOURIAN ET AL.: POINTCUT REJUVENATION: RECOVERING POINTCUT EXPRESSIONS IN EVOLVING ASPECT-ORIENTED... 647

While pattern matching is covered in Section 3.6, we
briefly discuss wild card matching here. Vertex wild cards
only match vertices, while edge wild cards only match
edges. Wild cards serve to express points of variation in
paths the encompassing pattern is matched against, as well
as to select shadows that are ultimately suggested for
incorporation. As such, wild cards may be enabled as
determined by their position relative to the enabled graph
element in the path used to create the pattern. Shadows
associated with graph elements (cf., Section 3.4) matched by
enabled wild cards are eventually suggested.

We extract vertex-based patterns from a path � ¼
he1; e2; . . . ; eni and an enabled vertex v along �. Details of
the algorithm can be found in Fig. 10 in the Appendix. The
algorithm proceeds as follows: If v occurs in � as the source
vertex of the first edge, we extract a single pattern by
replacing this vertex with an enabled wild card. The
remaining vertices along the path are replaced by disabled
wild cards except for the target vertex of the last edge. To
illustrate, recall the path

increaseFuelðFuelÞ �!cm notifyChangeInðFuelÞ
�!gf overallSpeed

where the vertex increaseFuel(Fuel) is enabled w.r.t. the
PCE. f?� �!cm ? �!gf overallSpeedg would be the singleton
extracted from this path, where ? denotes a disabled wild
card and ?� an enabled wild card.

Continuing, if v occurs in � as the target vertex of the first
edge, a similar action is performed as in the previous case;
however, we retain the source vertex of the first edge and
instead replace the target vertex of the first edge with an
enabled wild card. For the case that v occurs in � as either
the source or the target vertex of the last node, the reverse
process is performed. Finally, for the case in which v is not
involved with either the first or last edge of the path, we
split the path to extract two patterns: one with v as the
target vertex of the last edge and one with v as the source
vertex of the first edge and proceed as before.

Edge-based patterns are handled in a similar manner.
Details of the algorithm can be found in Fig. 11 in the
Appendix. The key difference between the vertex and edge
pattern extraction algorithms is that, in the case of edges,
the corresponding algorithm is intended to construct
patterns which produce other edges exhibiting common-
ality related to the input (enabled) edge. This requires
accounting for locations of where edges appear in paths, as
well as the labels of the edges.

3.6 Pattern Matching

We say that a pattern �̂ matches a path � iff

. for each vertex u along � at position i, there is a
vertex v along �̂ at position i s.t. either u ¼ v or v is a
wild card, and

. for each edge ðp; qÞ along � at position j, there is an
edge ðs; tÞ along �̂ at position j s.t. either ‘ðp; qÞ ¼
‘ðs; tÞ or ðs; tÞ is a wild card.

To illustrate, suppose we augmented the graph in Fig. 6
with new vertices and edges representing facets of the

FuelCell class in Fig. 3. The resulting situation is depicted in
Fig. 7, where a new path

increaseðdoubleÞ �!cm notifyChangeInðdoubleÞ
�!gf overallSpeed

matches the previously extracted pattern ?� �!cm ? �!gf
overallSpeed.

Given that a pattern matches a path, suggested shadows
are ones represented by graph elements along the path that
matched enabled wild cards in the pattern. Vertices
representing methods matched by enabled wild cards
produce suggested shadows corresponding to the execution
of those methods. Likewise, edges representing satisfied
relations, e.g., method calls, field reads, field writes,
between program elements matched by enabled wild cards
produce suggested shadows corresponding to the relation
which reside in the body (withincode) of the method
represented by the source vertex and operate (call, get, or
set) on program element represented by the target vertex.
For example, when matching the pattern ?� �!cm ? �!gm
overallSpeed against the path

increaseðdoubleÞ �!cm notifyChangeInðdoubleÞ
�!gf overallSpeed;

the method FuelCell.increase(double) is represented by a
vertex that matches an enabled wild card element. The
situation is emphasized in Fig. 7 by a dashed line through the
vertices that induced the wild card. As a result, we suggest
that theCCCbeing realized by the advice on lines 2-4 of Fig. 2
applies to the shadow corresponding to the execution of this
method due to its semantic equivalence with other shadows
to which the same CCC applies, i.e., the ones selected by the
PCE on line 3. In AspectJ, however, multiple advice
declarations may to be responsible for realizing a particular
CCC, similar to how multiple methods may be responsible
for realizing a particular concern in Java. Such is the case
here since applying the CCC to the suggested shadow
would entail creating a new advice declaration to expose
context from incompatible parameter types in the same
position (in this case, Energy and double, both being the
first parameter). Thus, upon our suggestion, the developer
would proceed to create a new advice declaration bound to
the PCE execution(void FuelCell. increase(double)) that
properly implements the CCC corresponding to speeding
violation prevention.

3.7 Suggestion Sorting

Shadows suggested for incorporation are presented to the
developer in descending order of the degree of confidence

648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

Fig. 7. Evolving the base code with a FuelCell class.

we have in the shadow being applicable to a revised version
of the input PCE. The confidence value (real in ½0; 1�) paired
with each suggestion is inherited from the pattern that
produced it. We evaluate our confidence in a pattern’s
ability to match shadows contained in a subsequent version
of the base code that should be captured by a revised
version of the input PCE by applying the pattern to the
current version of the base code and assessing its perfor-
mance. This is performed on three different dimensions, as
depicted by the equations listed in Fig. 8, and referred to as
pattern attributes.

We first define a function Matchð�̂;�Þ, where �̂ ranges
over the set of patterns and � the power set of paths that,
given a pattern and a set of paths,matches the pattern against
the paths resulting in a set of suggested shadows as detailed
in Section 3.6. Then,wedefine the err� rate attribute, (1), to be
the ratio of the number of shadows captured by both the PCE
and the pattern whenmatched against finite, acyclic paths in
the graph PathsðCGþÞ to the number of shadows solely
captured by the pattern. Note that CGþ refers to the graph
computed from the code in which the pattern was con-
structed (original, unrevised program). Furthermore, jPCEj
is the number of shadows selected by PCE.

� signifies the metric’s association with the rate of type I

(or �) errors which relates to the number of false positives

resulting from applying the pattern to the original version

of the base code, as portrayed by the region marked � in

Fig. 9. The err� rate quantifies the pattern’s ability in

matching solely the shadows contained within the PCE; the

closer the err� rate is to 0, the more likely the shadows

matched by the pattern are also ones contained within the

PCE. It refers to the quality of results that the pattern is

likely to produce in the future. A pattern with a low err�
rate is one that expresses a strong relationship among

shadows captured by the PCE; we would expect future

shadows to exhibit similar characteristics, a claim that is

validated by our experiment reported in Section 4.4. If a

pattern matches no shadows, its err� rate is 0. For example,

applying the pattern ?� �!cm ? �!gf overallSpeed to the origi-

nal base code version in Fig. 1 would produce three

shadows corresponding to the execution of methods

DieselEngine.increase(Fuel), ElectricMotor.increase(Cur-

rent), and Dashboard.update() (due to the pattern matching

the path updateðÞ �!cm getOverallSpeedðÞ �!gf overallSpeed).

Thus, the err� rate for this pattern w.r.t. the PCE found

on line 3 of Fig. 2, which selects the execution of methods

DieselEngine.increase(Fuel) and ElectricMotor.increase

(Current) in the original base code version, would be 1
3 .

The err� rate attribute, (2), is the ratio of the number of
shadows captured by both the PCE and the pattern when
applied to paths in the graph to the number of shadows
captured solely by the given PCE. The difference between the
err� and err� rates is subtle but important; � signifies the
metric’s associationwith the rate of type II (or �) errorswhich
relates to the number of false negatives produced by the
pattern (also depicted in Fig. 9 by the region marked �). The
err� rate quantifies the pattern’s ability in matching all of the
shadows contained within the PCE; the closer the err� rate is
to 0, the more likely the pattern is to match all the shadows
contained within the PCE. It refers to the quantity of correct
results that the pattern is likely to produce in the future. A
pattern with a low err� rate expresses properties similar to
PCE, regardless of whether or not those properties are
common to the captured shadows. If the given PCE does
not contain any shadows, the pattern’s corresponding err�
rate is 1 since it could not possiblymatch any of the join points
contained within PCE. For example, the above considered
pattern would display an err� of 0 w.r.t. the PCE found on
line 3, Fig. 2, since it, when applied to the original base code
version, produces all the shadows captured by the PCE.

Recall that a pattern �̂ is derived from a path � by
replacing concrete elements in the path with wild card
elements. Wild card graph elements may match a number
of elements contained in the graph, as detailed previously.
When predicting a pattern’s future ability to help rejuvenate
a given PCE, we take into account its abstractness (abbre-
viated abs), i.e., the ratio of the number of constituent wild
card elements to concrete elements. Let j�̂j denote the
number of elements (vertices and edges), including wild
cards, at unique positions in the pattern �̂. Moreover, let
Wð�̂Þ denote the multiset projection of wild card elements

KHATCHADOURIAN ET AL.: POINTCUT REJUVENATION: RECOVERING POINTCUT EXPRESSIONS IN EVOLVING ASPECT-ORIENTED... 649

Fig. 8. Pattern attribute equations.

Fig. 9. Comparing a PCE with a pattern �̂ in the original program.

contained in pattern �̂. Likewise, jWð�̂Þj represents the
number of wild card elements contained within pattern �̂.
Then, the abs of a pattern �̂, which is independent of any
particular PCE, is given by (3). Note that an empty pattern
has no concrete elements; thus such a pattern has an
abstractness of 1. To exemplify, the aforementioned pattern
would be considered 2

5 abstract.
The intuition behind abs is that patterns containing many

wild card elements are more likely to match a greater
number of concrete graph elements and vice versa. Thus,
we combine the err� and err� rates by use of a weighted
mean weighted by abs for the following reasons. A pattern
that is very abstract is typically less likely to hone in on
shadows that are only selected by the given PCE. Con-
versely, a pattern that is less abstract is less likely to cover
all shadows selected by the given PCE. The combined
metrics are used to derive the confidence (abbreviated conf)
pattern attribute depicted in (4), which is a convenient,
single metric in judging the confidence we have in the
pattern accurately detecting shadows to be included in a
future, rejuvenated version of the related PCE. The closer a
pattern’s confidence is to 1, the more likely it will produce
accurate suggestions in the future. In the case of our
previous example, the pattern exhibits a conf of 0.60 which,
in turn, would be paired with the suggested shadow
FuelCell.increase(double) produced when applying the
pattern to the new version of the base code (cf., Fig. 3).

4 EXPERIMENTAL EVALUATION

4.1 Implementation

We implemented our algorithm as a plug-in, called
REJUVENATE POINTCUT (http://code.google.com/p/
rejuvenate-pc), to the popular Eclipse IDE. Eclipse abstract
syntax trees (ASTs) with source symbol bindings were used
as an intermediate program representation. The extended
concern graph was constructed with the aid of the JayFX
(http://cs.mcgill.ca/~swevo/jayfx) fact extractor, which
we extended for use with Java 5 and AspectJ. JayFX
generates “facts,” using class hierarchical analysis (CHA)
[8] pertaining to structural properties and relationships,
e.g., field accesses, method calls. Source code and transi-
tively referenced libraries (possibly in binary format) are
analyzed during graph building. The AJDT compiler
(http://eclipse.org/ajdt) was leveraged to conservatively
(explained next) associate the graph with a PCE. For a given
PCE, the AJDT compiler produces the Java program
elements, e.g., method declarations, method calls, field sets,
correlated with selected shadows. Both pattern extraction
and pattern-path matching were implemented via the
Drools (http://jboss.org/drools) rules engine, which uses
a modified RETE algorithm [11]. The Drools framework
provides a natural query language and an efficient solution
to the many-to-many matching problem. Pattern descrip-
tions were persisted as XML files using JDOM (http://
jdom.org).

To increase applicability to real-world applications, we
relaxed several assumptions described in Section 3. For
example, we conservatively assume that dynamic advice,
i.e., advice bound to a PCE containing runtime predicates, is
always applied. If the tool encounters any intertype
declarations or any other form of the static crosscutting,

the associated PCE is still processed, but these constructs
are not factored into the analysis. That is, any program
element introduced to the base code via an ITD, as well as
any program element relation induced by static cross-
cutting, is not represented in the extended concern graph.
Thus, there may be shadows related to program elements
introduced by ITDs that will not be suggested by our tool.
Moreover, there may be relations induced by static cross-
cuts between program elements that our tool does not use,
which may reduce pattern precision. While it would be
reasonably straightforward to implement this technology,
the limitation did not seem to have a significant impact on
the performance of our tool, as the following sections
demonstrate. Also, there is evidence that static crosscutting
is not prevalent in AspectJ programs [2, Section 4].

4.2 Study Configuration

Our evaluation was conducted in two phases. For both
phases, the maximum analysis depth parameter k was set at
2. Although setting k to be less than 2 would theoretically
improve performance, we chose a greater value due to the
inherent nature of PCEs to capture join points that crosscut
many heterogeneous architectural modules. For example,
consider the following PCE taken from [26] that is intended
to select all join points corresponding to JDBC (http://
java.sun.com/jdbc) connection creations calls originating
from mypackage:

pointcut connectionCreation(String url,

String username, String password)

: call(public static Connection

DriverManager.getConnection(String,

String, String))

&& args(url,username, password)

&& within(mypackage.*);

This PCE is too specific since there are two additional
getConnection methods in the DriverManager interface that
can be used to create database connections [43]. Suppose that
client code is added to the system that calls these methods
instead. Since join points corresponding to these new
method calls would not be captured by the above PCE, it
would be helpful if our approach suggested them upon
rejuvenation. To do so, patterns would need to be
constructed that effectively capture the structural relation-
ships exhibited by program elements related to the currently
selected shadow. It is conceivable that methods responsible
for creating database connections call a common method for
establishing a network connection. However, a pattern of
length 1 (having a single edge) would be insufficient to
capture such a relationship since the pattern must incorpo-
rate elements from the client code, the methods responsible
for creating the database connection, and the method
responsible for creating a network connection. A pattern of
length 2, on the other hand, would suffice. CCCs that apply
to methods that delegate tasks to intermediate methods are
common in OOP. Thus, in general, we deemed it necessary
to drive the analysis reasonably deep through these layers,
which, for example, corresponds to analyzing longer
method call chains. Setting k greater than 2 may result in
effective rejuvenation for a wider variety of situations, but

650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

our experiments described in the forthcoming sections
suggest that it would likely result in a large runtime
overhead with little gain in precision and recall. We discuss
this issue further in Section 6.

In the first phase, we aimed to show that the motivation
behind our proposal is well founded by demonstrating that
join point shadows selected by a single PCE typically
portray a significant amount of unique structural common-
ality. We did so by generating and subsequently studying
patterns from single versions of 23 publicly available
AspectJ benchmarks, applications, and libraries (including
open-source projects) of varying size, in terms of nonblank,
noncommented lines of code (LOC) and domain. LOC was
counted using the Eclipse Metrics tool found at http://
metrics.sourceforge.net. Complete source code and descrip-
tions of as well as references to the studied subjects can be
found on our website, http://sites.google.com/site/
pointcutrejuvenation. The authors were not involved in
the development of any of the subject applications. To
ensure that a certain level of quality was maintained, we
purposefully selected subjects that have been used pre-
viously in the literature, including empirical studies. This
ensures that the subjects have achieved a particular level of
acceptance within the community.

Table 2 lists the subjects along with associated LOC,
which excludes code contained within aspect files, (column
LOC), ranging from 73 for Quicksort to 44K for MySQL
Connector/J, number of class files after compilation (column
class.), PCEs (column PCE) analyzed, which includes only
PCEs bound to advice bodies, total selected shadows
(column shad.), and patterns (column patt.) extracted (aver-
aging 6.99 per shadow). For each subject, the pattern
generation was repeated three times, with the results of
each run averaged, using a 2.83 GHz Intel machine. The JVM
heap size was set to 5 GB. Column t depicts the running time

in seconds, which excludes intermediate representation
(ASTs) construction time. The average was 4.66 seconds
per KLOC, 0.15 seconds per shadow and 2.72 seconds per
PCE. This indicates that the time required to generate our
patterns is practical for even large applications. The
remaining columns will be discussed in Section 4.3.

In Phase II, we demonstrate the usefulness of our
technique in a real-world setting by rejuvenating PCEs in
multiple versions of three of the aforementioned subjects. As
this taskwas rather involved, we chose a proper subset of the
subjects listed in Table 2 that were ripe for the analysis in a
number of ways. These subjects, listed in Table 3, were
comprised of a series of discrete releases (column vers.),
which allowed the accuracy of the shadows mechanically
suggested by our tool to be evaluated against actual
modifications to PCEs in terms of included shadows made
by human developers in subsequent versions.

We briefly introduce the subjects here; more information
pertaining to the subjects can be found on our website
mentioned in Section 4.2. HealthWatcher is a web-based
application that provides various medical-related support

KHATCHADOURIAN ET AL.: POINTCUT REJUVENATION: RECOVERING POINTCUT EXPRESSIONS IN EVOLVING ASPECT-ORIENTED... 651

TABLE 2
Phase I: Correlation Analysis Experiment Results

TABLE 3
Phase II: Rejuvenation Experiment Results

vers. is the number of versions analyzed, PCE is the number of
pointcuts analyzed, targ. is the number of shadows in the target region,
sugg. is the total number of suggested shadows, rec. is the average
recall, �rec is the corresponding standard deviation, "TP is the average
number of suggestions appearing before true positives, � "TP is the
corresponding standard deviation, and t is the total rejuvenation time in
seconds

to patients. MobileMedia is a software product line
consisting of applications that manipulate photo, music,
and video on mobile devices. Last, Contract4J is a frame-
work that facilitates Design by Contract (DbC) [30] style
programming in Java (version 5 and later).

For our approach to be successfully evaluated, a
complete set of changes was required to be considered in
isolation. It was often the case that subsequent versions in
SVN/CVS repositories did not contain complete changes,
e.g., the base code was modified and committed with the
PCE modified and committed in a later version. This made
reasoning about units of discrete modifications difficult;
thus, we considered major releases as units of evolution.
Moreover, we were solely interested in rejuvenating PCEs
between versions that exhibited nontrivial (defined next)
modifications.

We define the following conditions for PCEs regarding
subsequent versions, which ensures that the performance of
our tool is evaluated only in situations where the PCE
recovery due to modifications to the base code is nontrivial.
We say that a PCE contained in a version A evolved between
a version B iff

1. the textual representation of the PCE in A differs
from the textual representation of the PCE in B,

2. the shadows selected by the PCE in A differ from the
shadows selected by the PCE in B, and

3. the shadows selected by the PCE in B differ from the
shadows selected by the old representation of the
PCE in B.

Criterion 1 asserts that a developer rewrote the PCE
between the two versions, i.e., they textually differ.
Criterion 2 excludes the situation where the developer
unnecessarily rewrote the PCE between versions, i.e., the
situation where two expressions capture the same exact
shadows. Last, criterion 3 excludes the situation where the
PCE remained robust between versions. As such, we
evaluated the performance of our tool only in situations
where a textualmodification to thePCEwas required to allow
the PCE to continue to capture intended join points. Column
PCE, Table 3 shows the number of PCEs across versions that
met these criteria and were consequently selected to be
rejuvenated by our tool. Column t represents the total
rejuvenation time in seconds, which averaged 10.95 seconds
per PCE. This indicates that our tool is practical to use,
especially since users will most likely rejuvenate their
pointcuts between releases of their software. We discuss
ways to possibly reduce rejuvenation time in Section 6. The
remaining columns are discussed in Section 4.4.

4.3 Phase I: Correlation Analysis Results

In Phase I, we assess the amount of unique structural
commonality typically portrayed by shadows selected by a
single PCE by studying attributes (cf., Fig. 8) of patterns
extracted from a single version of the subjects listed in
Table 2. Recall that a pattern with a low err�, cf., (1), is one
that expresses unique structural commonalities between
shadows selected by the PCE from which it was extracted.
In this situation, applying the pattern to the original version
of the base code would result in a set of suggested shadows
that matched closely with those selected by the PCE itself.

Thus, a pattern with a low err� rate is one that expresses
common structural characteristics among shadows selected
by the PCE that are not exhibited by other shadows. Recall
from Section 3 that our definition of shadow is such that a
shadow corresponds to a join point that may or may not be
currently under the influence of advice. Column err�
depicts the average err� rate for all patterns extracted from
the associated subject. We found the average, weighted by
the number of patterns extracted, err� rate among all
subjects to be 0.18, demonstrating that a high correlation
exists. Moreover, we found this correlation to be exception-
ally widespread, i.e., not only was the commonality unique
to shadows selected by a particular PCE, but many of these
shadows shared these characteristics. This is indicated by
the average err�, cf., (2), rate (column err�) whose average,
weighted by the number of PCEs analyzed, among all
subjects was found to be 0.16. The combination of these two
findings show that shadows selected by a single PCE
indeed typically display a significant amount of unique
structural commonality.

4.4 Phase II: Expression Recovery Results

In Phase II, we assess the accuracy of our technique to
mirror human-produced results by rejuvenating PCEs in
multiple versions of the subjects listed in Table 3. We then
evaluate the relationship between the shadows that were
suggested for inclusion by our tool and those that were
actually included in (human) revised PCEs residing in a
subsequent version. We are especially interested in explor-
ing our tool’s performance in precisely suggesting shadows
that were selected by the revised PCE but would not have
been selected by the original PCE had we applied it to the
new base code version. These are exactly the shadows that
the developer would have had to manually determine to be
applicable to the PCE, which coincide with those that our
tool could be most helpful in mechanically discovering. The
total number of these targeted shadows across all rejuvena-
tions is listed by column targ., Table 3.

4.4.1 Quantitative Analysis

As success metrics, we defined a promising rejuvenation to
be one where our tool suggests the majority of targeted
shadows, i.e., a high recall. Moreover, as suggestions are
ranked by confidence (cf., Section 3.7), the traditional notion
of precision (for unranked results) does not apply to our
situation [28]. Instead, we defined a precise rejuvenation to
be one where targeted shadows appeared near the top of
the list of suggestions. In other words, the closer the true
positives appear near the top of the list, the more effective
we deem our tool would have been in these situations.

Column rec., Table 3 shows the average recall at which
our tool was able to suggest targeted shadows, while
column �rec: shows the corresponding standard deviation.
The average recall across all subjects was found to be 0.90,
which is normalized using a standard error of 0.03, with a
standard deviation of 0.24. This indicates that, on average,
our tool suggested 90 percent of targeted shadows with a
standard deviation of 24 percent, demonstrating that our
tool typically resulted in promising rejuvenation. In a real-
world situation, however, the developer would be left to
manually discover the remaining shadows (10 percent on

652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

average) that our tool did not identify. In the worst case,
this activity would require a whole program analysis. Thus,
for such situations where our tool does not find all shadows
that must be incorporated into updated versions of point-
cuts, the usefulness of our tool is limited.

While both HealthWatcher and MobileMedia had similar
recall values, the average recall for ContractJ was 0.81,
which was distinctly lower. We conjecture several reasons
for this difference. First, unlike the other subjects, Con-
tract4J is a framework; thus, client code was not analyzed.
Analyzing client code along with the framework could
potentially result in higher performing patterns as more
structural commonality may have existed between the
framework and client code. Second, Contract4J makes
heavy use of annotation types in defining PCEs, which is
not typical of AO programs. In using annotations, locations
in the base code where advice should apply are “marked.”
This is likely to result in program elements corresponding
to selected join points that do not portray widespread
structural commonality. This fact was verified in the first
phase of our experiment (Section 4.3) when we found that
the patterns produced from Contract4J had relatively high
err� (0.44 on average) rates, especially in comparison to
HealthWatcher (0.16) and MobileMedia (0.00).

Column "TP portrays the average number of sugges-
tions that appeared before true positives in the ordered list
of suggested shadows, while column �"TP portrays the
corresponding standard deviation. As indicated by Table 3,
the "TP value across all subjects averaged � 4, which is
normalized using a standard error of 1.3, with a standard
deviation of 9.51. This corresponds to the average number
of suggested shadows the developer would have had to
search through prior to discovering a true positive. Our
results show that these target shadows appeared, on
average, significantly close to the top of the list of
suggestions, which would have allowed developers to
easily identify target shadows.

Note that the results of each of the subjects vary in this
category. The sample size of HealthWatcher (6 PCEs)
compared to MobileMedia (30 PCEs) was too small to draw
any significant conclusions as to why the "TP values for
these subjects were different. However, notice that our tool
did not perform as well when applied to the Contract4J
subject once again. We found that the difference is due to
the fact that Contract4J’s PCEs contained many dynamic
conditions, especially in comparison with the other two
subjects. This use of dynamic PCEs naturally results in less
accurate patterns due to the conservative nature of our
algorithm. Since substantial use of dynamic PCEs is not
typical, as previously discussed in Section 3.4, the results
indicate that the performance of our tool would be precise
for many AO programs.

4.4.2 Qualitative Analysis

We identify potential reasons for both accurate and
inaccurate suggestions made by our tool. For succinctness,
we draw examples from only the HealthWatcher subject.
The major contributing factor that was found to cause
patterns derived by our approach to be ineffective when
applied to subsequent versions relates to modifications
made to the base code that involved removing program

elements appearing in patterns. For example, the PCE
callð�HttpSessionþ :putValueðString; SubjectÞÞ was affected
by a modification to the base code that involved introducing
the Adapter design pattern [12]. Consequently, the HttpSes-
sion class was replaced, invalidating all patterns containing
references to this class. Fortunately, however, our tool was
able to compensate by producing other patterns that were
effective in rejuvenating the aforementioned PCE.

Common base-code modifications involved refactoring.
For example, one modification introduced the Command
design pattern [12], which required relocating the imple-
mentations of several Servlets to a series of Command
classes. This induced the need to rejuvenate several PCEs.
As the modifications made to the base code were minimal
and purely structural, i.e., the method bodies remained
intact, our patterns encouragingly but expectedly proved
completely effective in this situation, suggesting only and
all of the targeted shadows.

We found several PCEs in the subjects to be very specific,
often selecting only a single join point. Therefore, patterns,
although few, constructed using these PCEs were generally
associated with a high confidence value. However, it was
not clear such patterns would prove useful as base-code
modifications that break the PCE could be rare. Further-
more, having only a minimal set of patterns generated for
these PCEs, we questioned their usefulness in the cases
where such change does occur. Despite this, we did find
scenarios involving updates to these PCEs and, surpris-
ingly, our patterns were able to produce accurate sugges-
tions in these situations. One particular PCE that related to
synchronization required rejuvenation due to new types
introduced. An obscure pattern that centered upon refer-
ences to an exception raised by classes that required the
managed synchronization behavior caused shadows asso-
ciated with the new types to be accurately suggested. This
demonstrates a benefit of our approach in its ability to
discover obscure structural characteristics that may have
eluded a developer when manually updating PCEs.

4.5 Threats to Validity

Several possible threats can undermine the aforementioned
evaluation results. We explain how we have minimized
their effects. Recall that Phase II aimed to assess the ability
of our approach to mimic human-produced results in a real-
world setting. First, the subjects selected for our study may
not be representative of the majority of AO programs, thus
hindering the usefulness evaluation. We chose subjects that
were publicly available open source projects, where a
number of developers contributed to the source code. In
addition, we chose mature projects so that ample time has
been allotted to accumulate diverse coding styles and
maintenance changes. This assures that subject pool was
adequate in representing real-world AO projects.

Second, our choice for the delta in which our approach
was applied to the base code may not have accurately
coincided with when developers actually recovered their
PCEs manually. For instance, they may have updated their
PCEs to reflect changes in the base code numerous times
prior to a release. However, we estimated that the upper
bound on when this activity would take place is immedi-
ately prior to milestone releases, i.e., a new version would

KHATCHADOURIAN ET AL.: POINTCUT REJUVENATION: RECOVERING POINTCUT EXPRESSIONS IN EVOLVING ASPECT-ORIENTED... 653

not be publicly released until PCEs were verified to
correctly capture all of and only intended join points. As
such, we chose major release points for our delta, which
practically represents a subset of when PCEs would be
recovered manually. Moreover, we are unaware of situa-
tions that occurred during the development of our subjects
where the developer evolved the base code but neglected to
update pointcuts. Since our delta was taken at major release
points, it was unlikely for such a situation to occur at this
level of granularity. However, it is possible that this
situation occurred in between these points.

Last, in Section 4.2, we expressed that in Phase II we
were solely interested in rejuvenating PCEs between
versions that exhibited nontrivial modifications. In this
way, we assessed the usefulness of our tool only in
situations where it was needed as to avoid possibly overly
positive results in situations where it was not needed.
However, we have no way of telling if the suggestions
made by our tool when used in an unneeded situation
would deter the developer from correctly updating PCEs.
By design, we have excluded such scenarios from our
analysis and thus do not have data pertaining to the
behavior of the tool when used in these situations.

5 RELATED WORK

5.1 Concern Traceability

The closest work resembling (and inspiring) ours involves
tracking [34] and managing [7] concerns in source code
throughout evolution. These approaches do not specifically
deal with AOP, and our approach may be seen as their
adaption and extension to the paradigm. However, there
are several key differences. First, Dagenais et al. [7] derive
expressive intensional patterns from enumeration-like ex-
tensional descriptions of where concerns apply in source
code and proceed to compare the performance between the
two. Our patterns are also intensional descriptions but
derived from other intensional descriptions, namely, PCEs.
Also, patterns produced by our approach have been made
to compete with the expressiveness inherent to PCEs, which
deal specifically with CCCs. For example, our confidence
evaluation is obtained using three dimensions of analysis
(cf., Fig. 8). Recall from Section 4.2 that, due to the nature of
CCCs, our graph-based approach features a general
analysis depth parameter. This parameter, along with the
algorithmic considerations taken, allows us to derive
patterns of a specified length. Thus, concepts pertaining to
algorithm development are treated more fully in this work.
Last, we present a thorough empirical evaluation of our
technique applied to evolving AO software.

5.2 Aspects and Refactoring

Wloka et al. [42] present a technique for automatically
updating PCEs upon various refactorings of the base code.
The associated tool updates PCEs only when predefined
refactorings are invoked, whereas our tool deals with
general base-code modifications. Moreover, contrary to
our technique, the approach is unable to update PCEs due
to additions of new join points introduced in the new base
code version.

Anbalagan and Xie [1] present an approach that clusters
a set of given join points to a single PCE based on common

characteristics in program element names, using lexical
matching, for refactoring non-AO software to use aspects.
The proposal does not consider the PCE maintenance upon
base code evolution in AO software. Nevertheless, we
foresee an interesting scenario where the proposed tool may
be integrated with our technique to automatically cluster
suggested join points to be included in a revised PCE.

5.3 Automated Aspect-Oriented Software
Development

Several techniques (e.g., [32], [39]) aim to automate AOP-
based development. However, they analyze changes in
shadows between software versions so that the developer
fully understands the impact of the alteration of the base
code on advice behavior. In contrast, our approach infers
shadows that are likely to belong in a new version of the PCE
based upon those changes. Automated tools, such as AJDT
and PointcutDoctor [43], display join points that currently
and almost, respectively, match a given PCE, but do not
analyze the differences exhibited by join points between
versions of the base code. Furthermore, the ranking scheme
of Ye and De Volder [43] is hard-coded by a predefined,
developer-minded heuristic, while our approach ranks join
point suggestions in a more custom fashion using analysis
results from the previous base code version.

5.4 Pointcut Fragility

It is claimed that current PCE languages are not sufficiently
expressive to represent the developer’s true intentions in
capturing join points corresponding to a PCE [27], these
difficulties being rooted at the inherent fragility of typical
PCE languages [25]. Several approaches (e.g., [9], [18], [24],
[31], [38]) attempt to add expressiveness to help combat this
problem by altering or abstracting the underlying join point
model. Others (e.g., [5], [15]) go even further by proposing
approaches that combat fragility in these models. Our
proposal confronts the problem from a fundamentally
different perspective by combating pointcut fragility in a
current language (AspectJ) and essentially maintaining a
rich join point model underneath the given one. In this
view, our tool makes suggestions based off this rich model
while affording the developer the luxury of using a familiar
AO language. Yet others (e.g., [17], [33]) propose new,
hybrid languages that feature facets from both paradigms.
Thus, these languages would not be considered completely
AO in a traditional sense [10].

6 CONCLUSION AND FUTURE WORK

We have overviewed an approach that limits the problems
associated with pointcut fragility by providing automated
assistance to developers in rejuvenating pointcuts as the
base code evolves. Arbitrarily deep structural commonal-
ities between program elements corresponding to join
points captured by a pointcut in a single software version
are harnessed and analyzed. Patterns expressing this
commonality are then applied to subsequent versions to
offer suggestions of new join points that may require
inclusion. The implementation of a publicly available tool
was discussed, and the results of an empirical investiga-
tion, where the maximum structural commonality analysis

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

depth set at two, were presented, indicating that our
approach would be useful in rejuvenating pointcuts in
real-world situations.

In its current state, our tool presents the developer with
the suggested shadows that are to be manually integrated.
In the future, once the selection is final, PCEs can be
automatically rewritten using existing refactoring support
[42]. Moreover, we plan to incorporate techniques intro-
duced by Anbalagan and Xie [1] to perform compact PCE
representation rewriting. This approach takes as input a set
of shadows and uses join point clustering and string
analysis of program element names to produce a compact
PCE, making it an appropriate approach to follow ours in a
tool chain. In addition, a program element tracing mechan-
ism, e.g., Java Annotations, may be useful in pinpointing
PCE declarations across subsequent software versions.

Evaluating tradeoffs between performance (in terms of
pattern accuracy and running time) and maximum analysis
depth to more thoroughly evaluate our approach is an
interesting area of future work. In particular, it would be
interesting to find a saturation point where increasing the
maximum analysis depth parameter does not improve
precision and recall. Furthermore, it would be helpful to
discover an optimal parameter value that has a desirable
tradeoff between performance and accuracy. Exploring
graph reduction techniques (e.g., those employed by
Robillard and Murphy [35]) and leveraging the abc
compiler [3] to possibly reduce rejuvenation time may be
helpful in this situation.

Additional future work may involve investigating the
existence of other program element relations, e.g.,
HandlesException, that may contribute to our results, and
subsequently incorporating these relations in the extended
concern graph. Pointcuts selecting handler-join points would
then be associated these relations.

Potential future work also entails incorporating aspect
types and corresponding relations into the construction of
the graph, as well as intertype declarations. This process
would be well facilitated by the new Java Development
Tools (JDT) weaving feature introduced in AJDT 1.6.2. The
JDT weaving feature allows deeper integration with
Eclipse, especially with handling intertype declarations
[41]. In adding aspect elements, advice can be represented
as a new kind of vertex. Then, advice vertices can be
connected to method (or advice) vertices via an edge
representing an “advising” relation if the PCE bound to
the advice captures join points within the method’s (or
advice’s) body. Also, in the case of around advice, calls to
proceed can be added to the graph by considering the join
point shadows captured by the bound PCE. If the join
point shadow is a method execution, then a CallsMethod
edge can connect the vertex representing the advice to the
vertex representing the method. If the join point shadow is
a method call, on the other hand, the procedure would be
a bit more complex due to inheritance considerations.
Particularly, a CallsMethod edge would need to connect
the vertex representing the advice to vertices representing
methods that are in the class hierarchy (since CHA is
being used) of the method being called at the call-join
point. Adding such relations may help uncover new join

points in advice bodies that should be included into
existing PCEs.

A more accurate assessment of the dynamic applicability
of advice may be an interesting avenue, possibly using
dynamic traces in the analysis. Dynamic analysis, as well as
static analyses such as Rapid Type Analysis (RTA) [4], may
also be valuable in more accurately estimating the truth
values associated with relations.

In Phase II of our experiment, we assessed the level of
automation achievable by our approach by measuring its
ability to mimic human-produced results. Our approach,
however, has the potential to help developers correctly
specify PCEs and, perhaps, prevent bugs. In the future, we
intend to explore the ability of our approach to help prevent
bugs that are caused by PCE misspecification.

APPENDIX

PATTERN EXTRACTION ALGORITHMS

We detail the vertex-based and edge-based pattern extrac-
tion algorithms introduced in Section 3.5. Note that these
algorithms are written in an imperative style and are
conceptual, i.e., their purpose is to convey the algorithm
more precisely. As mentioned in Section 4.1, the pattern
extraction process was actually implemented via the Drools
rules engine. Drools rules files were created based on the

KHATCHADOURIAN ET AL.: POINTCUT REJUVENATION: RECOVERING POINTCUT EXPRESSIONS IN EVOLVING ASPECT-ORIENTED... 655

Fig. 10. Vertex-based pattern extraction algorithm.

following algorithms. These files are used as input to the
rules engine in our implementation, thus facilitating a
declarative way of expressing how patterns are extracted
from paths. The rules engine decides on the specifics of how
the patterns are actually extracted.

The vertex-based pattern extraction algorithm is depicted
in Fig. 10. Text appearing in the figure between f. . .g offers
descriptions of each of the algorithm’s steps. For reference,
the helper functions s : E ! V and t : E ! V map an edge to
its constituent source and target vertices, respectively.

The edge-based pattern extraction algorithm is depicted
in Fig. 11. Here, parameter e represents the enabled arc to
which to base the derived patterns. An enabled edge wild
card is denoted by raising a pair of vertices to the enabled
wild card symbol ?�. Again, text appearing between f. . .g
offers descriptions of each of the algorithm’s steps.

ACKNOWLEDGMENTS

This work was supported in part by European Commission
grants IST-33710 (AMPLE) and IST-2-004349 (AOSD-Eur-
ope). The authors would like to thank Barthelemy Dagenais,
Tao Xie, Alexander Egyed, Martin Robillard, Alfred V. Aho,
Marc Eaddy, Linton Ye, and David Chiu for their answers
to many technical and research-related questions and for
referring them to related work. They would also like to
thank the anonymous reviewers for their extremely useful
comments and suggestions.

REFERENCES

[1] P. Anbalagan and T. Xie, “Automated Inference of Pointcuts in
Aspect-Oriented Refactoring,” Proc. Int’l Conf. Software Eng.,
pp. 127-136, 2007.

[2] S. Apel, “How AspectJ Is Used: An Analysis of Eleven AspectJ
Programs,” J. Object Technology, vol. 9, no. 1, pp. 117-142, Jan. 2010.

[3] P. Avgustinov, A. Christensen, L. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble,
“ABC: An Extensible AspectJ Compiler,” Trans. Aspect-Oriented
Software Development I, pp. 293-334, 2006.

[4] D.F. Bacon and P.F. Sweeney, “Fast Static Analysis of C++ Virtual
Function Calls,” Proc. ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Applications, pp. 324-341,
1996.

[5] M. Braem, K. Gybels, A. Kellens, and W. Vanderperren,
“Automated Pattern-Based Pointcut Generation,” Proc. Int’l Symp.
Software Composition, pp. 66-81, Mar. 2006.

[6] W. Cazzola, S. Pini, and M. Ancona, “Design-Based Pointcuts
Robustness against Software Evolution,” Proc. Workshop Reflection,
AOP, and Meta-Data for Software Evolution, W. Cazzola, S. Chiba,
Y. Coady, and G. Saake, eds., Fakultät für Informatik, Universität
Magdeburg, pp. 35-45, July 2006.

[7] B. Dagenais, S. Breu, F.W. Warr, and M.P. Robillard, “Inferring
Structural Patterns for Concern Traceability in Evolving Soft-
ware,” Proc. IEEE/ACM Int’l Conf. Automated Software Eng.,
pp. 254-263, Nov. 2007.

[8] J. Dean, D. Grove, and C. Chambers, “Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis,” Proc.
European Conf. Object-Oriented Programming, pp. 77-101, Aug. 1995.

[9] M. Eichberg, M. Mezini, and K. Ostermann, “Pointcuts as
Functional Queries,” Proc. Programming Languages and Systems:
Second Asian Symp., pp. 366-381, Nov. 2004.

[10] R. Filman and D. Friedman, “Aspect-Oriented Programming Is
Quantification and Obliviousness,” Proc. Workshop Advanced
Separation of Concerns, Oct. 2000.

[11] C.L. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem,” Artificial Intelligence, vol. 19,
pp. 324-341, 1982.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Mar. 1995.

[13] W.G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y.
Cai, and H. Rajan, “Modular Software Design with Cross-
cutting Interfaces,” IEEE Software, vol. 23, no. 1, pp. 51-60,
Jan./Feb. 2006.

[14] S. Gudmundson and G. Kiczales, “Addressing Practical Software
Development Issues in AspectJ with a Pointcut Interface,” Proc.
Workshop Advanced Separation of Concerns, Oct. 2001.

[15] K. Gybels and J. Brichau, “Arranging Language Features for More
Robust Pattern-Based Crosscuts,” Proc. Int’l Conf. Aspect-Oriented
Software Development, pp. 60-69, Mar. 2003.

[16] E. Hilsdale and J. Hugunin, “Advice Weaving in AspectJ,” Proc.
Int’l Conf. Aspect-Oriented Software Development, pp. 26-35, Mar.
2004.

[17] K. Hoffman and P. Eugster, “Bridging Java and AspectJ through
Explicit Join Points,” Proc. Int’l Symp. Principles and Practice of
Programming in Java, pp. 63-72, Sept. 2007.

[18] A. Kellens, K. Mens, J. Brichau, and K. Gybels, “Managing the
Evolution of Aspect-Oriented Software with Model-Based Point-
cuts,” Proc. European Conf. Object-Oriented Programming, pp. 501-
525, July 2006.

[19] R. Khatchadourian, J. Dovland, and N. Soundarajan, “Enforcing
Behavioral Constraints in Evolving Aspect-Oriented Programs,”
Proc. Seventh Workshop Foundations of Aspect-Oriented Languages,
pp. 19-28, Apr. 2008.

[20] R. Khatchadourian, P. Greenwood, A. Rashid, and G. Xu,
“Pointcut Rejuvenation: Recovering Pointcut Expressions in
Evolving Aspect-Oriented Software,” Proc. IEEE/ACM Int’l Conf.
Automated Software Eng., pp. 575-579, Nov. 2009.

[21] R. Khatchadourian and A. Rashid, “Rejuvenate Pointcut: A Tool
for Pointcut Expression Recovery in Evolving Aspect-Oriented
Software,” Proc. IEEE Int’l Working Conf. Source Code Analysis and
Manipulation, pp. 261-262, Sept. 2008.

[22] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G.
Griswold, “An Overview of AspectJ,” Proc. European Conf. Object-
Oriented Programming, pp. 327-354, June 2001.

[23] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” Proc.
European Conf. Object-Oriented Programming, pp. 220-242, June
1997.

656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

Fig. 11. Edge-based pattern path extraction algorithm.

[24] K. Klose and K. Ostermann, “Back to the Future: Pointcuts as
Predicates over Traces,” Proc. Workshop Foundations of Aspect-
Oriented Languages, C. Clifton, R. Lämmel, and G.T. Leavens, eds.,
Mar. 2005.

[25] C. Koppen and M. Stoerzer, “PCDiff: Attacking the Fragile
Pointcut Problem,” Proc. European Interactive Workshop Aspects in
Software, K. Gybels, S. Hanenberg, S. Herrmann, and J. Wloka,
eds., Sept. 2004.

[26] R. Laddad, AspectJ in Action. Manning, 2003.
[27] M. Lippert and C. Lopes, “A Study on Exception Detection and

Handling Using AOP,” Proc. Int’l Conf. Software Eng., pp. 418-427,
May 2002.

[28] C.D. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval. Cambridge Univ. Press, 2008.

[29] H. Masuhara, G. Kiczales, and C. Dutchyn, “A Compilation and
Optimization Model for Aspect-Oriented Programs,” Proc. Int’l
Conf. Compiler Construction, pp. 46-60, Apr. 2003.

[30] B. Meyer, “Applying ‘Design by Contract’,” Computer, vol. 25,
no. 10, pp. 40-51, Oct. 1992.

[31] K. Ostermann, M. Mezini, and C. Bockisch, “Expressive Pointcuts
for Increased Modularity,” Proc. European Conf. Object-Oriented
Programming, pp. 214-240, July 2005.

[32] M.A. Perez-Toledano, A. Navasa, J.M. Murillo, and C. Canal,
“Titan: A Framework for Aspect-Oriented System Evolution,”
Proc. Int’l Conf. Software Eng. Advances, p. 4, 2007.

[33] H. Rajan and G. Leavens, “Ptolemy: A Language with Quantified,
Typed Events,” Proc. European Conf. Object-Oriented Programming,
pp. 155-179, July 2008.

[34] M.P. Robillard, “Tracking Concerns in Evolving Source Code: An
Empirical Study,” Proc. IEEE Int’l Conf. Software Maintenance,
pp. 479-482, Sept. 2006.

[35] M.P. Robillard and G.C. Murphy, “Concern Graphs: Finding and
Describing Concerns Using Structural Program Dependencies,”
Proc. Int’l Conf. Software Eng., pp. 406-416, May 2002.

[36] K. Sakurai and H. Masuhara, “Test-Based Pointcuts for Robust
and Fine-Grained Join Point Specification,” Proc. Int’l Conf. Aspect-
Oriented Software Development, pp. 96-107, Mar. 2008.

[37] L.M. Seiter, “Role Annotations and Adaptive Aspect Frame-
works,” Proc. Int’l Workshop Linking Aspect Technology and
Evolution, p. 3, 2007.

[38] J. Sillito, C. Dutchyn, A.D. Eisenberg, and K.D. Volder, “Use Case
Level Pointcuts,” Proc. European Conf. Object-Oriented Program-
ming, pp. 246-268, June 2004.

[39] M. Stoerzer and J. Graf, “Using Pointcut Delta Analysis to Support
Evolution of Aspect-Oriented Software,” Proc. IEEE Int’l Conf.
Software Maintenance, pp. 653-656, 2005.

[40] K. Sullivan, W.G. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari,
and H. Rajan, “Information Hiding Interfaces for Aspect-Oriented
Design,” Proc. Int’l Symp. Foundations of Software Eng., pp. 166-175,
Sept. 2005.

[41] The Eclipse Foundation, “JDT Weaving Features,” Mar. 2009,
http://wiki.eclipse.org/JDT_weaving_features, July 2010.

[42] J. Wloka, R. Hirschfeld, and J. Hänsel, “Tool-Supported Refactor-
ing of Aspect-Oriented Programs,” Proc. Int’l Conf. Aspect-Oriented
Software Development, pp. 132-143, Mar. 2008.

[43] L. Ye and K.D. Volder, “Tool Support for Understanding and
Diagnosing Pointcut Expressions,” Proc. Int’l Conf. Aspect-Oriented
Software Development, pp. 144-155, Mar. 2008.

Raffi Khatchadourian received the BS degree
in computer science from Monmouth University,
New Jersey, in 2004, and the MS degree in
computer science from Ohio State University,
Columbus, in 2010, where he is currently work-
ing toward the PhD degree in the Department of
Computer Science and Engineering. His re-
search interests include automated software
evolution, automated refactoring, information
retrieval in the context of engineering software,

and formal reasoning of aspect-oriented software. He has been awarded
several research fellowships, including those from the US National
Science Foundation (NSF) and JSPS, that have allowed him to conduct
research in various parts of the globe, including the United Kingdom and
Japan. He is a member of the IEEE.

Phil Greenwood received the PhD degree in
computer science from Lancaster University. He
is a senior research associate in the Computing
Department of Lancaster University, United
Kingdom. His main research areas involve
Aspect-Oriented Software Development
(AOSD), middleware, and empirical software
analysis techniques throughout the entire soft-
ware development life cycle.

Awais Rashid is a professor of software
engineering at Lancaster University, United
Kingdom, where he leads research on advanced
software modularity and composition mechan-
isms. His current research interests are in
Aspect-Oriented Software Development (AOSD)
and empirical evaluation of novel modularity and
composition techniques. He leads the European
Network of Excellence on Aspect-Oriented Soft-
ware Development and has served as a program

committee member for the AOSD conference for several years as well
as its organizing chair in 2004 and program cochair 2006. He is also a
member of the AOSD Conference Steering Committee 2006-2011 and
its Executive Committee 2007-2011. He is a member of the IEEE.

Guoqing Xu is currently working toward the
PhD degree in the Department of Computer
Science and Engineering, Ohio State University,
Columbus. His research interests are program-
ming languages, compilers, and software sys-
tems. His dissertation work has developed static
and dynamic program analysis techniques to
help programmers find, remove, and prevent
runtime bloat in large-scale object-oriented
applications.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KHATCHADOURIAN ET AL.: POINTCUT REJUVENATION: RECOVERING POINTCUT EXPRESSIONS IN EVOLVING ASPECT-ORIENTED... 657

