
A Comparative Study of Aspect-Oriented Requirements Engineering

Approaches

Américo Sampaio, Phil Greenwood, Alessandro F. Garcia and Awais Rashid

Infolab21, Computing Department, Lancaster University, Lancaster, UK

{a.sampaio, greenwop, garciaa, marash}@comp.lancs.ac.uk

Abstract

Aspect-Oriented Requirements Engineering (AORE)

aims at improving separation of concerns in the

problem space by offering new ways of modularising

requirements. Over recent years several AORE

approaches have emerged by evolving contemporary

requirements approaches such as viewpoints-,

scenarios- and goal-based models. Due to the novelty

of these techniques, there is a lack of systematic

comparative studies analyzing the benefits and

drawbacks they can offer to the requirements

engineering practice. This paper presents a case

study contrasting four eminent AORE approaches in

terms of time effectiveness and accuracy of their

produced outcome. We address challenges related to

the heterogeneous definitions for AORE model

concepts as well as the fact that they perform similar

general requirements process activities in different

ways. In order to address these challenges, we

provide a mapping of the AORE approaches onto

general RE activities and provide a common naming

scheme. The case study results show that

specification of aspect compositions in AORE

presents an effort bottleneck that has to be carefully

weighed against the added benefits of modularity and

analysis of systemic properties offered by AORE.

Consequently, our study provides an initial yet

significant stepping stone towards improving the

evaluation of AORE approaches and understanding

their contribution to requirements engineering.

1. Introduction
Requirements Engineering (RE) encompasses several

important activities [1, 2] of the software engineering

lifecycle such as requirements elicitation, analysis,

specification, conflict resolution and validation. The

main goal of RE is to clearly specify stakeholders’

requirements enabling the software engineers to gain

a deeper understanding about the functionalities,

restrictions and properties of the system to be

developed as well as the environment in which the

system will operate.

Over recent years several researchers [3-7]

developed Aspect-Oriented Requirements

Engineering (AORE) approaches. The aim is to

improve separation of concerns at the requirements

level by offering new ways of modularising systemic

requirements in units called early aspects. Such

requirements are otherwise scattered over and tangled

with various requirements units (e.g., viewpoints,

use-cases, etc.) similar to the problems tackled by the

aspect-oriented programming community [8]. AORE

approaches have been defined either by evolving

contemporary requirements approaches such as

viewpoints- [4, 5], scenarios- [6] and goal-based [7]

models or by developing new approaches [3, 9].

The proposed solution to this requirements

modularity problem is to: (i) separate concerns that

impact several other modules, including broadly-

scoped non-functional requirements such as security,

safety and performance, into a single module, and (ii)

specify how this module (i.e., the early aspect)

constrains and affects the others (see Figure 1). This

improved modularity is expected to bring benefits [3-

6, 10] such as improving management of change

impact. Hence it is expected that when a crosscutting

property needs to be modified the respective changes

will be contained in one single place and the potential

influence of these changes can also be propagated in a

modular fashion through the aspect composition

specifications.

Even though some of these claims have been

partially investigated in [3-6, 10, 11], they were

based on relatively simple examples, and carried out

in isolation. In fact, we are not aware of any empirical

study conducted in the field that investigates a

systematic way for assessing and comparing the

effectiveness of these approaches. In addition, there is

no empirical evidence of the benefits and drawbacks

of AORE to the current requirements engineering

practice. There is no evaluation framework for the

field which impedes the development and execution

of such empirical case studies.

This paper presents a case study that compares

four different AORE approaches in terms of time-

effectiveness of their various activities measured by

effort data in person-minutes. Also, the quality of

their produced outcomes is measured by precision

and recall data of the concepts present in each

requirements specification produced using the

different AORE approaches. The goals of our case

study were fourfold (Section 4):

Q1. Which activities are the main bottlenecks in

terms of effort for each AORE approach?

Q2. Is there any specific approach that significantly
differs from the others in terms of effort?

Q3. What factors mostly contribute to differences in

time-effectiveness?

Q4. Do the AORE specifications produced by each
approach have comparable quality?

A major challenge in the case study was dealing

with the heterogeneous definitions of AORE model

concepts as well as the fact that they perform similar

general requirements process activities in different

ways. In order to standardize data collection and also

normalize the gathered data we provide a mapping of

the AORE approaches onto general RE activities and

provide a common naming scheme.

The effort and quality data gathered by our case

study presents interesting results. For example the

effort data shows that the specific AORE activity of

composition specification (not present in traditional

RE approaches) is one of the most time consuming.

Also interesting to note is that the different AORE

models produced were of comparable quality even

though the effort was varied (Section 4).

The remainder of this paper is structured as

follows. Section 2 presents the necessary background

on AORE approaches and their comparison

challenges. Section 3 describes the common naming

scheme and common process scheme. Section 4

describes the case study comparing four different

AORE approaches in terms of effort (measured in

person-minutes) and quality of the outcome

(measured in terms of accuracy metrics of precision

and recall of identified concepts). Section 5 discusses

some limitations of the conducted case study and

some relevant findings. Section 6 describes some

related works and section 7 concludes the paper.

2. Comparing AORE Approaches
Evaluating and comparing AORE approaches are

daunting tasks due to variations among them.

Examples of these variations are terminology used,

concepts used in the different AORE models, the way

the modularization units are structured and so on. In

order to understand the differences we will first

present an overview of some contemporary AORE

approaches. Our goal is to stress their commonalities

and differences that motivated the need for creating

the common naming and common process scheme for

our case study. For a more detailed description of

AORE approaches see [12].

One fundamental difference among AORE

approaches is centred on the way the modularization

units are structured. All approaches recognise the

concept of an early aspect even though this concept

can be named differently depending on the approach.

An early aspect as shown in Figure 1 can be

understood as an abstraction that modularizes the

requirements of the same crosscutting concern (e.g.,

Security, Performance, Logging, Add Item to

Shopping Cart, Sign-in User, etc.) that influence or

constrain other modules of the requirements model.

When the requirements engineer is building the

requirements specification, the model is then

structured differently depending on the AORE

approach in use. Some approaches [3-7], called

asymmetric, provide a clear separation of what are the

base and crosscutting abstractions. For example in [4,

5] viewpoints are base abstractions while aspects are

broadly scoped non-functional properties that

crosscut several viewpoints. In a similar fashion,

scenario-based AORE [6] makes a distinction

between base scenarios and crosscutting ones (called

aspectual scenarios). Goal-based AORE also makes a

distinction between base abstractions (NFR goals and

decomposed softgoals and tasks) and aspectual

requirements. Another approach [3] decomposes the

requirements into units called themes and makes a

distinction between crosscutting and base themes.

On the other hand symmetric approaches [10, 11]

treat the decomposition units uniformly and consider

everything to be a concern. These concerns can have

a functional or non-functional nature and their

crosscutting behaviour, if present, is represented in

the compositions. In addition to the above base-aspect

and uniform concern treatment dichotomy, the

concept of what an early aspect is varies from an

approach to another. For example, some approaches

only consider early aspects to be non-functional

requirements while others consider functional early

aspects as well. Therefore, it is vital to have a

common naming scheme to address this.

Another dimension in which the approaches are

similar but also contain slight variations is the set of

process activities that comprise each approach. Some

common activities present in all approaches are:

• Identification: for discovering the decomposition

units (e.g., base and crosscutting concerns);

• Composition: for specifying how the concerns are
composed (e.g., how the early aspects affect the

base concerns and in which requirements);

• Conflict Resolution: for investigating the mutual

influences of different concerns. For example, the

encryption needs imposed by a security aspect can

negatively contribute to the real-time performance

of the system.

Requirements of

modularization unit 1

(e.g., use case, viewpoint)

Requirements of

broadly scoped property 2

(e.g., performance)

Requirements of

broadly scoped property 1

(e.g., security)

Requirements of

modularization unit 2

(e.g., use case, viewpoint)

Requirements of

broadly scoped property 1

(e.g., security)

Requirements of

broadly scoped property 2

(e.g., performance)

Tangling

Scattering

(a)

Requirements of

modularization unit 1

(e.g., use case, viewpoint)

Requirements of

broadly scoped property 2

(e.g., performance)

Requirements of

broadly scoped property 1

(e.g., security)

Requirements of

modularization unit 1

(e.g., use case, viewpoint)

Requirements of

broadly scoped property 2

(e.g., performance)

Requirements of

broadly scoped property 1

(e.g., security)

Requirements of

modularization unit 2

(e.g., use case, viewpoint)

Requirements of

broadly scoped property 1

(e.g., security)

Requirements of

broadly scoped property 2

(e.g., performance)

Requirements of

modularization unit 2

(e.g., use case, viewpoint)

Requirements of

broadly scoped property 1

(e.g., security)

Requirements of

broadly scoped property 2

(e.g., performance)

Tangling

Scattering

(a)

Requirements of

modularization unit 1

(e.g., use case, viewpoint)

Requirements of

modularization unit 2

(e.g., use case, viewpoint)

Requirements of

broadly scoped property 1

(e.g., security)

Early Aspect 1

Composition Rules

Requirements of

broadly scoped property 2

(e.g., performance)

Early Aspect 2

Composition Rules

(b)

Requirements of

modularization unit 1

(e.g., use case, viewpoint)

Requirements of

modularization unit 2

(e.g., use case, viewpoint)

Requirements of

broadly scoped property 1

(e.g., security)

Early Aspect 1

Composition Rules

Requirements of

broadly scoped property 1

(e.g., security)

Early Aspect 1

Composition Rules

Requirements of

broadly scoped property 2

(e.g., performance)

Early Aspect 2

Composition Rules

Requirements of

broadly scoped property 2

(e.g., performance)

Early Aspect 2

Composition Rules

(b)

Figure 1 (a) non-AORE approach containing scattering and tangling. (b) AORE approach with early aspects

for better modularisation

These activities are conducted in different ways

by different approaches as they deal with different

models and sometimes require different sub-steps to

realise the same general activities. As an example in

the Conflict Resolution activity for viewpoint-based

AORE [4, 5] a contribution matrix is built to analyse

the influences of different concerns on the

viewpoints. On the other hand, for NFR-based

AORE, the NFR catalogues and goal decompositions

are analysed to check for intra-goal trade-offs.

If one considers evaluating different AORE

approaches for the sake of comparing effort expended

in the various activities as well as effectiveness of

such activities, it is necessary to have a common

process scheme so that one can collect measures (e.g.,

effort in person-minutes) for comparative analysis.

3. Common Schemes
This section discusses in more details the elements of

common naming scheme and common process

scheme. The goal of the common naming scheme is to

have a uniform terminology scheme for the different

types of decomposition units in the various AORE

approaches. This scheme subsumes the different types

of concepts present in the various AORE approaches,

which are:

• Functional Concern: modularization unit that

groups functional requirements that do not

represent crosscutting behaviour. These are also

called base abstractions in some asymmetric

AORE approaches such as viewpoints- and

scenario-based AORE. In symmetric approaches

these can be considered concerns of a functional

nature that do not constrain multiple modules, i.e.,

functional concerns of a non-systemic nature.

• Functional Early Aspect: modularization unit that

groups functional requirements that constrain

multiple other modularization units (crosscutting

behaviour). The way that the functional early

aspect constrains each module can vary and be

specified in compositions. These types represent

functional early aspects in asymmetric approaches

and functional concerns in symmetric approaches

that constrain multiple other modules.

• Non-Functional Early Aspect: By default non-
functional requirements are imposed over several

requirements of the system so they naturally have

crosscutting behaviour and can be grouped in a

modularization unit as well. Also, the way the

constraints are imposed over other modules can

vary and be specified using composition rules.

They represent non-functional early aspects in

asymmetric approaches and non-functional

concerns in symmetric approaches.

These concepts represent our common naming

scheme for the various types of concerns in AORE

approaches. This will be important for our accuracy

evaluation detailed in Section 4.

The common process scheme was first idealized

before we conducted the case study presented in

Section 4. We felt the necessity of having a common

process so that we could investigate the effort spent in

each activity when using different approaches. The

common process scheme denotes a set of activities

that are common across several AORE approaches.

The process scheme does not address all requirements

engineering activities but focuses mainly on

identification of model concepts; structuring the

requirements specification; and conflict resolution as

shown in Figure 2. These activities are general to all

requirements engineering approaches, even non-

AORE ones, and represent the common set of

activities pertaining to the RE lifecycle in which the

AORE approaches vary.

Table 1 shows how these general activities are

executed by specific AORE approaches. For example,

considering the viewpoints-based AORE approach [4,

5], the identification activity is sub-divided into three

others pertaining to identification of viewpoints, early

aspects and crosscutting relationships. The

structuring activity is also sub-divided into three

others of gathering viewpoints requirements,

gathering early aspects requirements and specifying

the composition rules. Finally, the conflict resolution

activity encompasses sub-activities of building the

contribution table for representing the mutual

influences of early aspects (e.g., security contributes

negatively to performance), assignment of weights to

quantitatively assess the degree of the conflict and

resolve conflicts to support decision making.

Figure 2 - Common Process Scheme

If one had considered another AORE approach the

realization of the general activities would be

different. For example, the identification activity in

the scenario-based approach is sub-divided into

identification of [6]: non-functional concerns, actors

and functional use cases, and candidate aspects in

non-functional concerns and use cases.

Table 1 presents a mapping of the activities of the

common process scheme in some AORE approaches.

We focus on the approaches used in our case study

and we also present the effort data collected discussed

in Section 4. More details about the approaches can

be seen in [4-7, 10, 12].

4. A Real World Case Study
The case study conducted is part of a test-bed project

initiative that has the aim of conducting evaluation of

aspect-oriented approaches at several lifecycle stages

such as requirements, architecture, design, and

implementation. The goal of the project is to establish

a common ground for researchers in the aspect-

oriented field so that they can reuse the results of the

project (e.g., evaluation frameworks, metrics,

collected data) in other case studies to improve the

current state of practice of AOSD and investigate the

benefits/drawbacks of such approaches in more detail.

Section 4.1 describes our case study whose goal was

to compare four different AORE approaches.

4.1 Comparison of AORE approaches
Evaluating software engineering approaches is always

a challenging task [13-15] as normally one has to use

subjects that participate actively in the study having

different backgrounds and experiences that can

influence the results obtained.

The goal of our case study was to compare four

different AORE approaches with respect to their

time-effectiveness (Section 4.1.1) and the quality of

their outcome (Section 4.1.2). While time-

effectiveness was measured in terms of effort data

(person-minutes), the quality of outcome was

measured in terms of precision and recall of the

produced models.

The four AORE approaches selected for

comparison were: Viewpoints-based AORE [4, 5],

Multidimensional Separation of Concerns (MDSOC)

[10], Aspect-Oriented Requirements Analysis

(AORA) [16] and Goal-based AORE [7]. The choice

was driven by their maturity and availability of

relevant expertise to conduct an AORE analysis.

The case study involved four requirements

engineers, each given the responsibility of using one

of the approaches to perform the same task. The

common task was to restructure an existing document

describing a system called Health Watcher [17] which

is a real world system used for registering and

querying health complaints. The existing available

documentation about this system is a 19-page (3900

words) use case description of the system. The Health

Watcher system was selected as our case study since

the goal of the test-bed project is to conduct

evaluation at different lifecycle stages and this system

already had a sound object-oriented implementation

as well as several interesting crosscutting concerns

which made it interesting for investigation of aspect-

oriented techniques. Moreover, it also had available

requirements documentation, which had been

constantly updated and evolved since the system’s

deployment in 2001.

The task of all the requirements engineers was to

restructure the original documentation into a new

specification following one of the AORE approaches.

Each subject selected for the case study was an expert

in one of the AORE approaches (the one s/he used)

and all of them had a similar level of expertise as they

were all final year PhD students whose PhD topics

were related to the approaches they used and whose

supervisors were proponents of the approaches. None

of the subjects were previously familiar with the

Health Watcher system and the only documentation

available about the system, the use case specification

mentioned above, was used by all subjects. Moreover,

during the case study there was no communication

among the participants and they were not aware of

each other’s results.

The common practice in requirements engineering

is to first start by eliciting requirements with

stakeholders through interviews. In our case study

this phase was skipped and none of the subjects had

any contact with any other documentation and did not

interact with any stakeholders. Even though this was

different from common practice, this was a positive

point from the perspective of the internal and

construct validity [15] as all subjects were restricted

by the same boundary conditions (similar expertise,

same input, no contact with stakeholders).

 (1) Identification of Requirements

model concepts

(2) Structure requirements

specification

(3) Conflict Resolution and

Validation

Viewpoint-based AORE

Total: 184 person-minutes*

(1.1) Identification of Viewpoints –

tool support -13 minutes

(1.2) Identification of Concerns (early

aspects) – tool support - 2 minutes

(1.3) Identification of Crosscutting

Relationships - tool support

6 minutes

Total: 21 minutes

(2.1) Gather Viewpoints

requirements – tool support - 52

Minutes

(2.2) Gather Early Aspects

requirements – tool support -19

minutes

(2.3) Specify Composition Rules –

38 minutes

Total: 109 minutes

(3.1) Build Contribution Table –

partial tool support - 23 minutes

(3.2) Attribute weights to

Conflicting Aspects – 13 minutes

(3.3) Resolve Conflicts

18 minutes

Total: 54 minutes

Multidimensional

Separation of Concerns

(MDSOC)

Total: 312 person-minutes

(1.1) Identify Concerns minutes - 35

minutes

(1.2) Identify Coarse-grained Concern

Relationships - 61 minutes

Total: 96 Minutes

(2.1) Specify concerns – 85

minutes

(2.2) Specify Concern Projections

Using Composition Rules -

68 minutes

Total: 153 minutes

(3.1) Build Contribution Table – 19

minutes

(3.2) Identify Reflected Projections

– 18 minutes

(3.3) Attribute weights to

conflicting Concerns – 14 minutes

(3.4) Resolve Conflicts

- 12 minutes

Total: 63 minutes

Aspect-Oriented

Requirements Analysis

(AORA)

Total: 521 person-minutes

(1.1) Identify Concerns – 90 minutes

(1.2) Identify responsibilities -

30 minutes

(1.3) Identify – 10 minutes

Contributions

Total: 130 minutes

(2.1) Build concern Models – tool

support -60 minutes

(2.2) Compose concerns by

specifying the composition rules –

tool support - 180 minutes

Total: 240 minutes

(3.1) Conflict analysis - tool

support - 150 minutes

Total: 150 minutes

Goal-based AORE

Total: 467 person-minutes

(1.1) Identify goals, softgoals, tasks

and relationships – 87 minutes

Total: 87 minutes

(2.1) Build V-graph tree - tool

support

132 Minutes

(2.2) specify compositions and

crosscutting relationships - 73

minutes

Total: 205 minutes

(3.1) analyse trade-offs and early

aspects interactions - 175 minutes

Total: 175 minutes

Table 1 - Mapping of different AORE approaches to the common process. *All the activities conducted by only one person.

Moreover, this situation is not completely

implausible in practice as in some real scenarios the

requirements engineers do not have the opportunity to

have much contact with the stakeholders, for example,

in mass market application development (e.g., web and

off-the-shelf software)[18] where the number and

diversity of users are usually extremely high. In these

cases the requirements engineers have to elicit the

requirements based on available documentation such as

marketing studies, legacy specifications and user

manuals.

The goal of the case study was to gather data (effort,

accuracy) to investigate how the different engineers

performed on the same task of structuring an AORE

specification in their specific techniques. All the

subjects collected data while conducting their tasks and

this data was later sent to another researcher for

analysis purposes. The researcher that received the

results was a post-doc in aspect-oriented software

development but not linked with any of the analyzed

approaches. The main purpose of using an independent

researcher to evaluate the data collected was to avoid

bias in favour of one approach over the other.

4.1.1 Time-Effectiveness Comparison

As discussed in Section 3 and shown in Table 1 each

AORE approach has different activities. This is why

the common process scheme of Figure 2(a) is useful for

organizing the groups of activities for effort data

collection. With this in mind each requirements

engineer took notes on the time spent for each activity

as shown in Table 2.
date Start stop Activity common

process

activity

observ.

04/Sep

/06

18:30 19:15 Identify

Concern

Activity 1 Manual

Table 2 – Excerpt from data collection tables

Table 2 shows an excerpt of data collected from the

MDSOC approach. It shows part of the time spent for

the activity of identifying concerns (45 minutes) that

refers to activity 1 of the common framework

(Identification of requirements model concepts). The

observation column was used by the requirements

engineer to describe that the activity was done

manually (without tool support). This information is

important as some tasks of some approaches were

supported by tools. For instance, the identification and

structuring tasks of the viewpoints-based AORE

approach were supported by the EA-Miner tool [19,

20].

All subjects were explicitly instructed to collect data

while working on the task. They were advised to be

strictly honest and cautious to avoid counting times

while they were interrupted or doing any other activity

which was not related to their case study task.

The goal of this effort comparison was not solely to

achieve results such as approach X is more time-

effective than approach Y. More importantly, as our

research is also related to the improvement of aspect-

oriented practices in general, our goal also was to

identify possible avenues of improvement of these

AORE approaches such as, for example, providing tool

support for costly activities.

As we have already developed some tools, such as

EA-Miner that provides automated support for

identification and structuring activities (activities 1 and

2 of Figure 2(a)) we also wanted to verify if the tool

support really helped to reduce the effort spent in those

activities. Therefore, the main research questions we

aimed to answer with this effort comparison were:

Q1. Which activities are the main bottlenecks in terms

of effort for each AORE approach?

Q2: Is there any specific approach that significantly

differs from the others in terms of effort?

Q3: What factors mostly contribute to differences in

time-effectiveness?

Q4: Do the AORE specifications produced by each

approach have comparable quality?

Q1. Which activities are the main bottlenecks in terms

of effort for each AORE approach?

Table 1 shows effort data that helps to answers this

question. One commonality among all approaches is

that the most time consuming activity was activity 2

(structure requirements specification). This makes

sense as its goal is to gather the requirements of the

identified concepts in activity 1 and build the AORE

models in the specification document.

The composition specification sub-activity in this

case was one of the most time-consuming activities of

all (respectively 21%, 22%, 34% and 16% of the total

effort spent in each approach). This is an interesting

observation as as composition specification is an

activity that is specific to AORE approaches and is not

present in traditional RE approaches. The purpose of

composition specification is to specify the rules about

how the early aspects compose with the other concerns

in the system. The expected benefit is that the

separation of concerns is improved and thus change

management and conflict analysis is achieved [4-6, 10].

In our case study we do not have data to support this

claim. However, what we can highlight is that

composition specification introduces a burden with

respect to effort. Whether its benefits outweigh its

overhead is something AORE techniques must

demonstrate if they are to be deployed in day-to-day

requirements engineering practices.

The data also shows that conflict analysis is also a

time-consuming task. The level of detail of the conflict

analysis varied between approaches because details of

the interactions among early aspects varied due to

variations in their granularity for each approach. For

example, the goal-based AORE approach had very

fine-grained crosscutting relationship specifications

explaining why in absolute terms the effort in this

approach (175 minutes) is much larger than the effort

in the first two approaches whose compositions were

more coarse-grained (54 minutes for Viewpoint-based

AORE and 63 minutes for MDSOC).

However, despite the different levels of granularity,

the important fact is that for all approaches conflict

resolution and validation is a significant activity in

terms of effort (30%, 21%, 29%, and 37%). An

interesting point for future investigation would be to

compare how conflict resolution activities compare

considering AORE and traditional (non-AO) RE

approaches. Metrics of effort could be collected to

investigate how much more/less cumbersome is such

conflict analysis in AORE and also how much

more/less accurate AORE is (e.g., in terms of conflicts

identified).

Q2: Is there any specific approach that significantly

differs from the others in terms of effort?

The approach that significantly differs from the others

in terms of effort is the Viewpoints-based AORE

approach. The most significant differences are with

respect to general activities 1 and 2 (identification and

structuring) as most of these tasks were partially

automated by the EA-Miner tool [19, 20]. We comment

more on the reasons for this while answering the next

question. Regarding the conflict analysis the effort

spent was comparable to the MDSOC method as the

specifications have a similar level of detail as

commented in question 1 above.

Q3: What factors mostly contribute to differences in

time-effectiveness?

Table 1 shows that activity 1 (identification of

concepts) is significantly faster in the Viewpoints-

based AORE approach due to the automation support

provided by the EA-Miner tool. The tool utilizes

corpus based natural language processing techniques

(part-of-speech tagging, semantic tagging) and mining

heuristics to automate the identification of viewpoints,

early aspects and crosscutting relationships from a

document written in natural language (in this case the

health watcher use case document). The tool mines the

concepts and presents them to the user who can use

some filtering and sorting features to decide what

concepts to accept/discard. Therefore, this task was

mostly automated by the tool and the engineer just had

to look at the results and apply some filters to discard

some irrelevant concepts. On the other hand, in the

other approaches, engineers had to read the

requirements document in order to identify the

concepts and as the concepts are often spread through

the document, the manual effort was significant.

Regarding the structuring of the requirements

specification the tool also helps as it suggests grouping

of requirements for the viewpoints and helps to

automate the generation of an initial viewpoint-based

AORE specification which we could extend later. In

[21] we present data that shows how EA-Miner can

save effort in the context of a different case study

comparing 3 different systems in which we compared a

manual versus an EA-miner based analysis for

identification of concepts and producing an AORE

specification based on the viewpoints approach.

On the other hand, tool support provided for conflict

analysis (mainly by the AORA approach) does not

necessarily show such a reduction in effort. This does

not imply that the tool is not useful. The results could

be attributed to the more detailed composition

specifications in this approach which leads to fine-

grained analysis of conflicts.

An interesting issue to explore in future case studies

is to understand in-depth the benefits/drawbacks tools

can bring to improve the quality of the produced

AORE models and also the impact they have for time-

effectiveness as we did for EA-Miner in [21]. Another

factor that contributed to different results in time-

effectiveness was the level of detail of the composition

specifications that impacted the conflict analysis as

discussed in question 1.

The next section compares the AORE approaches

with respect to the quality of the specification models

produced.

4.1.2 Quality of the Outcome Comparison

Being aware of the effort spent and what activities are

cumbersome in the AORE approaches is important.

However, another relevant question to assess is Q4: Do

the AORE specifications produced by each approach

have comparable quality?

For example, even though Approach A might be faster

than Approach B, but if the quality of the requirements

specification of Approach A was inferior to Approach

B this would explain the time results. In order to

measure the quality of the outcome, we collected

accuracy data of the identified concepts present in each

requirements specification based on precision and

recall as defined below:

• The precision for a technique Pt = (number of

correct candidates identified by t) / (total number of

candidates identified by t).

• The recall for a technique Rt = (number of correct

candidates identified by t) / (total known correct

candidates).

Precision and recall metrics are general metrics used

for measuring accuracy in several fields such as

information retrieval and natural language processing.

Similar to our purposes, aspect-mining code level

approaches [22] also use these metrics to undertake

comparisons of their mining capabilities in terms of the

crosscutting concerns identified. Moreover, [23]

collects precision and recall data to compare the

capabilities of the OOPS tool for automating the

generation of OO models against a manual analysis.

We use precision and recall to compare the different

types of concerns identified based on our common

naming scheme defined in Section 3. As the different

AORE approaches rely on heterogeneous

classifications of the concepts (e.g., early aspects,

concerns, etc.) the naming scheme is important to map

these differences onto the same schema thus enabling a

uniform comparison among the approaches.

 The researcher responsible for normalizing the

results was the post-doc researcher who received the

four different AORE requirements specifications. He

mapped the identified concepts onto the three types of

concepts defined in the common naming scheme

(functional concern, functional early aspect and non-

functional early aspect). This researcher was also

responsible for determining if the identified concepts

were correct or not (important for the precision and

recall data). Every concept present in the

documentation is considered a candidate and the post-

doc researcher acted as an “oracle” to determine what

was correct or not.

As can be observed in Table 3 each AORE approach

identifies a different set of concerns and aspects. These

differences highlight how each approach places a

different emphasis on a certain type of concern (e.g.,

viewpoints-based approach does not consider

functional early aspects). It is these differences that we

wish to assess in order to determine which approach

most closely identifies the complete list of

concerns/aspects.

It is important to note that some approaches label

certain concerns differently than others. For example,

the MDSOC and AORA approaches identify a non-

functional early aspect labelled Liability but in the

original use-case document this concept is called

Availability. These two concepts are clearly the same

and both have the same effect on the system

specification.

 Functional Concern Non-Functional Early Aspect Functional Early Aspect

V
ie
w
p
o
in
t-
b
a
se
d

A
O
R
E

Login, Register tables, Update Complaint, Register

new employee, Update employee, Update health unit,

Change employee Query information, Register

complaint Information exchange

Correct candidates: 7 (underlined above)

Total Number of candidates: 10

Precision: 7/10= 70%

Recall: 7/7= 100%

Availability, Security, Performance,

Concurrency, Persistence, Distribution, Error and

exception handling, Compatibility, Usability,

Legal Issues, Operational Environment.

Correct candidates: 10

Total Number of candidates: 12

Precision: 10/12= 83%

Recall: 10/10= 100%

None

Precision: 0%

Recall: 0%

M
D
S
O
C

Query Information, Complaint Specification, Register

Tables, Register New Employee, Update Health Unit,

Change Logged Employee, Update Employee,

Update Complaint

Correct Candidates: 7

Total Number of candidates: 8

Precision: 7/8 = 88%

Recall: 7/7 = 100%

Integrity, Compatibility, Confidentiality,

Liability, Performance, Usability, Security, Error

Handling, Storage Medium

Correct Candidates: 7

Total Number of candidates: 9

Precision: 7/9 = 77%

Recall: 7/10 = 70%

Login

Correct Candidates: 1

Total Candidates: 1

P = 1/1 = 100%

R = 1/2 = 50%

A
O
R
A

Query Information, Complaint Specification, Register

Tables, Update Complaint, Register New Employee,

Update Employee, Update Health Unit, Change

Logged Employee

Correct Candidates: 7

Total Number of candidates: 8

Precision: 7/8 = 88%

Recall: 7/7 = 100%

Usability, Liability, Performance, Security,

Persistence.

Correct Candidates: 5

Total Number of candidates: 5

Precision: 5/5 = 100%

Recall: 5/9 = 55%

Login

Correct Candidates: 1

Total Candidates: 1

P = 1/1 = 100%

R = 1/2 = 50%

G
o
a
l

B
a
se
d

A
O
R
E

w
it
h

A
O
V
-g
ra
p
h

Specify Complaint, Update complaint, Login, Provide

Information, Register Employee, Register Health

Unit, Register Speciality, Register Disease, Register

Symptom

Correct Candidates: 4

Total Number of candidates: 9

Precision: 4/9 = 44%

Recall: 4/7 = 57%

Persistence, Usability, Cryptography, Exception

Handling

Correct Candidates: 4

Total Number of candidates: 4

Precision: 4/4 = 100%

Recall: 4/10 = 40%

Authentication

Correct Candidates: 1

Total Candidates: 1

P = 1/1 = 100%

R = 1/2 = 50%

Compl

ete List

Register Tables, Update Complaint, Register New

Employee, Register Complaint, Update Health Unit,

Query Information, Update Employee

Total: 7

Availability, Usability, Distribution, Security,

Exception Handling, Persistence, Concurrency,

Performance, Compatibility, Persistence

Total: 10

Login,

Authentication

Total: 2

Table 3 – Precision and recall data of identified concepts in all approaches based on the common named scheme.

It is important that these differences are normalised

for accurate comparisons to be made when considering

precision and recall. However, in some cases entire

concerns are categorised differently. For example, the

MDSOC approach categorises Response Time and

Throughput as two unique concerns whereas they

should be consolidated into one concern labelled

Performance.

Although the semantics of the requirements are the

same (i.e. they contain the same concerns just

organised and labelled differently) it is often these

attributes that affect the comprehensibility of the

documentation. Therefore, it is important that these

differences are taken into account when performing

any analysis related to precision and recall.

One of the clear results emerging from the analysis

of the precision and recall data is that each approach

generally performs better in identifying functional

concerns over early aspects. This is explained by the

fact that AORE is a novel technique raising difficulties

even for experts in the field. In comparison the analysis

of non-crosscutting concerns is a much more well

understood phenomenon and is also simpler to perform

due to such concerns being more localised and isolated

in requirements documents.

In contrast there is much wider variation in the

precision and recall results when considering early

aspects. Generally these AORE approaches do have

relatively good precision, in that the candidates they

identify do in fact turn out to be early aspects.

However, the majority of these approaches do have

limitations when considering recall. These differences

indicate that the AORE approaches are relatively

accurate in identifying early aspects but are only able

to identify a certain subset of these early aspects and

not all of them.

The two concerns that seem to be the most

problematic are Distribution and Concurrency. These

two concerns are clearly crosscutting due to all

functionality being distributed as well as, due to the

persistent nature of the application, the necessity for

concurrency control in all update/query operations to

prevent inconsistencies. However, only one approach

identifies these two concerns correctly as early aspects.

This can be explained by the fact that concurrency is

not explicitly mentioned but is instead an emergent

property from the Performance and Persistence

concerns as the system must be able to support multiple

users simultaneously (Performance) and could involve

multiple read and write operations on stored data

(Persistence). Concurrency emerges from the

combination of these two requirements and hence is

difficult to identify. The tool support used in the

Viewpoints-based AORE approach is able to assist in

the identification of such derived relationships more

easily.

The results of the precision and recall advocate two

future potential developments of AORE approaches.

The first involves the further introduction of tool

support, as identifying early aspects generally involves

the simultaneous analysis of a number of concerns

which cannot be easily done manually. The second

development should involve the investigation of using

multiple AORE approaches together, whereby the

results are combined in union to allow the strengths of

each approach to negate the drawbacks of the others.

5. Discussion
As discussed in Section 2, explicit composition rules

are one of the main contributions of AORE. They are

not utilized in non-AORE approaches. However,

composition specification brings a considerable

overhead in terms of effort compared to other common

RE activities. Future studies should focus on

investigating how much the benefits brought by the

aspect modularity and composition, for example,

improved change management, outweigh this

overhead.

Some activities such as identification and

structuring are also time-consuming and tool support is

helpful to reduce this effort. Future studies could also

focus on investigating conflict analysis tools in depth

as this is also a time-consuming task.

The quality of the outcome of the different

approaches is comparable in terms of accuracy of the

specification produced measured by precision and

recall data. Future studies could focus on other quality

dimensions in terms of more fine-grained concepts

such as the crosscutting relationships and the quality of

the composition specifications.

The case study discussed here is a first stepping

stone towards evaluation of AORE approaches. We are

unaware of any similar case studies that investigated

and compared different AORE approaches the way

discussed here. One of the limitations of our study,

regarding the generalization of its results, is related to

conducting only one instance of the experiment. Since

we have used as subjects people who are experts in

each of the approaches and also because they were

committed to the evaluation exercise, this single

instance is a sound and reliable one.

Moreover, the definition of the common process

scheme and common naming scheme also facilitate the

realization of other case studies similar to ours. For

example, one could conduct another case study to

compare effort between AORE and non-AORE

approaches using our case study as a guide. Therefore

we think that despite its limitations our case study can

be used as a first step in guiding future AORE

evaluations.

6. Related work
Empirical works in requirements engineering (RE) are

very varied covering several aspects of this discipline.

For example, [24] describes an industrial study that

evaluates a requirements engineering process maturity

model as well as business improvements gained by

suggested modifications on the requirements process of

companies. [25] investigates the causes of faults in

software systems that originate from errors in the

requirements phase. An error abstraction process and a

requirements error taxonomy are defined to help

developers find errors in requirements specifications.

An empirical study conducted with students shows that

their approach helped to improve software quality and

productivity of the subjects.

Regarding AORE approaches [4-7, 9, 10], we are

not aware of any empirical studies conducted to assess

quality aspects (e.g., effectiveness, productivity) in a

comparative manner as well as investigate what

benefits/drawbacks these approaches bring to the

requirements practice. As AORE approaches are quite

recent most works focus on demonstrating how the

approaches work through the use of examples.

The problem of assessing different aspect-oriented

approaches is mentioned in [22] with respect to code-

level aspect-mining approaches. These researchers also

had the problem of having to standardize their results

to be able to compare the different techniques. To solve

the problem they based their comparison on the

concept of code-level crosscutting concern sorts to

evaluate the quality of the different approaches. Even

though these works focused on a different level of

abstraction (i.e., code) they were very relevant for us as

we had to address similar problems.

7. Conclusion
In this paper we have presented a comprehensive case

study that is first yet key step towards improving

AORE evaluation practice. We present a common

framework (process and naming schemes) that enable

uniform mapping of the discrepancies amongst existing

AORE approaches in order to facilitate AORE

evaluation exercises such as the comparison we

conducted with four different techniques. This

comparison yields interesting insights in that the

composition specification and conflict analysis

activities are the most time consuming. Specifically,

the results are intriguing as composition is the corner

stone of AORE. Our study has not explored whether

the benefits of such composition specifications more

than compensate for this added effort not only from the

perspective of requirements analysis but also from the

viewpoint of deriving the system architecture and

refining it towards detailed design and implementation.

Such studies would be the focus of our future work as

only then can we be convinced that aspect

compositions address what Brookes [26] referred to as

inherent complexity and do not introduce accidental

complexity into the development process.

Acknowledgement: This work is supported by the

AOSD-Europe and TAO Testbed projects. The authors

also wish to thank Isabel Brito, Ricardo Ramos and

Lyrene Fernandes for participating in the case study.

References
[1]I. Sommerville, et al., Requirements Engineering - A Good

Practice Guide. 1997: Wiley.

[2]I. Sommerville, Software Engineering. 7 ed. 2004:

Addision-Wesley. 784

[3]E. Baniassad, et al. Theme: An Approach for Aspect-

Oriented Analysis and Design. in International

Conference on Software Engineering. 2004. Edinburgh,

Scotland, UK.

[4]A. Rashid, et al. Modularisation and Composition of

Aspectual Requirements. in 2nd International Conference

on Aspect Oriented Software Development (AOSD).

2003. Boston, USA: ACM.

[5]A. Rashid, et al. Early Aspects: a Model for Aspect-

Oriented Requirements Engineering. in International

Conference on Requirements Engineering (RE). 2002.

Essen, Germany: IEEE.

[6]J. Whittle, et al., Scenario Modeling with Aspects. IEE

Proceedings - Software, 2004. 151(4, Special Issue on

Early Aspects: Aspect-Oriented Requirements

Engineering and Architecture Design): p. 157-172.

[7]Y. Yu, et al. From Goals to Aspects: Discovering Aspects

from Requirements Goal Models. in International

Conference on Requirements Engineering. 2004. Kyoto,

Japan: IEEE Computer Socienty.

[8]G. Kiczales, et al., Aspect-Oriented Programming, in 11th

Europeen Conf. Object-Oriented Programming, M.A.a.S.

Matsuoka, Editor. 1997. p. 220-242.

[9]E. Baniassad, et al. Finding Aspects in Requirements with

Theme/Doc. in Workshop on Early Aspects (held with

AOSD 2004). 2004. Lancaster, UK.

[10]A. Moreira, et al. Multi-Dimensional Separation of

Concerns in Requirements Engineering. in Requirements

Engineering Conference (RE 05). 2005. Paris, France.

[11]S.S. Jr, et al., Modeling of Software Concerns in

{Cosmos}, in Proc. 1st Int' Conf. on Aspect-Oriented

Software Development {(AOSD-2002)}, G. Kiczales,

Editor. 2002. p. 127-133.

[12]R. Chitchyan, et al., Report synthesizing state-of-the-art

in aspect-oriented requirements engineering,

architectures and design. 2005, Lancaster University:

Lancaster. p. 1-259

[13]V. Basili, et al., Experimentation in Software

Engineering. IEEE Transactions on Software

Engineering, 1986. 12(7).

[14]B.A. Kitchenham, et al., Preliminary guidelines for

empirical research in software engineering

IEEE Trans. Softw. Eng., 2002. 28(8): p. 721-734.

[15]C. Wohlin, et al., Experimentation in Software

Engineering: An Introduction, ed. V.R. Basili. 2000:

Kluwer Academic Puslishers.

[16]E. Soeiro, et al. An XML-Based Language for

Specification and Composition of Aspectual Concerns. in

ICEIS 2006. 2006.

[17]S. Soares, et al., Distribution and Persistence as Aspects.

Software: Practice & Experience, 2006. 36(6).

[18]C. Potts. Invented Requirements and imagine customers.

in IEEE Requiremenst Engineering Conference (RE 95).

1995. York, UK.

[19]A. Sampaio, et al. EA-Miner: A tool for automating

aspect-oriented requirements identification. in 20th

IEEE/ACM International Conference on Automated

Software Engineering (ASE2005) 2005. Long Beach,

California, USA.

[20]A. Sampaio, et al. Mining Aspects in Requirements. in

Early Aspects 2005: Aspect-Oriented Requirements

Engineering and Architecture Design Workshop (held

with AOSD 2005). 2005. Chicago, Illinois, USA.

[21]R. Chitchyan, et al. Evaluating EA-Miner: Are Early

Aspect Mining Techniques Effective? in TEAM workshop

at ECOOP 2006. 2006. Nantes, France.

[22]K. Mens, et al., A Survey of Automated Code-Level

Aspect Mining Techniques. Transactions on Aspect-

Oriented Software Development, Special Issue on

Software Evolution, 2007.

[23]L. Mich, et al. NL-OOPS: A Requirements Analysis tool

based on Natural Language Processing. in 3rd Int. Conf.

On Data Mining. 2002. Bologna, Italy.

[24]I. Sommerville, et al., An empirical study of industrial

requirements engineering process assessment and

improvement. ACM Trans. Softw. Eng. Methodol, 2005.

14(1): p. 85-117.

[25]G.S. Walia, et al. Requirement error abstraction and

classification: an empirical study in ISESE'06. 2006. Rio

de Janeiro, Brazil: ACM.

[26]F.P. Brookes, "No Silver Bullet - Essence and Accident"

in The Mythical Man-Month. 1995: Addison-Wesley.

177-203.

