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Aspect-oriented software development techniques provide a means 
to modularize crosscutting concerns in software systems. A survey of 
industrial projects reveals the benefits and potential pitfalls of aspect-
oriented technologies.

T
he past decade has seen the increased use of 
aspect-oriented software development (AOSD) 
techniques1 as a means to modularize cross-
cutting concerns in software systems, thereby 
improving a development organization’s work-

ing practices and return on investment (ROI). Numerous 
industrial-strength aspect-oriented (AO) programming 
frameworks exist, including AspectJ, JBoss, and Spring, 
as do various aspect-oriented analysis and design tech-
niques.2 The “Major Industrial Projects Using AOSD” sidebar 
highlights notable applications of AOSD, of which the most 
prominent is the IBM WebSphere Application Server.3

Developers considering AOSD techniques must ask 
three fundamental questions:

•	 How is AOSD being used in industrial projects today? 
Developers must determine whether AOSD techniques 
are suited to the problem at hand and the particular 
project context.

•	 Does the improved modularity yield real benefits when 
engineering and evolving software? Developers must 
understand whether the potential benefits outweigh 

the costs of introducing a new technology and, if so, 
be able to convince management of its long-term 
profitability.

•	 What do developers need to be aware of when using 
AOSD techniques? Developers must avoid known pit-
falls and deploy design strategies and tools to help 
counter their potential threat to product quality.

Answers to these questions are not readily available, 
and gleaning knowledge from existing literature on the 
topic is difficult, but we have obtained some insights 
by analyzing several medium- and large-scale projects 
employing AOSD techniques. These projects have been 
accessible to us both directly within AOSD-Europe (www.
aosd-europe.net), a large-scale academia-industry collabo-
ration funded by the European Commission since 2004, as 
well as indirectly through its liaison channels with inter-
ested researchers. 

Our experience indicates that production (as opposed 
to pilot) projects mainly rely on basic features of AO lan-
guages to modularize well-known crosscutting problems; 
developers introduce AOSD concepts incrementally,  
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Crosscutting concerns are a fairly well-understood prob-
lem—most architects and developers must regularly 
manage the complexity of tracing, auditing, persistence, 
and so on. While the potential of AOSD techniques for this 
purpose is recognized, their introduction into the develop-
ment process is nontrivial. 

A typical example is Soarian, a large-scale hospital 
information system developed by Siemens using AspectJ 
and fastAOP in an agile development context.4 In this case, 
a team of AO programmers initially had to be trained. 
The training comprised five one-hour sessions. Given the 
limited amount of time, the focus naturally was on mas-
tering basic AO concepts to keep the learning effort low, 
allowing team members to see the benefits of using AOSD 
techniques without the need to become experts. AO pro-
gramming evangelists helped introduce advanced features 
when the need occurred.

The other projects listed in Table 1 exhibit a similar pat-
tern, as the constraints on introducing any new technology 
into the development process are comparable. Team lead-
ers and managers must be convinced of AOSD’s benefits 
while ensuring that substantial effort is not deflected from 
existing development activities. 

The most frequently used AO features in industrial proj-
ects tend to be those that are relatively simple to apply, 
yet provide a high dividend. Examples are call and execu-
tion pointcuts. Inter-type declarations, which allow the 
introduction of new methods or attributes as well as inher-
itance and interface implementation links, are another 
typical usage; developers can easily see the benefits of 
modularizing the static structure of their programs to cater 
to crosscutting concerns. Another common feature is the 
ability to statically declare global constraints on the pro-
gram that the system can check at compile time to raise 
a warning or error. These declare error and declare 
warning features (available in AspectJ) enforce architec-
tural constraints; both Soarian and WebSphere use them 
as part of the build process.

Advanced AO features 
Advanced AO features and new tool and language pro-

totypes are mainly used in industry-academia pilots or 
controlled lab experiments for three reasons.

First, advanced features and new prototypes typically 
require expert guidance from the R&D personnel engaged 
in their development. 

Second, incorporating such features into a shipped 
product can be very risky, as is true for any untried 
technology. In the Soarian project, even for a product 
as well-established as AspectJ, developmental concerns 
such as validation of architectural constraints had to be 
resolved first to show its potential. Only after the tools’ 
reliability had been demonstrated was aspect-orientation 
incorporated into core product development. 

initially addressing developmental concerns and not core 
product features. In addition, AOSD techniques improve 
design stability over a system’s evolution and can substan-
tially reduce design model size. Finally, pointcut fragility 
in mainstream AO programming technologies can cause 
ripple effects during system evolution, with aspects unin-
tentionally influencing program exception flows. This 
requires developers to carefully consider known bug pat-
terns and introduce effective testing strategies.

Typical uses of AOSD in industry
Table 1 summarizes the projects we studied.

Basic AO features
Most of the industrial projects use basic AO features. 

The biggest hurdle to overcome in adopting such features 
is their incorporation into existing development processes. 

I BM WebSphere Application Server is a Java application server 
that supports Java Enterprise Edition (EE) and Web services. 

WebSphere is distributed in various editions that support differ-
ent features, with AspectJ (www.eclipse.org/aspectj) used to 
isolate these features.

JBoss Application Server (AS) is a free, open source Java appli-
cation server that supports Java EE. The core of JBoss AS uses 
JBoss AOP (www.jboss.org/jbossaop) to deploy services such as 
security and transaction management.

Oracle TopLink is a Java object-to-relational persistence frame-
work that is integrated with the Spring application server (www.
springsource.org). TopLink achieves high levels of persistence 
transparency using Spring AOP.

Sun Microsystems uses AspectJ to streamline mobile applica-
tion development for the Java Micro Edition (ME) platform. 
Aspects are used to simplify the development of mobile applica-
tions for deployment to different operator decks and different 
mobile gaming community interfaces.

Siemens’ Soarian is a health information system (HIS) that sup-
ports seamless access to patient medical records and the definition 
of workflows for health provider organizations. Soarian uses 
AspectJ and fastAOP (http://sourceforge.net/projects/fastaop) to 
integrate crosscutting features into an agile development 
process.

Motorola’s wi4 is a cellular infrastructure system that provides 
support for the WiMax wireless broadband standard. The wi4 con-
trol software is developed using WEAVR (an aspect-oriented 
extension to the UML 2.0 standard) for debugging and testing.

ASML, a provider of lithography systems for the semiconductor 
industry, uses Mirjam, an aspect-oriented extension to C, to modu-
larize tracing, profiling, and error-handling concerns.

Glassbox is a troubleshooting agent for Java applications that 
automatically diagnoses common problems. Glassbox Inspector 
uses AspectJ to monitor the Java virtual machine’s activity.

MySQL is a widely used relational database management 
system. The logging feature in MySQL is implemented using 
AspectJ.

Major Industrial Projects  
Using AOSD
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Third, industry adopters typically develop experimen-
tal solutions that evaluate the core know-how that the 
research community has generated, then they custom-
ize these core principles to create technology to meet the 
business needs of a specific industrial partner. Such an 
experiment provides not only a practical validation of 
general principles but also a concrete vehicle for further 
experimentation and practical evaluation and, last but 
not least, inspiration and insight for the challenges ahead.

This trend is evident in the various industry-academia 
pilots listed in Table 1. For example, in the Wit-Case (Work-
flow Innovations, Technologies, and Capabilities for Service 
Enabling) project, which partnered Katholieke Universiteit 
Leuven, Vrije Universiteit Brussel’s System and Software 
Engineering Lab (SSEL-VUB), and Alcatel-Lucent, indus-
try requirements for composition in workflow languages 
drove the development of an AO extension to WS-BPEL, 
Padus.5 The project provided insights into the feasibility of 
AO concepts in the context of workflow systems. 

A prototype toll system jointly developed by Siemens, 
Lancaster University, and the École des Mines de Nantes 
(EMNantes) used AWED (Aspects with Explicit Distribu-

tion),6 a language and runtime system for distributed 
aspects, to flexibly manage toll processing pipeline dis-
tribution and synchronization issues, including toll data 
collection, processing, and billing functionality. A com-
parison with an object-oriented (OO) solution showed 
widespread code replication and scattering of distribu-
tion functionality within the OO toll processing pipeline. 
In addition to AWED, project developers applied AspectJ 
to support different data models during toll data process-
ing. The pilot thus provided evidence that developers can 
exploit synergies by using different AO frameworks in one 
application to handle different types of crosscutting func-
tionalities in industrially relevant applications.  

The toll system also utilized EA-Miner,7 a tool that uses 
natural-language processing techniques to identify poten-
tial crosscutting concerns in requirements documents. 
EA-Miner revealed aspectual concerns that the developers 
had originally overlooked during the AspectJ-based imple-
mentation. These concerns included legal constraints, 
connection/reconnection between onboard units and the 
back office, transaction management, and communica-
tion triggers. 

Table 1. Overview of industrial AOSD projects studied.

Project Domain Size/complexity Type

AO 
technologies 

used

AO 
features 

used
Crosscutting concerns 

modularized

Soarian (Siemens) Healthcare 300 modules, 400 developers, 
500 concurrent users per 
server

Industrial AspectJ, 
fastAOP

Basic Architecture validation, 
caching, auditing, perfor-
mance monitoring

IBM WebSphere Enterprise 
systems

WebSphere Product Center—
3,700 classes, 43 aspects; 
Enterprise Service Bus—1,300 
classes, 6 aspects

Industrial AspectJ Basic Tracing, logging, first failure 
data capture

MOTOwi4 Telecom 12 components, 100 develop-
ers, 200,000 sessions per 
server

Industrial WEAVR Basic Tracing, timeout

Toll system (Sie-
mens, Lancaster 
University, 
EMNantes)

e-transport 90 classes, 20 aspects Industry-
academia

AspectJ, 
AWED, 
EA-Miner

Advanced Charging, error handling, 
persistence, logging, moni-
toring, compatibility, 
security

Wit-Case (Katho-
lieke Universiteit 
Leuven, SSEL-
VUB, 
Alcatel-Lucent)

Telecom 8 Prolog modules, 1,200 lines 
of code, 1 technical architect,  
2 developers

Industry-
academia

Padus Advanced Fixed billing, duration bill-
ing, platform 
customizations, logging

Health-Watcher 
(Recife, Brazil)

Healthcare 130 modules, 3 developers,  
1.5 million people served

Controlled 
experiment

AspectJ, 
CaesarJ

Advanced Concurrency, distribution, 
exception handling, persis-
tence, design patterns

AJHotDraw Graphics 279 classes, 31 aspects, 1 AO 
developer, 25 OO developers

Controlled 
experiment

AspectJ Basic Persistence, design policies, 
contract enforcement, Undo 
command

MobileMedia Imaging 3 developers, 51 classes, 36 
aspects; a software product 
line for cell phones

Controlled 
experiment

AspectJ Advanced Exception handling, alterna-
tive and optional features
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Applying EA-Miner led to the reevaluation of some 
architectural decisions related to the use of AO technolo-
gies. The experience also revealed interesting insights into 
the potential adoption barriers for AO requirements engi-
neering techniques. Any such adoption would necessitate 
a change to the established process of requirements docu-
ment preparation. It would also require additional effort 
on the part of domain experts to specify aspect composi-
tions, along with the need for evangelists and trainers to 
introduce the techniques into the development process (in 
a fashion similar to the Soarian project).

Incremental introduction of AOSD
Our observations about production projects and 

pilots point to an incremental adoption strategy of 
AOSD. In both Soarian and WebSphere, for instance, 
AO programming was first introduced into the build 
process as a means to enforce architectural constraints. 
This did not require any aspects to be included in the 
shipped product, while at the same time providing a 
solution to a fundamental problem that faces any large 
development team. 

Soarian, a very large system structured using a layered 
architecture, offers a good sample case. In this applica-
tion, certain architectural constraints must be obeyed—for 
example, data access objects (DAOs) should be accessed 
only from application tasks, and only the DAOs can use 
the Java persistence API. However, enforcing such architec-
tural constraints on large development teams is difficult. 
Soarian uses the AspectJ declare error construct to 
enforce such constraints as part of the build process, using 
specifications such as:

declare error: noATCallsFromDAO(): 
"A DAO should not call a business layer";

  
WebSphere uses the same technique to prevent 

unwanted API calls that may lead to unnecessary com-
ponents being shipped. Such an approach also justifies 
the additional overhead of introducing a new technology 
in a broad context. The AO programming solution guar-
antees a valid architecture by ensuring that each layer 
only calls other authorized layers or APIs. Further, there 
is no additional risk as AO programming is not part of the 
production code.

Once they have established an initial confidence factor, 
developers can incorporate AO techniques into produc-
tion code. When this occurs, concerns such as tracing, 
logging, and performance monitoring take precedence 
as the crosscutting challenges associated with these con-
cerns are familiar to developers, and the benefits of an AO 
programming solution are immediately obvious. We see 
this trend in numerous industrial projects. For instance, 
Motorola developers used an AO modeling tool, WEAVR,8 
in MOTOwi4 production to modularize tracing for debug-
ging and fine-tune the request timeout mechanism. 

Debugging this type of application is particularly dif-
ficult because of race conditions that occur between 
distributed nodes and the asynchronous communication 
model. These race conditions require correlation of traces 
produced by the system components, thereby necessitat-
ing the coordination of different development teams. A 
tracing profile in WEAVR provides a configuration interface 
to declare the granularity and scope of tracing function-
ality. This information is then used to generate tracing 
aspects from predefined templates, which are transpar-
ently applied to the different system components before 
code generation.

A recurring communication problem in asynchronous 
distributed systems arises when the system processes 
do not define time frames for request responses, which 
causes the system to be blocked. A request timeout profile 
is defined in MOTOwi4 that lets engineers configure the 
timing constraints on the system requests and to declare 
specific actions to be taken when they are not obeyed. 
These exception handlers are then transparently deployed 
in the system by generating aspects according to the pro-
file configuration.

MOTOwi4’s debugging and timeout features have min-
imal interactions with the system’s core functionality, 
and their aspect-based modularization does not require 
significant changes to the system architecture or the devel-
opment process. 

ROI on engineering  
and evolving software

To promote smooth adoption of AOSD techniques, 
it is critical to empirically analyze their benefits and 
limitations. 

Improved design stability
Lancaster University has established an AOSD testbed 

(www.comp.lancs.ac.uk/~greenwop/tao) as part of AOSD-
Europe to provide a set of artifacts including benchmarking 
applications (both AO and non-AO implementations), 
metric suites, and previously collected empirical results. 
From these artifacts, both researchers and practitioners 
can configure their own empirical studies. Figure 1 shows 
samples of empirical data from the testbed.

Our observations about production 
projects and pilots point to an 
incremental adoption strategy of 
AOSD.
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One study9 conducted with these artifacts involved 
using AspectJ and CaesarJ (http://caesarj.org) to compare 
the design stability of two AO implementations against 
an OO implementation (using Java) of Health-Watcher, a 
system designed to monitor public-health-related com-
plaints and notifications in Recife, Brazil. The study applied 
numerous common maintenance scenarios to both the AO 
and OO versions of this benchmark application.

The analysis revealed that concerns modularized up 
front using AO techniques, such as concurrency (Figure 
1a), showed superior design stability, and modifications 

tended to be confined to the target modules. In addition, 
the AO designs prevented more intrusive modifications, 
even when the change focused on a noncrosscutting 
concern. 

The AO designs also respected the open-closed principle 
more effectively—that is, a module should be open for 
extension but closed for modification—by enabling modifi-
cations to be made through the introduction of new aspect 
modules rather than modification of existing artifacts. This 
increased stability is achieved via pointcuts and inter-type 
declarations, which absorb changes that would otherwise 
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Figure 1. Samples of empirical data from the AOSD testbed at Lancaster University. (a) Improved stability offered by AO for the 
concurrency concern in Health-Watcher. (b) Increased scope of changes in AO design and more localized changes in OO design of 
Health-Watcher. The aspects are denoted by a diamond; the modules affected by the change are highlighted in red. (c) Uncaught 
exceptions, subsumptions, and specialized handlers in AO versus OO implementations of three systems. Note that MobilePhoto is a 
version of the MobileMedia product line that deals only with images.
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be invasive, leading to increased scattering and violation 
of the open-closed principle.

Substantial reduction in model size
Experience with design models for large-scale 

communication systems in MOTOwi4 shows that AO 
techniques can substantially reduce model size and 
thus make it easier for developers to reason about the 
models. 

Figure 2 gives a high-level view of two subcom-
ponents of a large communication system. Each 
subcomponent comprises multiple parts. The system 
is subject to the consistency requirement “When the 
system starts up, all parts must initialize successfully, 
otherwise the system must shut down.” As the system 
contains hundreds of parts, this requirement’s impact 
on the implementation is massive. It implies that each 
part of the system must be able to detect a failure con-
dition upon initialization and notify a coordinator. The 
implementation of the failure detection and notifica-

tion concern cannot be modularized in a separate state 
machine using existing language mechanisms because 
it interacts with each part’s control flow. The Unified 
Modeling Language’s abstraction and composition 
mechanisms do not allow specification and implemen-
tation of the concern in a separate module. 

A Motorola study of the MOTOwi4 infrastructure soft-
ware models showed that more than 40 percent of the 
state diagram models implement crosscutting behavior 
related to process coordination and fault tolerance.8 A 
version of the same models produced using WEAVR 
demonstrated that fault tolerance can be refactored 
into a separate model. The ability to modularize these 
concerns enables their representation in conceptual 
models that capture their functionality’s essence. Such 
models allow the reuse of solutions to complex prob-
lems such as process coordination and fault tolerance 
in different contexts. Improved modularity also signifi-
cantly reduces the size and complexity of the system’s 
models.

Figure 2. High-level view of two subcomponents of a large communication system. The upper areas are composite-part diagrams 
that describe the system’s physical architecture and the connections between its parts. The lower area represents the state machine 
diagrams that implement the system parts’ behavior. The highlighted sections represent the impact of a fault-tolerance requirement on 
the implementation of system parts.
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Potential pitfalls
Along with their advantages, AOSD techniques have 

some potential pitfalls that practitioners must be aware of.

Ripple effects caused by pointcut fragility
AO techniques typically utilize a syntax-based join-

point model, whereby programmers specify pointcuts in 
terms of class names, method names, field names, and 
the like. If a maintenance change causes any of these ele-
ments to be renamed or removed, pointcuts that quantify 
over them can be potentially invalidated.10 Researchers 
are developing semantics-based pointcuts to, among 
other things, address this fragility,11 but it remains a 
problem.

The design stability study of the Health-Watcher system 
highlighted pointcut fragility problems and various result-
ing ripple effects (Figure 1b). Programmers had to correct 
pointcuts to remain compatible with changes made to the 
base code, and in certain cases this was nontrivial. How-
ever, the pointcut fragility revealed a more fundamental 
issue. When applying maintenance changes, programmers 
hope to contain any necessary modifications only within 
modules that are directly related to the concern being 
modified. For example, in a layered architecture, if the user 
interface layer is being modified, then the changes should 
not propagate beyond the view layer. In the AO design, we 
uncovered significant evidence of ripple effects, whereby 
changes propagated to seemingly unrelated modules. This 
was caused by interdependencies, created by pointcuts 
and inter-type declarations, between the base code and 
aspects, while the increased tangling in the OO design 
reduced this scope. 

This is not to say that ripple effects did not occur in 
the OO design, but the scope of the ripple effects differed. 
The improved separation of concerns within the AO ver-
sions caused the changes to propagate to more unrelated 
modules, making the changes less obvious as unexpected 
modules were affected. In contrast, the OO version 
required more extensive changes within each affected 
component, making these changes more obvious. These 
differences led to a notion of “deep” and “wide” ripple 
effects. AO ripple effects tend to go “deeper” in that they 
propagate to unrelated modules, while OO ripple effects 
tend to go “wider” in that they more extensively affect the 
modified modules.

Effect on exception flows 
The inversion of control provided by AOSD techniques 

helps separate crosscutting concerns. At the same time, 
however, the “new” aspectual modules must be tested. 
This is particularly problematic when trying to test aspects’ 
effects on a program’s exception flows. As aspects extend 
or replace existing functionality at specific joinpoints in 
the code execution, their behavior may raise new excep-

tions that can flow through the program execution in 
unexpected ways. 

AO developers attempt to ensure that aspects do not 
create exceptions that impact applications, but unexpected 
behavior in aspect code such as referencing unantici-
pated null values or calling a library method that throws 
undocumented runtime exceptions often occurs.12 Such 
exceptions may remain uncaught, causing the software 
to crash in an unpredictable way, or may be mistakenly 
handled by an existing handler in the base code, introduc-
ing an unintended handler action.13 

In all of the AspectJ versions of one Lancaster testbed 
study (Figure 1c), we observed a significant increase in 
the number of uncaught exceptions and a decrease in the 
number of exceptions caught by specialized handlers. 
The number of exception subsumptions—exception types 
associated with the handler that are a supertype of the 
exception type being caught13—also increased in most 
AspectJ versions. 

During code inspections, we discovered a set of recur-
ring programming anomalies in the exception-handling 
code of AspectJ programs,12 which we categorized into 
three bug patterns: 

•	 bugs related to aspects that signal exceptions (for 
example, solo aspect signaler—no handler is defined 
for the exceptions signaled by the aspects); 

•	 bugs related to exception-handling aspects (for exam-
ple, late binding aspect handler—the aspect intercepts 
a point in the base code in which the exception was 
already caught by another handler on the base code); 
and

•	 misuses of the declare soft construct in AspectJ, a 
construct that wraps any checked exception into an 
unchecked exception. 

These bug patterns can impair a system’s robustness. In 
the short term, AO programmers must learn to recognize 
and avoid these patterns. However, the problem can only 
be tackled effectively by improving the design of exception-
handling mechanisms in AO programming languages and 
building verification tools and techniques tailored to improve 
the reliability of exception-handling code in AO systems. 

T he software systems using AOSD that we have stud-
ied are medium- to large-scale and span a wide 
range of domains including enterprise systems, 
e-health, e-transport, telecommunications, Web-

based information systems, multimedia applications, and 
workflow systems. Our analysis highlights typical usage 
patterns of AO techniques—for instance, they are mainly 
used for modularizing well-known crosscutting problems 
and incrementally introduced, addressing developmental 
concerns and other noncore product features first. 
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The benefits of modularity, such as reducing software 
model size and improving design stability over a history 
of changes, are substantial. As with any new technology, 
however, there are also potential pitfalls, especially in 
regard to testing execution paths, that developers must 
be aware of to ensure robustness of AO applications. 
Pointcuts also appear to be a double-edged sword: While 
they enable certain changes to be absorbed and thereby 
increase a design’s stability, they are also the source 
of ripple effects that reduce stability. Developers must 
account for this tradeoff when incorporating AO technolo-
gies in a project. 
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