
19FEBRUARY 2010

COMPUTING PR ACTICES

Published by the IEEE Computer Society0018-9162/10/$26.00 © 2010 IEEE	

Aspect-oriented software development techniques provide a means
to modularize crosscutting concerns in software systems. A survey of
industrial projects reveals the benefits and potential pitfalls of aspect-
oriented technologies.

T
he past decade has seen the increased use of
aspect-oriented software development (AOSD)
techniques1 as a means to modularize cross-
cutting concerns in software systems, thereby
improving a development organization’s work-

ing practices and return on investment (ROI). Numerous
industrial-strength aspect-oriented (AO) programming
frameworks exist, including AspectJ, JBoss, and Spring,
as do various aspect-oriented analysis and design tech-
niques.2 The “Major Industrial Projects Using AOSD” sidebar
highlights notable applications of AOSD, of which the most
prominent is the IBM WebSphere Application Server.3

Developers considering AOSD techniques must ask
three fundamental questions:

•	 How is AOSD being used in industrial projects today?
Developers must determine whether AOSD techniques
are suited to the problem at hand and the particular
project context.

•	 Does the improved modularity yield real benefits when
engineering and evolving software? Developers must
understand whether the potential benefits outweigh

the costs of introducing a new technology and, if so,
be able to convince management of its long-term
profitability.

•	 What do developers need to be aware of when using
AOSD techniques? Developers must avoid known pit-
falls and deploy design strategies and tools to help
counter their potential threat to product quality.

Answers to these questions are not readily available,
and gleaning knowledge from existing literature on the
topic is difficult, but we have obtained some insights
by analyzing several medium- and large-scale projects
employing AOSD techniques. These projects have been
accessible to us both directly within AOSD-Europe (www.
aosd-europe.net), a large-scale academia-industry collabo-
ration funded by the European Commission since 2004, as
well as indirectly through its liaison channels with inter-
ested researchers.

Our experience indicates that production (as opposed
to pilot) projects mainly rely on basic features of AO lan-
guages to modularize well-known crosscutting problems;
developers introduce AOSD concepts incrementally,

Aspect-Oriented
Software Development
in Practice: Tales from
AOSD-Europe
Awais Rashid, Thomas Cottenier, Phil Greenwood, and Ruzanna Chitchyan,
Lancaster University, UK

Regine Meunier, Siemens AG, Germany

Roberta Coelho, Federal University of Rio Grande do Norte, Brazil

Mario Südholt, École des Mines de Nantes, France

Wouter Joosen, Katholieke Universiteit Leuven, Belgium

computer	20

COMPUTING PR ACTICES

Crosscutting concerns are a fairly well-understood prob-
lem—most architects and developers must regularly
manage the complexity of tracing, auditing, persistence,
and so on. While the potential of AOSD techniques for this
purpose is recognized, their introduction into the develop-
ment process is nontrivial.

A typical example is Soarian, a large-scale hospital
information system developed by Siemens using AspectJ
and fastAOP in an agile development context.4 In this case,
a team of AO programmers initially had to be trained.
The training comprised five one-hour sessions. Given the
limited amount of time, the focus naturally was on mas-
tering basic AO concepts to keep the learning effort low,
allowing team members to see the benefits of using AOSD
techniques without the need to become experts. AO pro-
gramming evangelists helped introduce advanced features
when the need occurred.

The other projects listed in Table 1 exhibit a similar pat-
tern, as the constraints on introducing any new technology
into the development process are comparable. Team lead-
ers and managers must be convinced of AOSD’s benefits
while ensuring that substantial effort is not deflected from
existing development activities.

The most frequently used AO features in industrial proj-
ects tend to be those that are relatively simple to apply,
yet provide a high dividend. Examples are call and execu-
tion pointcuts. Inter-type declarations, which allow the
introduction of new methods or attributes as well as inher-
itance and interface implementation links, are another
typical usage; developers can easily see the benefits of
modularizing the static structure of their programs to cater
to crosscutting concerns. Another common feature is the
ability to statically declare global constraints on the pro-
gram that the system can check at compile time to raise
a warning or error. These declare error and declare
warning features (available in AspectJ) enforce architec-
tural constraints; both Soarian and WebSphere use them
as part of the build process.

Advanced AO features
Advanced AO features and new tool and language pro-

totypes are mainly used in industry-academia pilots or
controlled lab experiments for three reasons.

First, advanced features and new prototypes typically
require expert guidance from the R&D personnel engaged
in their development.

Second, incorporating such features into a shipped
product can be very risky, as is true for any untried
technology. In the Soarian project, even for a product
as well-established as AspectJ, developmental concerns
such as validation of architectural constraints had to be
resolved first to show its potential. Only after the tools’
reliability had been demonstrated was aspect-orientation
incorporated into core product development.

initially addressing developmental concerns and not core
product features. In addition, AOSD techniques improve
design stability over a system’s evolution and can substan-
tially reduce design model size. Finally, pointcut fragility
in mainstream AO programming technologies can cause
ripple effects during system evolution, with aspects unin-
tentionally influencing program exception flows. This
requires developers to carefully consider known bug pat-
terns and introduce effective testing strategies.

Typical uses of AOSD in industry
Table 1 summarizes the projects we studied.

Basic AO features
Most of the industrial projects use basic AO features.

The biggest hurdle to overcome in adopting such features
is their incorporation into existing development processes.

I BM WebSphere Application Server is a Java application server
that supports Java Enterprise Edition (EE) and Web services.

WebSphere is distributed in various editions that support differ-
ent features, with AspectJ (www.eclipse.org/aspectj) used to
isolate these features.

JBoss Application Server (AS) is a free, open source Java appli-
cation server that supports Java EE. The core of JBoss AS uses
JBoss AOP (www.jboss.org/jbossaop) to deploy services such as
security and transaction management.

Oracle TopLink is a Java object-to-relational persistence frame-
work that is integrated with the Spring application server (www.
springsource.org). TopLink achieves high levels of persistence
transparency using Spring AOP.

Sun Microsystems uses AspectJ to streamline mobile applica-
tion development for the Java Micro Edition (ME) platform.
Aspects are used to simplify the development of mobile applica-
tions for deployment to different operator decks and different
mobile gaming community interfaces.

Siemens’ Soarian is a health information system (HIS) that sup-
ports seamless access to patient medical records and the definition
of workflows for health provider organizations. Soarian uses
AspectJ and fastAOP (http://sourceforge.net/projects/fastaop) to
integrate crosscutting features into an agile development
process.

Motorola’s wi4 is a cellular infrastructure system that provides
support for the WiMax wireless broadband standard. The wi4 con-
trol software is developed using WEAVR (an aspect-oriented
extension to the UML 2.0 standard) for debugging and testing.

ASML, a provider of lithography systems for the semiconductor
industry, uses Mirjam, an aspect-oriented extension to C, to modu-
larize tracing, profiling, and error-handling concerns.

Glassbox is a troubleshooting agent for Java applications that
automatically diagnoses common problems. Glassbox Inspector
uses AspectJ to monitor the Java virtual machine’s activity.

MySQL is a widely used relational database management
system. The logging feature in MySQL is implemented using
AspectJ.

Major Industrial Projects
Using AOSD

21FEBRUARY 2010

Third, industry adopters typically develop experimen-
tal solutions that evaluate the core know-how that the
research community has generated, then they custom-
ize these core principles to create technology to meet the
business needs of a specific industrial partner. Such an
experiment provides not only a practical validation of
general principles but also a concrete vehicle for further
experimentation and practical evaluation and, last but
not least, inspiration and insight for the challenges ahead.

This trend is evident in the various industry-academia
pilots listed in Table 1. For example, in the Wit-Case (Work-
flow Innovations, Technologies, and Capabilities for Service
Enabling) project, which partnered Katholieke Universiteit
Leuven, Vrije Universiteit Brussel’s System and Software
Engineering Lab (SSEL-VUB), and Alcatel-Lucent, indus-
try requirements for composition in workflow languages
drove the development of an AO extension to WS-BPEL,
Padus.5 The project provided insights into the feasibility of
AO concepts in the context of workflow systems.

A prototype toll system jointly developed by Siemens,
Lancaster University, and the École des Mines de Nantes
(EMNantes) used AWED (Aspects with Explicit Distribu-

tion),6 a language and runtime system for distributed
aspects, to flexibly manage toll processing pipeline dis-
tribution and synchronization issues, including toll data
collection, processing, and billing functionality. A com-
parison with an object-oriented (OO) solution showed
widespread code replication and scattering of distribu-
tion functionality within the OO toll processing pipeline.
In addition to AWED, project developers applied AspectJ
to support different data models during toll data process-
ing. The pilot thus provided evidence that developers can
exploit synergies by using different AO frameworks in one
application to handle different types of crosscutting func-
tionalities in industrially relevant applications.

The toll system also utilized EA-Miner,7 a tool that uses
natural-language processing techniques to identify poten-
tial crosscutting concerns in requirements documents.
EA-Miner revealed aspectual concerns that the developers
had originally overlooked during the AspectJ-based imple-
mentation. These concerns included legal constraints,
connection/reconnection between onboard units and the
back office, transaction management, and communica-
tion triggers.

Table 1. Overview of industrial AOSD projects studied.

Project Domain Size/complexity Type

AO
technologies

used

AO
features

used
Crosscutting concerns

modularized

Soarian (Siemens) Healthcare 300 modules, 400 developers,
500 concurrent users per
server

Industrial AspectJ,
fastAOP

Basic Architecture validation,
caching, auditing, perfor-
mance monitoring

IBM WebSphere Enterprise
systems

WebSphere Product Center—
3,700 classes, 43 aspects;
Enterprise Service Bus—1,300
classes, 6 aspects

Industrial AspectJ Basic Tracing, logging, first failure
data capture

MOTOwi4 Telecom 12 components, 100 develop-
ers, 200,000 sessions per
server

Industrial WEAVR Basic Tracing, timeout

Toll system (Sie-
mens, Lancaster
University,
EMNantes)

e-transport 90 classes, 20 aspects Industry-
academia

AspectJ,
AWED,
EA-Miner

Advanced Charging, error handling,
persistence, logging, moni-
toring, compatibility,
security

Wit-Case (Katho-
lieke Universiteit
Leuven, SSEL-
VUB,
Alcatel-Lucent)

Telecom 8 Prolog modules, 1,200 lines
of code, 1 technical architect,
2 developers

Industry-
academia

Padus Advanced Fixed billing, duration bill-
ing, platform
customizations, logging

Health-Watcher
(Recife, Brazil)

Healthcare 130 modules, 3 developers,
1.5 million people served

Controlled
experiment

AspectJ,
CaesarJ

Advanced Concurrency, distribution,
exception handling, persis-
tence, design patterns

AJHotDraw Graphics 279 classes, 31 aspects, 1 AO
developer, 25 OO developers

Controlled
experiment

AspectJ Basic Persistence, design policies,
contract enforcement, Undo
command

MobileMedia Imaging 3 developers, 51 classes, 36
aspects; a software product
line for cell phones

Controlled
experiment

AspectJ Advanced Exception handling, alterna-
tive and optional features

computer	22

COMPUTING PR ACTICES

Applying EA-Miner led to the reevaluation of some
architectural decisions related to the use of AO technolo-
gies. The experience also revealed interesting insights into
the potential adoption barriers for AO requirements engi-
neering techniques. Any such adoption would necessitate
a change to the established process of requirements docu-
ment preparation. It would also require additional effort
on the part of domain experts to specify aspect composi-
tions, along with the need for evangelists and trainers to
introduce the techniques into the development process (in
a fashion similar to the Soarian project).

Incremental introduction of AOSD
Our observations about production projects and

pilots point to an incremental adoption strategy of
AOSD. In both Soarian and WebSphere, for instance,
AO programming was first introduced into the build
process as a means to enforce architectural constraints.
This did not require any aspects to be included in the
shipped product, while at the same time providing a
solution to a fundamental problem that faces any large
development team.

Soarian, a very large system structured using a layered
architecture, offers a good sample case. In this applica-
tion, certain architectural constraints must be obeyed—for
example, data access objects (DAOs) should be accessed
only from application tasks, and only the DAOs can use
the Java persistence API. However, enforcing such architec-
tural constraints on large development teams is difficult.
Soarian uses the AspectJ declare error construct to
enforce such constraints as part of the build process, using
specifications such as:

declare error: noATCallsFromDAO():
"A DAO should not call a business layer";

WebSphere uses the same technique to prevent

unwanted API calls that may lead to unnecessary com-
ponents being shipped. Such an approach also justifies
the additional overhead of introducing a new technology
in a broad context. The AO programming solution guar-
antees a valid architecture by ensuring that each layer
only calls other authorized layers or APIs. Further, there
is no additional risk as AO programming is not part of the
production code.

Once they have established an initial confidence factor,
developers can incorporate AO techniques into produc-
tion code. When this occurs, concerns such as tracing,
logging, and performance monitoring take precedence
as the crosscutting challenges associated with these con-
cerns are familiar to developers, and the benefits of an AO
programming solution are immediately obvious. We see
this trend in numerous industrial projects. For instance,
Motorola developers used an AO modeling tool, WEAVR,8
in MOTOwi4 production to modularize tracing for debug-
ging and fine-tune the request timeout mechanism.

Debugging this type of application is particularly dif-
ficult because of race conditions that occur between
distributed nodes and the asynchronous communication
model. These race conditions require correlation of traces
produced by the system components, thereby necessitat-
ing the coordination of different development teams. A
tracing profile in WEAVR provides a configuration interface
to declare the granularity and scope of tracing function-
ality. This information is then used to generate tracing
aspects from predefined templates, which are transpar-
ently applied to the different system components before
code generation.

A recurring communication problem in asynchronous
distributed systems arises when the system processes
do not define time frames for request responses, which
causes the system to be blocked. A request timeout profile
is defined in MOTOwi4 that lets engineers configure the
timing constraints on the system requests and to declare
specific actions to be taken when they are not obeyed.
These exception handlers are then transparently deployed
in the system by generating aspects according to the pro-
file configuration.

MOTOwi4’s debugging and timeout features have min-
imal interactions with the system’s core functionality,
and their aspect-based modularization does not require
significant changes to the system architecture or the devel-
opment process.

ROI on engineering
and evolving software

To promote smooth adoption of AOSD techniques,
it is critical to empirically analyze their benefits and
limitations.

Improved design stability
Lancaster University has established an AOSD testbed

(www.comp.lancs.ac.uk/~greenwop/tao) as part of AOSD-
Europe to provide a set of artifacts including benchmarking
applications (both AO and non-AO implementations),
metric suites, and previously collected empirical results.
From these artifacts, both researchers and practitioners
can configure their own empirical studies. Figure 1 shows
samples of empirical data from the testbed.

Our observations about production
projects and pilots point to an
incremental adoption strategy of
AOSD.

23FEBRUARY 2010

One study9 conducted with these artifacts involved
using AspectJ and CaesarJ (http://caesarj.org) to compare
the design stability of two AO implementations against
an OO implementation (using Java) of Health-Watcher, a
system designed to monitor public-health-related com-
plaints and notifications in Recife, Brazil. The study applied
numerous common maintenance scenarios to both the AO
and OO versions of this benchmark application.

The analysis revealed that concerns modularized up
front using AO techniques, such as concurrency (Figure
1a), showed superior design stability, and modifications

tended to be confined to the target modules. In addition,
the AO designs prevented more intrusive modifications,
even when the change focused on a noncrosscutting
concern.

The AO designs also respected the open-closed principle
more effectively—that is, a module should be open for
extension but closed for modification—by enabling modifi-
cations to be made through the introduction of new aspect
modules rather than modification of existing artifacts. This
increased stability is achieved via pointcuts and inter-type
declarations, which absorb changes that would otherwise

0

100

200

300

400

500

600

0

20

40

60

80

100

0

100

200

300

400

500

600

OO(c)

(b)

AO OO AO OO AO OO AO OO AO

Nu
m

be
r o

f e
xc

ep
tio

n p
at

hs

Health-Watcher v1 Health-Watcher v9 MobilePhoto v4 MobilePhoto v6 AJHotDraw

Same exception Subsumption Uncaught

196

43

43

173

153

9
47

277

28

271

242

13

53

47

2

46

9

63

56

6

21

124

316

64

136

384

5

5

0

2

4

6

8

10

14

12

16

1 2 3 4 5
Version

6 7 8 9 10
(a)

Co
nc

er
n d

i�
us

ion
 ov

er
 co

m
po

ne
nt

s

Concurrency stability

executeCommand()

<<interface>>
Command

CommandServlet

ObserverUpdateState

ObserverProtocol HWTimestamp

OpCommands

executeCommand()

executeCommand()

<<interface>>
Command

CommandServlet

OpCommands

executeCommand()

<
<

cro
ssc

ut
s>

>

<
<

cro
ssc

ut
s>

> HWObserverExceptionHandler

35
37

39
41
43

45

51
53

49
47

55

1 2 3 4 5
Version

6 7 8 9 10

Co
nc

er
n d

i�
us

ion
 ov

er
 op

er
at

ion
s

Concurrency stability

Java
AspectJ
CaesarJ

Figure 1. Samples of empirical data from the AOSD testbed at Lancaster University. (a) Improved stability offered by AO for the
concurrency concern in Health-Watcher. (b) Increased scope of changes in AO design and more localized changes in OO design of
Health-Watcher. The aspects are denoted by a diamond; the modules affected by the change are highlighted in red. (c) Uncaught
exceptions, subsumptions, and specialized handlers in AO versus OO implementations of three systems. Note that MobilePhoto is a
version of the MobileMedia product line that deals only with images.

computer	24

COMPUTING PR ACTICES

be invasive, leading to increased scattering and violation
of the open-closed principle.

Substantial reduction in model size
Experience with design models for large-scale

communication systems in MOTOwi4 shows that AO
techniques can substantially reduce model size and
thus make it easier for developers to reason about the
models.

Figure 2 gives a high-level view of two subcom-
ponents of a large communication system. Each
subcomponent comprises multiple parts. The system
is subject to the consistency requirement “When the
system starts up, all parts must initialize successfully,
otherwise the system must shut down.” As the system
contains hundreds of parts, this requirement’s impact
on the implementation is massive. It implies that each
part of the system must be able to detect a failure con-
dition upon initialization and notify a coordinator. The
implementation of the failure detection and notifica-

tion concern cannot be modularized in a separate state
machine using existing language mechanisms because
it interacts with each part’s control flow. The Unified
Modeling Language’s abstraction and composition
mechanisms do not allow specification and implemen-
tation of the concern in a separate module.

A Motorola study of the MOTOwi4 infrastructure soft-
ware models showed that more than 40 percent of the
state diagram models implement crosscutting behavior
related to process coordination and fault tolerance.8 A
version of the same models produced using WEAVR
demonstrated that fault tolerance can be refactored
into a separate model. The ability to modularize these
concerns enables their representation in conceptual
models that capture their functionality’s essence. Such
models allow the reuse of solutions to complex prob-
lems such as process coordination and fault tolerance
in different contexts. Improved modularity also signifi-
cantly reduces the size and complexity of the system’s
models.

Figure 2. High-level view of two subcomponents of a large communication system. The upper areas are composite-part diagrams
that describe the system’s physical architecture and the connections between its parts. The lower area represents the state machine
diagrams that implement the system parts’ behavior. The highlighted sections represent the impact of a fault-tolerance requirement on
the implementation of system parts.

25FEBRUARY 2010

Potential pitfalls
Along with their advantages, AOSD techniques have

some potential pitfalls that practitioners must be aware of.

Ripple effects caused by pointcut fragility
AO techniques typically utilize a syntax-based join-

point model, whereby programmers specify pointcuts in
terms of class names, method names, field names, and
the like. If a maintenance change causes any of these ele-
ments to be renamed or removed, pointcuts that quantify
over them can be potentially invalidated.10 Researchers
are developing semantics-based pointcuts to, among
other things, address this fragility,11 but it remains a
problem.

The design stability study of the Health-Watcher system
highlighted pointcut fragility problems and various result-
ing ripple effects (Figure 1b). Programmers had to correct
pointcuts to remain compatible with changes made to the
base code, and in certain cases this was nontrivial. How-
ever, the pointcut fragility revealed a more fundamental
issue. When applying maintenance changes, programmers
hope to contain any necessary modifications only within
modules that are directly related to the concern being
modified. For example, in a layered architecture, if the user
interface layer is being modified, then the changes should
not propagate beyond the view layer. In the AO design, we
uncovered significant evidence of ripple effects, whereby
changes propagated to seemingly unrelated modules. This
was caused by interdependencies, created by pointcuts
and inter-type declarations, between the base code and
aspects, while the increased tangling in the OO design
reduced this scope.

This is not to say that ripple effects did not occur in
the OO design, but the scope of the ripple effects differed.
The improved separation of concerns within the AO ver-
sions caused the changes to propagate to more unrelated
modules, making the changes less obvious as unexpected
modules were affected. In contrast, the OO version
required more extensive changes within each affected
component, making these changes more obvious. These
differences led to a notion of “deep” and “wide” ripple
effects. AO ripple effects tend to go “deeper” in that they
propagate to unrelated modules, while OO ripple effects
tend to go “wider” in that they more extensively affect the
modified modules.

Effect on exception flows
The inversion of control provided by AOSD techniques

helps separate crosscutting concerns. At the same time,
however, the “new” aspectual modules must be tested.
This is particularly problematic when trying to test aspects’
effects on a program’s exception flows. As aspects extend
or replace existing functionality at specific joinpoints in
the code execution, their behavior may raise new excep-

tions that can flow through the program execution in
unexpected ways.

AO developers attempt to ensure that aspects do not
create exceptions that impact applications, but unexpected
behavior in aspect code such as referencing unantici-
pated null values or calling a library method that throws
undocumented runtime exceptions often occurs.12 Such
exceptions may remain uncaught, causing the software
to crash in an unpredictable way, or may be mistakenly
handled by an existing handler in the base code, introduc-
ing an unintended handler action.13

In all of the AspectJ versions of one Lancaster testbed
study (Figure 1c), we observed a significant increase in
the number of uncaught exceptions and a decrease in the
number of exceptions caught by specialized handlers.
The number of exception subsumptions—exception types
associated with the handler that are a supertype of the
exception type being caught13—also increased in most
AspectJ versions.

During code inspections, we discovered a set of recur-
ring programming anomalies in the exception-handling
code of AspectJ programs,12 which we categorized into
three bug patterns:

•	 bugs related to aspects that signal exceptions (for
example, solo aspect signaler—no handler is defined
for the exceptions signaled by the aspects);

•	 bugs related to exception-handling aspects (for exam-
ple, late binding aspect handler—the aspect intercepts
a point in the base code in which the exception was
already caught by another handler on the base code);
and

•	 misuses of the declare soft construct in AspectJ, a
construct that wraps any checked exception into an
unchecked exception.

These bug patterns can impair a system’s robustness. In
the short term, AO programmers must learn to recognize
and avoid these patterns. However, the problem can only
be tackled effectively by improving the design of exception-
handling mechanisms in AO programming languages and
building verification tools and techniques tailored to improve
the reliability of exception-handling code in AO systems.

T he software systems using AOSD that we have stud-
ied are medium- to large-scale and span a wide
range of domains including enterprise systems,
e-health, e-transport, telecommunications, Web-

based information systems, multimedia applications, and
workflow systems. Our analysis highlights typical usage
patterns of AO techniques—for instance, they are mainly
used for modularizing well-known crosscutting problems
and incrementally introduced, addressing developmental
concerns and other noncore product features first.

computer	26

COMPUTING PR ACTICES

	11.	 R. Chitchyan et al., “Semantics-Based Composition
for Aspect-Oriented Requirements Engineering,”
Proc. 6th Int’l Conf. Aspect-Oriented Software Devel-
opment (AOSD 07), ACM Press, 2007, pp. 36-48.

	12.	 R. Coelho et al., “Assessing the Impact of Aspects
on Exception Flows: An Exploratory Study,” Proc.
22nd European Conf. Object-Oriented Programming
(ECOOP 08), LNCS 5142, Springer, 2008, pp. 207-234.

	13.	 M. Robillard and G. Murphy, “Static Analysis to
Support the Evolution of Exception Structure in
Object-Oriented Systems,” ACM Trans. Software Eng.
and Methodology, vol. 12, no. 2, 2003, pp. 191-221.

Awais Rashid is a professor of software engineering in the
Computing Department at Lancaster University, UK, and
the Pays de la Loire Regional Chair at École des Mines de
Nantes (EMNantes), France. He received a PhD in computer
science from Lancaster University. Contact him at awais@
comp.lancs.ac.uk.

Thomas Cottenier is a senior research associate in the
Computing Department at Lancaster University. He
received a PhD in computer science from Illinois Institute of
Technology. Contact him at thomas.cottenier@hengsoft.net.

Phil Greenwood is a senior research associate in the Com-
puting Department at Lancaster University. He received a
PhD in computer science from Lancaster University. Con-
tact him at p.greenwood @lancaster.ac.uk.

Ruzanna Chitchyan is a senior research associate in
the Computing Department at Lancaster University and
coleads the work on aspect-oriented analysis and design
in AOSD-Europe. She received a PhD in computer science
from Lancaster University. Contact her at r.chitchyan @
lancaster.ac.uk.

Regine Meunier is a research scientist and software
engineer at Siemens AG, Germany, where she leads aspect-
oriented software development activities. Contact her at
regine.meunier@siemens.com.

Roberta Coelho is a professor in the Department of Infor-
matics and Applied Mathematics at Federal University of
Rio Grande do Norte, Brazil. She received a PhD in computer
science from PUC-Rio in cooperation with Lancaster Uni-
versity. Contact her at roberta@dimap.ufrn.br.

Mario Südholt is an associate professor in the Department
of Computer Science at EMNantes and heads the ASCOLA
group, a joint research team with INRIA that investigates
aspect and composition languages. He received a PhD in
computer science from Technische Universität Berlin, Ger-
many. Contact him at sudholt@emn.fr.

Wouter Joosen is a professor in the Department of Com-
puter Science at Katholieke Universiteit Leuven, Belgium.
Contact him at wouter.joosen@cs.kuleuven.be.

The benefits of modularity, such as reducing software
model size and improving design stability over a history
of changes, are substantial. As with any new technology,
however, there are also potential pitfalls, especially in
regard to testing execution paths, that developers must
be aware of to ensure robustness of AO applications.
Pointcuts also appear to be a double-edged sword: While
they enable certain changes to be absorbed and thereby
increase a design’s stability, they are also the source
of ripple effects that reduce stability. Developers must
account for this tradeoff when incorporating AO technolo-
gies in a project.

References
	 1.	 R.E. Filman et al., eds., Aspect-Oriented Software

Development, Addison-Wesley, 2004.

	 2.	 E. Baniassad et al., “Discovering Early Aspects,” IEEE
Software, vol. 32, no. 1, 2006, pp. 61-69.

	 3.	 A. Colyer and A. Clement, “Large-Scale AOSD for
Middleware,” Proc. 3rd Int’l Conf. Aspect-Oriented
Software Development (AOSD 04), ACM Press, 2004,
pp. 56-65.

	 4.	 D. Wiese and R. Meunier, “Large Scale Application
of AOP in the Healthcare Domain: A Case Study,”
keynote address, 7th Int’l Conf. Aspect-Oriented Soft-
ware Development (AOSD 08), 2008.

	 5.	 M. Braem et al., “Isolating Process-Level Concerns
Using Padus,” Proc. 4th Int’l Conf. Business Process
Management (BPM 06), LNCS 4102, Springer, 2006,
pp. 113-128.

	 6.	 L.D. Benavides Navarro et al., “Explicit Distributed
AOP Using AWED,” Proc. 5th Int’l Conf. Aspect-Ori-
ented Software Development (AOSD 06), ACM Press,
2006, pp. 51-62.

	 7.	 A. Sampaio et al., “EA-Miner: Towards Automation in
Aspect-Oriented Requirements Engineering,” Trans.
Aspect-Oriented Software Development III, LNCS
4620, Springer, 2007, pp. 4-39.

	 8.	 T. Cottenier, A. van den Berg, and T. Elrad, “The
Motorola WEAVR: Model Weaving in a Large
Industrial Context,” Industry Track, 6th Int’l Conf.
Aspect-Oriented Software Development (AOSD
07), 2007; http://aosd.net/2007/program/industry/
I3-MotorolaWEAVR.pdf.

	 9.	 P. Greenwood et al., “On the Impact of Aspectual
Decompositions on Design Stability: An Empirical
Study,” Proc. 21st European Conf. Object-Oriented Pro-
gramming (ECOOP 07), LNCS 4609, Springer, 2007,
pp. 176-200.

	10.	 A. Kellens et al., “Managing the Evolution of Aspect-
Oriented Software with Model-Based Pointcuts,”
Proc. 20th European Conf. Object-Oriented Program-
ming (ECOOP 06), LNCS 4067, Springer, 2006, pp.
501-525.

	 Selected CS articles and columns are available for free
	 at http://ComputingNow.computer.org.

