
On the Impact of Evolving Requirements-Architecture
Dependencies: An Exploratory Study

Safoora Shakil Khan, Phil Greenwood, Alessandro Garcia, Awais Rashid

Lancaster University, UK
{shakilkh, greenwop, garciaa, marash}@comp.lancs.ac.uk

Abstract. Architecture design plays a significant role in the evolution of
software systems, as it provides the prime realization of the driving
requirements and their inter-dependencies. With the increasing volatility of
software requirements nowadays, it is necessary to understand the correlation
between evolving classical requirements dependencies and their impact on the
architectural decomposition. In the context of this analysis, two questions arise:
(i) what are the conventional categories of requirements dependencies that are
more architecturally significant in terms of change impact? and (ii) to what
extent those evolving dependencies tend to generate ripple effects through
architectural modules and interfaces. In order to address these two questions,
this paper first presents an analysis model that categorizes requirements
dependencies. Second, we have performed an exploratory study, based on the
change history analysis of a real-life Web-based information system, in order to
gather the most architecturally-significant requirements dependencies from our
model. We have systematically analyzed ten system releases, based on some
qualitative and quantitative indicators, with respect to how the requirements-
architecture dependencies and compositions evolved.

Keywords: Dependency analysis, traceability, software architecture, change
impact analysis.

1 Introduction

Software architecture of information systems is the pivotal realization of requirements
and their inter-dependencies as it encompasses the driving design decisions in order to
satisfy stakeholders’ needs [19]. Software architectures are often decomposed into a
set of modules (components) and interfaces, typically designed for future evolution in
order to avoid that the system succumbs in the presence of changes [19][20]. Thus,
architectural design forms the backbone of the target system, and frequent non-
systematic modifications to requirements dependencies can make the architecture
fragile and cause short-term design degeneration [15][16][17]. As a result, software
architects often need to understand, predict and trace the impact of evolving
requirements dependencies on architectural designs [1][2][3].

However, there is not much empirical knowledge on the influence of different
categories of changing requirements on architecture elements [1][2][3] so that
designers can forecast change impact. As a result, they cannot thereafter effectively
trace key problem-solution dependencies. Not surprisingly, requirements-architecture
traceability and change impact analysis techniques are still in its infancy and limited
support is provided to software architects. There is a growing body of traceability
techniques emerging in the literature [15][16][17][22], but they do not provide an
adequate end-to-end tracing between categories of requirements dependencies and
architectural elements. Most of these approaches are based on mapping requirements
to architecture using trace matrix or trace graph [24][25]. There are a few approaches
[2][5][6][8][9] that focus on characterizing requirements dependencies but these
approaches have not been extended to cope with evolving requirements-architecture
relations. Most empirical studies in the literature focus on characterizing architectural
changes [18], keeping architecture and implementation in synchronization [15][17]
[22], or supporting change impact analysis on implementation artifacts [23].
 This paper presents a first exploratory study in order to identify the potential
factors associated with evolving requirements dependencies and their corresponding
effects or architectural changes. In order to be able to perform the investigation, we
have defined a requirements dependency model (Section 2); we also discuss how each
category of requirements dependency is likely to affect the architectural
decomposition in the presence of change to it. The dependency model is based on a
systematic analysis of classical requirements engineering techniques [1][2][3][5]. In a
second step, we have undergone a set of experimental procedures (Section 3) in order
to analyze the impact of evolving requirements dependencies and architecture
changes through the releases of a real-life Web-based information system called
Health Watcher (HW). The goal of the analysis was to characterize (Section 4):

(i) how the nature of requirements dependencies can lead to tight or loose
 interconnections with architectural elements;

(ii) the most architecturally-significant requirements dependencies; and

(iii) how the requirements dependencies tend to evolve in a typical Web-based
 information system.
Our analysis was based on qualitative and quantitative indicators. Classical change

impact metrics have also been used to quantify the requirements and architecture co-
relations. We also contrast our findings with related work (Section 5), and provide
some concluding remarks (Section 6).

2 From Requirements to Architecture: A Dependency Model

This section presents a dependency model that provides support to software analysts
to understand how the requirements are being realized to the architecture components
and their compositions. This model assists a number of software evolution tasks, such
as: (i) the identification of dependencies that lead to tight or loose interconnections
among requirements elements and architectural decompositions, and (ii) basic support
for understanding significant architecture implications from the perspective of

requirements changes. We have defined a dependency taxonomy based on a
systematic analysis of conventional requirements engineering approaches [7][14].
The analyst must keep in mind that more than one dependency can hold between
requirements to architecture and it may be rare that individual dependency exist due
to requirements characteristics. We have discussed six types of dependencies from
our dependency model:
 Goal Dependency. Goal dependency relates system’s quality attributes at problem
domain to their realization in solution domain (architecture and implementation). This
dependency has been adapted from the conventional goal-oriented requirements
engineering approaches [1][2][3] that define characteristics of systems. Dependency
relates to requirements specifying quality of service (security, availability,
performance, etc) and development (compatibility, adaptability, interoperability, etc)
to component at architecture level. Consider the requirement ‘system must be flexible
in terms of the storage format [4]’, i.e., to enhance variability and provide the user
with the multiple options of storing data, such as arrays or different databases. This
requirement will be linked to component providing persistence at the architecture
level as it defines the objective of the system under construction.
 Service Dependency.. Service dependency relates the requirements expressing
behavioral or functional characteristics of the system to corresponding operations and
functions at architecture. The trace connection among requirements-level operations
to architecture will usually be intricate or fine grained, as it will relate to classes,
operations, or interfaces at the architecture level. A service dependency may coexist
with goal, conditional, temporal, etc., dependency as it provides operation to perform
when certain goal or condition is met. Consider the requirement ‘...system provides
user with the queried data …’ [4], forms a service dependency with architecture.
Operation for searching and retrieving the requested data of a particular query type is
invoked at architecture level.

Conditional Dependency. Conditional dependency defines events that trigger
services, processes, and tasks based on certain conditions, constraints, or decisions
taken at the requirements level to their realization at the architectural level. The
triggering can be autonomous or non-autonomous reaction to a condition, constraints,
or decisions, for example, when smoke is detected the autonomous reaction of the
system is to open the doors. This dependency has been inspired from programming
and Meyer [26] ‘Design by Contract’. Consider the requirement ‘employee can make
changes to when authenticated by the system as an employee [4]’. This requirement
has conditional and service dependency with components of the architecture. The
conditional dependency exists as the employee will not be granted access to perform
restricted operations unless they have been verified as a valid employee.

Temporal Dependency. Temporal dependency relates requirements specifying
time frame of an event to occur, processes to complete, or condition to hold true, to
their realization at architecture. Temporal dependencies manifest often in
requirements associated with real-time systems and distributed systems. Temporal
dependency is closely related to conditional dependency and may usually co-exist.
Consider the requirement ‘terminate user’s request if system does not respond within
5 seconds [4]’, has temporal and conditional dependency with the architecture. The
dependencies hold as condition needs to be true within the specified time frame for
the system to proceed further.

 Task Dependency. Task dependency traces the connection between artifacts
which require response, input, or feedback from user for their completion. Task
dependency forms a medium between user and system, allowing user to request for
systems services. Consider the requirement ‘employee chooses one of the given
options (review, update, delete)’ has task dependency as the system needs users input
to invoke the corresponding service based on users request. The common notion
between conditional and task dependency is that systems halts for response. The
distinguishing notion between the two dependencies is that conditional dependency
depends on input, response or feedback from other operations/services in the system.
Retrospectively, a task dependency depends on input, response or feedback from user.

 Infrastructure Dependency. Infrastructure defines the hardware and software of
system. Infrastructure dependency relates the resources, infrastructures (networks,
telecommunications, mobile, etc.), technical standard/details, and compatibility issues
specified in stakeholder’s requirement to the architecture conception/construction.
This dependency has been adapted from Ramesh and Jarke [8] resource dependency
and Grady [9] implementation requirements. Consider the requirement, ‘application
should be accessible via internet’ , it has infrastructure dependency with architecture
components as .the Web service is implemented using servlets.

3 Case Study and Evaluation Procedures

This section describes in detail the requirements and architectural characteristics of
the application used in our exploratory study (Sections 3.1), and the evaluation and
analysis procedures (Sections 4.1 to 4.2). Health Watcher (HW) [10][11][12] is a
typical Web information system and a real-life application that was chosen to support
the empirical analysis in our exploratory study. The reason for selecting the HW case
study is threefold. First, a rich set of HW artifacts and their releases were made
available. For instance, for the analysis we have requirements specification (available
from [13]), both use case descriptions and goal models. The architecture design is
specified according to two fundamental architectural views, the module and
component-connector views. Also, deployment-related decisions are embedded in
these views. As a result, these requirements and architecture artifacts (Sections 3.1)
capture respectively a rich, complementary set of requirements-architecture
dependencies according to our model (Section 2).

Second, the original HW implementation and its ten releases [4] are available in
three programming languages, Java, AspectJ, and CaesarJ. As a consequence, HW
architecture is basically realized according to two architectural designs: a layered OO
version and a layered AO version. None of these artifacts have been specially
prepared or modified for our exploratory study, which in turn makes the analyzed
base of changes more representative from realistic software maintenance scenarios.
Third, this application has been used for implementation-level maintenance analyses
[10][11][12] allowing us to correlate our findings with their results. Finally, in the
investigation reported in [10], additional changes were applied to the HW application
leading to ten implementation releases.

 The study is divided as follows: (i) definition of change metrics (section 3.3), (ii)
identification of requirements to architecture dependencies (section 4.1), (iii)
application of change scenarios to assess change impact (architectural models and
code are visited) and measure change propagation to identify the architecture-level
changes in terms of classes, interfaces and compositions (section 4.2), and (iv)
analysis of the assessments in order to identify the architecturally-significant
dependencies (section 4.3) in the presence of changes.

3.1 Health Watcher Requirements and Architecture

The Health Watcher application is a Web-based information system which allows
online access to register complaints, read health notices, and query regarding health
issues. Employees can record, update, delete, print, search, change the records stored
in the HW repository (in form of tables) after being authenticated as HW employee,
i.e., by providing correct login name and password. Citizen can register complaints
that system registers in the repository and generates a complaint code. The initial
version of the HW system lacked flexibility and incapability to support generic Web
applications as it was bound to specialized Web services. Also, the initial version
provided limited functionality for a limited set of data, for example the system only
allowed to query and update health units and complaints.

Fig.1. Module view of the Health Watcher system [10]

We have analyzed both OO and AO architectures of the HW system. The AO
architecture modularizes concurrency, distribution, and persistence as aspects. Due to
space limitation, our description focuses on the OO architectural design; detailed
discussion about the AO architecture version is available at multiple sources
[4][10][14][21]. Figure 1 shows the module view of the OO version for the HW
system [10] that realizes the layered architectural style. It comprises of four layers:
view, distribution, business, and data. Citizens access Web pages to query and/or
register complaints. Multiple users can access the HW system simultaneously through
Java Servlets, captured by the view layer (Figure 1), which decomposes into two main
modules HWServlet and OpServlets. The Distribution module provides the
interface IFacade to enable the access the HW services implemented in Business
layer. The latter comprises of a number of modules, such as: HealthUnitRecord,
SpecialtyRecord, ComplaintRecord, EmployeeRecord, and

SymptomRecord. Each of these modules is invoked for specific operations requested
by citizen/employee. For example, if the citizen has requested to query a health unit
then IFacade provides access to business layer module HealthUnitRecord which
accesses the HW database HealthUnitRep using interface IHealthUnitRep. A
complete description of the HW architecture and implementation is available
elsewhere [4][10][11][12]. Figure 1 also represents the implemented change
scenarios. In particular, it points out the impacted modules for each scenario, which
are sub-scripted by change type and scenario number.

3.2 Change Metrics

Our quantitative assessment is based on a metrics suite to identify propagation of
requirements change on the elements of the OO and AO architecture design. The
architectural views, the module and component-connector views consists of
module/components that have class(es), operation(s), and port(s)/interface(s). The
metrics will give quantitative values to analyze the dependency from perspective of
change and architectural significance. The quantitative metrics to access change at
architecture level are:

Concentration (C): it measures requirements dependency to the architecture
components and their composition. Set of requirements may trace to a layer or more
than one layer comprising of components. In the AO architecture version an aspect
will be treated as a layer. The lowest value of C is one, which is also an indicator that
the change will be occurring at intra-level, i.e., only affecting a layer. The highest
value of C is the total number of layers in the architecture design, which is also an
indicator that the change may cause ripple effect in the architecture.

 Dispersion (D): it measures the percentage of components impacted by change in
a layer or multiple layers. In equation 1, Ec: is number of effected classes, operations,
and interfaces in architecture due to change and Tc: is the total number of components
in a layer.

(1)

We will calculate D for each layer and then take an average. For example, if
change is concentrated (C) in two layers, then D will individually calculated for each
layer and then an average will be taken to calculate the final value of D. If dispersion
percentage is lower than 25% (1/4) it may be considered as a mild dispersion. If inter-
component dispersion percentage is greater than 33% (1/3), even if change is
concentrated in a layer it is considered severe.
 Inclusion (I): it measures the number of components added when change is
incorporated. It is not mandatory that each change introduces a new component,
therefore, I can be 0 or any number of components added.

4 Empirical Results and Constraints

This section reports the evaluation outcomes and discussion, based on a systematic
analysis of the nine change scenarios implemented in Java and AspectJ, which has led
to ten releases for the HW architecture (Section 3.1).

4.1 Requirements-Architecture Dependency Analysis

This section provides a summary of requirements-architecture dependency analysis
for HW using the model described in Section 2. This analysis involved the trace of the
requirements to their module and composition counterparts in the architectural
models. Figure 2 shows a representative set of examples on dependencies that are
likely to exist from the HW requirements elements to the architecture components and
their compositions. A few of requirements have been shortened due to space
limitations:

R1 to R5 form goal and infrastructure dependencies with architecture layers of
HW system. For example, R2 have goal and infrastructure dependencies as one of a
few goals of health watcher is ease of access (i.e., available online) and usability,
which are satisfied by implementing health watcher as a Web-based online
application and servlet for GUI. R6, R7, and R9 have task dependency with view
layer as user interacts with the system providing input or feedback to system to
proceed further.

R8 forms service dependency with business and data layer. Service dependency
holds as health watcher performs operations to store information entered by the user,
parse the data entered by the user, creates a new instance of the appropriate complaint
type, generates a unique identifier and assigns this to the new complaint, complainers
address is parsed and saved.

R13 forms service dependency with business and data layer as
searchComplaint(int code)and search(String login) classes are invoked
to list the complaints and employees to be updated of HW system. R11 forms
conditional and service dependencies because user can not access the restricted
operations: update and register unless system verifies (user’s login and password)
them as valid user.

 R15 and R16 are representative example of a few errors occurrence during the
operation of the HW system. Error handling has service and conditional dependencies
with view, distribution, business, and data layer, depending where the error occurred.
Distribution, persistence, and concurrency are modularized as aspects in the AO
architecture. Therefore, the requirements which did not have explicit trace
dependency for OO version form dependencies in AO architecture design. R20 forms
service and conditional dependency with concurrency component (HWManagedSync
and HWTimeStamp). Timestamp provides functionality to avoid data inconsistency
by applying timestamp field on the most recently modified data, storing it in the
persistence mechanism.

Fig. 2. Functional and non-functional requirements of Health Watcher system [13][14]

4.2 Evolving Dependencies’ Impact on the Architecture

Our findings report how changing requirements dependencies (Section 4.1) tend to
entail four categories of architecture-level changes, namely: adaptive restructuring,
perfective modifications, incremental changes, and behavioral modifications. The
analysis was guided by using an existing categorization of architectural modifications
in the OO and AO module view [18]. This reference model systematically
characterizes both the level of impact and severity of each type of architectural
change. However, it provides an investigation on the correlation of requirements
dependencies and architecture change categories, which is the key aim of our
analysis.

Requirements Dependency Architecture
R1: System should be an online Web-based service Goal & Infrast. View
R2: System should have an easy to use GUI Goal & Infrast. View
R3: System must provide flexible storage mechanism Goal & Infrast. Business & Data
R4: System should be capable of running on separate machines Goal & Infrast. Distribution
R5: System must be able to handle 20 simultaneous users Goal & Infrast. Distribution
R6: … to register complaint citizen choose a complaint type:
animal, food, or special

Task View

R7: …user provides complaint details, place, and date/time Task View
R8: …complaint is stored on the server assigning an identification
number to each stored complaint

Service Business & Data

R9: … to query any information user selects query type: healthunit,
specialty, or complaint

Task View

R10: … based on selection of query type system retrieves the list Service Business & Data
R11: … to access restricted operations employee verifies
themselves

Conditional &
Service

View, Business &
Data

R12: … verified employee selects healthunit, specialty, or
complaint to update

Conditional &
Task

View

R13: For particular selection: healthunit, specialty, complaint data
is retrieved

Service Business & Data

R14: updates for healthunit, specialty, or complaint are stored at
server

Service Business & Data

R15: … raise error message if invalid data is entered Cond. & Service View
R16: … if the system does not respond in 5sec raise an exception Temp., Cond., &

Service
View &

Distribution

 Adaptive Restructuring of Layers. There were two change scenarios that implied
adaptive restructurings. First, change scenario 1, involved restructuring of HW
software to provide extensibility by separating servlets and promote GUI decoupling.
This scenario evolved goal and infrastructure dependencies of R2 to service
dependency with view layer. The changes only spanned over the inner architectural
elements of the view layer. On the other hand, there was an evidence of high change
dispersion (Table 1) as there were changes in HWServlet and the removal of
OpServlets in view layer. This also led to the inclusion (I) of two components
Command and OpCommand in view layer of the OO architecture.

Second, change scenario 5 led to deployment restructuring of the persistence
mechanism in order to allow data storage in memory or database repository. Goal and
infrastructure dependencies of R3 with business and data layer evolved to goal,
conditional, and infrastructure dependencies in OO architecture, whereas in AO
architecture goal, conditional, and infrastructure dependencies are formed with
persistence (an aspectual component) and data layer. The reason for conditional
dependency to emerge is because the change scenario has introduced a strategic
design choice that altered the architecture design based on storage mechanism chosen
at deployment time.

Table 1. Change scenarios and change assessment
 Description Type of

Change
Evolving Req.
dependencies

Assessment of
Impacted

Architecture
OO/AO C D I

1 Restructure Web based health
watcher system to improve

extensibility

Adaptive Goal and
Infrastructure

OO 1 50% 2
AO 2 50% 1

2 Disable multiple updates once
complaint state is CLOSED

Corrective Services OO 1 25% 1
Conditional and

Service
AO 1 25% 1

3 Improve maintainability by
disassociating Update
functionality from HW
functions: health unit,

specialty, and complaint

Perfective Service OO 1 28% -
Conditional and

Service
AO 1 33% 1

4 HW system should support use
of different distribution

configurations

Perfective Goal and
Infrastructure

OO 2 39% -
AO - - -

5 System must flexible in term of
data storage

Adaptive Goal and
Infrastructure

OO 2 22% 1
AO 2 33% 1

6 Ease the process of adding GUI Perfective Service OO 1 33% -
AO 1 33% -

7 Generalize distribution
mechanism

Perfective Goal and
Infrastructure

OO 1 22% 1
AO - - -

8 Provide functionality to query
more data types: symptoms and

disease

Perfective Service OO 3 83% 3
Conditional and

Service
AO 6 50% -

9 Modularize error handling
strategies and provide better
error recovery mechanisms

Perfective Conditional and
Service

OO 3 54% -
AO 4 57% 1

 Perfective Modifications of Pivotal Architectural Services. Change scenario 3 is
a perfective change modularizing update function, decoupling it from the rest of HW
system, such as the disassociation of the health unit, specialty, and complaint entities
in business layer. The set of requirement had service dependency with business layer
and data layer. Change is concentrated in business layer with a dispersion of 28%,
decoupling update functionality from HealthWatcherFacade, Employee,
HealthUnit, and Complaint components in business layer. For the AO
architecture, update function formed service and conditional dependencies with
concurrency (aspect) and business layer. The reason to form dependencies with
concurrency (aspect) is to achieve synchronization and maintain data consistency,
which is achieved by applying timestamp field to the retrieved/updated complaint,
health unit, and specialty data.
 Change scenario 9, modularizes error and exception handling, decoupling it from
the rest of the health watcher system. Similarly, change scenario 4 performs a
perfective change as it modularizes the distribution mechanism, decoupling it from
the rest of the health watcher system for OO architecture in order to facilitate
deployment of different distribution configurations. But change scenario 4 is not
applicable as distribution mechanism was modularized as an aspect in the initial AO
architecture design.
 Incremental Change of Component Interfaces. Change scenario 6 is an
increment of release 2 that implements change scenario 1. It generalizes the request
and response servlet parameters to enable inclusion of new operations and GUI. R2
entails service dependency to the view layer. Dependency remains unchanged due to
the perfective nature of the modifications. Change is concentrated on the view layer
with change dispersion lower than of change scenario 1 as it impacts a few operations
in component interfaces within the view layer.

Change Scenario 7 is an increment of release 5 which implements change scenario
4. Incorporated change allows number of different distribution mechanisms to be
configured for multiple servlets. Change is concentrated on the business layer of OO
architecture with change dispersion lower than of release 5 (change scenario 4).
Change scenario 7 has no effect/applicable as distribution mechanism was
modularized as an aspect in the initial design of AO architecture.

 Behavioral Modifications. Change scenarios 2, 8, and 9 modified/changed the
intended behavior of system functions. Change scenario 2 refined the update
complaint functionality, by allowing the complaint status to be set to close once
complaint had been modified by employee. R14 implied on a service dependency with
business and data layers for OO architecture, in AO architecture it formed service and
conditional dependencies with concurrency (aspect) and business layer. For AO
architecture the dependencies remained the same, whereas for OO architecture the
dependency evolved to conditional and service dependencies, as every time a
complaint is requested for update its status was checked. From the architectural
perspective, a few operations in classes of Complaint component underwent some
impact. In fact, the dispersion percentage was relatively low, i.e. 25%. The change has
also encompassed the introduction of State component in business layer of OO and
AO architecture.

The initial version of HW system only provided the option to query the health unit,
complaint, and specialty. New functionality and querying options are provided with

respect to the symptoms and diseases entities in scenario 8. Querying functionality
had service dependency with business layer in OO architecture. Interestingly, the
change has propagated to 3 layers and rippled through the system. The change added
SymptomRecord class which formed service dependency with business layer and
SymptomRep class which formed goal and infrastructure dependencies with data
layer of OO architecture. While, querying functionality forms service and conditional
dependencies with concurrency (aspect), persistence (aspect), and business layer of
AO architecture. Change to query behaviour impact 6 layers and added observer
pattern. SymptomRecord and SymptomRepositoryRDB classes were added in AO
architecture.

Scenario 9 comprises of two architecture-level changes: a) perfective and b)
behavioral. The changes in scenario 9 had been incorporated in parallel therefore they
were not considered under the incremental change category. The change introduced
new exceptions that were not in the initial intended OO and AO architecture design:
CommunicationException, SQLPersistenceMechanismException, and
RepositoryException.

4.3 On the Architecturally-Significant Dependencies

This section discusses some findings on which types of changing requirements
dependencies (Section 2) are likely to have widely-scoped, moderate or localized
impact at the architecture design. The previous quantitative and qualitative analysis
(Section 4.1) are used as the basis.
 Architectural Pull. An analysis of Table 1, externalizes the fact that
dependencies are orthogonal in nature (Section 2) and it is impossible to have strict
separation between the dependencies due to nature of requirements. These
dependencies may form weak or strong interconnection with the architecture
elements, which we refer to as architecture pull. The dependencies pull the
architecture in various directions which may provide an insight of dominant
dependencies at architectural level from perspective of change, as discussed below.
 Dominant Dependency for a Particular Type of Change. The orthogonal nature
of dependencies raises some questions: how coexisting dependencies evolve? which
dependency has dominant impact during change? does the impact degree of a
dependency category vary based on heterogeneous change types?
 Table 1, shows goal and infrastructure dependencies co-existed, they were
impacted by adaptive change (scenario 1 and 5). The adaptive modifications led to
high dispersion of architecture-level change. It is well understood that a goal
dependency is significant at architecture level [1] but for the specific change
infrastructure dependency was dominant as the changes were focused on the software
architecture being adapted to new standards/techniques in order to improve both
server and client performance and this change did not cause the system to deviate
from its original design and objectives and, as a result, the goal dependency was of
limited impact. Change in goal dependency may lead to significant changes as the
system’s objectives are changed which will lead to degeneration of architecture
design.

According to Table 1, usability and service dependencies (scenario 6) were
affected by perfective change. For the specific change scenario usability dependency
played a minimum role in the architectural modifications, the dominant dependency
was service dependency as it refined the operations provided by system. Based on the
assumption of corrective change in scenario 2, dependencies might have equal
importance and may not be dominant over the other from perspective of change.

Many requirements formed conditional and service dependencies with OO and AO
architecture, as seen in Table 1. In our analysis, we observed that service dependency
led to high dispersion when it involved changes in system functionality/behavior. We
have noticed the similar trend for the service dependency co-existing with conditional
dependency. Conditional dependency captures the behavior and structure in form of
architectural design choices, decisions, and constraints, which form core of the
architecture, which are implied on number of architectural elements. When
architectural decisions and/or choices change it may lead to addition of new structure
or behavior in the architecture causing a break down, degradation, or enhancement in
the architecture. Therefore a conditional dependency plays a dominant role and
qualifies as a significant dependency when it co-exists with service dependency as all
the dependant process or services are checked to see if they satisfy the new condition,
decision, or constraint.
 Independent Dependencies. Up to this point, we have discussed the orthogonal or
overlapping dependencies. Now the question arises: if it is possible for dependencies
to exist independently. A careful analysis of the outcomes in section 4.1and 4.2 makes
it evident that goal dependency is unlikely to exist independently. Goal dependency
defines the system objectives or quality attributes that are achieved by operations,
services, software, and technical infrastructure, which have clear realization at
architecture.
 Dependencies with Minimum Architectural Impact. From analysis of the
change scenarios we identified dependencies that are least likely to impact the
architecture. The least significant dependency is task dependency. As task
dependency facilitates user’s interaction with the system through a medium (e.g.,
Web-browser, command prompt, etc.). Even if the backend software is enhanced/
modified (as in scenario 1) or service is modified/added (scenario 6) the front end
remains the same, i.e., a Web browser. Based on scenario 1, if the GUI is changed,
i.e., addition of radio buttons, drop down list, or check boxes, it will not introduce any
change at architecture level, but at code level.

4.4 Study Constraints

Even though this study fully satisfies our initial goal of providing a first empirical
investigation on the impact of evolving requirements dependencies on architectural
changes, our procedures have some limitations. These limitations will contribute to
further explorations using other experimental procedures and systems as targets.

Our analysis concentrates on the change history of one software system providing
a single point of observation. Our target case study is a representative choice of Web-
based information systems for several reasons: the HW realizes n-tier architecture that
is one of the most common design alternatives implemented by deployed Web

systems [10][21], HW functional and non-functional requirements are consistently
part of applications in this specific domain, changes are heterogeneous and
representative of real change requests within software projects from this nature. More
importantly, the design of the HW system realizes the best design practices [4] and
have being systematically being enhanced through the years [10]. It provides evidence
that the requirements-architecture co-changes are not merely a matter of lack of
systematic design choices.

Of course, strong conclusion can not be drawn by analyzing a single system as
dependencies may (or may not) vary depending based on web-based information
system’s quality attributes. For example, an online banking system has security and
privacy as its key quality attributes. Similarly an online comparison system has
completeness and correctness as its quality attributes, b) we analyze a single
architectural view, therefore, we are unsure of the dependencies that may exist for
other views, how the architecture will be affected, on incorporating change and will
similar set of dependencies be architecturally significant, and c) we only focused on
analyzing the dependencies that evolved due to incorporated change scenarios. This
does not give us a clear idea on change impact on other dependencies.

5 Related Work

A few conventional requirements modeling languages and methodologies [1][2][3]
explicitly attempt to support a more straightforward derivation of architecture designs.
They rely on the provision of means to enable the requirements engineers to reason
about the system goals and how they are operationalized in terms of architectural
elements. However, the sole use of these approaches is not sufficient to estimate the
impact of requirements changes on the derived architectures. Requirements change is
inevitable and incorporating these changes involve: huge cost and effort, risk of
architecture degeneration, and undesirable system deviation from its original design.

One way to assess effect of change is to apply impact analysis techniques. There
are many code-level change impact analysis approaches, but a scarcity of impact
analysis support targeted at architectural evolution. Only a few authors [15][16][17]
define impact analysis techniques for architecture designs, but their focus is restricted
to the scope of architecture-level changes. They are oblivious to the way changes to
the requirements and their inter-dependencies impact architectural decompositions.
As a consequence, it makes it difficult to architects to estimate how specific change
requests on requirements will affect the architecture elements. For understanding
impact of requirements evolution on architecture it is fundamental to understand the
trace dependencies that may hold between entities of the two artifacts.
 Ramesh and Jarke [8] defined requirements trace dependencies: goal, task,
resource, and temporal for trace managing requirements on the basis of nature of
dependency. Grady [9] took a step further to define architectural requirements by
defining design, implementation, interface, and physical requirements, which only
provide a mechanism to analyze how these requirements are realized at architecture.
William and Carver [18] characterized architectural change and specified their affect
on logical and runtime architectural structure. Inspiring from works of Ramesh and

Jarke [8], Chung et. al. [2], William and Carver [18], and Grady [9] we have defined
requirements to architecture dependency model to predict impact of requirements
change based on dependencies and change type (corrective, adaptive, and perfective)
on architecture. This has help predict change impact of dependencies and identify
architecturally significant dependencies.

6 Conclusion and Future Work

This paper presents the outcomes of an exploratory study aimed at assessing the
impact of typical changes in requirements dependencies on architecture design. From
our exploratory study we have externalized the fact that requirement dependencies are
often orthogonal in nature and, in many cases, there is no strict separation between the
dependencies. We have analyzed how co-existing dependencies evolve, which
dependencies have dominant impact during change and led to different “architectural
pulls”. Our study has shown that evolution of co-existing conditional and services
dependencies is architecturally significant as for evolving service dependency it needs
to be checked if the corresponding condition, constraints, and decision are satisfied or
for evolving conditional dependency it needs to be checked if the process or services
correspond to the condition. Similarly, co-existing goal and infrastructure
dependencies are architecturally significant as change to system objectives may lead
to architectural degeneration. Strong conclusion can not be drawn by analyzing a
single system as dependencies may (or may not) vary depending based on Web-based
information system’s quality attributes. In order to validate our dependency model
and identify other architecturally-significant dependencies, other studies should
further analyze applications from different domains.

Acknowledgements. This work was partially supported by the European Commission
grant IST-33710 - Aspect-Oriented, Model-Driven Product Line Engineering
(AMPLE), and the TAO project, funded by Lancaster University Research
Committee.

References

1. Lamsweerde, v. A.: From System Goals to Software Architecture. Formal Methods for
Software Architectures, M. Bernardo & P. Inverardi (eds), LNCS 2804, Springer-Verlag,
2003, 25-43

2. Chung, L. Nixon, A. B.,Yu, E., and Mylopoulous, J.: Non-functional Requirements in
Software Engineering. Kluwer Academic Publishing, 1999.

3. Herold, S., et. al.: Towards Bridging the Gap between Goal-Oriented Requirements
Engineering and Compositional Architecture Development. SHARK-ADI 2007..

4. Greenwood, P., et al.: Aspect Interaction and Design Stability: An Empirical Study
(2007), Available from:
http://www.comp.lancs.ac.uk/computing/users/greenwop/ecoop07

5. Jacobson, I., Chirsterson, M., Jonsson, P., and Overgaard, G.: Object-Oriented Software
Engineering: A Use Case Driven Approach. 4 ed: Addison-Wesley, 1992.

6. Chitchyan, R., et. al.,: Semantics-based Composition for Aspect-Oriented Requirements
Engineering. AOSD 2007, Vancouver, Canada. pp. 36-48

7. Chitchyan, R., et. al.: Survey of Aspect-Oriented Analysis and Design. AOSD-Europe
Project Deliverable No: AOSD-Europe-ULANC-9. Editor(s): R. Chitchyan, A. Rashid.

8. Ramesh, B., Jarke, M.: Towards Reference Models for Requirements Traceability. IEEE
Transactions on Software Engineering. 27(1), Jan 2001.

9. Grady, R.: Practical Software Metrics for Project Management and Process Improvement.
Prentice-Hall, 1992.

10. Phil Greenwood et al: On the Impact of Aspectual Decompositions on Design Stability:
An Empirical Study. ECOOP 2007, pp. 176-200.

11. Sant'Anna, C., et. al.: On the Modularity of Software Architectures: A Concern-Driven
Measurement Framework. ECSA 2007, pp. 207-224.

12. Cacho, N., et. al.: Composing Design Patterns: A Scalability Study of Aspect-Oriented
Programming. AOSD 2006, pp. 109-121.

13. TAO: A testbed for Aspect Oriented Software Development (2007), available from:
http://www.comp.lancs.ac.uk/~greenwop/tao/

14. Khan, S. S., et. al.: On On the Interplay of Requirements Dependencies and Architecture
Evolution: An Exploratory Study (2007), Available from:
http://www.comp.lancs.ac.uk/~shakilkh/caise08

15. Feng, T. and Maletic, I. J.: Applying Dynamic Change Impact Analysis in Component-
based Architecture Design. 7th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD'06)

16. Riebisch, M. and Wohlfarth, S.: Introducing Impact Analysis for Architectural Decisions.
ECBS 2007, pp:381 – 392

17. Zhao, J., et. al.: Change Impact Analysis to Support Architectural Evolution.. Software
Maintenance: Research and Practice. Vol. 14, No. 5. (2002), pp. 317-333.

18. Williams, J. B. and Carver, C. J.: Characterizing Software Architecture Changes: An
Initial Study. 1st Intl. Symposium on Empirical Software Engineering and Measurement
(ESEM 2007) pp. 410-419.

19. Clement, P., et. al.: Documenting Software Architectures: Views and Beyond. SEI Series
in Software Engineering, Addison Wesley (2002).

20. Shaw, M. and Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Inc. 1996.

21. Soares, S., et. al.: Distribution and Persistence as Aspects. Software Practice and
Experience (2006).

22. Murta,.G. P. L., et. al.: ArchTrace: Policy-Based Support for Managing Evolving
Architecture-to-Implementation Traceability Links. ASE 2006, pp. 135-144.

23. Lee, M. and Offutt, J.: Change Impact Analysis of Object-Oriented Software. Published
by George Mason University. Pages: 193,(1998).

24. Browning, T. R., et. al.: Applying the Design Structure Matrix to System Decomposition
and Integration Problems: A Review and New Directions. IEEE Transaction on
Engineering Management. Vol. 48, Issue. 3 (2001), pp. 292-306.

25. Sangal, N., et. al.: Using Dependency Models to Manage Complex Software Architecture.
OOPSLA 2005, San Diego, California, USA.

26. Meyer, B.: Applying "Design by Contract". Computer, Vol. 25, (10), pp. 40-51, 1992.

