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Abstract. Architecture design plays a significant role in the evolution of 
software systems, as it provides the prime realization of the driving 
requirements and their inter-dependencies. With the increasing volatility of 
software requirements nowadays, it is necessary to understand the correlation 
between evolving classical requirements dependencies and their impact on the 
architectural decomposition. In the context of this analysis, two questions arise: 
(i) what are the conventional categories of requirements dependencies that are 
more architecturally significant in terms of change impact? and (ii) to what 
extent those evolving dependencies tend to generate ripple effects through 
architectural modules and interfaces. In order to address these two questions, 
this paper first presents an analysis model that categorizes requirements 
dependencies. Second, we have performed an exploratory study, based on the 
change history analysis of a real-life Web-based information system, in order to 
gather the most architecturally-significant requirements dependencies from our 
model. We have systematically analyzed ten system releases, based on some 
qualitative and quantitative indicators, with respect to how the requirements- 
architecture dependencies and compositions evolved. 

Keywords: Dependency analysis, traceability, software architecture, change 
impact analysis. 

1 Introduction 

Software architecture of information systems is the pivotal realization of requirements 
and their inter-dependencies as it encompasses the driving design decisions in order to 
satisfy stakeholders’ needs [19]. Software architectures are often decomposed into a 
set of modules (components) and interfaces, typically designed for future evolution in 
order to avoid that the system succumbs in the presence of changes [19][20]. Thus, 
architectural design forms the backbone of the target system, and frequent non-
systematic modifications to requirements dependencies can make the architecture 
fragile and cause short-term design degeneration [15][16][17]. As a result, software 
architects often need to understand, predict and trace the impact of evolving 
requirements dependencies on architectural designs [1][2][3].  



However, there is not much empirical knowledge on the influence of different 
categories of changing requirements on architecture elements [1][2][3] so that 
designers can forecast change impact. As a result, they cannot thereafter effectively 
trace key problem-solution dependencies. Not surprisingly, requirements-architecture 
traceability and change impact analysis techniques are still in its infancy and limited 
support is provided to software architects. There is a growing body of traceability 
techniques emerging in the literature [15][16][17][22], but they do not provide an 
adequate end-to-end tracing between categories of requirements dependencies and 
architectural elements. Most of these approaches are based on mapping requirements 
to architecture using trace matrix or trace graph [24][25]. There are a few approaches 
[2][5][6][8][9] that focus on characterizing requirements dependencies but these 
approaches have not been extended to cope with evolving requirements-architecture 
relations. Most empirical studies in the literature focus on characterizing architectural 
changes [18], keeping architecture and implementation in synchronization [15][17] 
[22], or supporting change impact analysis on implementation artifacts [23]. 
     This paper presents a first exploratory study in order to identify the potential 
factors associated with evolving requirements dependencies and their corresponding 
effects or architectural changes. In order to be able to perform the investigation, we 
have defined a requirements dependency model (Section 2); we also discuss how each 
category of requirements dependency is likely to affect the architectural 
decomposition in the presence of change to it. The dependency model is based on a 
systematic analysis of classical requirements engineering techniques [1][2][3][5]. In a 
second step, we have undergone a set of experimental procedures (Section 3) in order 
to analyze the impact of evolving requirements dependencies and architecture 
changes through the releases of a real-life Web-based information system called 
Health Watcher (HW). The goal of the analysis was to characterize (Section 4):  

(i) how the nature of requirements dependencies can lead to tight or loose  
        interconnections with architectural elements; 

(ii) the most architecturally-significant requirements dependencies; and 

(iii) how the requirements dependencies tend to evolve in a typical Web-based  
        information system. 
Our analysis was based on qualitative and quantitative indicators. Classical change 

impact metrics have also been used to quantify the requirements and architecture co-
relations. We also contrast our findings with related work (Section 5), and provide 
some concluding remarks (Section 6). 

2 From Requirements to Architecture: A Dependency Model 

This section presents a dependency model that provides support to software analysts 
to understand how the requirements are being realized to the architecture components 
and their compositions. This model assists a number of software evolution tasks, such 
as: (i) the identification of dependencies that lead to tight or loose interconnections 
among requirements elements and architectural decompositions, and (ii) basic support 
for understanding significant architecture implications from the perspective of 



requirements changes. We have defined a dependency taxonomy based on a 
systematic analysis of conventional requirements engineering approaches [7][14].  
The analyst must keep in mind that more than one dependency can hold between 
requirements to architecture and it may be rare that individual dependency exist due 
to requirements characteristics. We have discussed six types of dependencies from 
our dependency model: 
     Goal Dependency. Goal dependency relates system’s quality attributes at problem 
domain to their realization in solution domain (architecture and implementation). This 
dependency has been adapted from the conventional goal-oriented requirements 
engineering approaches [1][2][3] that define characteristics of systems. Dependency 
relates to requirements specifying quality of service (security, availability, 
performance, etc) and development (compatibility, adaptability, interoperability, etc) 
to component at architecture level. Consider the requirement ‘system must be flexible 
in terms of the storage format [4]’, i.e., to enhance variability and provide the user 
with the multiple options of storing data, such as arrays or different databases. This 
requirement will be linked to component providing persistence at the architecture 
level as it defines the objective of the system under construction. 
     Service Dependency.. Service dependency relates the requirements expressing 
behavioral or functional characteristics of the system to corresponding operations and 
functions at architecture. The trace connection among requirements-level operations 
to architecture will usually be intricate or fine grained, as it will relate to classes, 
operations, or interfaces at the architecture level. A service dependency may coexist 
with goal, conditional, temporal, etc., dependency as it provides operation to perform 
when certain goal or condition is met. Consider the requirement ‘...system provides 
user with the queried data …’ [4], forms a service dependency with architecture. 
Operation for searching and retrieving the requested data of a particular query type is 
invoked at architecture level.  

Conditional Dependency. Conditional dependency defines events that trigger 
services, processes, and tasks based on certain conditions, constraints, or decisions 
taken at the requirements level to their realization at the architectural level. The 
triggering can be autonomous or non-autonomous reaction to a condition, constraints, 
or decisions, for example, when smoke is detected the autonomous reaction of the 
system is to open the doors.  This dependency has been inspired from programming 
and Meyer [26] ‘Design by Contract’.  Consider the requirement ‘employee can make 
changes to when authenticated by the system as an employee [4]’. This requirement 
has conditional and service dependency with components of the architecture. The 
conditional dependency exists as the employee will not be granted access to perform 
restricted operations unless they have been verified as a valid employee.  

Temporal Dependency. Temporal dependency relates requirements specifying 
time frame of an event to occur, processes to complete, or condition to hold true, to 
their realization at architecture. Temporal dependencies manifest often in 
requirements associated with real-time systems and distributed systems. Temporal 
dependency is closely related to conditional dependency and may usually co-exist. 
Consider the requirement ‘terminate user’s request if system does not respond within 
5 seconds [4]’, has temporal and conditional dependency with the architecture. The 
dependencies hold as condition needs to be true within the specified time frame for 
the system to proceed further. 



     Task Dependency. Task dependency traces the connection between artifacts 
which require response, input, or feedback from user for their completion. Task 
dependency forms a medium between user and system, allowing user to request for 
systems services. Consider the requirement ‘employee chooses one of the given 
options (review, update, delete)’ has task dependency as the system needs users input 
to invoke the corresponding service based on users request. The common notion 
between conditional and task dependency is that systems halts for response. The 
distinguishing notion between the two dependencies is that conditional dependency 
depends on input, response or feedback from other operations/services in the system. 
Retrospectively, a task dependency depends on input, response or feedback from user. 

     Infrastructure Dependency. Infrastructure defines the hardware and software of 
system. Infrastructure dependency relates the resources, infrastructures (networks, 
telecommunications, mobile, etc.), technical standard/details, and compatibility issues 
specified in stakeholder’s requirement to the architecture conception/construction. 
This dependency has been adapted from Ramesh and Jarke [8] resource dependency 
and Grady [9] implementation requirements. Consider the requirement, ‘application 
should be accessible via internet’ , it has infrastructure dependency with architecture 
components as .the Web service is implemented using servlets.     

3 Case Study and Evaluation Procedures 

This section describes in detail the requirements and architectural characteristics of 
the application used in our exploratory study (Sections 3.1), and the evaluation and 
analysis procedures (Sections 4.1 to 4.2). Health Watcher (HW) [10][11][12] is a 
typical Web information system and a real-life application that was chosen to support 
the empirical analysis in our exploratory study. The reason for selecting the HW case 
study is threefold. First, a rich set of HW artifacts and their releases were made 
available. For instance, for the analysis we have requirements specification (available 
from [13]), both use case descriptions and goal models. The architecture design is 
specified according to two fundamental architectural views, the module and 
component-connector views. Also, deployment-related decisions are embedded in 
these views. As a result, these requirements and architecture artifacts (Sections 3.1) 
capture respectively a rich, complementary set of requirements-architecture 
dependencies according to our model (Section 2).  

Second, the original HW implementation and its ten releases [4] are available in 
three programming languages, Java, AspectJ, and CaesarJ. As a consequence, HW 
architecture is basically realized according to two architectural designs: a layered OO 
version and a layered AO version. None of these artifacts have been specially 
prepared or modified for our exploratory study, which in turn makes the analyzed 
base of changes more representative from realistic software maintenance scenarios. 
Third, this application has been used for implementation-level maintenance analyses 
[10][11][12] allowing us to correlate our findings with their results. Finally, in the 
investigation reported in [10], additional changes were applied to the HW application 
leading to ten implementation releases.  



    The study is divided as follows: (i) definition of change metrics (section 3.3), (ii) 
identification of requirements to architecture dependencies (section 4.1), (iii) 
application of change scenarios to assess change impact (architectural models and 
code are visited) and measure change propagation to identify the architecture-level 
changes in terms of classes, interfaces and compositions (section 4.2), and (iv) 
analysis of the assessments in order to identify the architecturally-significant 
dependencies (section 4.3) in the presence of changes. 

3.1 Health Watcher Requirements and Architecture 

The Health Watcher application is a Web-based information system which allows 
online access to register complaints, read health notices, and query regarding health 
issues. Employees can record, update, delete, print, search, change the records stored 
in the HW repository (in form of tables) after being authenticated as HW employee, 
i.e., by providing correct login name and password. Citizen can register complaints 
that system registers in the repository and generates a complaint code. The initial 
version of the HW system lacked flexibility and incapability to support generic Web 
applications as it was bound to specialized Web services. Also, the initial version 
provided limited functionality for a limited set of data, for example the system only 
allowed to query and update health units and complaints.  

 
Fig.1. Module view of the Health Watcher system [10] 



We have analyzed both OO and AO architectures of the HW system. The AO 
architecture modularizes concurrency, distribution, and persistence as aspects. Due to 
space limitation, our description focuses on the OO architectural design; detailed 
discussion about the AO architecture version is available at multiple sources 
[4][10][14][21]. Figure 1 shows the module view of the OO version for the HW 
system [10] that realizes the layered architectural style. It comprises of four layers: 
view, distribution, business, and data. Citizens access Web pages to query and/or 
register complaints. Multiple users can access the HW system simultaneously through 
Java Servlets, captured by the view layer (Figure 1), which decomposes into two main 
modules HWServlet and OpServlets. The Distribution module provides the 
interface IFacade to enable the access the HW services implemented in Business 
layer. The latter comprises of a number of modules, such as:  HealthUnitRecord, 
SpecialtyRecord, ComplaintRecord, EmployeeRecord, and 

SymptomRecord. Each of these modules is invoked for specific operations requested 
by citizen/employee. For example, if the citizen has requested to query a health unit 
then IFacade provides access to business layer module HealthUnitRecord which 
accesses the HW database HealthUnitRep using interface IHealthUnitRep. A 
complete description of the HW architecture and implementation is available 
elsewhere [4][10][11][12]. Figure 1 also represents the implemented change 
scenarios. In particular, it points out the impacted modules for each scenario, which 
are sub-scripted by change type and scenario number. 

3.2 Change Metrics 

Our quantitative assessment is based on a metrics suite to identify propagation of 
requirements change on the elements of the OO and AO architecture design. The 
architectural views, the module and component-connector views consists of 
module/components that have class(es), operation(s), and port(s)/interface(s). The 
metrics will give quantitative values to analyze the dependency from perspective of 
change and architectural significance. The quantitative metrics to access change at 
architecture level are:  

Concentration (C):  it measures requirements dependency to the architecture 
components and their composition. Set of requirements may trace to a layer or more 
than one layer comprising of components. In the AO architecture version an aspect 
will be treated as a layer. The lowest value of C is one, which is also an indicator that 
the change will be occurring at intra-level, i.e., only affecting a layer. The highest 
value of C is the total number of layers in the architecture design, which is also an 
indicator that the change may cause ripple effect in the architecture. 

 Dispersion (D): it measures the percentage of components impacted by change in 
a layer or multiple layers. In equation 1, Ec: is number of effected classes, operations, 
and interfaces in architecture due to change and Tc: is the total number of components 
in a layer.    

 
 

(1) 



We will calculate D for each layer and then take an average. For example, if 
change is concentrated (C) in two layers, then D will individually calculated for each 
layer and then an average will be taken to calculate the final value of D.   If dispersion 
percentage is lower than 25% (1/4) it may be considered as a mild dispersion. If inter-
component dispersion percentage is greater than 33% (1/3), even if change is 
concentrated in a layer it is considered severe.  
    Inclusion (I): it measures the number of components added when change is 
incorporated. It is not mandatory that each change introduces a new component, 
therefore, I can be 0 or any number of components added.   

4   Empirical Results and Constraints 

This section reports the evaluation outcomes and discussion, based on a systematic 
analysis of the nine change scenarios implemented in Java and AspectJ, which has led 
to ten releases for the HW architecture (Section 3.1).  

4.1 Requirements-Architecture Dependency Analysis 

This section provides a summary of requirements-architecture dependency analysis 
for HW using the model described in Section 2. This analysis involved the trace of the 
requirements to their module and composition counterparts in the architectural 
models. Figure 2 shows a representative set of examples on dependencies that are 
likely to exist from the HW requirements elements to the architecture components and 
their compositions. A few of requirements have been shortened due to space 
limitations: 

R1 to R5 form goal and infrastructure dependencies with architecture layers of 
HW system. For example, R2 have goal and infrastructure dependencies as one of a 
few goals of health watcher is ease of access (i.e., available online) and usability, 
which are satisfied by implementing health watcher as a Web-based online 
application and servlet for GUI. R6, R7, and R9 have task dependency with view 
layer as user interacts with the system providing input or feedback to system to 
proceed further.  

R8 forms service dependency with business and data layer. Service dependency 
holds as health watcher performs operations to store information entered by the user, 
parse the data entered by the user, creates a new instance of the appropriate complaint 
type, generates a unique identifier and assigns this to the new complaint, complainers 
address is parsed and saved. 

R13 forms service dependency with business and data layer as 
searchComplaint(int code)and search(String login) classes are invoked 
to list the complaints and employees to be updated of HW system. R11 forms 
conditional and service dependencies because user can not access the restricted 
operations: update and register unless system verifies (user’s login and password) 
them as valid user. 



 R15 and R16 are representative example of a few errors occurrence during the 
operation of the HW system. Error handling has service and conditional dependencies 
with view, distribution, business, and data layer, depending where the error occurred. 
Distribution, persistence, and concurrency are modularized as aspects in the AO 
architecture. Therefore, the requirements which did not have explicit trace 
dependency for OO version form dependencies in AO architecture design. R20 forms 
service and conditional dependency with concurrency component (HWManagedSync 
and HWTimeStamp). Timestamp provides functionality to avoid data inconsistency 
by applying timestamp field on the most recently modified data, storing it in the 
persistence mechanism.  

 

Fig. 2. Functional and non-functional requirements of Health Watcher system [13][14] 

4.2 Evolving Dependencies’ Impact on the Architecture 

Our findings report how changing requirements dependencies (Section 4.1) tend to 
entail four categories of architecture-level changes, namely: adaptive restructuring, 
perfective modifications, incremental changes, and behavioral modifications. The 
analysis was guided by using an existing categorization of architectural modifications 
in the OO and AO module view [18]. This reference model systematically 
characterizes both the level of impact and severity of each type of architectural 
change. However, it provides an investigation on the correlation of requirements 
dependencies and architecture change categories, which is the key aim of our 
analysis.  

Requirements Dependency Architecture 
R1:  System should be an online Web-based service Goal & Infrast.  View 
R2:  System should have an easy to use GUI  Goal & Infrast. View  
R3:  System must provide flexible storage mechanism Goal & Infrast. Business & Data 
R4:  System should be capable of running on separate machines Goal & Infrast. Distribution 
R5:  System must be able to handle 20 simultaneous users Goal & Infrast. Distribution 
R6: … to register complaint citizen choose a complaint type: 
animal, food, or special  

Task View 

R7: …user provides complaint details, place, and date/time Task View 
R8: …complaint is stored on the server assigning an identification 
number to each stored complaint  

Service Business & Data 

R9: … to query any information user selects query type: healthunit, 
specialty, or complaint 

Task View 

R10: … based on selection of query type system retrieves the list Service Business & Data 
R11: … to access restricted operations employee verifies 
themselves  

Conditional  & 
Service 

View,  Business & 
Data 

R12: … verified employee selects healthunit, specialty, or 
complaint to update 

Conditional & 
Task 

View 

R13:  For particular selection: healthunit, specialty, complaint data 
is retrieved 

Service Business & Data 

R14:  updates for  healthunit, specialty, or complaint are stored at 
server 

Service Business & Data 

R15: … raise error message if invalid data is entered Cond. & Service View 
R16:  … if the system does not respond in 5sec raise an exception  Temp.,  Cond., & 

Service 
View &  

Distribution 



     Adaptive Restructuring of Layers. There were two change scenarios that implied 
adaptive restructurings. First, change scenario 1, involved restructuring of HW 
software to provide extensibility by separating servlets and promote GUI decoupling. 
This scenario evolved goal and infrastructure dependencies of R2 to service 
dependency with view layer. The changes only spanned over the inner architectural 
elements of the view layer. On the other hand, there was an evidence of high change 
dispersion (Table 1) as there were changes in HWServlet and the removal of 
OpServlets in view layer. This also led to the inclusion (I) of two components 
Command and OpCommand in view layer of the OO architecture.  

Second, change scenario 5 led to deployment restructuring of the persistence 
mechanism in order to allow data storage in memory or database repository. Goal and 
infrastructure dependencies of R3 with business and data layer evolved to goal, 
conditional, and infrastructure dependencies in OO architecture, whereas in AO 
architecture goal, conditional, and infrastructure dependencies are formed with 
persistence (an aspectual component) and data layer. The reason for conditional 
dependency to emerge is because the change scenario has introduced a strategic 
design choice that altered the architecture design based on storage mechanism chosen 
at deployment time.  
      

Table 1. Change scenarios and change assessment 
 Description Type of 

Change 
Evolving Req. 
dependencies 

Assessment of 
Impacted 

Architecture 
OO/AO C D I 

1 Restructure Web based health 
watcher system to improve 

extensibility 

Adaptive Goal and 
Infrastructure 

OO 1 50% 2 
AO 2 50% 1 

2 Disable multiple updates once 
complaint state is CLOSED 

Corrective Services OO 1 25% 1 
Conditional  and 

Service 
AO 1 25% 1 

3 Improve maintainability by 
disassociating Update 
functionality from HW 
functions: health unit, 

specialty, and complaint  

Perfective Service  OO 1 28% - 
Conditional  and 

Service 
AO 1 33% 1 

4 HW system should support use 
of different distribution 

configurations 

Perfective Goal and 
Infrastructure 

OO 2 39% - 
AO - - - 

5 System must flexible in term of 
data storage  

Adaptive Goal and 
Infrastructure 

OO 2 22% 1 
AO 2 33% 1 

6 Ease the process of adding GUI Perfective Service OO 1 33% - 
AO 1 33% - 

7 Generalize distribution 
mechanism 

Perfective Goal and 
Infrastructure 

OO 1 22% 1 
AO - - - 

8 Provide functionality to  query 
more data types: symptoms and 

disease 

Perfective  Service  OO 3 83% 3 
Conditional  and 

Service 
AO 6 50% - 

9 Modularize error handling 
strategies and provide better 
error recovery mechanisms 

Perfective Conditional  and 
Service 

OO 3 54% - 
AO 4 57% 1 

 



     Perfective Modifications of Pivotal Architectural Services. Change scenario 3 is 
a perfective change modularizing update function, decoupling it from the rest of HW 
system, such as the disassociation of the health unit, specialty, and complaint entities 
in business layer. The set of requirement had service dependency with business layer 
and data layer. Change is concentrated in business layer with a dispersion of 28%, 
decoupling update functionality from HealthWatcherFacade, Employee, 
HealthUnit, and Complaint components in business layer. For the AO 
architecture, update function formed service and conditional dependencies with 
concurrency (aspect) and business layer. The reason to form dependencies with 
concurrency (aspect) is to achieve synchronization and maintain data consistency, 
which is achieved by applying timestamp field to the retrieved/updated complaint, 
health unit, and specialty data. 
     Change scenario 9, modularizes error and exception handling, decoupling it from 
the rest of the health watcher system. Similarly, change scenario 4 performs a 
perfective change as it modularizes the distribution mechanism, decoupling it from 
the rest of the health watcher system for OO architecture in order to facilitate 
deployment of different distribution configurations. But change scenario 4 is not 
applicable as distribution mechanism was modularized as an aspect in the initial AO 
architecture design.  
     Incremental Change of Component Interfaces. Change scenario 6 is an 
increment of release 2 that implements change scenario 1. It generalizes the request 
and response servlet parameters to enable inclusion of new operations and GUI. R2 
entails service dependency to the view layer. Dependency remains unchanged due to 
the perfective nature of the modifications. Change is concentrated on the view layer 
with change dispersion lower than of change scenario 1 as it impacts a few operations 
in component interfaces within the view layer.  

Change Scenario 7 is an increment of release 5 which implements change scenario 
4. Incorporated change allows number of different distribution mechanisms to be 
configured for multiple servlets. Change is concentrated on the business layer of OO 
architecture with change dispersion lower than of release 5 (change scenario 4). 
Change scenario 7 has no effect/applicable as distribution mechanism was 
modularized as an aspect in the initial design of AO architecture.  

     Behavioral Modifications. Change scenarios 2, 8, and 9 modified/changed the 
intended behavior of system functions. Change scenario 2 refined the update 
complaint functionality, by allowing the complaint status to be set to close once 
complaint had been modified by employee. R14 implied on a service dependency with 
business and data layers for OO architecture, in AO architecture it formed service and 
conditional dependencies with concurrency (aspect) and business layer. For AO 
architecture the dependencies remained the same, whereas for OO architecture the 
dependency evolved to conditional and service dependencies, as every time a 
complaint is requested for update its status was checked. From the architectural 
perspective, a few operations in classes of Complaint component underwent some 
impact. In fact, the dispersion percentage was relatively low, i.e. 25%. The change has 
also encompassed the introduction of State component in business layer of OO and 
AO architecture.  

The initial version of HW system only provided the option to query the health unit, 
complaint, and specialty. New functionality and querying options are provided with 



respect to the symptoms and diseases entities in scenario 8. Querying functionality 
had service dependency with business layer in OO architecture. Interestingly, the 
change has propagated to 3 layers and rippled through the system. The change added 
SymptomRecord class which formed service dependency with business layer and 
SymptomRep class which formed goal and infrastructure dependencies with data 
layer of OO architecture. While, querying functionality forms service and conditional 
dependencies with concurrency (aspect), persistence (aspect), and business layer of 
AO architecture. Change to query behaviour impact 6 layers and added observer 
pattern. SymptomRecord and SymptomRepositoryRDB classes were added in AO 
architecture.  

Scenario 9 comprises of two architecture-level changes: a) perfective and b) 
behavioral. The changes in scenario 9 had been incorporated in parallel therefore they 
were not considered under the incremental change category. The change introduced 
new exceptions that were not in the initial intended OO and AO architecture design: 
CommunicationException, SQLPersistenceMechanismException, and 
RepositoryException. 

4.3 On the Architecturally-Significant Dependencies  

This section discusses some findings on which types of changing requirements 
dependencies (Section 2) are likely to have widely-scoped, moderate or localized 
impact at the architecture design. The previous quantitative and qualitative analysis 
(Section 4.1) are used as the basis.  
      Architectural Pull. An analysis of Table 1, externalizes the fact that 
dependencies are orthogonal in nature (Section 2) and it is impossible to have strict 
separation between the dependencies due to nature of requirements. These 
dependencies may form weak or strong interconnection with the architecture 
elements, which we refer to as architecture pull. The dependencies pull the 
architecture in various directions which may provide an insight of dominant 
dependencies at architectural level from perspective of change, as discussed below.  
     Dominant Dependency for a Particular Type of Change. The orthogonal nature 
of dependencies raises some questions: how coexisting dependencies evolve? which 
dependency has dominant impact during change? does the impact degree of a 
dependency category vary based on heterogeneous change types?  
    Table 1, shows goal and infrastructure dependencies co-existed, they were 
impacted by adaptive change (scenario 1 and 5). The adaptive modifications led to 
high dispersion of architecture-level change. It is well understood that a goal 
dependency is significant at architecture level [1] but for the specific change 
infrastructure dependency was dominant as the changes were focused on the software 
architecture being adapted to new standards/techniques in order to improve both 
server and client performance and this change did not cause the system to deviate 
from its original design and objectives and, as a result, the goal dependency was of 
limited impact. Change in goal dependency may lead to significant changes as the 
system’s objectives are changed which will lead to degeneration of architecture 
design. 



According to Table 1, usability and service dependencies (scenario 6) were 
affected by perfective change. For the specific change scenario usability dependency 
played a minimum role in the architectural modifications, the dominant dependency 
was service dependency as it refined the operations provided by system. Based on the 
assumption of corrective change in scenario 2, dependencies might have equal 
importance and may not be dominant over the other from perspective of change. 

Many requirements formed conditional and service dependencies with OO and AO 
architecture, as seen in Table 1. In our analysis, we observed that service dependency 
led to high dispersion when it involved changes in system functionality/behavior. We 
have noticed the similar trend for the service dependency co-existing with conditional 
dependency. Conditional dependency captures the behavior and structure in form of 
architectural design choices, decisions, and constraints, which form core of the 
architecture, which are implied on number of architectural elements. When 
architectural decisions and/or choices change it may lead to addition of new structure 
or behavior in the architecture causing a break down, degradation, or enhancement in 
the architecture. Therefore a conditional dependency plays a dominant role and 
qualifies as a significant dependency when it co-exists with service dependency as all 
the dependant process or services are checked to see if they satisfy the new condition, 
decision, or constraint. 
     Independent Dependencies. Up to this point, we have discussed the orthogonal or 
overlapping dependencies. Now the question arises: if it is possible for dependencies 
to exist independently. A careful analysis of the outcomes in section 4.1and 4.2 makes 
it evident that goal dependency is unlikely to exist independently. Goal dependency 
defines the system objectives or quality attributes that are achieved by operations, 
services, software, and technical infrastructure, which have clear realization at 
architecture. 
     Dependencies with Minimum Architectural Impact. From analysis of the 
change scenarios we identified dependencies that are least likely to impact the 
architecture.  The least significant dependency is task dependency. As task 
dependency facilitates user’s interaction with the system through a medium (e.g., 
Web-browser, command prompt, etc.).  Even if the backend software is enhanced/ 
modified (as in scenario 1) or service is modified/added (scenario 6) the front end 
remains the same, i.e., a Web browser. Based on scenario 1, if the GUI is changed, 
i.e., addition of radio buttons, drop down list, or check boxes, it will not introduce any 
change at architecture level, but at code level.  

4.4 Study Constraints  

Even though this study fully satisfies our initial goal of providing a first empirical 
investigation on the impact of evolving requirements dependencies on architectural 
changes, our procedures have some limitations. These limitations will contribute to 
further explorations using other experimental procedures and systems as targets.  

Our analysis concentrates on the change history of one software system providing 
a single point of observation. Our target case study is a representative choice of Web-
based information systems for several reasons: the HW realizes n-tier architecture that 
is one of the most common design alternatives implemented by deployed Web 



systems [10][21], HW functional and non-functional requirements are consistently 
part of applications in this specific domain, changes are heterogeneous and 
representative of real change requests within software projects from this nature. More 
importantly, the design of the HW system realizes the best design practices [4] and 
have being systematically being enhanced through the years [10]. It provides evidence 
that the requirements-architecture co-changes are not merely a matter of lack of 
systematic design choices. 

Of course, strong conclusion can not be drawn by analyzing a single system as 
dependencies may (or may not) vary depending based on web-based information 
system’s quality attributes. For example, an online banking system has security and 
privacy as its key quality attributes. Similarly an online comparison system has 
completeness and correctness as its quality attributes, b) we analyze a single 
architectural view, therefore, we are unsure of the dependencies that may exist for 
other views, how the architecture will be affected, on incorporating change and will 
similar set of dependencies be architecturally significant, and c) we only focused on 
analyzing the dependencies that evolved due to incorporated change scenarios. This 
does not give us a clear idea on change impact on other dependencies. 

5 Related Work 

A few conventional requirements modeling languages and methodologies [1][2][3] 
explicitly attempt to support a more straightforward derivation of architecture designs. 
They rely on the provision of means to enable the requirements engineers to reason 
about the system goals and how they are operationalized in terms of architectural 
elements. However, the sole use of these approaches is not sufficient to estimate the 
impact of requirements changes on the derived architectures. Requirements change is 
inevitable and incorporating these changes involve:  huge cost and effort, risk of 
architecture degeneration, and undesirable system deviation from its original design.  

One way to assess effect of change is to apply impact analysis techniques. There 
are many code-level change impact analysis approaches, but a scarcity of impact 
analysis support targeted at architectural evolution. Only a few authors [15][16][17] 
define impact analysis techniques for architecture designs, but their focus is restricted 
to the scope of architecture-level changes. They are oblivious to the way changes to 
the requirements and their inter-dependencies impact architectural decompositions. 
As a consequence, it makes it difficult to architects to estimate how specific change 
requests on requirements will affect the architecture elements. For understanding 
impact of requirements evolution on architecture it is fundamental to understand the 
trace dependencies that may hold between entities of the two artifacts. 
     Ramesh and Jarke [8] defined requirements trace dependencies: goal, task, 
resource, and temporal for trace managing requirements on the basis of nature of 
dependency. Grady [9] took a step further to define architectural requirements by 
defining design, implementation, interface, and physical requirements, which only 
provide a mechanism to analyze how these requirements are realized at architecture. 
William and Carver [18] characterized architectural change and specified their affect 
on logical and runtime architectural structure. Inspiring from works of Ramesh and 



Jarke [8], Chung et. al. [2], William and Carver [18], and Grady [9] we have defined 
requirements to architecture dependency model to predict impact of requirements 
change based on dependencies and change type (corrective, adaptive, and perfective) 
on architecture. This has help predict change impact of dependencies and identify 
architecturally significant dependencies. 

6 Conclusion and Future Work 

This paper presents the outcomes of an exploratory study aimed at assessing the 
impact of typical changes in requirements dependencies on architecture design. From 
our exploratory study we have externalized the fact that requirement dependencies are 
often orthogonal in nature and, in many cases, there is no strict separation between the 
dependencies. We have analyzed how co-existing dependencies evolve, which 
dependencies have dominant impact during change and led to different “architectural 
pulls”. Our study has shown that evolution of co-existing conditional and services 
dependencies is architecturally significant as for evolving service dependency it needs 
to be checked if the corresponding condition, constraints, and decision are satisfied or 
for evolving conditional dependency it needs to be checked if the process or services 
correspond to the condition. Similarly, co-existing goal and infrastructure 
dependencies are architecturally significant as change to system objectives may lead 
to architectural degeneration. Strong conclusion can not be drawn by analyzing a 
single system as dependencies may (or may not) vary depending based on Web-based 
information system’s quality attributes. In order to validate our dependency model 
and identify other architecturally-significant dependencies, other studies should 
further analyze applications from different domains. 
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