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Abstract. Concurrency and failures are fundamental problems in distributed
computing. One likes to think that the mechanisms needed to address these prob-
lems can be separated from the rest of the distributed application: in modern
words, these mechanisms could be aspectized. Does this however make sense?

This paper relates an experience that conveys our initial and indeed biased
intuition that the answer is in general no. Except for simple academic examples,
it is hard and even potentially dangerous to separate concurrency control and
failure management from the actual application.

We point out the very facts that (1) an aspect-oriented language can, pretty
much like a macro language, be beneficial for code factorization (but should be
reserved to experienced programmers), and (2) concurrency and failures are par-
ticularly hard to aspectize because they are usually part of the phenomenon that
objects should simulate. They are in this sense different than other concerns, like
for instance tracing, which might be easier to aspectize.

Keywords. Aspect-oriented programming, abstraction, objects, concurrency,
failures, exceptions, transactions.

1 Introduction

The job of any engineer is to manage complexity in designing and implementing sys-
tems. This is in particular true for software engineering: most research in the field has
to do with how to manage the complexity of programs by providing better structuring
mechanisms and methodologies.

Object-oriented programming comes with the intuitive idea that a program sup-
posed to solve a real-world problem should be decomposed into a set of self-contained
abstractions, each simulating a specific phenomena of the real-world problem. The
abstraction is self-contained in the sense that it encapsulates state and behavior. One
can follow the object-oriented programming discipline in any language, but object-ori-
ented languages provide support to help such a programming discipline through mech-
anisms like encapsulation, sub-typing, inheritance, etc. [1].

Aspect-oriented programming (AOP) is the modern terminology given now to a
branch of techniques that aim at deconstructing objects into several aspects (or con-
cerns) and promoting each aspect to the level of a first-class citizen. Again, one could
adopt this programming discipline in any language, but AOP languages help support
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this kind of separation through mechanisms like join points, weaving, etc. [2]. Typi-
cally, one might talk about functional and non-functional aspects. The very notion of
functional part has never been precisely defined, but is usually used to denote what
average programmers are supposed to master. In essence, the notion of functionality is
relative. These days, mechanisms that deal with concurrency and failures are, for
instance, considered as non-functional aspects of the application. It is tempting to sep-
arate these aspects from the other functionalities of the application. This is very legiti-
mate and it does not take long to convince any sensible programmer that such a
separation would be great. The requirements of distributed applications vary tremen-
dously, and it is appealing that concurrency control and failure management concerns
can be configured separately by some distribution specialist to fit the application’s
needs.

Can the dream however come true? In other words, does it indeed make sense to
use AOP techniques to separate concurrency control and failure management concerns
from the other parts of a distributed application? The motivation of our work is pre-
cisely to address this question.

Our conclusion is that, except for simple (academic) examples, the answer is no. To
get a reasonable behavior for any non-trivial distributed application, concurrency con-
trol, together with failure management, should in principle be dealt with as a full part
of the application semantics, i.e., should be mixed up with the actual functionalities.
One can indeed use an AOP language to achieve some level of syntactical separation,
but the programmer should be aware of its very syntactic-only nature.

In our experiment, we use Aspectd [2] as a representative of aspect-oriented pro-
gramming languages and transactions [3] as a fundamental paradigm to handle con-
currency and failures. We proceed in an incremental manner, where we try to achieve
three goals: from the most ambitious to the less ambitious one.

» First, we figure out the extent to which one can aspectize transaction semantics.
That is, we figure out the extent to which one can completely hide transactional
semantics from the programmer and have these semantics implicitly associated to
the program a posteriori and in an automatic manner. This actually means that the
programmer does not have to care about transactions. We give a set of illustrated
examples why this is clearly impossible.

* Second, we figure out the extent to which one can aspectize transaction interfaces.
That is, we figure out the extent to which one can completely separate transactional
interfaces (begin, commit, abort, etc.) from the main (functional) object methods,
and have these encapsulated within code invoked through specific aspects. We
show by example that in certain cases this separation might be artificial, and that it
leads to rather confusing code.

» Third and finally, we figure out the extent to which one can aspectize transaction
mechanisms. That is, we figure out the extent to which one can completely separate
the mechanisms needed to ensure the ACID [3] properties of transactions (i.e., con-
currency control and failure management) from the main (functional) program
(objects) and have these encapsulated within code invoked through specific
aspects. We show that, syntactically speaking, an AOP language like AspectJd pro-
vides indeed a nice way of separating these mechanisms from the functional part of
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the code. Just like with macros however [4], this separation should be handled with
care, especially whenever the actual functionality does change. In short, the pro-
grammer must be aware that the physical separation does not imply a semantic
decoupling.

It is important to notice that from our experience, especially in a non-rigorous area
such as software engineering, we cannot draw any conclusion on the general applica-
bility of AOP and AOP languages. The scope of our experience is indeed limited to (a)
two concerns: concurrency and failures, (b) one paradigm to handle these concerns:
transactions, and (c) a given subset of application scenarios that we have taken from
our distributed computing background. The goal here is simply to provide some ele-
ments for a more general discussion of what dangers a misunderstanding of the capa-
bility of AOP might create, as well as what and when features of an AOP language
might be useful and safe. The paper should be viewed as a warning to the new comers
entering the AOP arena with very high expectations, rather than as an argumentation
with AOP founders, who usually know the limitations.

The rest of the paper is organized as follows: Section 2 provides background infor-
mation on AOP and transactions; Section 3 presents our experimental setting;
Section 4 to Section 6 describe our attempts at achieving the three levels of aspectiza-
tion mentioned above; Section 7 relates our experience to Enterprise Java Beans [5];
Section 8 discusses the limitation and possible generalization of our experiment, and
Section 9 summarizes the results of this work.

2 Background

2.1 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is the name given to a set of techniques based on
the idea that software is better programmed by separately specifying the various con-
cerns (or aspects), properties, or areas of interest of a system, and describing their rela-
tionships [2]. Ultimately, the programmer relies on the underlying AOP environment
to weave (or compose) the concerns together into a coherent program. Separating the
expression of multiple concerns in programming systems promises increased readabil-
ity, simpler structure, adaptability, customizability and better reuse.

One of the main elements of an AOP language is the join point model. 1t describes
the “hooks” where enhancements may be added, and thus determines the structure of
crosscutting concerns. AOP languages are supposed to provide means to identify join
points, specify behavior at join points, define units that group together join point spec-
ifications and behavior enhancements, and provide means for attaching such units to a
program.

2.2 Transactions

Transactions [3] have been used extensively to cope with concurrency and failures. A
transaction groups an arbitrary number of simple actions together, making the whole
appear indivisible with respect to other concurrent transactions. Using transactions,
data updates that involve multiple objects can be executed without worrying about
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concurrency and failures. Transactions have the so-called ACID properties: Atomicity,
Consistency, Isolation and Durability [3]. If something happens during the execution
of a transaction that prevents the operation from continuing, the transaction is aborted,
which will undo all state changes made on behalf of the transaction. A transaction can
also be aborted voluntarily by the application programmer. The ability of transactions
to hide the effects of concurrency, and at the same time act as firewalls for failures,
makes them appropriate building blocks for structuring reliable distributed applica-
tions in general.

Multiple transactions may execute concurrently, but classic transaction models
only allow one thread to execute inside a given transaction. Such models therefore
support competitive concurrency only, since transactions, and hence the threads run-
ning within them, are isolated from each other. There is no way for threads to perform
cooperative work inside the same transaction. More sophisticated transaction models,
i.e., the open multithreaded transaction model [6, 7], allow multithreading inside a
transaction. Threads participating in the same transaction can cooperate by accessing
the same objects.

2.3 Transaction Interfaces

Typically, transactional systems offer a procedural interface to transactions including
three operations:

* void beginTransaction (), which starts a new transaction or a nested transac-
tion within an already ongoing one,

* void commitTransaction() throws TransactionAbortedException,
which attempts to commit the current transaction,

* wvoid abortTransaction (), which forces the transaction to rollback.

Multithreaded transaction models, e.g. open multithreaded transactions, provide addi-
tional operations to allow threads to join an ongoing transaction:

* wvoid joinTransaction (Transaction t), which allows the calling thread to
join the transaction t,

* void beginOrJoinTransaction (String name), which creates a new transac-
tion with the name name, or, if a transaction with this name already exists, joins the
calling thread by associating it with the same transaction context.

3 Experimental Setting

We briefly describe below the basic tools of our experimental setting: AspectJd and
our OPTIMA transactional framework. We mainly overview here the elements that are
used in our context.

3.1 AspectJ

We based our experiment on Aspectd [8], an aspect-oriented programming environ-
ment for the Java language.

In Aspectd, the join points are certain well-defined points in the execution flow of
a Java program. These include method and constructor calls or executions, field
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accesses, object and class initialization, and others. Pointcut designators allow a pro-
grammer to pick out a certain set of join points, which can further be composed with
boolean operations to build up other pointcuts. It is also possible to use wild cards
when specifying, for instance, a method signature.

The following code defines a pointcut named CallToAccount that designates any
call to a public method of the Account class:

pointcut CallToAccount () : call (public * Account.*(..));

To define the behavior at a join point, Aspectd uses the notion of advice. An advice
contains code fragments that execute before, after or around a given pointcut. Finally,
aspects are provided that, very much like a class, group together methods, fields, con-
structors, initializers, but also named pointcuts and advice. These units are intended to
be used for implementing a crosscutting concern.

Since aspects potentially crosscut an entire application, the integration of aspects
with the programming environment is of great importance. Programmers should get
visual feedback of the effects of a given aspect on other parts of the program. The
developers of AspectJ are aware of this, and hence provide extensions that integrate
AspectJ with popular programming environments, such as Borland’s JBuilder, Sun’s
Forte and GNU Emacs.

'6 006 JBuilder 5 - {Users/gemini/java/Optima/src/optima/transactionalObjects/TransactionalObject.java
DESE-QEFs »-RB I AWRREEL o-d > a%rE (1)
& & @ & optima.jpx = , &TransactionalObjectT&Account w.

» @ optima.concurrency
> {l optima.exceptions = public aspect TransactionalObject pertarget(TransactionalMethods(™

> tima.interf; . .
@@ optima.interfaces pointcut TransactionalMethods() :

¥ @ optima.memory call(public * Account.*(..));
» @@ optima.object
P {l optima.recovery A public ConcurrencyControl myConcurrencyControl;
P @@ optima.transaction v
public void abortTransaction(Object object, Transaction t) { ™
[ <all project files> ﬂ myConcurrencyControl.transactionAbort(t); |
}
" <custom> view ? '_e l
= - — public void conmitTransaction(Object object, Transaction t) { |
TransactionalObject.java 'r myConcurrencyControl.transactionCommit(t); |
¥ @ TransactionalObject |
# TransactionalMethods() @ _J/ |
v &5 beforel \./ before() : TransactionalMethods() { |
Y b affects methods Transaction t = TransactionContext.getTransaction(); |
€D Account.getBalance() N\ if (t 1= null) { :
& Accountwithdraw(int) \4} Object currentObject = thisloinPoint.getTarget(); W
€ Account.deposit(int)
¥ =) affects method call sites if (myConcurrencyControl == null) {
. myConcurrencyControl =
.d t(a, 1000) N . .
@ adeposita OptimaConfiguration.aspect0f().initConcurrencyConi
¥ a.deposit(a, 2000) } a
& bawithdraw(b, 500) W 1
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v &b after)

TransactionalObject.java 13:29 Insert
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Build succeeded in 25 second(s).

Fig. 1: Aspect] Integration with JBuilder 6 under Mac OS X

Figure 1 illustrates the integration of AspectJ with Borland JBuilder 6. The AspectJd
plug-in adds buttons for compiling, running, and setting AspectdJ preferences to
JBuilder’s toolbar @. When the AspectJ environment is activated, the structure view
of JBuilder is replaced with AspectJd’s structure view. It contains all elements of
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JBuilder’s structure view, but additionally allows a programmer to visualize aspect-
specific constructs, e.g. pointcuts and advice.

In Figure 1, the structure of the TransactionalObject aspect is shown in the
structure view @: the definition of the TransactionalMethods pointcut @), and a
before advice. The next tab presents a list of all methods statically affected by the
before advice, namely all public methods of the class Account @. The following tab
shows what actual calls are affected. In our test application, several calls are executed
on Account objects a and b ®. Clicking on one of the method calls in the structure
view makes the editor open the file that declares the call and jump to the corresponding
line.

3.2 OPTIMA

Transactions require considerable run-time support. Our experiments make use of
OPTIMA [6, 9], a highly configurable, object-oriented framework that provides support
for open multithreaded transactions and guarantees the ACID properties for transac-
tional objects.

Since transactions are nowadays used in different software domains, the require-
ments of applications using transactions vary tremendously. It is therefore important
that the application programmer can configure a transaction support or middleware to
fit the application’s needs.

The OPTIMA framework has been designed along these lines. Hierarchies with
classes implementing standard transactional behavior are provided, but a programmer
is free to extent the hierarchies to tailor the framework to the application-specific
needs. The framework supports, among other features, optimistic and pessimistic con-
currency control, strict read / write or commutativity-based method invocation, differ-
ent recovery strategies (Undo/Redo, NoUndo/Redo, Undo/NoRedo), different caching
techniques, different logging techniques (physical logging and logical logging), differ-
ent update strategies (in-place and deferred), and different storage devices.

For our experiment, a prototype of the OPTIMA framework has been implemented
for Java. It offers a procedural interface that allows an application programmer to start,
join, commit, and abort transactions (see Section 2.3). To guarantee the ACID proper-
ties, the framework must additionally be called before and after every method invoca-
tion on a transactional object.

4 Aspectizing Transactions

In this section, we relate our experience in trying to achieve the most ambitious of the
three goals mentioned in the introduction, namely aspectizing transaction semantics.
In other words, does it make sense to write a program without transactions, and then
(somehow automatically) have the program run with transactions? Is it possible to take
code written for and used in a non-transactional setting, and run it with transactions?

We discuss several reasons why this is clearly impossible. We point out the issue of
local synchronization versus global synchronization, that is, transaction synchroniza-
tion, then the issue of irreversible actions, and finally the impact of ensuring transac-
tional semantics for all objects.
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4.1 Cooperation vs. Competition

Concurrent systems can be classified into cooperative systems, where individual com-
ponents collaborate, share results and work for a common goal, and competitive sys-
tems, where the individual components are not aware of each other and compete for
shared resources [10, 11, 12].

Programming languages address collaboration and competition by providing
means for communication and synchronization among threads. This can be done by
using shared objects, also called monitors [13, 14]. Typically, two forms of synchroni-
zation are considered: mutual exclusion and condition synchronization.

* Mutual exclusion is a synchronization mechanism that ensures that while one
thread is accessing the state of an object, no other thread can possibly gain access.
In Java, this behavior is provided by classes that declare all their methods as being
synchronized.

» Condition synchronization is necessary when a thread wishes to perform an opera-
tion that can only sensibly or safely be performed if another thread has itself taken
some action or is in some defined state. For example, if a thread wants to pass some
data to some other thread via a shared object, then the receiver thread must make
sure that the sender has already stored the data in the shared object before trying to
retrieve it. In this case, the receiver wants to synchronize with the sender, but the
sender does not need to synchronize with the receiver. If the sender wants to know
that the receiver has taken the data, then both threads must synchronize.

In Java, condition synchronization can be achieved by using the wait (), notify ()
and notifyall () methods provided by all classes inheriting from Object. If a cer-
tain condition is not met, a thread executing one of the synchronized methods of a
shared object can call wait () to suspend itself, thereby releasing the mutual exclusion
lock. If some other thread modifies the condition, it should call notify (), which
results in awakening the suspended thread.

In order to highlight the problems that arise when introducing transactions into pre-
viously non-transactional applications, let us consider the following example.
Thread T1 wants to transfer money from bank account A to bank account B, whereas
thread T2 wants to do the same from B to A. Without transactions, the program works
just fine, provided that (1) no failure occurs during its execution, and (2) the with-
draw and deposit methods are synchronized (ACID properties are of course not
ensured without transactions).

Solvable Deadlock. To tolerate failures however, each thread must execute the two
operations inside a transaction. If in this case the interleaving happens to be the one
shown in Situation 1 of Figure 2, then a deadlock occurs. Fortunately, the deadlock can
be broken by aborting one of the transactions and restarting it.

Unsolvable Deadlock. In situation 2, the withdraw operation is only performed if

there is enough money on the account. In this case, an insufficient balance results in an
unbreakable deadlock.
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Situation 1 (solvable deadlock) Situation 2 (unsolvable deadlock)

TI: T2: TI: T2:

A.withdraw (Amount) A.deposit (Amount) B.deposit (Amount)
B.withdraw (Amount) [while (B.getBalance() while (A.getBalance ()

B.deposit (Amount) <= Amount) { } <= Amount) { }
A.deposit (Amount) |B.withdraw (Amount) A.withdraw (Amount)

Fig. 2: Possible Deadlock Situations caused by Transactions
Two different execution interleavings must be considered:

1. The first one is similar to the one presented before. T1 deposits the money on A,
and T2 deposits the money on B. Both threads then try to execute getBalance (),
but are blocked by the transaction support to prevent information smuggling (isola-
tion property).

2. In the second scenario, T1 goes ahead, deposits the money on account A, queries
the balance of account B, but then remains blocked in the while loop, because the
balance of B is insufficient. The transaction support cannot allow T2 to call
deposit () on B, otherwise the isolation property is violated. This deadlock is due
to condition synchronization of T1 on T2.

Generally speaking, Java synchronized classes implement linearizability of every sin-
gle operation [15], whereas transactions require serializability of all operations per-
formed within a transaction [16].

The only way of circumventing this mismatch is to remove the isolation require-
ment between the two threads by executing them within the same transaction.
Situation 2 in Figure 2 actually depicts a loose form of collaboration between the two
threads. Either one can not perform its job without the help of the other.

To prevent unsolvable deadlocks, all threads that cooperate in some form must exe-
cute inside the same transaction. If transactions are to be introduced automatically and
in a transparent manner, all such situations must be detected. For reasonably complex
applications, this is clearly infeasible.

4.2 Irreversible Actions: 1I/O

Some method invocations are irreversible. Such a situation arises, for instance, in soft-
ware controlled production cells. Invoking a method on an object that controls a forge
might irreversibly shape some piece of metal. But even more conventional actions,
such as displaying an alert message on the screen, cannot be undone. Admittedly, it is
possible to remove the alert message on the screen, but perhaps some person has
already read it and taken corresponding actions.

All T/O operations give rise to this kind of problems in transactional systems.
Depending on the exact situation, different solutions are possible [17]. One solution is,
for instance, to buffer irreversible method invocations, and only executing them on

transaction commit'. Although it is possible to apply such techniques to objects with

1. This, of course, assumes that the method itself cannot fail.
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irreversible methods, it can obviously not be done completely transparently. Irrevers-
ible actions are therefore a clear argument against the complete aspectization of trans-
actions.

4.3 Uniformity

A more practical-oriented reason why a complete aspectization is impossible is that, as
a result of such aspectization, all application objects must be made transactional, i.e.,
provide concurrency control, undo-functionality, durability, etc.

In principle, this can be achieved in AspectJd by declaring an aspect as shown in
Figure 3. The pointcut PublicMethodCall () captures all public method invocations
of all objects in the system, except those declared in the OPTIMA framework. This
restriction is necessary to prevent that the OPTIMA objects providing support for trans-
actions are made transactional themselves, leading to a clear nonsense recursion.

aspect TransactionalObjects pertarget (PublicMethodCall())

pointcut PublicMethodCall () : call(public * *.*(..)) &&
lwithin(ch.epfl.lglwww.optima..¥*) ;

// introduce fields here that link the object to the transaction support

// 1i.e. concurrency control, recovery manager, storage, etc.

before() : AllPublicMethodCalls() {...}
after() : AllPublicMethodCalls() {...}

Fig. 3: Capturing all Public Method Invocations on all Objects

At run-time, an instance of the TransactionalObjects aspect is associated with
any object outside of OPTIMA that is the target of a public method invocation. The
before () and after () advice make the necessary calls to the OPTIMA framework.

Although this approach looks reasonable, it might not be feasible in a particular
setting. In our Java-based experiment, durability of the state of transactional objects is
achieved using the Java serialization facility. Unfortunately, not all Java objects imple-
ment the Serializable interface, and hence making all objects transactional may
not be possible.

An additional problem is memory usage. An instance of the aspect shown in
Figure 3 is created for every accessed object in the system. Every object also needs, for
instance, an associated concurrency control. This might end up adding a significant
amount of memory use to applications composed of a large number of objects.

The issues raised in this subsection are fortunately not insurmountable. Some of
them have been successfully addressed in [18].

5 Aspectizing Transaction Interfaces

In this section, we discuss the extent to which one can aspectize transaction interfaces,
that is, completely separate transactional interfaces (begin, commit, abort, etc.) from
the main (functional) object methods, and have these methods encapsulated within
code invoked through specific aspects. We point out that this leads to very intricate
programs because of the very nature of transaction terminations, their integration with
exception handling mechanisms, and the difficulty in expressing thread collaboration.
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The very need to consider worst-case situations for concurrency control and recovery
typically also impacts performance.

5.1 Interactions with Transactions

Most of the time, an application programmer wants to commit his (her) transactions. In
certain cases however, he (she) might want to abort a running transaction as illustrated
by the example presented in Figure 4. The code shows a method transfer () that
withdraws money from the bank account source and deposits it into the bank account
dest. If there is not enough money on the source account, then the transaction is
aborted.

void transfer (Account source, Account dest, int amount) {

beginTransaction () ;

try {
source.withdraw (amount) ;
dest .deposit (amount) ;
commitTransaction() ;

} catch (NotEnoughFundsException e)
abortTransaction () ;

}

Fig. 4: Interacting with Transactions

If we separate the calls to the transaction support from the functional code, some other
means must be found that allow the programmer to trigger a transaction abort.

One possibility is to use the exception mechanism provided in most modern pro-
gramming languages. Transactions can be associated with exception handling con-
texts, typically methods [7, 19]. If the method ends normally, then the transaction is
committed. If the method call terminates exceptionally, then the transaction is aborted.

The interaction problem might however also arise in the other direction. Even
though a transaction is intended to commit, it may abort due to some failure in the sys-
tem, 1.e., the remote server that hosts the destination bank account is unreachable at
commit time. In this case, the application programmer should be notified, for he (she)
might want to take corresponding actions, i.e., execute an alternative transaction or
retry the original one. Again, exceptions can be used to perform this notification, e.g.,
by means of a predefined exception TransactionAbortedException.

If this kind of integration is chosen, throwing exceptions has an additional mean-
ing. The application programmer must be aware of the fact that an exception that
crosses a transaction boundary results in a rollback. It seems clear to us that in this case
it is preferable that the application programmer and the person that applies the transac-
tion boundaries be the same person.

5.2 Making Methods Transactional Using AspectJ

When making the interface to transactions transparent, the calls to the transaction sup-
port must be completely hidden from the application programmer. They should exe-
cute automatically at certain points in the program.

Figure 5 shows an abstract aspect TransactionalMethods that wraps a transac-
tion around a method invocation by making calls to the procedural interface of OPTIMA
introduced in Section 2.3.
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public abstract aspect TransactionalMethods ({
abstract public pointcut MethodToBeMadeTransactional () ;
void around() : MethodToBeMadeTransactional ()
ProceduralInterface.beginTransaction() ; C)
boolean aborted = false;
try {
proceed () ; @
} catch (TransactionException e)

ProceduralInterface.abortTransaction() ; C)
aborted = true;
throw e; C)
} finally (
if (!aborted) ({
ProceduralInterface.commitTransaction() ; C)

}

Fig. 5: Making Method Calls Transactional

The method call is encapsulated with the help of the around () advice. First, the
beginTransaction () method is called to start a new (nested) transaction @. The
actual method call is placed inside a try-catch block and executed using the
proceed () @ statement. If the original method call terminates with a Transaction-
Exception, then the transaction is aborted @), and the exception is thrown again @. In
any other case the transaction is committed ®. If the commit is not possible, the com-
mitTransaction() method will throw the TransactionAbortedException
exception.

In order to apply the TransactionalMethods aspect to a method, the program-
mer must extend the aspect and override the MethodToBeMadeTransactional
pointcut. Figure 6 shows an aspect that makes all method invocations on the Account
class transactional.

aspect MakeAccountMethodsTransactional extends TransactionalMethods {

public pointcut MethodToBeMadeTransactional ()
call (public * Account.*(..));

Fig. 6: Making Account Methods Transactional

As a result, all method invocations on the Account class may now throw the Trans-
actionAbortedException.

5.3 Java-related Problems

Java has very strict rules for exception handling. Java exceptions are part of a method
signature, i.e., a method or constructor must declare all exceptions it might throw dur-
ing its execution. Forgetting to do so results in a compilation error. This rule applies to

all exceptions apart from subclasses of Error or Runt imeException.!

In order to adhere to the Java exception rules, our aspect would have to modify the
signature of the method it applies to. This is not possible in the current version of
Aspectd (version 1.0.3), and we therefore had to declare the TransactionaAborte-
dException as a subclass of RuntimeException in order to avoid compilation
errors. Unfortunately this work-around is not completely satisfying. A Java program-
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mer, relying on the fact that important application exceptions are checked, might forget
to handle the TransactionAbortedException, which results in an incorrect pro-
gram behavior.

5.4 Collaboration Among Threads

In the example presented in Section 5.2, every invocation of a method that has been
specified as being transactional results in the creation of a new transaction. Unfortu-
nately, this precludes any collaboration between threads as explained in Section 4.1.
In order to make collaboration possible, threads must be able to enter the same
transaction. This can be achieved using a named transaction as shown in Figure 7.

public abstract aspect TransactionallyCollaboratingMethods {
abstract public pointcut MethodToBeMadeTransactional () ;
abstract public String initTransactionName () ;
final String transactionName = initTransactionName () ;

void around() : MethodToBeMadeTransactional() ({
ProceduralInterface.beginOrJdJoinTransaction (transactionName) ;
// the rest of the code remains the same

Fig. 7: Using Named Transactions

To apply this aspect to all Account objects, the programmer must define a concrete
pointcut and provide a transaction name as follows:

aspect CollaboratingAccount extends TransactionallyCollaboratingMethods {

public pointcut MethodToBeMadeTransactional ()
call (public * Account.*(..));

public String initTransactionName () {
return “AccountTransaction”;

Fig. 8: Account Methods Collaborating Inside the Same Transaction

Now, a thread that executes getBalance () can proceed, even if some other thread
has previously invoked deposit (), because they both participate in the same transac-
tion named “AccountTransaction”.

5.5 Transactional Objects

In Section 4.3 we argued that it makes no sense to turn all application objects into
transactional objects. The situation here is different, since we aim only at aspectizing
transaction interfaces. The programmer specifies which methods are to be executed

1. Exceptions of the class Error indicate serious problems, e.g. Virtual-
MachineError. They should never occur and ordinary programs are not
expected to recover from them. Subclasses of the class RuntimeExcep-
tion, e.g. ArithmeticException or NullPointerException, are
thrown in case a language-defined check fails. These exceptions occur fre-
quently, and hence the language designers decided that it would be cum-
bersome to force the programmer to declare them everywhere.
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transactionally, and therefore also knows which objects are accessed from within a
transaction. Only these objects must be made transactional.

In OPTIMA, every transactional object must be associated with a recovery manager

and a concurrency control. In order to guarantee the ACID properties, each time a
method is invoked on a transactional object the following actions must be taken:

1.

Concurrency Control Prologue — Call the preOperation () method of the
concurrency control associated with the object. This allows, for instance, a lock-
based concurrency control to suspend the calling thread in case the method to be
called conflicts with other method calls made from other transactions.

Recovery Prologue — Call the recovery manager’s preOperation () method.
This allows the recovery manager to collect information for undoing the method
call in case the transaction aborts later on.

Method Execution — Execute the actual method call.

Recovery Epilogue — Invoke the recovery manager’s postOperation ()
method.

Concurrency Control Epilogue — Call the postOperation () method of the
concurrency control associated with the object.

Using Aspectd, these actions can be encapsulated inside an aspect as shown in
Figure 9. The TransactionalObject defines a pointcut TransactionalMethod,
which in our example specifies that all calls to public methods of the Account class
are to be intercepted @, thus making all Account objects transactional.

aspect TransactionalObject pertarget (TransactionalMethod()) {
pointcut TransactionalMethod() : call(public * Account.*(..)); C)
private final RecoveryManager myRecoveryManager = ...;
private final ConcurrencyControl myConcurrencyControl = new ...; C)
// other per-object info, e.g. recovery info

public void abortTransaction(Object object, Transaction t)
myConcurrencyControl.transactionAbort (t) ;

public void commitTransaction(Object object, Transaction t)
myConcurrencyControl.transactionCommit (t) ;

}
before() : TransactionalObjectMethodCall() ({ ()
Transaction t = TransactionContext.getTransaction() ; C)
if (t != null) ({
Object currentObject = thisJoinPoint.getTarget () ; C)
myConcurrencyControl .preOperation(t) ;
myRecoveryManager.preOperation (currentObject, t); C)
}
}
after () : TransactionalObjectMethodCall () ({

Transaction t = TransactionContext.getTransaction() ;
if (t != null) {
Object currentObject = thisJoinPoint.getTarget () ;
myRecoveryManager.postOperation (currentObject, t);
myConcurrencyControl .postOperation (t) ;

Fig. 9: Making Objects Transactional
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The aspect itself is specified to be instantiated pertarget (Transactional-
Method), meaning that an instance of the aspect is created for each account object that
receives a public method call. Therefore, a separate copy of the private fields myRe-
coveryManager and myConcurrencyControl exist for each object. The fields are
initialized when the aspect is instantiated, i.e. before a public method is invoked on the
Account object for the first time @.

The before () and after () advice encapsulate the actual method call. Any invo-
cation of a public method on the Account class is intercepted, and the before advice
1s executed @. First, the current transaction context is obtained from the transaction
support @. A reference to the transactional object itself is obtained by calling the
getTarget () method of the thisJoinPoint object, which is an object offered by
the AspectJ environment that provides information on the context of the advice’s cur-
rent join point ®. Next, the concurrency control prologue, and finally the recovery
prologue are executed ®. The after () advice handles the epilogues in a similar way.

Although this aspect can be used to make any Java class transactional, it is never-
theless not a viable solution for an application that heavily relies on transactions. The
transaction support does not get any knowledge on the frequency of use of the object,
the size of its state and the semantics of its methods. As a result, worst-case assump-
tions must be made, which yields in poor performance. Exploiting such knowledge
makes it possible to increase concurrency and decrease disk access, and therefore con-
siderably improves performance.

6 Aspectizing Transaction Mechanisms

In this section, we discuss the extent to which one can aspectize transaction mecha-
nisms, that is, separate the mechanisms needed to ensure the ACID properties of trans-
actions (i.e., concurrency control and failure management) from the main (functional)
program (objects) and have these encapsulated within specific aspects. We present
how AspectJd aspects have been used to provide application-wide, per-class, and per-
method customization of transaction mechanisms. We show that, although possible
and elegant, this separation should be handled with care, especially whenever the
actual functional part does change. In short, the programmer must be aware that the
physical separation does not imply a semantic decoupling.

6.1 Configuring Application-Wide Transaction Preferences

Transactional systems guarantee atomicity and durability even in the presence of fail-
ures, i.e., crashes. Different techniques for recovering from a crash failure exist with
different performance trade-offs.

To achieve durability, the state of transactional objects is stored on so-called stable
storage [20]. To boost performance, the state of frequently used transactional objects is
kept in a cache. On a system crash however, the content of the cache is lost, and there-

1. Note that, in order to support durability, the class must implement the
Serializable or Externalizable interface.
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fore, in general, the state of the stable storage can be inconsistent for the following rea-
sons:

» The storage does not contain updates of committed transactions.
» The storage contains updates of uncommitted transactions.

When recovering from a system crash, the former problem can be solved by redoing
the changes made by the corresponding transactions, the latter by undoing the changes
made by the corresponding transactions [21].

The Undo/Redo recovery strategy can handle both situations, and therefore gives
the most freedom to the cache manager. However, the time needed for performing
recovery is considerable. Other recovery strategies, e.g., NoUndo/Redo or Undo/
NoRedo, perform better during recovery [22], but constrain the cache manager and
hence may potentially slow down performance during normal processing.

In our OPTIMA framework, one can select the appropriate recovery manager by
instantiating the corresponding class from the class hierarchy presented in Figure 10.

Recovery Manager

Pre Operation
Post_Operation

B

| ] ]
| Undo_Recovery | | Redo_Recovery | |UndofRedoiRecovery|

Fig. 10: The Recovery Manager Hierarchy

There must be a single recovery manager for the entire application, and it must be ini-
tialized during start-up. Using aspects, this initialization can be achieved by declaring
an OptimaConfiguration aspect as shown in Figure 11.

public aspect OptimaConfiguration issingleton()

public RecoveryManager initRecoveryManager () {
// instantiate your chosen recovery manager here
// the parameters (omitted here) specify the desired log storage
return new UndoNoRedoManager(...);

}

public final RecoveryManager recoveryManager = initRecoveryManager () ;
// more code follows later

Fig. 11: Selecting a Recovery Manager

By using the modifier issingleton (), the aspect has exactly one instance that cross-
cuts the entire application. That instance is available at any time during execution of
the program using the static method OptimaConfiguration.aspectOf ().

6.2 Configuring Object Transactional Properties

Objects that are accessed from within a transaction must be capable of handling coop-
erative and competitive concurrency. In order to address cooperative concurrency,
methods that update the state of an object must execute in mutual exclusion.
Competitive concurrency control, which guarantees the isolation property of trans-
actions, can be pessimistic (conservative) or optimistic (aggressive) [23], both having
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Concurrency Control

Pre Operation
Post Operation

A

| Optimistic Control | |PessimistiqﬁControl|
| 1 i |
oee | Timestampbased_Control | | Locking Control |

Fig. 12: The Concurrency Control Hierarchy

advantages and disadvantages. Figure 12 depicts an excerpt of the concurrency control
class hierarchy of OPTIMA.

Every transactional object must have an associated concurrency control. In order to
maximize concurrency, the kind of concurrency control must be configurable on a per-
class (or even per-object) basis. However, in order to guarantee the serializability of
transactions, the global serialization order must be the same for all concurrency con-
trols used in a system [24].

To do this transparently, we have introduced an interface CustomizedConcur-
rencyControl, shown in Figure 13. An object that wants to specify its preferred con-
currency control must implement this interface.

interface CustomizedConcurrencyControl {
public ConcurrencyControl getConcurrencyControl () ;

Fig. 13: The CustomizedConcurrencyControl Interface

The following aspect does this transparently. It specifies a timestamp-based concur-
rency control for the Account class.
public aspect AccountConcurrencyControlAspect {

declare parents: Account implements CustomizedConcurrencyControl;

public ConcurrencyControl
CustomizedConcurrencyControl.getConcurrencyControl ()
return new TimestampbasedControl () ;

}
Fig. 14: Selecting a Custom Concurrency Control for a Class

The default concurrency control can be set in the OptimaConfiguration aspect as
shown in Figure 15.

The method initConcurrencyControl is called once for each object. In
Figure 15, if the object does not implement the CustomizedConcurrencyControl
interface, a LockingControl is instantiated.

6.3 Specifying Transactional Properties on a Per-Method Basis

To optimize concurrency even further, the transaction support needs specific informa-
tion about the semantics of each method of an object.
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public aspect OptimaConfiguration issingleton()
// code shown in Figure 11
public ConcurrencyControl initConcurrencyControl (Object o) {
if (o instanceof CustomizedConcurrencyControl) {
// get the customized ConcurrencyControl
return ((CustomizedConcurrencyControl) o) .getConcurrencyControl () ;
} else {
// instantiate your default concurrency control here
return new LockingControl () ;

Fig. 15: Selecting a Default Concurrency Control for All Classes

A sophisticated concurrency control can, for instance, allow method invocations on the
same object made from different transactions to execute concurrently, if it knows that
no information smuggling will occur. For example, multiple getBalance () invoca-
tions on an Account object do not conflict. This is not surprising, since getBal-
ance () does not modify the state of an account. However, two deposit () operations
do not conflict either; they commute. Generally speaking, the decision of what meth-
ods may cause a conflict depends on the semantics of the method, the method input
and output parameters, the structure of the object state, and the object usage [24].

Other parts of the transaction support can also benefit from the knowledge of
method semantics. If, for instance, every method has an associated inverse method,
which undoes the effects of the former one, then the recovery manager can perform
logical logging instead of physical logging, if appropriate.

Obviously, such semantic knowledge about methods can not be guessed automati-
cally. It must be provided by the application programmer. In OPTIMA, this information
is encapsulated in the abstract Operation class. Subclasses of Operation must
implement methods such as i sCompatible (Operation op), which must determine
if the current operation conflicts with the operation op passed as a parameter.

public class GetBalanceOperation extends Operation ({

boolean isCompatible (Operation op)
return (op instanceof GetBalanceOperation) ;
}

Fig. 16: The GetBalanceOperation Class

Figure 16 depicts parts of the declaration code of the GetBalanceOperation class.
It specifies that calls to the getBalance () method from one transaction are compati-
ble with calls to getBalance () from other transactions, but incompatible with all
other methods invocations on the Account class.

Following the same idea shown in Section 6.2 for customizing concurrency con-
trol, classes that want to customize their transactional behavior on a per-method basis
must implement the CustomizedMethods interface shown in Figure 17.

public interface CustomizedMethods {
public Operation getOperation (String name, JoinPoint jp)
throws MethodCustomizationException;

Fig. 17: The CustomizedMethods Interface
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The aspect shown in Figure 18 adds this functionality to the Account class. The
implementation of the method getOperation may make use of the JoinPoint
parameter jp. In Aspectd, JoinPoint objects provide access to run-time informa-
tion, e.g., parameter values. In Figure 18, jp is used when the deposit method is
invoked to extract the value of the parameter that holds the amount of money to be
deposited.

public aspect AccountMethodAspect

declare parents: Account implements CustomizedMethods;

public Operation CustomizedMethods.getOperation (String name, JoinPoint jp)
throws MethodCustomizationException {

if (name.equals("getBalance")) {

return new GetBalanceOperation() ;
} else if (name.equals ("deposit")) ({

return new DepositOperation((Integer)jp.getArgs() [0]);
} else {

throw MethodCustomizationException;

}
}

Fig. 18: Customizing All Methods of the Account Class

If no operation subclass is defined for a given method, or if the class does not imple-
ment the CustomizedMethods interface, the default operation class is used as shown
in Figure 19 @. The default operation class assumes the worst: the operation is
assumed to modify the state of the object, and is assumed to conflict with any other
operation.

public aspect OptimaConfiguration issingleton()
// code shown in Figure 11 and Figure 15

public Operation getOperation(Object o, JoinPoint jp)
if (o instanceof CustomizedMethods)
// get the customized Operation object
Operation op;
try {
op = ((CustomizedMethods)o) .getOperation
(jp.getSignature () .getName (), Jjp);
} catch (MethodCustomizationException e) {
return new DefaultOperation() ;
}

return op;
} else {
return new DefaultOperation() ; C)

}
}
Fig. 19: Default Operation Object for All Methods

6.4 Transactional Objects with Customization

The previous sections have shown how to add customization at the application, object
and method level. To encapsulate transactional objects and at the same time provide
customization, the aspect presented in Figure 9 has been extended. The result is shown
in Figure 20.

The aspect CustomizedTransactionalObject is still specified to be instanti-
ated pertarget (TransactionalMethods). At instantiation time, the recovery
manager is initialized to the one given in the OptimaConfiguration aspect @. The
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concurrency control for the transactional object is initialized when a public method is
invoked from within a transaction for the first time by calling initConcurrency
Control () @ (see Section 6.2).

Before the method is executed, the Operation object for the method is obtained
by calling getOperation () @. The returned Operation object is passed to the con-
currency control preOperation () method @.

aspect CustomizedTransactionalObject pertarget (TransactionalMethods())
pointcut TransactionalMethods () : call(public * Account.*(..));
private final RecoveryManager myRecoveryManager =
OptimaConfiguration.aspectOf () .recoveryManager; C)
private ConcurrencyControl myConcurrencyControl;
// other per-object info, e.g. recovery info

public void abortTransaction(Object object, Transaction t) ({
myConcurrencyControl.transactionAbort (t) ;

public void commitTransaction(Object object, Transaction t) ({
myConcurrencyControl.transactionCommit (t) ;

before() : TransactionalObjectMethodCall () {
Transaction t = TransactionContext.getTransaction() ;
if (t != null) {
Object currentObject = thisJoinPoint.getTarget () ;

if (myConcurrencyControl == null) {
myConcurrencyControl = OptimaConfiguration.aspectOf ()
.initConcurrencyControl (currentObject) ; C)

}

Operation myOperation = OptimaConfiguration.aspectOf ()
.getOperation (currentObject, thisJoinPoint) ; C)

myConcurrencyControl .preOperation (myOperation, t);

myRecoveryManager.preOperation (currentObject, t); C)

}
}

after () : TransactionalObjectMethodCall () ({

Transaction t = TransactionContext.getTransaction() ;

if (t != null) {
Object currentObject = thisJoinPoint.getTarget () ;
myRecoveryManager.postOperation (currentObject, t);
Operation myOperation = OptimaConfiguration.aspectOf ()

.getOperation (currentObject, thisJoinPoint) ;

myConcurrencyControl .postOperation (myOperation, t);

Fig. 20: Making Objects Transactional with Customization

6.5 Extensibility

Care must be taken when modifying methods of transactional objects with customized
transactional behavior, since modifications in the code might also modify the method
semantics.

Consider a bank account that offers the usual deposit and withdraw operations,
and an operation that returns the current interest rate getInterestRate. In general,
bank accounts have fixed interest rates, and therefore invocations of getIntere-
stRate do not conflict with deposit or withdraw. An implementation of such a
bank account will exploit this property and implement customized methods to increase
concurrency.

page 19



But what if a bank decides to offer better interest rates to “good” customers, mean-
ing customers whose account balance exceeds a certain amount of money? In this case,
calling deposit or withdraw might change the interest rate if the new balance passes
the threshold. The point we want to make here is that such a modification inside a
method of the Account class must be accompanied by a corresponding modification
in the AccountMethodAspect; otherwise the ACID properties will be violated.
Hence, although the transaction mechanisms are physically separated from the “func-
tional” part of the account class, they remain semantically coupled. When performing
maintenance, both parts must be updated in accordance.

7 Related Work

To the best of our knowledge, there has been no previously published work on provid-
ing support for transactions using AOP.

A widely used platform that promises what we called transaction interface aspecti-
zation is Enterprise Java Beans [5]. EJB is a higher-level component-based architec-
ture for distributed business applications, which aims at simplifying the development
of complex systems in Java by dividing the overall development process into seven
different architecture roles that can be performed by different parties.

One of the architecture roles is the Enterprise Bean Provider. Typically performed
by an application-domain expert, e.g. from the financial industry, the enterprise bean
provider builds a component, called an enterprise bean, that implements the business
methods without being concerned about the distribution, transaction, security, and
other non-business-specific aspects of the application. The EJB Container Provider on
the other hand is supposed to be an expert in distributed systems, transactions and
security. The container provider must deliver tools for the deployment of enterprise
beans, and a run-time system that provides the deployed beans with transaction and
security management, distribution, management of resources, and other services. The
other architecture roles are the Persistence Manager Provider, the EJB Server Pro-
vider, the System Administrator, the Application Assembler, and finally the Deployer.

Entity beans provide an object view of data in a database, and typically access this
data from within a transaction. However, the methods of an enterprise bean do not han-
dle transactions directly. Instead, transactional properties are specified in the deploy-
ment descriptor of a bean. Possible transaction policies are presented in figure 21.

The transaction policies can be set by the bean provider for the entire bean or for
each method separately. But, surprisingly, these policies can later on be changed by the
application assembler, or even by the deployer. It is also possible to change the isola-
tion level for an entire bean, or even for each method separately. Isolation levels, how-
ever, are not standardized. In Visual Age for Java, for instance, possible isolation
levels (from strongest to  weakest) are TRANSACTION SERIALIZABLE,
TRANSACTION REPEATABLE_READ, TRANSACTION READ COMMITTED,
TRANSACTION READ UNCOMMITTED.

Based on our experience, changing the transaction policies and isolation levels
defined by the bean provider is highly error-prone. Only the implementor of the bean
knows the exact semantics of the methods, and is qualified to select the appropriate
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Policy Meaning

Tx_Not_SupporTED | The method can not be called from inside a transaction.

TX_SUPPORTED The method can be called from inside a transaction.

TX_MANDATORY The method must be called from inside a transaction. If this
is not the case, an exception is thrown to the caller.

Tx_REQUIRED The method requires to be executed from inside a transac-
tion. If this is not the case, a new transaction is created.

Tx_ReQuIRES NEw | The container creates a new transaction before executing the
method.

Tx_BEAN ManaceD | Session beans are allowed to manage transactions explicitly
by calling javax.transaction.CurrentTransac-
tion. This policy is not supported for entity beans.

Fig. 21: Enterprise Java Beans Transaction Policies

policies. Allowing a different person to fiddle with these properties at deployment time
will inevitably lead to incorrect programs.

Another obvious drawback of the EJB approach is performance. When writing the
entity bean methods, the bean provider does not have to worry about concurrent
accesses by multiple transactions. The bean provider may assume that the container
will ensure appropriate synchronization for entity objects that are accessed concur-
rently by multiple transactions.

Unfortunately, the container does not have any knowledge of the semantics of the
methods of a bean, and therefore must make a “blind” choice when implementing con-
currency control. The EJB specification mentions two different implementation strate-
gies. The container can activate multiple instances of a bean, one for each transaction,
and let the underlying database handle proper serialization. Depending on what kind of
lock the ejbLoad method acquires, this may unnecessarily block read-only transac-
tions, or lead to deadlocks. The other solution is to activate only a single instance of
the entity bean, and serialize the accesses by multiple transactions to this instance,
which also restricts concurrency among transactions dramatically.

8 Discussion
Our experience was limited to:

1. The use of AspectJ as a representative of AOP languages;
Transactions as a fundamental paradigm to handle concurrency and failures;

3. Our underlying OPTIMA transactional framework to implement concurrency con-
trol and failure management.

Hence, in principle, one can hardly draw any conclusion on using AOP to aspectize
concurrency and failures in general. Furthermore, the very fact that we could not
smoothly aspectize concurrency and failures does in no way mean that other tech-
niques to aspectize those concerns are bound to fail.
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We have, however, tried to explore different possibilities, and we considered
mainly issues of general importance without focussing on technical issues related, for
instance, to the current implementation of Aspectd. For example, the current
AspectdJ implementation only advises the parts of an application for which source
code is available at compile time, excluding, for instance, code in precompiled librar-
ies such as java.lang. This restriction is an additional reason why the aspectizing
transactions approach presented in Section 4 is impossible. We also ignored technical
problems like aliasing of transactional objects, serializing references to transactional
objects, and static fields of classes.

Our underlying thesis is, however, that concurrency control and failure manage-
ment are hard to aspectize in general, and we argue below that this is actually not sur-
prising.

* On one hand, existing transactional languages, e.g. Argus [25], Arjuna [26],
KAROS [27], Transactional Drago [28] or PJama [29, 30, 18], provide primitives
for expressing transaction boundaries within methods, and not as separate con-
cerns. Furthermore, even if the systems underlying those languages provide default
mechanisms for handling concurrency and failures, most work on how to obtain
effective mechanisms advocate the tight integration of the mechanisms within the
actual methods or objects [21, 31, 32]. The difficulty of providing local concur-
rency control mechanisms and the strong integration with recovery management is
pointed out in [25].

* On the other hand, object-oriented programming is about modeling real-world phe-
nomenon with objects. Each object is supposed to encapsulate the state and the
behavior of a real world phenomena, and concurrency and failures are usually parts
of that phenomena. For instance, the very fact that a transaction should be aborted
if there is not enough money in a bank account is a full part of the semantics of the
bank account. Similarly, one would hate to get the actual balance of his bank
account during a transfer.

9 Summary

We considered three levels of aspectization in our transactional context. The results of
our experiment are summarized below:

Aspectizing transactions: Trying to automatically apply transactions to previously
non-transaction code is doomed to failure, because of the incompatibility of the linear-
izability of method invocations provided by shared objects and transaction serializabil-
ity, and because of the impossibility to automatically identify irreversible actions.

Aspectizing transaction interfaces: Separating transactional interfaces from the rest
of the program can be achieved using aspect-oriented programming techniques. This
separation, however, might seem artificial in situations where the “transactional
aspect” actually is part of the semantics of the object it applies to. Each object is sup-
posed to encapsulate the state and the behavior of a real world phenomena, and con-
currency and failures are usually parts of that phenomena. In such situations, an
indirect connection between functional and transactional concerns must be established,
for instance by using exceptions. This, however, might lead to rather confusing code.
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Another drawback of aspectizing transaction interfaces and not exposing transac-
tion mechanisms is that default choices must be made by the underlying transaction
support, which can considerably impact performance.

Aspectizing transaction mechanisms: AOP languages provide interesting features
that can simplify the separation, at the syntactic level, of concurrency control and fail-
ure management mechanisms from the rest of the objects. Pretty much like an
advanced macro language, however, these features should be reserved for smart pro-
grammers who have an advanced sense of the risk [4]. Physical separation does not
necessarily imply semantic decoupling, and at least in the case of transactions, we
believe that the application programmer and the programmer applying transactions
using aspects must be the same person. Approaches such as the one taken by Enter-
prise Java Beans, where the application deployer can set or change transactional
attributes for each Java bean, are error-prone, since they can easily lead to the violation
of the ACID properties of transactions.

To prevent such problems, and to help aspect-oriented programmers, some guide-
lines and tool support would be useful, e.g., the ability to display “tightly coupled”
aspects applying to an object whenever the implementation of the object changes. It
might also be interesting to clearly emphasize that what can possibly be safely aspec-
tized is probably what is not part of the object semantics, i.e., of the phenomena that
the object is supposed to simulate, e.g., debugging and display. Drawing that border-
line would be another interesting exercise.

In short, although the thesis underlying our experiment is not surprising, we
believe nevertheless that the experiment itself provides some material for discussing
what can be aspectized and what cannot. Given the growing interest in AOP, such a
discussion can be of great value.
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