
1

Pseudo algoritmo

Algoritmos, Estruturas de Dados,
Programação Imperativa e C

Sérgio Soares

scbs@cin.ufpe.br

Tipos

• Tipos
– int

1, 16, - 234

– real
34.45 , - 87.92

– bool
V, F

– char
‘a’ , ‘b’

– string
“casa” , “livro”

Tipos

• Definindo tipos
tipo nome :: lista_valores;

• Exemplo
tipo vogais :: ‘a’, ‘e’, ‘i’, ‘o’, ‘u’;

Registros

• Definição
reg nome { lista_declarações};

• Exemplo
reg pessoa { int rg, string nome};

pessoa p;

p.rg < - 1765;

p.nome < - “Maria”;

Operações

• int

+, - , * , /, div , mod

• real

+, - , * , /

• Relações
=, ≠, <, ≤, >, ≥

• bool

e, ou , não

• char

=, ≠
• string

+

Funções

• div e mod
div (10/3) = 3
mod(10/3) = 1

• trunc
trunc (1.8) = 1

• arred
arred (1.4) = 1
arred (1.5) = 2

• tier

tier (9) = 9.0

• ord

ord (‘a’) = 65

ord (‘b’) = 66

ord (‘c’) = 67

2

Programa

• Definição
programa nome

declarações_variáveis

comandos

Variáveis

• Declaração
tipo nome;

tipo nome1, nome2, ..., nomeN;

tipo nome <- valor;

int x, y;
string aluno <- “ Luis ” ;

Comandos

• Atribuição
variável <- expressão;

• Entrada
leia(lista_variáveis) ;

• Saída
escreva(lista_variáveis) ;

Comandos

• Condicional simples
se condição então

comando

int x;
leia(x);
se mod(x,2)=0 então

escreva(“A entrada é par”);

Comandos

• Condicional simples
se condição então

comando

senão

comando

se mod(x,2)=0 então
escreva(“A entrada é par”);

senão
escreva(“É impar”);

Exercícios

1 - Escreva um programa que lê dois inteiros e
imprime o maior.

2 - Escreva um programa que lê três inteiros e
os imprime em ordem crescente.

3

Comandos

• Iteração (repetição) com teste no início
enquanto condição faça

comando

int i < - 1;
enquanto i < 10 faça

escreva(i);
i < - i + 1;

Comandos

• Iteração (repetição) com teste no início
para variável de valor_inicial incr
valor_incrementoaté valor_final faça

comando

int i;
para i de 1 incr 1 até 10 faça

escreva(i);

Comandos

• Iteração (repetição) com teste no fim
repita

comando

até (que) condição

int i;
repita

escreva(i);
i < - i + 1;

até que i < 10 faça

Comandos

• Escape
saia

escape

int i;
repita

escreva(i);
i < - i + 1;
se i=4 então

saia;
até que i < 10 faça

• Seleção
conforme variável faça

lista_dos_casos

Comandos

imprima(“Entre com um valor”);
leia(x);
imprima(“Escolha 1 (dobro) ou 2 (metade)”);
leia(i);
conforme i faça

1: x < - 2*x;
2: x < - div (x,2);

escreva(“O resultado é ”, x);

Exercícios

3 - Escreva um programa que lê dois inteiros e
imprime os número no intervalo formado
pelos mesmos. Os valores lidos tem de
expressar um intervalo crescente.

4 - Altere o programa para que o mesmo
aceite quaisquer intervalos imprimido na
ordem crescente ou decrescente, conforme
os valores dados. (obrigatório)

4

Procedimentos

• Sem retorno (rotinas)
proc nome(lista_parâmetros)

declarações_variáveis

comandos

proc par(int a, bool resposta)
se mod(a,2)=0 então

resposta < - T;
senão

resposta < - F;

Procedimentos

• Execução de rotina
execute nome_rotina(lista_argumentos);

int a;
bool x;
leia(a);
execute par(a, x);
se x então

imprima(“É par”);
senão

imprima(“É ímpar”);

Procedimentos

• Com retorno (funções)
proc tipo nome(lista_parâmetros)

declarações_variáveis

comandos

proc bool par(int a)
se mod(a,2)=0 então

retorne T;
senão

retorne F;

Procedimentos

• Execução de função
nome_função(lista_argumentos);

int a;
leia(a);
se par(a) então

imprima(“É par”);
senão

imprima(“É ímpar”);

Programa

• Definição completa
programa nome

declarações_variáveis

comandos

procedimentos

Exercício

5 - Escreva um programa que lê três inteiros e
imprime o menor e o maior. O programa
deve definir e utilizar os procedimentos
menor e maior que dado dois números
retornam, respectivamente, o menor e o
maior deles.

5

6 - Escreva uma aplicação bancária. O
programa deve exibir um menu com as
opções: creditar, debitar, saldo, e sair. O
programa deve manter uma variável conta
do tipo real que é alterada segundo a
opção escolhida. Caso a opção seja creditar
ou debitar, o programa deve ler o valor a ser
adicionado ou removido. (obrigatório)

Exercício

Arrays

Algoritmos, Estruturas de Dados,
Programação Imperativa e C

Sérgio Soares

scbs@cin.ufpe.br

Arrays

• Armazenam elementos de um determinado
tipo em seqüência.

• Também chamado de vetor

• Declarando um array
int [tamanho] arr ;

• Acessando o i-ésimoelemento doarray
arr [i];

• O primeiro índice é 0 e o último é
tamanho- 1

Arrays

int [4] arr ;
int i < - 0;
enquanto i<5 faça

arr [i] < - (2*i);
i < - i +1

0 2 4 6 8
arr [0] [1] [2] [3] [4]

Exercício

1 - Escreva um programa que lê uma
seqüência de 10 números e os armazena em
um array. Em seguida o programa imprime
o produto e a soma destes números.

Arrays

• Recebendo um array como parâmetro em
um procedimento
– A dimensão não precisa ser informada

proc tipo_procedimento nome(tipo_array[] variável)
declarações
comandos

6

2 – Escreva uma rotina que recebe um array
de inteiros ordenado e um número inteiro. A
rotina deve criar um novo array, copiar os
valores do array recebido para o novo,
inserindo o número recebido na posição
correta de modo a manter o array resultante
ordenado, e retornar o array criado.

Exercício Exercício

3 - Altere o exercício 6 da aula anterior para
que o mesmo utilize um array de reais de
tamanho 10 que simbolizam contas do
banco. Os números das contas serão os
índices do array (0..9). Ao iniciar o
programa todas as contas iniciam a
execução com saldo 0.0 . (obrigatório)

Arraysmultidimensionais

• Também chamados de matrizes
• Declaração

– int[2][2] matriz;

• Inicialização
matriz[0][0] < - - 10;
matriz[0][1] < - 30;
matriz[1][0] < - 2;
matriz[1][1] < - - 15;

-10 30

2 -15

Exercício

4 – Escreva um programa que lê valores de
uma matriz 2x2 de inteiros. Em seguida
calcule a soma das diagonais da matriz.

5 – Escreva um programa que soma as
diagonais de matrizes quadráticas de
qualquer dimensão. O programa deve no
início pedir a dimensão da matriz e ler os
valores.

Exercício

6 – Escreva um programa que verifica se uma
matriz quadrática é simétrica.

7 – Escreva um programa que lê valores de
duas matrizes quadradas (de mesma
dimensão) e retorna o produto das mesmas.
(obrigatório)

Listas

Algoritmos, Estruturas de Dados,
Programação Imperativa e C

Sérgio Soares

scbs@cin.ufpe.br

7

Listas

• Armazenam um conjunto de dados com
uma ordem relativa entre si

• Semelhante a umarray/vetor

1 - 3 10 ⊥

1 –3 10

Representa o
fim da lista

Registros

• Definição
reg nome { lista_declarações};

• Exemplo
reg pessoa { int rg, string nome};

rg nome

Registros

• Alocação dinâmica de memória
– Comando aloque

reg pessoa { int rg, string nome};
pessoa p;
aloque(p);
p.rg < - 1765;
p.nome < - “Maria”;

1765 “Maria”p
rg nome

Exercício

1 – Escreva um programa que define um
registro cliente que contém as
informações de um cliente de uma loja
(nome, cpf, endereço e renda mensal). O
programa deve definir umarray de
cliente com um tamanho fornecido pelo
usuário e carregar os elementos (cliente)
no array com os dados fornecidos pelo
usuário.

Listas com registros
reg listaInt { int dado, listaInt prox };
int i < - 0;
listaInt cabeca , aux;
aloque (cabeca);
aux < - cabeca ;
enquanto i<10 faça

aux.dado < - 2 * i;
aloque (aux. prox);
aux <- aux . prox ;
i < - i + 1;

aux . prox <- ⊥⊥⊥⊥;
...

Exercícios

2 – Crie um programa com uma lista de
número inteiros e que insere números
fornecidos pelo usuário na mesma até que o
número 0 seja lido, indicando o fim do
programa.

3 – Modifique o exercício 1 para que o
mesmo não utilize umarray de registros
(cliente), mas uma lista de cliente .

8

4 – Crie dois procedimentos. O primeiro
recebe um número inteiro e uma lista
ordenada com números inteiros. O
procedimento deve inserir o número
recebido na lista mantendo-a ordenada. O
segundo procedimento recebe os mesmos
parâmetros do primeiro mas remove da lista
o número recebido.

Exercício

5 – Modifique o exercício de aplicação
bancária para que uma conta seja um
registro de numero (int) e saldo (real).
Altere a aplicação bancária para trabalhar
com uma lista de conta! (obrigatório)

Exercício

Listas duplamente encadeadas

• Listas que podem ser percorridas nos dois
sentidos

• Exemplo
reg exemplo {exemplo ante,

int dado,

exemplo prox };

⊥ 1 - 3 10 ⊥

reg lstInt { lstInt ante, int dado, lstInt prox };
int i < - 0;
lstInt cabeca , auxA , auxB;
aloque (cabeca);
cabeca .ante < - ⊥
auxA <- cabeca ;
enquanto i<10 faça

auxA.dado < - 2 * i;
aloque (auxB);
auxA. prox <- auxB;
auxB.ante < - auxA;
auxA <- auxB;
i < - i + 1;

auxA . prox <- ⊥⊥⊥⊥;
...

Exercícios

6 – Modifique o exercício 2 para trabalhar
com uma lista duplamente encadeada.

7 – Modifique o exercício 3 para trabalhar
com uma lista duplamente encadeada.

8 – Modifique o exercício 4 para trabalhar
com uma lista duplamente encadeada.

Fila e Pilha

Algoritmos, Estruturas de Dados,
Programação Imperativa e C

Sérgio Soares

scbs@cin.ufpe.br

9

Fila e Pilha

• Estruturas de dados com disciplina de
acesso
– Fila

• FIFO (first in first out) - O primeiro elemento
inserido é o primeiro a ser retirado

– Pilha
• LIFO (last in first out) - O último elemento inserido

é o primeiro a ser retirado

Fila

• Uma lista onde:
– os elementos são inseridos sempre no final

– os elementos são acessados e retirados sempre
da cabeça

1 ⊥cab Fila com um elemento

1 cab - 3 ⊥ Inseriu um elemento

- 3 ⊥cab Removeu um elemento

reg pessoa {string nome, string cpf };

reg fila_pessoas {pessoa dado, fila_pessoas prox };

proc inserir(fila_pessoas fila, pessoa p)

fila_pessoas aux , e;

aloque(e);

e.dado < - p;

e. prox <- ⊥;

se fila = ⊥ ent ão

fila <- e;

senão

aux <- fila;

enquanto aux . prox ≠ ⊥ fa ça

aux < - aux. prox ;

aux. prox <- e;

reg pessoa {string nome, string cpf };

reg fila_pessoas {pessoa dado, fila_pessoas prox };

proc remover(fila_pessoas fila)

se fila ≠ ⊥ ent ão

fila <- fila . prox ;

proc pessoa consultar (fila _pessoas fila)

se fila ≠ ⊥ ent ão

retorne fila .dado;

Aplicações de Fila

• Armazenar procedimentos que esperam
para executar

• Armazenar jobsde impressão

• Armazenar pacientes a serem atendidos

Exercícios

1 – Crie um programa que define uma fila de
inteiros e insere números fornecidos pelo
usuário na mesma até que o número 0 seja
lido, indicando o fim do programa. Em
seguida o programa imprime os elementos
da fila.

10

Exercício

2 – Escreva um programa para consultórios que
define um registro paciente que contém as
informações de um paciente de uma clínica (nome,
cpf, endereço). O programa deve definir uma fila
de paciente para serem atendidos e as
seguintes operações:
– inserir um paciente
– verificar o próximo a ser atendido
– atender um paciente

Obrigatório

Pilhas

• Estruturas com o sentido contrário de filas,
ou seja, listas onde:
– os elementos são inseridos, acessados, e

retirados sempre da cabeça (topo)

1
8

-10

topo

8
-10

topo

-5
8

-10

topo

reg pessoa {string nome, string cpf };

reg pilha_pessoas {pessoa dado, pilha_pessoas prox };

proc inserir(pilha_pessoas pilha, pessoa p)

pilha_pessoas e;

aloque(e);

e.dado < - p;

e. prox <- pilha ;

proc remover(pilha_pessoas pilha)

se fila ≠ ⊥ ent ão

pilha <- pilha . prox ;

proc pessoa consultar (pilha _pessoas pilha)

se fila ≠ ⊥ ent ão

retorne pilha .dado;

Exercícios

3 – Crie um programa que define uma pilha
de inteiros e insere números fornecidos pelo
usuário na mesma até que o número 0 seja
lido, indicando o fim do programa. Em
seguida o programa imprime os elementos
da pilha.

Recursividade

Algoritmos, Estruturas de Dados,
Programação Imperativa e C

Sérgio Soares

scbs@cin.ufpe.br

Recursividade

• Capacidade de um procedimento chamar a
si próprio

11

Fatorial sem recursividade

proc int fatorial(int valor)
int resposta;
enquanto n > 0 faça

resposta < - resposta * valor;
valor < - valor - 1;

retorne resposta;

fatorial(1) = 1
fatorial(n) = n * fatorial(n - 1)

Fatorial com recursividade

proc int fatorial(int valor)
se valor = 1 então

retorne 1;
senão

retorne valor * fatorial(valor - 1)

fatorial(1) = 1
fatorial(n) = n * fatorial(n - 1)

Exercício

1 – Crie o procedimento fib que calcula o
fibonnacide um número.

fib (2) = 1

fib (n) = fib (n - 1) * fib (n - 2)

Pesquisando se um elemento está
em uma lista recursivamente

proc bool pesquisar(Lista_ Int lista, int valor)
se lista = ⊥ então

retorne F;
senão

se lista.dado = valor então
retorne V;

senão
retorne pesquisar(lista. prox , valor);

Exercícios

2 – Crie o procedimento tam que calcula
recursivamente o tamanho de uma lista.

3 – Crie o procedimento soma que calcula
recursivamente a soma dos elementos de
uma lista.

4 – Crie o procedimento recursivo raiz que
calcula a raiz quadrada de um número

5 – Crie o procedimento recursivo inserir
que insere um elemento no final de uma
lista. obrigatório

Exercícios

