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A b s t r a c t  

This paper describes the principles of traditional pen-and-ink illus- 
tration, and shows how a great number of them can be implemented 
as part of an automated rendering system. It introduces "stroke tex- 
tures," which can be used for achieving both texture and tone with 
line drawing. Stroke textures also allow resolution-dependent ren- 
dering, in which the choice of strokes used in an illustration is ap- 
propriately tied to the resolution of the target medium. We demon- 
strate these techniques using complex architectural models, includ- 
ing Frank Lloyd Wright's "Robie House." 

CR C a t e g o r i e s  a n d  S u b j e c t  D e s c r i p t o r s :  1.3.3 [Computer Graph- 
ics]: Picture/Image Generation; 1.3.5 [Computer Graphics]: Three- 
Dimensional Graphics and Realism - -  Color, Shading, Shadowing, 
and Texture. 

A d d i t i o n a l  K e y  W o r d s :  architectural rendering, comprehensible 
rendering, non-photorealistic rendering, prioritized stroke textures, 
resolution-dependent rendering, texture indication. 

1 I n t r o d u c t i o n  

Most of the research in computer graphics rendering over the last 
twenty years has been devoted to the problem of creating images of 
physical scenes with ever-increasing complexity and realism. The 
success of this research has been a well-heralded achievement in 
graphics. 

However, the computer's ability to display images of ever-increasing 
complexity gives rise to a new problem: communicating this com- 
plex information in a comprehensible and effective manner. In order 
to communicate truly complex information effectively, some form 
of visual abstraction is required. This type of abstraction has been 
studied most comprehensively in the fields of graphic design and 
traditional illustration. 

In this paper, we therefore examine algorithms for the "non-photo- 
realistic" rendering of complex forms. While photorealistic images 
certainly have their place, in many applications, such as architectural 
and industrial design, a stylized illustration is often more effective. 

The advantages of illustration are numerous. Illustrations can con- 
vey information better by omitting extraneous detail, by focusing 
attention on relevant features, by clarifying and simplifying shapes, 
or by exposing parts that are hidden. In addition, illustrations often 
consume less storage than realistic images, and are more easily re- 
produced and transmitted. Illustrations also provide a more natural 
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vehicle for conveying information at different levels of detail. Fi- 
nally, in many applications, illustrations can add a sense of vitality 
difficult to capture with photorealism. 

The benefits of illustrations over photographs are well-recognized 
in many practical contexts. For example, medical texts almost al- 
ways employ hand-drawn illustrations in place of (or in addition 
to) photographs, since they allow tiny and hidden structures to be 
much better described. In addition, most assembly, maintenance, and 
repair manuals of mechanical hardware employ illustrations rather 
than photographs because of their clarity. For example, at Boeing, 
even when CAD databases of airplane parts exist, all high-quality 
manuals are still illustrated by hand in order to provide more effective 
diagrams than can be achieved with either photorealistic rendering 
or simple hidden line drawings [16]. 

To explore the use of abstraction as a means for conveying infor- 
mation effectively, it makes sense to begin with an area with well 
established conventions. For this reason, we are beginning our inves- 
tigation using the domain of pen-and-ink illustrations of architectural 
forms, for which a great number of well-documented conventions 
already exist [5, 11, 13, 14, 17, 20]. Restricting the domain to "pen 
and ink" also has the advantage that no exotic display technology is 
required to view the algorithms' output: conventional laser printers, 
even the inexpensive 300 dots-per-inch variety, give quite reasonable 
results. 

In the rest of this paper, we describe a number of principles of tradi- 
tional pen-and-ink illustration, and we show how a great number of 
them can be implemented as part of an automated rendering system. 

1.1  R e l a t e d  w o r k  

The area of "non-photorealistic rendering" has received relatively 
little attention in the computer graphics community. We survey most 
of the related work here. 

Seligmann and Feiner have described methods for automatically 
constructing illustrations to achieve a particular communicative 
goal [24]. Their system is primarily concerned with the high-level 
goal of composing the best model for communicating a particular 
intent, whereas the system we describe is more concerned with the 
low-level details of rendering the model once it is built. Thus, our 
system could serve as a "back-end" for theirs. 

With respect to the rendering of architectural forms, Yessios de- 
scribed a prototype "computer drafting" system for common ma- 
terials in architectural designs, including stones, wood, plant, and 
ground materials [26], which, like our work, attempts to provide a 
warmer, hand-drawn appearance as opposed to a mechanical one. 
Miyata also gave a nice algorithm for automatically generating stone 
wall patterns [19]; these patterns would make a good starting point 
for some of the pen-and-ink techniques described in this paper. 
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With respect to line-drawing techniques, Appel et al. were the first 
to discuss how a line could be "haloed" automatically to give the ap- 
pearance of one line passing behind another [2]. Kamada and Kawai 
generalized this work by showing how different line attributes, such 
as dashed and dotted line, could be used to give a more informative 
treatment of hidden lines [12]. Dooley and Cohen later introduced 
more line qualities, such as thickness, and discussed how the treat- 
ment of outline and surface shading could be customized by a user 
to create more effective illustrations [6, 7]. In the commercial realm, 
the Premisys Corporation markets a product called "Squiggle" that 
adds waviness and irregularities to CAD output as a post-process, 
lending a hand-drawn appearance to the drawings [21]. The Adobe 
Dimensions program allows PostScript stroke textures to be mapped 
onto surfaces in three dimensions [1]. 

The research described in this paper was most directly inspired by 
the work of Saito and Takahashi, who introduced the concept of a"G- 
buffer" for creating comprehensible renderings of 3D scenes [22]. 
Our work takes a somewhat different approach, in that it integrates 
aspects of 2D and 3D rendering, whereas their method essentially 
uses image processing techniques once the set of G-buffers are cre- 
ated. In addition, by introducing methods for texturing surfaces with 
strokes, the work in this paper extends the repertoire of the types of 
renderings that can be produced in a purely automated way. 

In related works, our group is exploring several different aspects 
of the pen-and-ink illustration problem. This paper describes the 
overall vision of computer-generated illustration, surveys principles 
from traditional illustration, and shows how they can be incorpo- 
rated into an automated system for rendering 3D models. A second 
paper discusses the issues of creating pen-and-ink illustrations inter- 
actively, with an emphasis on using 2D greyscale images as a starting 
point [23]; in this interactive work, the responsibility of producing 
an effective illustration is primarily the artist's. A third paper exam- 
ines the issues involved in representing, editing, and rendering the 
individual strokes that are the building blocks of any line illustration 
system [8]. 

1.2 Overview 

The rest of this paper is organized as follows. Section 2 surveys 
the principles of traditional pen-and-ink illustration. Section 3 dis- 
cusses how these principles can be used to guide the design of an 
automated system for producing this type of imagery. Section 4 in- 
troduces "strokes" and "stroke textures," the building blocks of our 
system, and describes how they can be used to implement many of 
the traditional illustration principles. Section 5 discusses some of our 
results, and Section 6 lays out an agenda for future research in the 
area. Finally, the appendix gives details about the implementation. 

2 Pr inc ip les  o f  p e n - a n d - i n k  i l lus trat ion  

While pen-and-ink drawing has a long history, dating back to the 
illuminated manuscripts of the Middle Ages, it is only relatively 
"recently" - -  that is, since the end of the 19th century - -  that pen- 
and-ink illustration has been developed as an art form in and of 
itself. 

Pen-and-ink illustration is a limiting medium. The pen gives off no 
color or tone, so both color and shading must be suggested by combi- 
nations of individual strokes. Furthermore, when rendered manually, 
it is very difficult and time-consuming with pen and ink to cover a 
large area with tone, and it is practically impossible to lighten a tone 
once it is drawn. 

However, pen-and-ink illustrations have some particular qualities 
that make them especially attractive. First, they are ideal for out- 
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Figure 1: Two doors. The lines of wood grain are drawn with an even 
pressure, while the lines between the planks use varying pressure. 
For wood grain, we typically use the waviness function of the left 
door, while that of the right door has been exaggerated. 

lines: each individual pen-and-ink stroke can be made expressive by 
employing small irregularities in its path and pressure. Second, pen 
and ink provide a real economy of expression in representing tones 
and texture: the character of a few small strokes can clearly indicate 
the difference between textures like smooth glass and old knotted 
wood. 

In addition to these concrete advantages, pen-and-ink drawings by 
their very nature possess some special qualities that are difficult to 
capture in other media. Their simplicity provides an appealing crisp- 
ness and directness. Finally, pen-and-ink illustrations blend nicely 
with text, due to their linear quality and their use of the same ink on 
the same paper, making them ideal for printed publications. 

In the rest of this section, we survey some of the fundamental prin- 
ciples of illustrating in pen and ink. These principles are distilled 
primarily from Guptill's classic text, Rendering in Pen and Ink [11], 
and also from Lohan's Pen&Ink Techniques [17] and several other 
sources [5, 13, 14, 20]. While the field of pen-and-ink is too vast to 
allow a comprehensive treatment within the scope of this paper, the 
principles described here should be sufficient to motivate many of 
the design choices for a computer-graphics system. We organize our 
treatment into three parts: Strokes, Tone and texture, and Outline. 

2.1 Strokes 

In classical pen-and-ink illustration, a "stroke" is produced by plac- 
ing the point, or"nib," of a pen in contact with the paper, and allowing 
the nib to trace out a path. The thickness of the stroke can be varied 
by varying the pressure on the nib. 

Some principles of stroke-drawing are summarized below: 

• Too thin a stroke can give a washed-out appearance; too coarse 
can detract from the delicate details. 

• It is frequently necessary to vary the pen position, with the nib 
sometimes turning as the stroke is drawn. 

• Strokes must look natural, not mechanical. Even-weight line 
drawings appear lifeless; instead, the thickness of  a line should 
vary along its length. 

• Wavy lines are a good way to indicate that a drawing is schematic 
and not yet completely resolved. 
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Figure 2: Using strokes to indicate both texture and tone. The stroke textures used, from top to bottom, are: "cross-hatching," "stippling," 
"bricks," "shingles," and "grass." Notice how the outline style of the white areas is also particular to each texture. 

2.2 Tones  and  tex ture  

The terms "value" and "tone" are used interchangeably to refer to 
the amount of visible light reflected toward the observer from a point 
on a surface• In traditional pen-and-ink illustration, it is impossible 
to portray the value of each surface precisely; instead, combinations 
of strokes are used to create an overall impression of the desired 
tone. 

The tone achieved by a combination of strokes is a function of the 
ratio of black ink to white paper over a given region of the illustration. 
If the character of the strokes is varied, then the same strokes that are 
used to achieve a particular tone can also be used simultaneously to 
indicate the "texture" of the subject being rendered. This dual role 
of individual strokes to convey both tone and texture is part of the 
economy of pen-and-ink illustration. 

Here are some of the principles of drawing tones and textures with 
pen-and-ink strokes: 

• Tones should be created from lines of roughly equal weight and 
spacing. 

• It is not necessary to depict each individual tone accurately; how- 
ever, presenting the correct arrangement of tones among adjacent 
regions is essential. 

• To disambiguate objects, it is sometimes important to "force tone" 
by enhancing contrast or inventing shadows• 

• The character of  strokes is important for conveying texture, as 
well as geometry and lighting. For example: 

Crisp, straight lines are good for "glass." 

• Horizontal surfaces should be hatched with predominantly 
horizontal lines. 

• Absence of detail altogether indicates glare. 

• Asketchykindoflineisgoodfor "old'materials, whilecareful 
stippling is good for "new" materials• 

• To lend economy to the illustration, it is important to utilize some 
form of  "indication " for conveying the impression of  a texture 
without drawing every single stroke. The method of indication 
should also be varied across the drawing to avoid monotony• 

2.3 Out l ines  

Realistic scenes contain no real outlines; instead, forms are defined 
by variations in texture and tone. However, outline is nevertheless 
a very natural means for portraying objects - -  for example, most 
children's drawings utilize outline almost exclusively• 

The medium of pen and ink is ideal for creating outlines with an 
incredible range of expressiveness• The pen allows for outlines that 
change thickness, sometimes disappearing altogether. In addition, 
the character of the outline stroke can be a very powerful indicator 
of texture• 

Outline strokes are used not only for the contours of an object, but 
also for delineating the essentials of its interior. For example, in an 
illustration of a leaf, the veins are typically rendered in outline, in 
addition to the contour• 
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Figure 3: Creating the same texture and tone at different scales. At the smallest scale, the brick outline strokes are sufficient to build the tone. As 
the scale increases, the prioritized stroke texture automatically introduces shading inside the bricks to maintain the tone. The same technique 
applies to generating illustrations at the same scale but for different printer resolutions. 

Different styles of rendering use various combinations of outline and 
tone; all combinations are possible. Moreover, there exists an entire 
spectrum between outline and tone illustrations: as outline drawings 
become increasingly complex, they begin to take on more and more 
aspects of an illustration with tone. 

Here are some of the important classical principles for drawing ex- 
pressive outlines: 

• Thequali tyoftheoutl inestrokeisimportantforconveyingtexture.  
For example, crisp straight lines are good for hard objects, while 
a greater variety o f  line quality is better for  soft objects. 

• Thick outlines are used to suggest shadows, or to bring one object 
or part  o f  an object forward in the scene. Thick line junctions 
are used to suggest darkness where objects overlap and to add 
"snappiness" to the illustration. 

• Outlines should become "haloed" and fade away where one ob- 
ject  passes behind another object. 

• Outlines must be introduced where tones are omitted to convey 
shape. 

• Using "indication" for  drawing outlines is jus t  as important as 
for drawing tones. 

3 Computer-generated pen-and-ink i l l u s t r a t i on  

Implementing these principles of pen-and-ink illustration as part of 
an automated system presents an interesting challenge. A reasonable 
starting point is to take the traditional "graphics rendering pipeline" 
for photorealistic imagery and see which parts, if any, need to be 
altered in order to support this style of non-photorealism. 

We identified two fundamental differences: 

1. The dual nature o f  strokes. In the traditional graphics pipeline, 
the renderings of texture and tone are completely independent. 
A texture is typically defined as a set of images assigned to each 
surface, which affect the shading parameters. Tone is produced 
by dimming or brightening the rendered shades, while leaving 
the texture invariant. However, for pen-and-ink illustration, the 
very same strokes that produce tone must also be used to convey 
texture. Thus, tone and texture must become more tightly linked 
in a system for producing this type of imagery. 

2. The need to combine 2D and 3D information. In the traditional 
graphics pipeline, the information used for rendering is entirely 
three-dimensional, with the final projection to two dimensions 

largely a matter of sampling the rendered shades. For pen-and- 
ink illustration, the 2D aspects of the particular projection used 
are every bit as essential as the 3D information for creating a 
proper rendering. The necessary 2D information takes a num- 
ber of forms. First, the size of the projected areas must be used 
to compute the proper stroke density, in order to accommodate 
the dual nature of strokes described above. In addition, the 2D 
adjacencies of the projected geometry must also be used, since 
outlining depends on such issues as the type of junction between 
2D boundaries (whether two adjacent regions in 2D are adjoining 
in 3D or passing one behind the other), and the level of contrast 
between tones of adjacent 2D regions. 

Thus, our rendering system is a basic graphics pipeline with a few 
notable changes. The standard aspects of the pipeline include: 

• The model  Any standard polygonal 3D model will do. 

• The assignment o f  texture. Textures are assigned to 3D surfaces in 
the usual way. However, the textures are no longer described by 
images, but by "stroke textures," as discussed in the next section. 

• The lighting model  Any standard illumination model can be em- 
ployed to compute a "reference solution," which is then used 
as a target for tone production with strokes. We use the Phong 
model, which, although not physically-based, appears to be quite 
adequate for most non-photorealistic rendering. 

• The visible surface algorithm. Any object-space or list-priority 
visible surface algorithm will do; we use BSP trees in our imple- 
mentation. 

• Shadow algorithm. The shadow algorithm must also use an 
object-space or list-priority method; we use Chin and Feiner's 
BSP tree shadow volumes [4]. 

Here are the notable differences from the standard pipeline: 

• Maintaining a 2D spatial subdivision. The need to consider 2D 
adjacency information in rendering suggests the use of some form 
of spatial subdivision of the visible surfaces. We use a half-edge 
data structure for maintaining this planar map [18]. 

• The rendering o f  texture and tone. Polygons are no longer scan 
converted; instead, both texture and tone must be conveyed with 
some form of hatching. The stroke textures we define in the next 
section achieve this effect. 

• Clipping. The strokes must be clipped to the regions they are 
texturing. Since so many strokes are drawn, the clipping must 
be extremely fast. In addition, in order to simulate a hand-drawn 
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effect, the clipping should not be pixel-based - -  that is, it should 
not remove just those pixels of the stroke that are outside the 
clipping region - -  since this gives an unnatural, mechanical ap- 
pearance. Instead, the clipping should be stroke-based, allowing 
a wavy stroke to sometimes stray slightly outside of the clipping 
region. To achieve this effect, we clip the straight-line paths of 
our strokes prior to adding in the function for waviness (see Sec- 
tion 4.1). For fast clipping, we use set operations on a 2D BSP 
tree representation of the planar map [25]. 

• Outlining. Outlines play a significant role in pen-and-ink illus- 
tration. Outlines come in two varieties. The "boundary outlines," 
which surround visible regions, must be drawn in a way that 
takes into account both the textures of the surrounded regions, 
and the adjacency information stored in the planar map. In ad- 
dition, "interior outlines" are used within polygons to suggest 
shadow directions or give view-dependent accents to the stroke 
texture. 

A brief description of the rendering process follows; more details 
about the rendering algorithm can be found in the appendix. To 
render a scene, the system begins by computing the visible surfaces 
and the shadow polygons. It then uses these polygons, projected to 
Normalized Device Coordinate (NDC) space, to build the 2D BSP 
tree and the planar map. Each visible surface is then rendered. The 
procedural texture attached to each surface is invoked to generate 
the strokes that convey the correct texture and tone for the surface. 
All the strokes are clipped to the visible portions of the surface using 
set operations on the 2D BSP tree. Finally, the outline strokes are 
drawn by extracting from the planar map all of the outline edges 
necessary for the illustration, as described in Section 4.3. 

4- Strokes and stroke textures 

In this section we discuss strokes and stroke textures, the essential 
building blocks of our system. 

4.1 Strokes 

In our system, all strokes are generated by moving a nib along a 
basic straight path. Character is added to the stroke by perturbing 
the path with a waviness f imction and by varying the pressure on 
the nib with a pressure function. Figure 1 demonstrates some of the 
effects that can be achieved with different waviness and pressure 
functions. A more detailed explanation of our strokes can be found 
in Appendix A.3.1. 

4.2 Stroke textures 

A stroke texture is a collection of strokes used to produce both texture 
and tone. We define a priorit ized stroke texture as a set of strokes 
each with an associated priority. When rendering a prioritized stroke 
texture, all of the strokes of highest priority are drawn first; if the 
rendered tone is still too light, the next highest priority strokes are 
added, and so on, until the proper tone is achieved. 

For our stroke textures, we assign different aspects of the texture 
different priority. For example, for a "brick" texture, the outlines 
of the individual brick elements have highest priority, the strokes 
for shading individual bricks have medium priority, and the hatch- 
ing strokes that go over the entire surface have lowest priority. In 
the cross-hatching texture, vertical strokes have priority over hori- 
zontal strokes, which have priority over the various diagonal stroke 
directions. Figure 2 demonstrates several greyscales of tone pro- 
duced using different procedural prioritized stroke textures, includ- 
ing "cross-hatching," "stipple," "brick," "shingle," and "grass." For 
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Figure 4: The effect of  changing view direction on outline strokes of  
a shingle texture. Notice how the vertical edges begin to disappear 
as the texture is viewed from a more edge-on direction. 

each texture, the relative priorities of the strokes can be seen from 
the collection of strokes used to achieve a particular value of grey. 
More details about the procedural methods for our stroke textures 
are given in Appendices A.3.2 and A.3.3. 

Although not explored in this paper, the idea of prioritized stroke 
textures is general enough to support many kinds of non-procedu- 
rally generated textures as well, such as textures drawn directly by an 
artist, or strokes produced through edge extraction from a greyscale 
image. These kinds of non-procedural stroke textures are explored 
in more detail by Salisbury et al. [23]. 

4.2.1 Resolution dependence 

A common problem with the figures created by existing computer 
drawing programs is that they do not scale well when printed at 
different sizes or resolutions. Enlargement is typically performed 
either by pixel replication, which yields ugly aliasing artifacts, or 
by drawing the same strokes at higher resolution, which yields thin- 
ner strokes and an overall lighter illustration. Reduction is almost 
always performed by scan-converting the same curves at a lower 
resolution, often yielding a large black mass of overlapping strokes. 
Printing speed is also a common problem with illustration reduction, 
since the same number of strokes needs to be transmitted to and ren- 
dered by the printer, even when a smaller number of strokes would 
have sufficed (and actually have been preferable from an aesthetic 
standpoint, as well). 

The prioritized stroke textures described here do not suffer from 
these problems. Strokes are chosen to provide the proper texture and 
tone for a given illustration size and printer resolution, as demon- 
strated in Figure 3. Note that for smaller images or coarser reso- 
lutions, fewer strokes are required, improving printing efficiency. 
Efficiency can be improved still further by rendering a simplified 
approximate version of each stroke, accurate to within one printer 
pixel [8]. 

4.2.2 Indication 

As discussed in the principles of texture generation, it is important 
to suggest texture without drawing every last stroke. This principle 
of "indication" lends economy to an illustration. It also makes an 
illustration more powerful by engaging the imagination of the viewer 
rather than revealing everything. 

Indication is one of the most notoriously difficult techniques for 
the pen-and-ink student to master. It requires putting just enough 
detail in just the right places, and also fading the detail out into the 
unornamented parts of the surface in a subtle and unobtrusive way. 
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Clearly, a purely automated method for artistically placing indication 
is a challenging research project. 

We therefore decided to compromise and implement a semi-auto- 
mated method, whereby the user specifies at a very high level where 
detail should appear in the drawing, and indication is used every- 
where else. For easy specification of the areas of detail, we borrowed 
the idea of using "fields" generated by line segments from the mor- 
phing paper of Beier and Neely [3]. The user interactively places 
"detail segments" on the image to indicate where detail should ap- 
pear. Each segment is projected and attached to the texture of the 
3D surface for which indication is being designed. 

A field w(x, y) is generated by the detail segment ~ at a point (x, y) 
in texture space according to 

w ( x , y )  = (a q- b* distance((x,y), e)) -c  

where a, b, and c are non-negative constants that can be used to 
change the effect of the field. When several detail segments are 
present, we define the field at a point (x, y) to be that of the closest 
segment. So as not to create patterns that are too regular, the field 
w(x,  y) is perturbed by a small random value. Textures such as 
"bricks" and"shingles" evaluate the strength of the field of indication 
at the center of each brick or shingle element. The set of strokes for 
that element is generated only if the indication field is above some 
preset threshold. 

This approach seems to give reasonable results, as demonstrated in 
Figures 6 and 9. Figure 5 shows the detail segments that were used 
to generate Figure 6. 

4.3 Outline 

As described in Section 3, outlines come in two varieties: boundary 
and interior outlines. The boundary outlines surround the visible 
polygons of the image, and must be drawn in a way that takes into 
account both the textures of the surrounded regions, and the adja- 
cency information stored in the planar map. The interior outlines 
are used within polygons to suggest shadow directions or to give 
view-dependent accents to the stroke texture. 

In our implementation we have tried to address many of the princi- 
ples for the effective use of these two types of outline, as described 
below. 

Expressing texture with outline. Each stroke texture "1- has associ- 
ated with it a boundary outline texture, which is used whenever the 
outline of a polygon textured with "2- is rendered. The boundary out- 
line textures for some of our procedural textures are demonstrated in 
the white squares of Figure 2. These boundary outline textures are 
also displayed with and without their accompanying stroke textures 
in the illustrations of Figure 7. 

Minimizing outline. Let E be an edge that is shared by two faces 
FF and G of a planar subdivision. Our rendering algorithm draws E 
only if the tones of face F and G are not sufficiently different for 
the two faces to be easily disambiguated by their shading alone. In 
this sense, we minimize the use of boundary outline strokes. When 
a boundary outline stroke is drawn, it must be rendered according 
to the boundary outline texture for one of the two faces FF or G. We 
choose the texture of the face of the planar subdivision that represents 
a polygon closer to the viewer. Figure 8 demonstrates how outline 
is omitted in the presence of sharp changes in tone, and added in the 
absence of tone changes. 

Accented outlines for shadowing and relief. "Accenting," or thick- 
ening, outline edges is a technique for providing subtle but important 
cues about the three-dimensional aspects of an illustrated scene. In 
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Figure 5: Detail segments. The user interactively attaches "detail 
segments" to the surfaces to indicate roughly where details should 
appear. 

our implementation, the interior outlines of each brick in the "brick" 
stroke texture are drawn according to their relationship with the di- 
rection of the light source: brick edges that cast shadows are rendered 
with thickened edges, while illuminated brick edges are not drawn 
at all. Figure 10 demonstrates this effect. 

Dependence of viewing direction. In addition to the light source 
direction, the viewing direction is another important parameter that 
should be taken into account when drawing outline strokes. For 
example, consider a roof of shingles. Viewed from above, all edges 
between individual shingles are clearly visible; viewed from more 
to the side, however, the shingles tend to blend together, and vertical 
edges begin to disappear, leaving the horizontal edges predominant. 
This effect is demonstrated in Figure 4. To implement this effect, 
each stroke texture is outfitted with a very simplified "anisotropic 
bidirectional reflectance distribution function" (BRDF), to borrow a 
term from radiometry, which describes its outline features in terms 
of both the lighting and viewing directions. 

5 Results 

Our computer-generated pen-and-ink illustration system was used 
to create all the figures in this paper. The system was developed on 
a Macintosh Quadra 700 using ThinkC. 

The only input to the program is the scene geometry, including tex- 
ture assignments for each surface, and some field lines for specifying 
the "indication." 

We also used the system to generate an image of the top two floors 
of Frank Lloyd Wright's "Robie House," as shown in Figure 9. The 
model consist of 1043 polygons. It took 30 minutes to compute and 
print the image. Of this time, 22 minutes were devoted to computing 
the planar map from the input geometry, and 8 minutes were required 
for actually rendering the image at 600 dots per inch. 

6 Summary and future work 

This paper does not propose any radically new algorithms or present 
any complex mathematics. However, we feel it nevertheless provides 
a number of contributions to the computer graphics community. 
These contributions include: 

• Surveying established principles from traditional illustration that 
can be used for communicating visual information effectively. 

• Showing that a large number of these principles can be incor- 
porated as part of an automated rendering system, and that the 
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Figure 6: Indicating texture. The left house is drawn using "indication "; the right house is not. 

information present for driving the ordinary graphics pipeline 
is in many respects also sufficient for achieving important non- 
photorealistic effects. 

• Introducing the concept of a "prioritized stroke texture," a general 
framework for creating textures from strokes, and providing a 
methodology for building procedural versions of these textures. 

• Allowing a form of resolution-dependent rendering, in which the 
choice of strokes used in an illustration is appropriately tied to 
the resolution of the target medium. 

However, the work described in this paper is just one early step in the 
exploration of automated non-photorealistic rendering algorithms. 
There are many ways to extend this work, including: 

• Improving the procedural stroke textures, and automating further 
our methods for creating them. 

• Incorporating other illustration effects, such as exploded, cut- 
away, and peel-back views, for showing parts that are hidden. 

• Adding more interactive controls to help in designing 3D illus- 
trations. Also, experimenting with very high-level controls--for 

7 ! j j  
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Figure 7: Indicating texture through outline. Notice how different 
textures are delineated with different styles of  boundary outlines. 
The upper and lower illustrations are the same, except that all but the 
boundary outline textures have been removed in the upper illustration 
to present the different styles more clearly. 

example, a control to add emphasis to parts of an illustration, 
which would work by automatically accentuating and suppress- 
ing detail over different parts of the image. 

• Rendering other natural forms that appear in architectural draw- 
ings (and for which established conventions also exist), such as 
trees, grass, water, human figures, etc. 

• Rendering other types of databases besides architectural models, 
such as databases of mechanical parts. Also, applying traditional 
illustration techniques and principles to databases that are not 
inherently visual in nature, such as flow simulations or higher- 
dimensional datasets. (This variety of rendering could be thought 
of as a form of scientific visualization.) 

• Creating animations. Because our system uses randomness pro- 
fusely, issues in frame-to-frame coherence arise. For instance, 
large features that are random, such as the selection of bricks that 
are shaded, should not vary from frame to frame. However, more 
subtle features, such as the waviness of strokes used to give the 
hand-drawn appearance, should be allowed to waver [15]. 

• Exploring other forms of illustration besides pen-and-ink, includ. 
ing traditional forms like watercolor and air brushing, as well as 
new methods of conveying information visually that may not nec- 
essarily mimic traditional forms. 
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A Implementation Details 

A.1 Overview 

Three main global data structures are used by our system: 

• The model M. The model is stored as a collection of polygons 
in three-space. For convenience, concave polygons and polygons 
with holes are decomposed into convex polygons. 

• BspTree. The 2D BSP tree [25] is a representation of the visible 
polygons projected to Normalized Device Coordinates (NDC) 
space. It is used for fast clipping of strokes. 

• PlanarMap. The planar map [18] is a partition of the NDC plane 
into vertices, edges, and faces, according to the NDC projections 
of the visible polygons. It is used to generate the outline strokes 
of the surfaces. 
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Figure 9: Frank Lloyd Wright's "Robie House." 
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The rendering process is structured as follows: 

procedure RenderScene(M): 
(BspTree, PlanarMap) ~-- VisibleSurfaces(M) 
for each visible surface S E M do 

Strokes ~-- Texture(S, Tone(S)) 
for each stroke s E Strokes do 

Render ( ClippedStroke (s, BspTree) ) 
end for 

Render( ConstructMinimalOutline( S, PlanarMap ) ) 
end procedure 

The following sections describe the individual stages of the render- 
ing process in more detail. 

A.2 Computing the visible surfaces 

We use a 3D BSP tree to compute visibilities [9], and Chin and 
Feiner's shadow volumes [4] to compute the shadow polygons. The 
result is a set of convex polygons that can easily be ordered in depth 
with respect to the view point. To build the 2D BSP tree, the visible 
polygons are examined in front-to-back order. Each polygon is first 
projected to NDC space, and then inserted into the 2D BSP tree. 
The insertion into the 2D BSP tree is equivalent to the set union 
operation described by Thibault and Naylor [25], except that "in" 
leaf nodes carry an additional pointer back to the 3D polygon from 
which they originate. As such, the 2D BSP tree forms a partition of 
NDC space, with each cell in the partition corresponding either to a 
unique frontmost polygon in the 3D scene, or to the background. 

The planar map data structure is computed with the help of the 
2D BSP tree. We begin by inserting a single rectangular region, 
representing the entire drawing surface in NDC space, into the tree. 
As each node of the tree is traversed, the original region is partitioned 
into smaller and smaller faces in each branch of the tree. Faces 
reaching an "out" leaf node are tagged as background faces. Faces 
reaching an "in" leaf node receive a pointer to the corresponding 
3D polygon in M. The BSP tree node also receives a pointer to the 
planar map face. Because of numerical inaccuracies, it is possible 
that some leaf nodes in the BSP tree never receive a matching face 
in the planar map. During clipping, a segment that falls in a leaf 
node having no planar map pointer is simply discarded. Because 
such nodes correspond to extremely thin regions, no visible artifacts 
result. 

Geometrically, the planar map and the BSP tree are redundant: they 
encode the same 2D partition. However, the two data structures are 
amenable to different tasks. The BSP tree is efficient for clipping 
strokes through set operations, but does not readily allow searching 
among neighboring polygons. By contrast, the planar map encodes 
polygon adjacencies, but does not lend itself as well to clipping. 

A.3 Rendering the textures 

A.3.1 Individual strokes 

A stroke S consists of three parts: 

• a path P(u )  : [0, 1] ~ ]R 2, giving the overall "sweep" of the 
stroke, as a function of the parameter u. 

• anibAf(p),definingthecross-sectional"footprint"ofthestroke, 
as a function of the pressure p on the nib. 

• a character function C(u) = (Cw (u), Cp(~.t)), describing the 
waviness of the curve Cw (u) (how the curve departs from its 
path) and the pressure Cp(u) on the nib. 

The stroke S is defined as all pixels in the region 

S = (P(u) +Cw(u) )  * JV'(Cp(u)) 

where • denotes the convolution of two parameterized point sets 
A(u) and B(u) of the Cartesian plane IR 2. This convolution is 
defined as [10]: 

A(u) • B(u) = U {a + b l a E A(u) A b C B(u)}.  
~e[o,l] 

A stroke S is rendered by scan-converting the path (after waviness 
is added) and stamping a copy of the nib, scaled by the pressure 
value, in place of drawing each pixel. Note that more efficient scan- 
conversion methods undoubtedly exist. Indeed, the investigation of 
a good representation for individual strokes, including their overall 
sweep and character functions, is a sizable research topic in and of 
itself [8]. 

All strokes are drawn by a C++ object named lnkPen. An InkPen is 
in turn composed of three objects: a Nib, a WavinessFunction, and 
a PressureFunction. Different pens can be created by assembling 
various combinations of these components. So far, we have only used 
circular nibs of variable radius, and a sine-wave waviness function 
with randomly perturbed amplitude and wavelength. Two kinds of 
pressure functions are used throughout the images in this paper: a 
simple "broken-line" function that lifts the pen off the paper with 
some randomness, and a random sine wave function that creates 
strokes of varying thickness. Although our implementation does 
not allow for all the generality of real pen and ink as described in 
Section 2.1, the limited set of functions we have implemented still 
allows for a fairly wide range of expressiveness. 

An InkPen supports methods to: scale the nib size; query the amount 
of ink deposited between two points when using a particular nib size; 
and draw a stroke between two points to achieve a particular dark- 
ness, in which case the darkness of the stroke will be appropriately 
modulated by the PressureFunction of the pen. 
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Figure 10: Illuminated bricks. Notice how the thickened edges change to follow the shadow direction. 

A.3.2 Building tone from strokes 

The first step in building tone is to compute a reference shade v E 
[0 = white,  1 = black]; we use a simple Phong model in our 
implementation. A procedural stroke texture is then used to produce 
a set of strokes that together achieve the target grey value v. As a 
simple example, to achieve a tone v over an area A using a nib of 
width w with non-overlapping strokes requires drawing strokes of 
total length v A / w .  

To compute tone accurately, it is also important to take into account 
the overlap between strokes that cross each other. Assuming un- 
correlated overlap between the strokes of each non-overlapping set 
seems to work well. For example, for bidirectional hatching, suppose 
that the strokes in each hatching direction deposit a quantity of ink 
x on the paper. Then the total ink in the cross-hatched area is given 
by the sum of the ink from the strokes in each direction 2x, minus 
the quantity of ink that is deposited in the same place twice, which, 
assuming uncorrelated strokes, can be approximated by x 2. Thus, in 
order to achieve a value v, we use enough strokes in each direction to 
achieve a value x that satisfies the quadratic equation 2z - x ~ = v. 
The correct level for each set is therefore given by z = 1 - x/1 - v. 
This expression is used, for example, by the "cross-hatching" texture 
to achieve the right tone when two different directions of hatching 
are crossed (Figure 2). 

A.3.3 Stroke textures 

To draw more complex textures, we use procedural prioritized stroke 
textures, as described in Section 4. In this section, we examine the 
"brick" texture in some detail. The description in this section can 
readily be extended to other types of stroke textures. 

The "brick" texture builds tone out of three sets of strokes: the brick 
outlines; shading strokes within the bricks; and hatching strokes 
layered over the whole surface. Each set of strokes is associated 
with a different lnkPen. 

The rendering process for "brick" textures is summarized below: 

procedure RenderBrickTexture( TargetTone, Polygon3D ) 
Layout ~-- GenerateBricks(Polygon3D,BrickSizes) 
for each brick B E Layout do 

DrawBrickOutline( B , TargetTone, ViewPoint,Lights) 
if  the tone of B is too light then 

ShadeWithinBrick( B,  TargetTone) 
end if 

end for 
if the overall tone is still too light then 

HatchOver(Layout, TargetTone) 
end if 

end procedure 

The brick outlines are generated from a simple layout that is com- 
puted on the fly in texture space and then projected into device space 

before drawing takes place. 

The width of the nib used to draw the outline strokes is scaled ac- 
cording to the tone being rendered: darker tones use the default nib 
size; for lighter tones, the nib size is scaled down. The same nib 
size is used for all the bricks in order to achieve a consistent result 
over the entire surface. The darkness of each stroke is then adjusted 
so as to take the BRDF and shadow edge effects into account, as 
described in Section 4.3. The darkness of the strokes may be further 
reduced, for example, when the area of the bricks becomes smaller 
due to perspective forshortening. 

Let To be the tone created by the outline strokes for a given brick B. 
We estimate To by taking the sum of the amount of ink deposited 
by each outline stroke and dividing it by the area covered by 
the brick on the paper, as discussed in Appendix A.3.2. If To is 
not dark enough to achieve the desired tone, then the interior of 
the brick is shaded. The darkness of each brick is limited by a 
constant Ts. Rather than shading every brick with the same tone 
T = TargetTone - To, we instead shade each brick with probability 
min{1, T/Ts} .  If the brick is shaded, enough strokes are used to 
achieve a tone T~, with some randomness added. 

If the shaded bricks still do not achieve the target tone, that is, if 
To + T~ < TargetTone, then additional hatching is used over the top 
of all the bricks. For these hatch lines, we use the method described 
in Appendix A.3.2 to take into account the overlap between strokes. 

A.3.4 Clipping strokes 

The strokes must be clipped to the visible regions they texture. The 
2D BSP tree data structure is used for this purpose. The path of each 
stroke is "pushed" down the BSP tree until it reaches one or more 
leaf nodes. Only the portions of the path that reach nodes belonging 
to the region being textured are rendered. Other clipping conditions 
can also be used. For instance, hatching shadow areas is handled by 
generating strokes over the entire surface and clipping them to the 
regions in shadow. 

A.3.5 Constructing the outline strokes 

The outlines of visible surfaces are extracted by traversing the set of 
edges stored in the planar map. As described in Section 4.3, these 
outline edges are rendered only when the tones on either side of the 
edge are very similar, and when the edges themselves are not directly 
illuminated by the light source. Testing the tones of adjacent faces 
is easily accomplished by searching in the planar map. 
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