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Abstract: In 2004 one of us (Toom) presented a process with local interaction and discrete time, which, although one-dimensional, displayed some form of non-ergodicity. However, Toom’s system “shrinks” and therefore has no finite analog. We propose a similar process, with continuos time. Monte Carlo simulation of this  process showed the same form of non-ergodicity as Toom proved and in addition thet new process does not ‘’shrink” for some values of parameters, which allows us to consider a  similar process with a  finite space. We estimated the boundary between the regiona, where our process is “ergodic” vs. “non-ergodic” and “shrink” vs. “does not shrink.”
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Introduction
For a long time statistical physicists believed that phase transitions occur only in systems with dimension greater than one. Based on this tradition, several authors proposed a “positive rates conjecture” called here PRC, which claims that all one-dimensional particle systems with non-degenerate local interaction are ergodic. Several authors tried to refute this hypothesis, but only one had a complete success: Gács [1] developed a very involved system in which every component has ( 2100 states, which refutes the PRC exactly as it was stated. Gray [2], who has studied the question in detail, explained Gács' method and expressed a belief that no much simpler system can refute the PRC. Toom [4] presented a new class of one-dimensional systems with local interaction, where components can appear and disappear during the functioning of the process and showed that, although one-dimensional, a process of this kind [3] can exhibit some form of non-ergodicity. A negative feature of Toom's model is that its finite version “shrinks", thereby degenerating and losing any non-symmetry. We present here a similar non-degenerated model with continuous time and use Monte Carlo simulation to show that it displays the same form of non-ergodicity as Toom's shrinking model. At the same time, unlike Toom's model, our model does not shrink for some values of its parameters and for this reason has a non-trivial finite analog.

Let us explain the main idea underlying Toom's and our model. Most interacting particle systems, studied till now, are constant-length, which means that the set of sites, also called the space, does not change in the process of interaction. Elements of this space, also called components, may be in different states, e. g. 0 and 1, often interpreted as absence vs. presence of a particle, and may go from one state to another, which may be interpreted as birth or death of a particle, but the sites themselves do not appear or disappear.

This article follows [4] and [3] in a study of a new kind of one-dimensional particle systems, which we call variable-length systems because sites may appear and disappear in the course of these systems’ functioning. We used the Monte Carlo simulation to show that they can display some analog of non-ergodicity.
Shrinking model

Let us call the process, proposed in [3], the shrinking model. It has discrete time and configuration space {(,Ө}Z. The operator is composed of two transformations, Flip( and Ann(. Under the action of Flip(, every Ө; called “minus” turns into (, called “plus” with probability ( independently of other components. Under the action of Ann( whenever a pair ((,Ө) occurs in the configuration, it disappears with probability ( independently of what occurs at other places. In other words, when a plus and a minus ocuppy the i-th and the (i+ 1)-th sites respectively, they are eliminated and the particles ocuppying (i-1) th and  (i + 2-)th  sites become neighbors. If we considered a similar process on finite configurations, every act of elimination of ((,Ө) would decrease the length of the configuration by two. Let (( and (Ө denote the measures concentrated in the configurations “all pluses” and “all minuses” respectively. Toom [3] denoted
(t= (Ө (, Flip( Ann(.)t.

(Following  [3], we write operators on the right side of measures.)  It was shown in [3,5] that:
Theorem 1 For all t, the frequency of ( in the measure (t  does not exceed 250 (/(2.

Theorem 2  If 2( > (, the measures (t tend to (( when t ((.

These theorems show that there is a phase transition between ergodicity and non-ergodicity.

Our model

Our model is a discrete-time approximation of a continuous-time Markov chain with a countable set ( of states. All finite sequences of pluses ( and minuses Ө are called words. States of our process are called circulars. A circular C is a finite sequence of |C| pluses and minuses, like a word, but we imagine a circular to have circular form, so the indices of its components are remainder modulo |C| rather than integer numbers. In the scheme below,  n=|C|.
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We denote by ( any random distribution on (: We denote by (t the distribution of this approximation at time t: Thus ( t(C) is the probability to find the circular C at time t in our simulation. We denote by Cx the x-th component of circular C. As we have said, ( t denotes our distribution at time t. Its components ( t(Cx) change according to the following transitions rates:
Annihilation (A) : ((,Ө) ((  and (Ө, () ((. If the states of the components with indices x and x+1 are different, both disappear, that is the word ((,Ө) turns into an empty word ( with the rate (  independently of the other components. The components x-1 and x+2 became neighbors. The length of the circular decreases by two.
Conversion(C) : ( ( Ө  and Ө ( (. This operator changes the state of one component with a rate ( independently of the other components. The length of the circular does not change.

 Mitosis(M) : ( ( ( (  and Ө ( Ө Ө. This operator duplicates the x-th particle with the rate ( independently of others components. The length of the circular increases by one.

We denote by {(,Ө}k the set of words with k components. We say that a word W = (a1, a2, …, an) appear at a place i in the circular C = (c1, c2, …, cn)  if ocurr ci+1 = a1, ci+2 = a2, …, ci+n = an. We denote by quant(W|C), the quantity of different places  at which the word W appears in the circular C . After that, we define the frequency of W in C, as follows:
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For any (  (distribution on circulars) we denote
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and call it the frequency of the word W in the measure (. We denote by (tI(C) the probability of having the circular C at time t if the process started with the initial circular I. For any initial circular and any word W we denote 
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We have shown in [5] that:
Lemma: (I is a uniform measure in {(, Ө}Z.
Based in this lemma we have denoted
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 Conjecture: the set ( is always not empty.
Now we are prepared to define analogs of ergodicity and non-ergodicity suitable for our case. We call the process (tI quasi-ergodic if the set ( has exactly one element for each initial circular I. Otherwise, we call our process quasi-non-ergodic.

Numerical procedure

Our computers are discrete. Therefore, simulation of a process with continuous time t, always is an approximation with discrete time. We denote by (t the distribution of this approximation at time t. Thus (t(C) is the probability to find the circular C at time t in our simulation.

In each individual experiment, the circular obtained at time t is denoted by Ct. Its x-th component is denoted by Ctx, where x = 1, ... , |Ct|. In all our experiments the initial circular was a sequence of a thousand minuses. It is clear that multiplication of (, ( and ( by one and the same number only makes the process go faster or slower; using this, we had all the three of them integer. At each step of discrete time t the following occurs: We choose randomly an integer number x ( {1, 2, ... , |Ct|} and generate a random variable ( ~U(0,1), where U(0,1) is a generator of uniform numbers. Then:

if  ( ( [0, ( /((+(+()) and Ctx ( Ctx+1, these components annihilate.

If ( ( [( /((+(+(), (/((+(+()), the component Ctx changes its state.

If ( ( ((/((+(+(), 1], this component undergoes mitosis.

In all our simulations we took (=1. Since the number of our experiments was limited, we had a difficulty in estimating  freq( ( | (t ), so we approximated it by
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We evaluated this quantity for every experiment and verified, whether
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In some cases, to obtain better estimations, we performed several independent experiments and took the average of them.

To keep the length of our circulars between Nmin=500 and Nmax=15.000, we used the procedures cut and double: when the circular’s length exceeds  Nmax=15.000, we erased half of it and when the circular’s length becomes less than Nmin=500, we duplicated it
Results
Our main result is the possibility of non-shrinking and at the same time quasi-non-ergodicity. Figure 1 shows an approximation of the bound between the regions where the process is quasi ergodic or QE and quasi non-ergodic or QNE. There we also show the bound between the regions where the system shrink vs. does not shrink.
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Figure 1: ( = 1 all the time. White balls show the bound between quasi-ergodicity and quasi-non-ergodicity. For each integer value of ( (([0; 100], a white ball shows the smallest value of (  for which we obtained  freq((|(t) > 0.4. The line below is a bound between regions where the system shrink vs. does not shrink.
We observed that there is a connection between the freq(( | ( t) in the regimes of QE or QNE with the freq(( | Ct): when the process is in the regime of QNE, the condition  (2) with ( =0.01, is not satisfied, that is, 
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as is shown in the Figure 2a). On the other hand, when the process is in the regime of QE, the condition (2) is satisfied. More, in this case the 
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and freq(( | Ct) is typically distant this, more specifically, it stays near zero or one most of the time, as is shown in the Figure 2 b). Still in this case, which the condition (2) is satisfied, when the process is QE, we did another investigation. This investigation showed some form of relationship between our definition of QE, with the well-known definition: if the transformations is ergodic, the average in  time and the average in space coincide [6]. In the spirit of this definition, our estimation of the freq((|(t) shown in (1) may be interpreted as the average time. Thus, we checked whether it coincided with the average in space. We experimented with (= 35 , ( = 1 and ( = 20 and obtained the average time freq(( | (t)(0.5. After that we performed twenty independent experiments and for each single moment t ( [0; 2.107] we evaluated the average over all frequencies of plus for each one of these moments, corresponding to average space. Hence, we got the curve shown in Figure 2c), which behaves smoothly in the neighborhood of 0.5, indicating that the two averages coincide.
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Figure 2: At a), ( =  ( = ( = 1.In this case, the process is quasi-ergodic (the upper curve) because 
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. When ( = 35 and ( = (  = 1, 
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 is small, (lower curve) therefore the process is quasi non-ergodic. In both cases, 
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Then we took ( = 35,     ( = 1 and ( = 20. At b) we plot the results of one of these experiments. We observe that freq(( | Ct); stays near either zero or one most of the time. At c) we plotted the average of 20 independent experiments. This graph behaves smoothly.
Conclusion

Our simulations have shown that in our model quasi-non-ergodicity and non-shrinking can take place one and the same time. Thus, our model makes a contrast with the positive rates conjecture, but does not refute it, because all those who proposed that conjecture meant constant length systems. However, it seems difficult to deny that the systems proposed here are one-dimensional, non-degenerated and have interaction similar to local.
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