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Abstract: In this work, we discuss some aspects of the 
use of the Green's functions expanded in eigenfunc-
tions. To this end, we completely solve a Dirichlet 
problem based on Poisson's equation in plane polar 
coordinates. The problem geometry and boundary 
conditions were chosen so as to show up the features 
investigated, including an uncommon eigenvalue 
problem. We make an attempt to fill up a gap in the 
literature with the systematic and detailed calculation 
presented here. 
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1) Introduction 
 Green's functions are often determined as an ex-
pansion in eigenfunctions. Depending on the number 
of spatial dimensions, two or more sets of orthogonal 
eigenfunctions may become available. An issue which 
surely arises is that of deciding which of the sets is the 
more appropriate. This question is addressed in this 
work. It is shown that the choice of the eigenfunctions 
is of special importance for problems with non-
homogeneous boundary conditions. 
 To this end, we solve Poisson's equation in a half-
disk under non-homogeneous Dirichlet boundary con-
ditions employing, obviously, the plane polar coordi-
nates. This problem also enables the discussion of 
several features concerning the Green's function 
method. In special, an uncommon eigenvalue problem 
is encountered, whose spectrum is continuous, in spite 
of the fact that the problem domain is bounded. 
 Section 2 contains the formulation of the problem 
considered as well as of its solution in terms of 
Green's function. Section 3 presents the calculation of 
Green's function as expansions in two kinds of eigen-
functions. Section 4 describes the determination of the 
problem solution in terms of the Green's functions 
calculated in Section 3. Section 5 concludes the body 
of the paper with a discussion of the results. 
 

2) Formulation of the Problem and 
of the Solution 
 It is well established ( References [1, Sec. 12.8], 
[3, Sec. 11.9], [4, Sec. 1.10] and [5, Sec. 7.2]) that the 
solution of Poisson's equation under the Dirichlet 
boundary condition, 
 

2 ( ) 4 ( ) [ ]fψ ρ π ρ ρ∇ = − ∈ A  ,               (1) 

( ) ( ) [ ]gψ ρ ρ ρ= ∈ ∂A  ,                   (2) 
 
where A is a domain of 2  and ∂A  is its boundary, 
is given by 

( ) ( | ) ( )dA G fψ ρ ρ ρ ρ′= ′ ′∫A  

1
4π

− ds
∂

′∫ A ( | ) ( )G g
n

ρ ρ ρ∂
′ ′

∂ ′
 ,           (3) 

 
where ( | )G ρ ρ ′  [ ρ ∈′ A ] is the solution of 
 

2 ( | ) 4 ) [ ]G ρ ρ π ρ ρ ρ∇ = − δ( − ∈′ ′ A  ,        (4) 

( | ) 0 [ ]G ρ ρ ρ= ∈ ∂′ A  ,                 (5) 
 
being /G n∂ ∂  the normal derivative, equal to n G⋅∇ , 
with the unit normal vector n  directed outward from 
A at a point of ∂A . 
 Let A be the half-disk shown in Figure 1 below. In 
this geometry, the plane polar coordinates ρ and ϕ  are 
the most suitable. For the boundary conditions also 
given in that figure, (1) and (2) become 
 

2 ( , ) 4 ( , )fψ ρ ϕ π ρ ϕ∇ = −  ,                      (6) 

1(1, ) ( )gψ ϕ ϕ=  ,                             (7) 

( ,0) 0ψ ρ = ,     ( , ) ( )gπψ ρ π ϕ=  ,            (8) 
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with 0 1ρ≤ ≤  and 0 ϕ π≤ ≤ . Likewise, Equations 
(4) and (5) now read 
 

2 2

2 2 2
1 1 ( , | , )G G G ρ ϕ ρ ϕ
ρ ρρ ρ ϕ

∂ ∂ ∂
+ + ′′

∂∂ ∂
 

(4 / ) ( ) ( )π ρ ρ ρ ϕ ϕ= − δ − δ − ′′  ,      (9) 
 

(1, | , ) 0G ϕ ρ ϕ =′′  ,                         (10) 
 

( ,0 | , ) ( , | , ) 0G Gρ ρ ϕ ρ π ρ ϕ= =′ ′′ ′  ,       (11) 
 
with ρ ′  and ϕ ′  varying as ρ and ϕ  vary. The solu-
tion of our problem [the problem defined by (6) to (8)] 
is, in accordance with (3), 
 

1( , ) ( , ) ( , ) ( , )f πψ ρ ϕ ψ ρ ϕ ψ ρ ϕ ψ ρ ϕ≡ + +  ,      (12) 

 
where the source term is given by 
 

1

0 0

( , | , ) ( , )f G f d d
π

ψ ρ ϕ ρ ϕ ρ ϕ ρ ρ ϕ= ′ ′ ′′ ′ ′ ′∫ ∫  ,    (13) 

 
and the boundary terms, by 
 

1 1

0

1( , ) ( , | 1, ) ( )
4

G g d
π

ψ ρ ϕ ρ ϕ ϕ ϕ ϕ
π ρ
− ∂

= ′ ′ ′
∂ ′∫  ,      (14) 

 
1

0

1( , ) ( , | , ) ( )
4

G dgπ π
ρψ ρ ϕ ρ ϕ ρ π ρ

π ϕ ρ
− ∂ ′= ′ ′

∂ ′ ′∫  .     (15) 

 

 
 
3) Calculation of Green's Function 
 To calculate G, we consider two subregions of A , 
those obtained with either a radial division, ρ ρ< ′  

and ρ ρ> ′ , or a sectorial division, ϕ ϕ< ′  and 
ϕ ϕ> ′  (Figure 2 below). Let us consider the radial 
division first. In each of them ρ ρ≠ ′ , and ( )ρ ρδ − ′  
vanishes, that is, the PDE for G given by (9) is homo-
geneous and can be solved by means of the method of 
separation of variables. Thus, substituting 

( ) ( )G R Fρ ϕ≡ , we obtain 
 

( )2( ) / / 0R R R F F
µ

ρ ρ
−

′′ ′ ′′+ + =  ,         (16) 

 
where we have recognized that the second term must 
be a constant, µ− . The separated ODE ( )F Fµ ϕ′′ +  

0=  is to be solved in each subregion under the 
boundary conditions (0) ( ) 0F F π= =  [derived from 
(11)]. This problem (with homogeneous ODE and 
boundary conditions) is an eigenvalue problem, whose 
solutions are easily found to be 2

n nµ =  ( 1, 2,3 )n =  
and ( ) sinnF nϕ ϕ=  (Reference [1, Sec. 8.2]). [Notice 
that the ODE for ( )R ρ  which can be separated does 
not lead to an eigenvalue problem; in fact, on the 
common boundary at ρ ρ= ′  of both subregions, ho-
mogeneous conditions cannot be derived!] 
 

 

 The eigenfunctions above can be use to express 
Green's function as a linear superposition of terms of 
the type ( ) ( ) ( )sinn n nR F R nρ ρ ρ ϕ= : 
 

1
( , | , ) ( )sinn

n
G R nρ ϕ ρ ϕ ρ ϕ

∞

=
=′′ ∑  .              (17) 

 
To determine the functions ( )nR ρ  (whose depend-
ence on ρ ′  and ϕ ′  is implicit), we substitute the 
above expansion into the PDE given by (9), obtaining 

1 

1( )gψ ϕ=  

( )gπψ ϕ= 0ψ =  

ds dϕ=  

ds dρ=  x 

y 

Figure 1 – Specification of the domain 
A and of the boundary data g(ϕ) for the 
problem defined by (1) and (2). 

ρ ρ< ′

ϕ ′
ρ ′

ρ ρ> ′

ϕ ϕ< ′

ϕ ϕ> ′

Figure 2 – The two ways the problem 
domain is divided in two subregions: 
radially ( ρ ρ< ′ , ρ ρ> ′ ) and sectori-
ally (ϕ ϕ< ′ , ϕ ϕ> ′ ). 
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1 2

1
( / ) ( ) sinn n n

n
R R n R nρ ρ ρ ϕ

∞
−

=

⎡ ⎤′′ ′+ −⎣ ⎦∑  

(4 / ) ( ) ( )π ρ ρ ρ ϕ ϕ′= − δ − δ − ′  ,            (18) 
 
from which we infer that the term enclosed by brack-
ets are the coefficients of the Fourier sine series of the 
function on the right-hand side over the interval 
(0, )π , that is, 
 

1 2( / ) ( )n n nR R n Rρ ρ ρ−′′ ′+ − =  

0

2 4 ( ) ( ) sin n d
π π ρ ρ ϕ ϕ ϕ ϕ

π ρ
−⎡ ⎤δ − δ − ′′⎢ ⎥⎣ ⎦∫  

(8sin ) ( ) /nϕ ρ ρ ρ= − δ −′ ′   .               (19) 
 
 This is an Euler equation, which is homogeneous 
in each half-ring (where ρ ρ≠ ′ ). Its solution is (Ref-
erence [3, Sec. 1.6] ) 
 

1 1

2 2

( )
( )

( )

n n
n n

n n n
n n

A B
R

A B

ρ ρ ρ ρ
ρ

ρ ρ ρ ρ

−

−

⎧ + < ′⎪= ⎨
+ >⎪ ′⎩

         (20) 

 
 The four constants above are determined by impos-
ing the following four conditions (Reference [1, Sec. 
12.2]): 
 
 (i) Finiteness at the origin, which is achieved by 
setting 1 0nB = . 
 
 (ii) The condition 2 2(1) 0n n nR A B= + =  which 
follows from (10). 
 
 (iii) The continuity condition ( ) ( )R Rρ ρ+ −=′ ′  at 
ρ ρ= ′ , since G R F=  is a potential and, therefore, 
must be a continuous function. Observe the notation 
ρ ρ ε± ≡ ±′ ′ , with 0ε +→ . 
 
 (iv) The jump discontinuity condition for the de-
rivative of ( )R ρ , 

( ) ( )R Rρ ρ+ −′ ′− =′ ′ ( 8sin ) /nϕ ρ− ′ ′ , 

obtained by integrating (19) in the neighborhood of 
ρ ′ , from ρ −

′  to ρ +
′ . 

 
 Once the calculation of (20) is completed, its sub-
stitution into (17) yields 
 

( , | , )G ρ ϕ ρ ϕ =′′  

1

4 ( ) sin sinn n n

n
n n

n
ρ ρ ρ ϕ ϕ

∞
−

< > >
=

−
− ′∑  ,          (21) 

 
where ( )ρ ρ< >  is the smaller (larger) of ρ and ρ ′ . We 

will use the symbol  to indicate the calculation of 
Green's function considering the radial division of A . 
 Let us calculate Green's function again, this time 
considering the region A divided in the two sectors 
ϕ ϕ< ′  and ϕ ϕ> ′ . In both of them, it is now for 

( )R ρ  that an eigenvalue problem arises with the sepa-
ration of variables ( ) ( )G R Fρ ϕ≡ , because of the 
homogeneous condition (1) 0R =  [deduced from (10)] 
on the boundary at 1ρ =  of both sectors. We thus 

separate the ODE 2 ( ) 0R R Rρ ρ λ ρ′′ ′+ + =  by equat-
ing the first term in (16) to the constant λ− . 
 The eigenvalue problem so obtained can be con-
verted to a familiar one by changing the independent 
variable to lnu ρ≡ − . It becomes ( ) 0R R uλ+ = , 
with (0) 0R =  and 0u ≥ , where ( ) [ ( )]R u R uρ≡  and 

( ) uu eρ −= . The well known eigenvalues and eigen-

functions are 2
k kλ =  and ( ) sinkR u ku=  [or 

( )kR ρ =  sin (ln )ρ ], with 0k >  (a continuous spec-
trum: cf. Reference [1, Sec. 8.7]). In many instances, it 
is better to work with the new variable u, in terms of 
which (9) reads 
 

2 2

2 2 4 ( ) ( )G G u u
u

π ϕ ϕ
ϕ

∂ ∂
+ = − δ − δ −′ ′

∂ ∂
,        (22) 

 
where ( , | , ) [ ( ), | ( ), ]G u u G u uϕ ϕ ρ ϕ ρ ϕ≡′ ′′ ′′  . 

 The calculation of G  proceeds in the same manner 
described above. We substitute the expansion 
 

0
( , | , ) ( )sinkG u u F ku duϕ ϕ ϕ

∞

=′ ′ ∫          (23) 

 
into (22) to obtain 
 

[ ]2

0
( ) sink kF k F ku duϕ

∞
′′ −∫  

4 ( ) ( )u uπ ϕ ϕ= − δ − δ −′ ′  .                   . 
 
 Then, by using the Fourier sine integral formula 
(Reference [2, Sec. 64]), we calculate the term in the 
integrand which is enclosed by brackets, obtaining the 
equation 
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2 ( )k kF k F ϕ′′ − =  

              [ ]
0

2 4 ( ) ( ) sinu u ku duπ ϕ ϕ
π

∞

− δ − δ −′ ′∫  

8sin ( )ku ϕ ϕ= − δ −′ ′  .                  (24) 
 

 Next, we solve it separately in each sector, 
 

1 1

2 2

cosh sinh ( )
( )

cosh sinh ( )
k k

k
k k

A k B k
F

A k B k

ϕ ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ ϕ

+ <⎧ ′⎪= ⎨
+ >⎪ ′⎩

 

 

and determine the four constants imposing the four 
conditions: (i) (0) 0kF =  and (ii) ( ) 0kF π =  [both 

from the boundary condition (11)]; (iii) ( )kF ϕ + =′  

( )kF ϕ −′  (continuity at ϕ ϕ= ′ ); (iv) ( )kF ϕ +′ −′  

( ) 8sinkF kuϕ −′ = − ′′  (jump discontinuity of ( )kF ϕ′  at 
ϕ ϕ= ′ , derived by integrating (24) in the neighbor-

hood of ϕ ′ , from ϕ −′  to ϕ +′ ). 
 Finally, we substitute the ( )kF ϕ  so determined 
into (23): 
 

( , | , )G u uϕ ϕ∨ =′ ′  

0

8sin sin sinh sinh ( )
sinh

ku ku k k dk
k k

ϕ π ϕ
π

∞

< >−′∫  ,     (25) 

 

where ( )ϕ ϕ< >  is the smaller (larger) of ϕ  and ϕ ′ . 

The symbol ∨ , like a sector, indicates that G was cal-
culated considering A divided in two sectors. 
 
 
4) The Solution in terms of the Cal-
culated Green's Function 

 We develop below only the boundary terms 
1( , )ψ ρ ϕ  and ( , )πψ ρ ϕ  in (12); the source term 

( , )fψ ρ ϕ  is pretty well discussed in the literature 

(e.g., Reference [4] ). 
 Looking at (14) and (15), we see that we need to 
calculate /G ρ∂ ∂ ′  at 1ρ =′  and /G ϕ∂ ∂ ′  at ϕ π=′ . 
Using (21) first, we obtain 
 

( , | 1, )G ρ ϕ ϕ
ρ

∂
=′

∂ ′
 

1 1

4 ( )sin sinn n n

n
n n

n
ρ

ρ ρ ρ ϕ ϕ
ρ

∞
−

= =′

∂ −
− ′′ ′

∂ ′
∑  

1
8 sin sinn

n
n nρ ϕ ϕ

∞

=
= − ′∑  

 
and 

( , | , )G ρ ϕ ρ π
ϕ

∂
=′

∂ ′
 

1

4 ( )sin sinn n n

n
n n

n
ϕ π

ρ ρ ρ ϕ ϕ
ϕ

∞
−

< > >
= =′

∂ −
− ′

∂ ′
∑  

1
4 ( 1) ( )sinn n n n

n
nρ ρ ρ ϕ

∞
−

< > >
=

= − − −∑  . 

 
 Substituting these results into (14) and (15) , we 
obtain 
 

1 1
1

( , ) sinn
n

n
nψ ρ ϕ γ ρ ϕ

∞

=
= ∑   ,               (26) 

 

1

1( , ) ( 1) ( )sinn
n

n
I nπψ ρ ϕ ρ ϕ

π

∞

=
≡ −∑  ,         (27) 

 
where 

      1 1
0

2 ( ) sinn g n d
π

γ ϕ ϕ ϕ
π

≡ ′ ′ ′∫  , 

 
1

0
( ) ( ) ( ) /n n n

nI g dπρ ρ ρ ρ ρ ρ ρ−
< > >≡ −′ ′ ′∫  . 

 
 Now using (25) to calculate /G ρ∂ ∂ ′  at 1ρ =′  and 

/G ϕ∂ ∂ ′  at ϕ π=′ ,  we get 
 

0

( , | 1, ) uG e dk
u

ρ ϕ ϕ
ρ

∞
∨

′
⎡∂ ∂

= −′ ⎢
∂ ∂ ′′ ⎢⎣ ∫  

    
0

8sin sin sinh sinh ( )
sinh u

ku ku k k
k k

ϕ π ϕ
π
< >

=′

⎤−′
⎥
⎦

 

 

0

sin sinh sinh ( )
8

sinh
ku k k dk

k
ϕ π ϕ

π

∞

< >−
= − ∫  . 

 

and 
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0

( , | , )G dkρ ϕ ρ π
ϕ ϕ

∞
∨ ⎡∂ ∂

= ⎢′
∂ ∂′ ′⎢⎣ ∫  

    8sin sin sinh sinh ( )
sinh

ku ku k k
k k ϕ π

ϕ π ϕ
π =′

⎤−′ ′
⎥
⎦

 

 

0

sin sin sinh8
sinh

ku ku k dk
k

ϕ
π

∞
′= − ∫  . 

 

 Substitution into (14) and (15) gives 
 

1

0

2 sin( ln )( , ) ( )
sinh k

kdk I
k
ρψ ρ ϕ ϕ

π π

∞

∨ −
≡ ∫  ,          (28) 

0

sinh( , ) ( )sin( ln )
sinh

kdk k k
kπ π
ϕψ ρ ϕ γ ρ
π

∞

∨ ≡ −∫ ,      (29) 

 
where 
 

1

0

( ) ( )sinh sinh ( )kI d g k k
π

ϕ ϕ ϕ ϕ π ϕ< >≡ −′ ′∫ , 

0

2( ) ( ) sink du g u kuπ πγ
π

∞

≡ ′ ′ ′∫   . 

 

5) Discussion of the Results 
 a) Notice that, using (26) and (29), 

 

1 1 1
1

(1, ) sin ( )n
n

n gψ ϕ γ ϕ ϕ
∞

=
= =∑  , 

0

( , ) ( ) sin ( )dk k ku gπ π πψ ρ π γ ρ
∞

∨ = =∫  ; 

 
but, using (28) and (27), 
 

1

0

2 sin( ln1)(1, ) ( ) 0
sinh k

kdk I
k

ψ ϕ ϕ
π π

∞

∨ −
≡ ≡∫  , 

1

1( , ) ( 1) sin ( ) 0
4

n
n

n
n Iπψ ρ π π ρ

π

∞

=
≡ − ≡∑   . 

Therefore, the part 1( , )ψ ρ ϕ of the solution, due to the 
non-homogeneous boundary data 1( )g ϕ  [cf. (12) and 

(14)], is better given by 1 ( , )ψ ρ ϕ  [which is built with 
the Green's function given by (21)], since it converges 
to that data, what does not happen with 1 ( , )ψ ρ ϕ∨ . For 
a similar reason, the part ( , )πψ ρ ϕ  of the solution is 

better given by ( , )πψ ρ ϕ∨ . 
 As a matter of fact, if the boundary data are func-
tion of some variable, Green's function "is better" 
expanded in the eigenfunctions which depend on that 
variable. 
 In the above, we just say "is better" instead of 
"must be", because both ψ  and ψ ∨  converge eve-
rywhere in the (open) domain A , and ψ  is known on 
the boundary ∂A . Therefore, the fact that 

1(ψ ψ= +  )πψ  cannot reproduce the boundary data 

( )gπ ϕ  and 1( )πψ ψ ψ∨ ∨ ∨= +  cannot reproduce the 
data 1( )g ρ  would be of no consequence if it were not 

a corollary that the convergence of πψ  and 1ψ ∨  in A 
will be more difficult to achieve than that of πψ

∨  and 

1ψ , respectively. 
 

 b) The Green's function ( , | , )G ρ ϕ ρ ϕ′  can be 
expressed in closed form. In fact, simplifying the nota-
tion by defining p ρ ρ ρ ρ< >≡ = ′ , /q ρ ρ< >≡ , 
d ϕ ϕ≡ −′  and s ϕ ϕ≡ +′ , we can develop (21) as 
follows: 

( , | , )G ρ ϕ ρ ϕ =′  
 

    
1 1

2 ( / ) cos 2 ( / ) cosn n

n n
p n nd q n nd

∞ ∞

= =
= − +∑ ∑  

      
1 1

2 ( / ) cos 2 ( / ) cosn n

n n
p n ns q n ns

∞ ∞

= =
+ −∑ ∑  .      (30) 

 

 However, notice that 
 

1 1
2 ( / ) cos 2Re ( / )n n

n n
r n n z nθ

∞ ∞

= =
− = −∑ ∑  

{ }2Re log (1 ) 2 ln 1z z= − = −| |  
 

2ln (1 2 cos )r rθ= − +  ,                   (31) 
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where iz r e θ= , and the well known Taylor's series of 
log (1 )z−  was used. (In the above, we distinguish 
between the complex logarithmic function and the real 
one by employing the notations log and ln, respec-
tively). We can, therefore, use the formula in (31) to 
replace each series in (30) by a logarithmic term, thus 
accomplishing our intent of expressing Green's func-
tion in a closed form: 
 

( , | , )G ρ ϕ ρ ϕ =′  

 2 2ln (1 2 cos ) ln (1 2 cos )p d p q d q= − + − − +  

      2 2ln (1 2 cos ) ln (1 2 cos )p s p q s q− − + + − +  . 
 
 
 c) The integral which furnishes the Green's func-
tion ( , | , )G u uϕ ϕ∨ ′ ′ , in (25), can be evaluated by 
considering it along the closed contour of the k-plane 
shown in Figure 3 below (where the radius tends to 
infinite: R → ∞ ). It is a simple matter to show that 
 

1
( , | , ) (1/ 2) 2 i Res ( i)

n
G u u nϕ ϕ π

∞
∨

=
= =′ ′ ∑  

1
(8 / ) sinh sinh sin sin

n
n nu nu n nϕ ϕ

∞

< >
=

− ′∑  . 

 
 

 
 

References 
 
[1] E. Butkov, Mathematical Physics, Addison-

Wesley Publishing Company,  Reading,  Massa-
chusetts,  1973. 

[2] R. V. Churchill and J. W. Brown,  Fourier Series 
and Boundary Value Problems, McGraw-Hill 
Book Company,  Third Edition,  International 
Student Edition, McGraw-Hill Book Company, 
1978. 

 

[3] F. B. Hildebrand,  Advanced Calculus for Appli-
cations,  Second Edition,  Prentice-Hall,  Engle-
wood Cliffs,  New Jersey,  1976. 

 

[4] J. D. Jackson, Classical Electrodynamics, John 
Wiley & Sons,  Second Edition,  New York, 
1975. 

 

[5] P. M. Morse and H. Feshbach,  Method of Theo-
retical Physics, McGraw-Hill Book Company, 
New York,  1953. 

 
 

i 

Re k

2i 

3i 

4i 
Im k

R → ∞  

– i 

*i ( )mk m m= ∈
are the poles of 
the integrand of 

( , | , )G u uϕ ϕ∨ ′ ′

Figure 3 – The closed contour used to 
evaluate the real integral in (25) with the 
help of the residue theorem. 


