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Abstract – Our purpose here is to model human
bone mineral density estimated through dual-energy
x-ray absorptiometry, using local volumetric distance
spline interpolants. Interpolating the values means the
construction of a function F (x, y, z) that mimics the
relationship implied by the data (xi, yi, zi; fi), in such
a way that F (xi, yi, zi) = fi, i = 1, 2, . . . , n, where x, y
and z represent, respectively, age, weight and height.
This strategy greatly enhances the ability to accurately
express the patient’s bone density measurements,
with the potential to become a framework for bone
densitometry in clinical practice. The usefulness of
our model is demonstrated in 424 patients and the
relevance of our results for diagnosing osteoporosis is
discussed. Osteoporosis may be characterized by low
bone density and its significance is expected to grow as
the population of the world both increases and ages.
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Introduction
Over the past 10 years, osteoporosis has emerged
as a major clinical challenge for physicians and pa-
tients, with regard both to its prevalence and to
the morbidity and mortality of associated fractures
[1]. Moreover, resultant fractures in the hip are as-
sociated with a greater number of deaths and dis-
abilities, increasing socioeconomic costs that are ex-
pected to rise in the future as the population of the
world both increases and ages [1]. In their article,
Delmas and Fraser [2] present a compelling argu-
ment describing the potential health crisis the world
will face if osteoporosis is not made a high prior-
ity by the world health community. They describe
several health-related consequences of this disease,
especially in terms of increases in human pain and
suffering and the continual increase in global health
care costs [2]. Osteoporosis is defined as a progres-
sive systemic skeletal disease characterized by low
bone mineral density (BMD), microarchitectural de-
terioration of bone tissue or both, with a consequent
increase in bone fragility and susceptibility to frac-
ture [6] and [9].

Bone density is the best single predictor of a fu-
ture bone fracture and measurement of BMD with
dual-energy x-ray absorptiometry (Dexa) is the cur-
rent “gold standard” physical method for diagnos-
ing osteoporosis [1]. Dexa measures the BMD and
compares this measurement with a reference pop-
ulation based on age, weight, height, gender and

ethnic background. Bone densitometry is a simple,
non-invasive and painless procedure that examines
the hip, lumbar spine (L2 − L4) and occasionally
the wrist, because these are the sites where osteo-
porosis first appears [1]. By using local volumetric
distance spline interpolants, a major component of
this study [1] is to model the BMD generated with
Dexa measurements. The goal of interpolation is
to construct an underlying function that may be
evaluated at any desired set of positions [7]. In-
terpolation means finding a curve or surface that
satisfies some imposed constraints exactly [3]. Here
we present [1] one method for solving variants of the
following problem: given a finite set of n scattered
BMD data points in the three-dimensional physical
space, how can one find a surface that interpolates
a given set of points? A manifold interpolation is
proposed [1] for comparing the patient’s BMD with
a reference healthy population based on age, weight,
height, gender and ethnic background.

Theoretical Model

(for more on this, see Cassia-Moura et al [1])
A modeling function defined over the entire do-

main is determined so that it may interpolate or it
may approximate the given scattered data. It is very
important to rely more on the precision of the func-
tion values, pointing towards interpolant models as
opposed to the approximating ones (nowadays, the
usual procedure by using the number of sd away
from the mean value of the BMD). This is the rea-
son why we propose here [1] one interpolating func-
tion F (x, y, z), which in some sense fits the scattered
BMD data. Interpolating the values means the con-
struction of a function F (x, y, z) that mimics the re-
lationship implied by the data (xi, yi, zi; fi), in such
a way that F (xi, yi, zi) = fi, i = 1, 2, ..., n. By us-
ing the BMD data set generated by Dexa, x, y and z
represent, respectively, age, weight, and height. Our
aim is to obtain F applied to an arbitrary point, not
necessarily coincident with any one of the given data
points. The data points represent the clinical infor-
mation obtained from a population during a given
period of time, restricted to a site of the bone (hip,
lumbar spine or wrist). The arbitrary point repre-
sents what should be expected from a patient who
is being examined by the physician at a particular
time. The actual measured BMD is then compared



with the model’s result for diagnosing osteoporosis.
In order to make the above method usable and ap-

ply it to very large data sets, we adopt the idea of
localizing the method. This requires localizing func-
tions, which are smooth and have a small region of
support. In general any method may be used to ob-
tain the local interpolants. A local method that pro-
duces smoother interpolants is the local volumetric
distance spline method. This is the generalization of
the local cubic spline interpolation method, which
in itself is a modification of the C2 piecewise cubic
splines. Let F ′(x) = ∂

∂xF (x) and F ′′(x) = ∂2

∂x2 F (x).
This univariate interpolant is the solution to the fol-
lowing problem: given the BMD data (xi, fi), i =
1, 2, ..., n, a < x1 < x2 < ... < xn < b, find, among
all piecewise functions defined over [a, b], a function
that minimizes

∫ b

a
(F ′′(x))2dx, subject to the inter-

polation conditions F (xi) = fi, i = 1, 2, ..., n. This
minimization condition is chosen in order to pre-
vent the graph of the function from excessively wig-
gling, so typical of high degree interpolating poly-
nomials, and additionally it allows continuity in the
second derivative at the junctions (for more on this,
see Greville [5]). The piecewise polynomials are the
simplest functions, and the cubic ones are those with
the lowest degree that have enough freedom to allow
continuity in the second derivative at the junctions
x′

is. The resulting function is called the natural cu-
bic spline, which can be characterized by the follow-
ing conditions: (i)F, F ′, F ′′ continuous over [a, b];
(ii)F (xi) = fi, i = 1, 2, ..., n; (iii) F is piecewise cu-
bic, i.e., F is a cubic polynomial on each interval
[xi, xi+1], i = 1, 2, ..., n−1; (iv) F is linear on [a, x1]
and [xn, b], which means F ′′(x1) = F ′′(xn) = 0.
The interpolant can then be expressed as:

F (x) = c0 + cxx +
n∑

i=1
ci|x− xi|3

The basis is {1, x, |x− x1|3, |x− x2|3, ..., |x− xn|3},
and all of its components satisfy (i). It is straight-
forward to verify that this is so, even for the junc-
tions xi, i = 1, ..., n. By adding conditions (ii) and
(iv), and doing some algebraic manipulations (see
the Appendix), we end up obtaining the linear sys-
tem of equations AX = B, where A is the matrix:

1 x1 0 |x1 − x2|3 ... |x1 − xn|3
1 x2 |x2 − x1|3 0 ... |x2 − xn|3
...

...
...

...
. . .

...
1 xn |xn − x1|3 |xn − x2|3 ... 0
0 0 1 1 ... 1
0 0 x1 x2 ... xn


(1)

X =


c0cxc1c2
...

cn

 (2)

and B is the matrix: 
f1
f2
...

fn
0
0

 (3)

To generalize this idea to volumetric BMD data
points, we start by letting F : IR3 → IR be defined
as follows:

F (x, y, z) = c0 + cxx + cyy + czz+

n∑
i=1

ci||(x− xi, y − yi, z − zi)||3

where ||(x − xi, y − yi, z − zi)|| =√
(x− xi)2 + (y − yi)2 + (z − zi)2 and, by impos-

ing the corresponding conditions for the trivariate
case, and if we let vij = (xi − xj , yi − yj , zi − zj),
we get a system AX = B, where A is:

1 x1 y1 z1 0 ||v12||3 ... ||v1n||3
1 x2 y2 z2 ||v21||3 0 ... ||v2n||3
...

...
...

...
...

...
. . .

...
1 xn yn zn ||vn1||3 ||vn2||3 ... 0
0 0 0 0 1 1 ... 1
0 0 0 0 x1 x2 ... xn
0 0 0 0 y1 y2 ... yn
0 0 0 0 z1 z2 ... zn


X is the matrix: 

c0cxcy
czc1c2
...

cn


and B is: 

f1
f2
...

fn
0
0
0
0


In order to localize this interpolant, we first subdi-

vide the domain into regions, with non-empty inter-
sections, each region with roughly the same num-
ber of data points. We then define smooth func-
tions wk : IR3 → [0, 1], whose support is the kth

region. In addition, they satisfy the unity partition
property:

∑
wk(x, y, z) = 1 for any (x, y, z) ∈ IR3.

We compute the localized interpolants Fk such that
Fk(xi, yi, zi) = fi for all data points in the sup-
port of wk, by solving linear systems of equations
like the one above, one for each region. We then



take F (x, y, z) =
∑

wk(x, y, z)Fk(x, y, z) as our in-
terpolant, since F (xi, yi, zi) = fi, i = 1, 2, ..., n, pro-
vided that w′

ks regions of support cover F ′s entire
domain. As for the wk functions, it is not hard to
build them through piecewise tricubics.

The local volumetric distance spline method
ranks favorably against others because it is rela-
tively easy to implement, is local and very smooth,
and can be applied to very large databases. The
detail that requires attention is the choice of the
covering regions of support. The application needs
to pick regions in such a way that their number of
BMD data points is approximately constant. Alter-
natively, it may let the user make this choice, but it
should be robust enough to handle regions with too
few data points. Sometimes the local convex hull of
the BMD data points is degenerate, and does not
present the form of a solid, which is necessary for
building a volumetric interpolation.

Materials and Methods

We tested our theoretical model on a data set from
Unidade de Densitometria Ossea do Recife/Brazil,
composed of lumbar spine BMD readings (L2 −L4-
BMD) of a Dexa (DPX-L, Lunar Radiation Corp.,
Madison-WI, U.S.A.), from 1991 to 1999. From this
database we have selected the entire set of white
women L2 − L4-BMD readings, composed of 5,761
individual entries. We generated a table from the
patient’s information needed for our modeling, as
follows: age, weight, height and L2 − L4-BMD. In
order to build our reference healthy population that
is used to produce the local volumetric distance
spline function, we based our selection on the pa-
per [8], which established the normality standards
of L2 − L4-BMD readings, for a Brazilian white fe-
male population, using the same equipment (DPX-
L). In order to remain within that paper’s limits, we
excluded 1,070 individuals who did not satisfy the
following conditions: age between 20 and 70 years,
and weight between 40 and 80 Kg. The correspond-
ing normal patient’s readings in that paper are pre-
sented in a table in which each entry is referred to
as a reference group and corresponds to the mean
L2 − L4-BMD and the sd ranges of 10 years by 10
Kg. For instance, a patient whose age is in the range
of 40 to 49 years with weight between 50 and 59 Kg
should present a BMD reading of 1.117, with a sd
of 0.142.

We decided to select the reference population by
using a piecewise bilinear interpolation [3], which
means that in order to find an individual reference
BMD, we consider that the BMD values in a refer-
ence group change linearly as the age moves into the
neighboring reference group, and the same is done as
the weight moves from one reference group into the
next one. We consider that the values presented by
Lewin et al. [8] in a reference group correspond to
its central point; for instance, in the reference group

40 to 49 years-old and 50 to 59 Kg, the center point
is 45 years-old and weight 55 Kg; in the neighboring
reference group 50 to 59 years-old and 60 to 69 Kg,
the center point is 55 years-old and weight 65 Kg.
From the weight of 55 Kg to 65 Kg the BMD values
and the sd will vary linearly. From the age of 45
years to 55 years, the BMD values and the sd will
also vary linearly. The same applies to the other
ranges. In this way there will be no appreciable
difference between the reference BMD used for the
age of 49.9 and that used for 50.0 years. By apply-
ing the piecewise bilinear interpolation we obtained
2,856 normal L2 − L4-BMD readings (see Table 1).
Our reference population is a further selection in
this normal population.

In order to obtain a satisfactory distribution of
patients, we sorted the list of entries by increasing
age, and accepted an entry if the BMD value was
less than 0.07 under the previous entry’s BMD, and
was less than 0.05 above the previous entry’s BMD.
This difference in threshold produces a bias toward
a smaller BMD as age increases; this is an expected
behavior according to Lewin et al. [8]. When this
was done, our reference population decreased to 904
white females. We then sorted by decreasing weight,
and accepted an entry if the BMD value was less
than 0.09 under the previous entry’s BMD, and was
less than 0.11 above the previous entry’s BMD, cre-
ating another bias toward a larger BMD as weight
increases; this is also an expected behavior accord-
ing to Lewin et al. [8]. Through this procedure we
obtained our 424 individuals that formed the refer-
ence healthy population used to build (as shown in
Section 2) our local volumetric distance spline func-
tion [1].

Results and Discussion

(for more on this, see Cassia-Moura et al [1])
In this study we present [1] an interpolant func-

tion for experimental data obtained in a healthy
population. With a view to its use in the clinical
detection of osteoporosis, as we are dealing with a
smooth (i.e. continuous) function, we may be able
to make it a density function fd, thereby enabling
us to obtain a sd associated with it. Therefore one
suggested use in diagnosis is to analyze the BMD
value of the patient being studied, comparing it with
the value of the F interpolation function considered
for this patient. In this case the patient is situated
in a given range obtained from the sd in relation
to the F interpolation function through which the
patient may be regarded as normal, osteopenic or
osteoporotic, according to the range in which his or
her BMD is situated. For the construction of the
range of normality, osteopenia and osteoporosis it
will be necessary to carry out a subsequent, more
thorough study based on clinical data, with a view
to using the sd for obtaining the ranges in question.

Figure 1 was produced by using a technique called
ray tracing (see [4]), which allows the user to estab-



Table 1: Distribution of the number of normal pa-
tients by age and weight in the reference groups.

Age×Weight 40-49 50-59 60-69 70-79
20-29 5 4 0 1
30-39 17 42 35 16
40-49 39 264 268 136
50-59 83 356 465 257
60-69 73 250 338 207

lish the parallelepiped bounds, viewing configura-
tion and color attributes. Figure 1a shows a partial
volumetric graph of our local volumetric distance
spline function. A point in the rectangular paral-
lelepiped is a triplet of numbers representing age in
the range 40 to 65 years, weight in the range 50 to
60 Kg and height in the range 140 to 155 cm. The
parallelepiped corresponding to these constraints is
entirely contained in the interior of the volume cor-
responding to our reference healthy population (i.e.
424 patients, with ages ranging from 20 to 70 years,
weights ranging from 40 to 80 Kg and heights rang-
ing from 140 to 175 cm). The BMD value of a point
is represented in shades of gray, where a white point
is associated with a BMD of 1.351 (maximum value)
and a black point is associated with a BMD of 0.8.
Figures 1b, 1c and 1d show the rendering of the
function by considering one of the dimensions vary-
ing one unit.

For clinical usage of our model, a rendering of
BMD function over bone models can be provided
that allows the user to navigate through the model.
The standard coloring can use shades of red when
the observed patient BMD value falls below the cor-
responding interpolated function value, and shades
of green when the opposite occurs. Additionally, an
index can be formulated using absolute differences
between the actual patient BMD at a certain bone
site and the estimated one from the interpolating
function, in order to evaluate the patient’s possible
abnormality. A table can be established, with the
reference values in each case, sorted by age, weight,
height, gender and ethnic background, which might
be a valuable tool for diagnosing osteoporosis. A
calibration factor will be necessary to minimize dif-
ferences between brands of densitometers. The gen-
eralizability of these tools is currently limited and
will remain so until their applicability in the clinical
setting can be tested in a prospective manner. We
will address these issues in an upcoming study.
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Figure 1: Distance spline interpolated L2−L4-BMD
shown on a graph by age (year), weight (Kg) and
height (cm). a) Partial volumetric graph of the in-
terpolating function. b) The distance spline inter-
polation for patients with weight between 60 and 61
Kg. c) The distance spline interpolation for 50 to
51-year-old patients. d) The distance spline interpo-
lation for patients with height between 160 and 161
cm.
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