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ABSTRACT

We discuss image reconstruction algorithms for diffuse optical tomography that allow utilization of extremely
large data sets. Image reconstruction is performed with experimental data obtained with the use of a CCD
camera-based noncontact imager. We demonstrate that more than 107 measurements can be acquired and
utilized. This is two orders of magintude or more larger than the data sets which are typically used in diffuse
optical imaging.
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1. INTRODUCTION

Optical tomography (OT) is a biomedical imaging modality that utilizes diffuse light as a probe of tissue
structure and function.1 Clinical applications include imaging of breast disease,2–9 functional neuroimaging
10–17 and small animal imaging.18 A promising new direction in optical tomography is the use of targeted
contrast agents for molecular imaging.3,18 The physical problem that is considered is to reconstruct the
optical properties of an inhomogeneous medium from measurements taken on its surface. In a typical exper-
iment, optical fibers are used for illumination and detection of the transmitted light.2,19,20 The number of
measurements (source-detector pairs) which can be obtained, in practice, varies between 102−104. A recently
proposed alternative to fiber-based experiments is to employ a narrow incident beam for illumination. The
beam can be scanned over the surface of the medium while a lens-coupled CCD detects the transmitted light.
Using such a “noncontact” method, it is possible to avoid many of the technical difficulties which arise due to
fiber-sample interactions.21,22 In addition, extremely large data sets of 108 to 1010 measurements can readily
be obtained. Data sets of this size have the potential to substantially improve the quality of reconstructed
images in OT. As a result, there has been considerable recent interest in the utilization of large data sets in
OT.

Reconstruction of images from large data sets is an extremely challenging problem due to the high compu-
tational complexity of numerical approaches to the inverse problem in OT. To address this challenge, we have
developed analytic methods to solve the inverse problem.23–25 These methods lead to a dramatic reduction
in computational complexity and have been applied in numerical simulations to data sets as large as 1010

measurements.26 Application of these methods to experimental data will be reported elsewhere. Here we
discuss the possibility of numerical image reconstruction27 with data sets of up to ≈ 1.7 × 107 independent
measurements. This number is more than two orders of magnitude larger than what is currently being utilized
for image reconstruction.

The advantage of numerical approaches to image reconstruction is their generality. In particular, these
methods can be applied to any measurement geometry while the analytic methods require special source-
detector arrangement.23–25 The disadvantage of numerical methods is, however, twofold. First, it is impossible
to achieve the same effective level of volume discretization as with analytic methods. Second, the computational
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complexity, even with the novel developments discussed in this paper, can be significantly larger for numerical
methods. Nevertheless, we report here numerical image reconstruction from experimental data with up to
1.7 × 107 independent measurements and with a volume discretization of ≈ 4 × 104 voxels. The results
demonstrate the feasibility of image reconstruction for OT with data sets which are more than two orders of
magnitude larger than the current state of the art.

2. MODEL FOR LIGHT PROPAGATION IN TURBID MEDIA

We begin by formulating the model for light propagation in turbid media. We work in the diffusion approxi-
mation and assume that the density of electromagnetic energy u(r) obeys the diffusion equation

−D∇2u(r) + α(r)u(r) = S(r) , (1)

where α(r) is the position-dependent absorption coefficient, S(r) is the power density of a continuous wave
source, and D is the diffusion coefficient which is assumed here to be constant. The energy density also obeys
the boundary condition

(u + �n̂ · ∇u)|
r∈boundary = 0 , (2)

on the surface bounding the medium, where n̂ is the unit outward normal and � is the extrapolation distance.28

The physically measurable specific intensity I(r, ŝ) at the point r in the direction ŝ is expressed as

I(r, ŝ) =
c

4π
(u − �∗ŝ · ∇u) , (3)

This expression can be simplified with the use of (2) if the observation point is on the boundary. Further
simplification is achieved when the source is also placed on the boundary. In the slab imaging geometry, when
sources are placed on one side of the slab and detectors on the other side, we have

I(rd, ẑ; rs, ẑ) = Cd(rd)Cs(rs) (1 + �∗/�)
2
G(rd, rs) . (4)

Here I(rd, ẑ; rs, ẑ) is the specific intensity exiting the medium at the point rd in the normal direction (ẑ)
due to a narrow collimated beam normally entering the medium at point rs. Note that both rs and rd

are on the medium boundary. The functions Cd(rd) and Cs(rs) are unknown position-dependent coupling
coefficients which may depend on imperfections of the boundary surfaces and properties of the experimental
device. G(rd, rs) is the Green’s function of the diffusion equation (1) in an inhomogeneous medium which
satisfies

[
−D∇2 + α(r)

]
G(r, r′) = δ(r − r′) . (5)

Finally, �∗ = 3D/c is the photon transport mean free path. The unknown constants Cd and Cs can be
eliminated from consideration by employing the ratio

I(rd, ẑ; rs, ẑ)

I0(rd, ẑ; rs, ẑ)
=

G(rd, rs)

G0(rd, rs)
. (6)

Here I0 is obtained experimentally from transmission measurements in a homogeneous reference medium, while
G and G0 are the corresponding Green’s functions obtained analytically from Eq. (1) with position-dependent
absorption α(r) in the former case and some reference constant value of absorption α0 in the latter.

Equation (4) defines a nonlinear problem. We now proceed with linearizatation. To this end, we express
α(r) as a sum of a constant known background α0 and relatively small unknown perturbation δα(r). Then
the Green’s function G(rd, rs) is given in the mean-field approximation25 by
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G(rd, rs) =
G2

0(rd, rs)

G0(rd, rs) +
∫

G0(rd, r)δα(r)G(r, rs)d3r
(7)

Then, we can formulate a linear equation for the unknown function δα(r):

∫
G0(rd, r)δα(r)G(r, rs)d

3r = φ(rd, rs) , (8)

where the data function φ is related to the experimentally measured transmissions in the inhomogeneous and
reference media by

φ(rd, rs) = G0(rd, rs)

[
I0(rd, ẑ; rs, ẑ)

I(rd, ẑ; rs, ẑ)
− 1

]
. (9)

In numerical approaches to optical tomography, the integral in (9) is discretized. The result of such discretiza-
tion is a system of linear equations

Γδα = φ (10)

This is the main equation which is considered in this paper. Here Γrd,rs;rv
= G0(rd, rv)G0(rv, rs) is an

N ×M matrix labeled by the discrete values of the detector and source positions (rd and rs) and the discrete
coordinates of the voxels (rv). The data function φ is a vector of the length N which corresponds to the
number of measurements (data points) and is labeled by rd and rs.

3. NUMERICAL CONSIDERATIONS

Solving Eq. (10) for δα constitutes the linearized inverse problem of OT. It is known to be severely ill-posed.
Even if matrix Γ is square, the inverse Γ−1 can not be computed numerically because the determinant of Γ is
extremely small. Therefore, we will seek the generalized pesudoinverse solution to (10). The latter is based
on the SVD of Γ.

In practical image reconstruction, Γ is typically not square. We consider here the case N � M , i.e., the
problem is highly overdetermined. In general, one can expect that over-determining the inverse problem can
result in better noise tolerance and better image quality and resolution. This, however, assumes that the
noise in all N measurements is statistically independent. In CCD-based measurements, this assumption is
physically justified, at least with respect to the noise that originates in the camera itself.

In the case N > M , the computational complexity of computing the SVD pesudoinverse of Γ scales as
aM2N+bM3.29 Since N � M , the contribution of the second term is negligible. Therefore, the computational
complexity is the same as that of computing the matrix product Γ∗Γ. We will adopt a numerical approach
to computing the psudo-inverse based on numerically computing and diagonalizing the M × M matrix Γ∗Γ.
More specifically, the pseudo-inverse solution δα+ is given by

δα+ = (Γ∗Γ)−1Γ∗φ. (11)

Here (Γ∗Γ)−1 must be appropriately regularized.30

The main idea of this paper is that the computation of the pseudo-inverse solution (11) can be potentially
simplified without sacrificing the advantages of using large data sets. Indeed, let F = Γ∗φ. Computation
of F involves one matrix-vector product whose computational complexity is 2MN and can be neglected.
Computation of the matrix B = Γ∗Γ requires 2M2N operations. However, we note that B is independent of
the experimental noise. All information about the noise is contained in the vector F . Therefore, it is proposed
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to compute F exactly using all available data points, but make an approximation for computing B. Namely,
let us write a matrix element of B as

Brv ,r′
v

=
∑
rs,rd

(Γrd,rs;rv
)∗Γrd,rs;r′v

. (12)

This summation can be viewed as a discretization of a four-dimensional integral over d2rdd
2rs. The precision of

the result obtained may not require the same level of discretization of rd and rs as is required for computing the
vector F . Therefore, it is proposed to use all matrix elements of Γ for the purpose of computing F , but not all
for the purpose of computing B. This would reduce the computational complexity of the most time consuming
numerical task, namely that of computing B. At the same time, all N measurements are utilized according
to this approach. Note that the proposed method is not equivalent to binning of transmission measurements,
e.g., averaging of the signal over several adjacent CCD pixels. We, in contrast, use the data from every CCD
pixel separately and independently, and take into account the exact coordinate on the measurement surface
which corresponds to each particular CCD pixel.

We have implemented the image reconstruction method described above with ≈ 1.7 ·107 experimental data
points. The results are discussed in Section 5. We have also validated the method by computing the matrix
B directly, without making any approximations. This is a complicated numerical task. We note that the
matrix Γ can not be stored in memory as this would require approximately 3,000Gb of memory (assuming
N = 1.7 ·107 and M = 4 ·104). We have adopted the approach of loading separate blocks each of size M×M of
the matrix Γ in memory. Then the matrix-matrix product B can be repeatedly updated as Bn = Bn−1 +γ∗

nγn,
where γn is the n-th block and B0 = 0. This numerical procedure can be effectively parallelized. We have
used the BLAS level 3 routine SYRK for updating B. This approach proved to be very efficient. On a HP
rx4640 server (4x1.6GHz Itanium-II cpus), the sustained speed was approximately 24Gflops.

4. EXPERIMENT

We have constructed a noncontact OT system to test the proposed method of image reconstruction. A
schematic of the instrument is shown in Fig. 1. The source is a continuous-wave stabilized diode laser (DL7140-
201, Thorlabs) operating at a wavelength of 785 nm with an output power of 70 mW. The laser output is
divided into two beams by a beam splitter. The reflected beam is incident on a power meter which monitors
the stability of the laser intensity. The transmitted beam passes through a lens onto a pair of galvanometer-
controlled mirrors (SCA 750, Lasesys). The mirrors are used to scan the beam, which has a focal spot size
of 200µm, in a raster fashion over the surface of the sample. After propagating through the sample, the
transmitted light passes through a band-pass interference filter (10LF20-780, Newport) and is imaged onto a
front illuminated thermoelectric-cooled 16-bit CCD array (DV435, Andor Technology) using a 23 mm/f1.4
lens. A mechanical shutter is placed in front of the CCD to reduce artifacts associated with frame transfer
within the CCD chip. A pulse generator with digital delay is used to trigger and synchronize the CCD, the
shutter and the position of the beam.

The sample chamber is a rectangular box of depth 5cm with square faces of area 50 × 50cm2 constructed
of clear acrylic sheets. The beam is scanned on one face of the sample and the opposite face is imaged by
the CCD. The chamber is placed equidistantly from the CCD and the laser source along the optical axis at
a distance of 110 cm. The chamber is filled with a scattering medium which consists of a suspension of 1%
Intralipid in water in which absorbing objects may be suspended.

A tomographic data set is acquired by raster scanning the beam over a 29×29 square lattice with a lattice
spacing of 0.5 cm. This yields 841 source positions within a 14× 14cm2 area centered on the optical axis. For
each source, a 429 × 429 pixel region of interest is read out from the CCD. This results in 184,041 detectors
arranged in a square lattice with an effective lattice spacing equivalent to 0.65mm and all detectors located
within a 28 × 28cm2 area centered on the optical axis. Thus a data set of 1.5 × 108 source-detector pairs is
acquired.
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Figure 1. Schematic of the noncontact optical tomography system.

5. RESULTS

We have acquired sets of transmission measurements I(rd, ẑ; rs, ẑ) and I0(rd, ẑ; rs, ẑ) for two metal balls
suspended in the central plain of the imaging chamber. Each ball was 8mm in diameter and painted black.
The distance between the ball centers was 30mm.

In order to compute the matrix elements of Γ, as well as the elements of the data vector φ according to
(9), we need the theoretical expression for the unperturbed Green’s function G0(rd, rs). The latter is given by

G0(rd, rs) =

∫
d2q

(2π)2
�2Q(q)

D

exp[iq · (rs − rd)]

[1 + (Q(q)�)2] sinh[Q(q)L] + 1Q(q)� cosh[Q(q)L]
, (13)

where q is a two-dimensional vector parallel to the slab, L is the slab thickness (L = 5cm) for the experimental
device described in Section 4) and Q(q) =

√
q2 + k2

d. Here kd =
√

α0/D is the diffuse wave number. Thus,
the expression for G0 contains two constants (� and kd) which are not known a priori. We have found these
constants by fitting the theoretical expression (13) to the experimental transmission I0. The best fit was
obtained for kd = 0.58cm−1 and � = 7mm. The quality of the fit is illustrated in Fig. 2 in real space. Here we
also show the absolute error of the fit.

Once the constants kd and � were determined, we constructed the matrix Γ and the data vector φ and
proceeded with image reconstruction. First, we show the result obtained without the approximation discussed
in Section 3. Namely, we computed the matrix product B = Γ∗Γ exactly. However, we have only used such
data that corresponds to a transverse source-detector separation of 80 CCD pixels (5.2mm) or less. It can be
verified that there is approximately 1.7 · 107 such data points in the experiment described in Section 4. The
associated calculation is extremely time-consuming. At the sustained computation speed of 24Gflops, the cpu
time required to obtain this reconstruction is approximately 2 weeks. The result is illustrated in Fig. 3. We
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Figure 2. Top: experimental measurements and theoretical fit of the intensity transmitted through a homo-
geneous slab, as a function of the transverse distance from the point of observation to the axis of the incident
narrow beam. Bottom: absolute error.

note that the absorbing objects in the reconstructed image have approximately the same size as the metal
balls and are separated by approximately the same distance.

Next, we have used the approximate approach to computing B = Γ∗Γ. Namely, in the summation (12)
the lattice of detectors was decimated by the factor nB. Note that the lattice of sources was left unchanged
since the inter-source separation is significantly larger than the inter-detector separation. Here decimation by
a factor n means that a sub-lattice of the lattice of detectors is used in the summation, and the period of this
sub-lattice is n times the period of the original lattice. Note that decimation by a factor nB = 16 corresponds
to reducing the complexity of computing B by a factor of 162 = 256. Also note that the corresponding matrix
B was appropriately renormalized in order to keep its trace approximately invariant. The results of such
decimations are illustrated in the left column of Fig. 4. We can see that the decimation procedure leaves the
quality of the images unchanged.

To further investigate the influence of decimation on the reconstructed images we have also decimated the
matrix Γ by a factor nF for the purpose of calculating the vector F = Γ∗φ. The remaining four columns in
Fig. 4 illustrate the results of such decimations. Again, the quality of images is virtually unchanged, up to
nF = 16. Note that all images in Fig. 4 were obtained at the same level of regularization and are plotted on
the same scale.

6. CONCLUSIONS

We have investigated an efficient numerical method for linearized numerical image reconstruction in optical
tomography. The method is based on the approximate calculation of the matrix product Γ∗Γ while calculating
the matrix-vector product Γ∗φ exactly, where the quantities Γ and φ are defined in Section 2. In the language
of tomographic image reconstruction this method can be described as exact calculation of the backprojection

operation but approximate calculation of the filter. The results obtained indicate that, at least with the
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Figure 3. Tomographic slices of the sample. The field of view is 13cm2 for each slice. The slices are drawn
parallel to the slab surface at different distances from the plane of detectors as indicated. A linear color scale
is used (see the color bar).
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Figure 4. Reconstruction of the central slice corresponding to the depth a of 25mm for different decimation
factors nF and nB.
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Figure 5. Lattice Fourier transform of the experimental transmission IO(ρ) for the argument q on a taken on
a fixed line. The period of the detector lattice on which the real space transmission is measured is h = 0.65mm.
Negative values of Ĩ are not shown due to the use of a logarithmic scale.

level of experimental noise present in our measurements, the approximation leaves the image quality virtually
unchanged.

We have further seen that image quality does not depend on the decimation factor nF . Thus, it is not
improved when the size of the data set is increased from ≈ 6.6 · 104 (the bottom right plot in Fig. 4) to
≈ 1.7 · 107 (the top left plot in Fig. 4) source-detector pairs. This is, undoubtedly, a consequence of the
particular level of noise present in our experimental measurements. The relation between the noise level, the
image resolution and the amount of useful data is best revealed by considering the spatial Fourier spectrum of
the noise. Consider, for example, the transmission function I0(ρ) due to a single source which coincides with
the optical axis of the system. Here ρ is a two-dimensional vector parallel to the slab surface. Thus, I0(ρ)
is the experimental transmission through a homogeneous reference medium as a function of the transverse
source-detector separation. Let Ĩ0(q) be its Fourier transform with respect to the two-dimensional variable ρ.
An experimental plot of Ĩ0(q) (for q taken along a fixed line) is shown in Fig. 5. Here we see a central peak
which is relatively noise-free and large-q tails which are dominated by noise. We have found that the critical
value of q, above which the noise dominates the signal, is approximately qc = 0.15h−1, where h = 0.65mm is
the period of the lattice of detectors. This corresponds to a spatial resolution of approximately 12mm which
was, indeed, observed in Figs. 3,4. On the other hand, this number indicates that the lattice of sources can
be decimated by a factor of π/0.15 ≈ 20 without significant loss of information and, consequently, without
significant loss of image quality. Indeed, we have verified that decimation by the factor nF = 32 did result in
significant degradation of image quality (data not shown), while decimation with nF = 16 did not.

The limitation encountered in the reconstructed images reported here is specific to our experiment and not
fundamental. We have shown using computer-generated data (in the absence of noise) that larger data sets
indeed result in better image quality, up to a certain limit.26 Thus, utilization of large data sets may provide
very significant improvements in image quality under different experimental conditions.
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