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Abstract

Parameterization of 3D mesh data is important for many graphics and mesh processing applications, in
particular for texture mapping, remeshing and morphing. Closed, manifold, genus-0 meshes are
topologically equivalent to a sphere, hence this is the natural parameter domain for them. Para-
meterizing a 3D triangle mesh onto the 3D sphere means assigning a 3D position on the unit sphere to
each of the mesh vertices, such that the spherical triangles induced by the mesh connectivity do not
overlap. This is called a spherical triangulation. In this paper we formulate a set of necessary and
sufficient conditions on the spherical angles of the spherical triangles for them to form a spherical
triangulation. We formulate and solve an optimization procedure to produce spherical triangulations
which reflect the geometric properties of a given 3D mesh in various ways.

AMS Subject Classifications: 68U05, 68U07, 65D18, 51N05.
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1. Introduction

Given a 3D mesh, many computer graphics applications map texture onto it in
order to produce more realistic renderings. Since the texture map is typically a 2D
image, this operation requires assigning 2D plane coordinates to each of the mesh
vertices. If the mesh consists of triangles, the texture pixels are then mapped in a
piecewise affine manner from the texture plane to the 3D triangle faces. Since a
texture map is topologically equivalent to a disk, the most natural result is
obtained when the 3D mesh also has the topology of a disk (i.e., manifold, genus-
0 with a boundary). In this case, since many parameterizations exist, it is a major
challenge to produce that which best fits the geometry of the 3D mesh, minimizing
some measure of distortion. Most of the recent works on the subject of parame-
terization (e.g., [2], [6], [9]) have focused on defining the distortion, and showing
how to minimize it. The different disk parameterization methods published may
be partitioned into two categories: Those who require that the boundary
parameter values are pre-defined and form a convex shape (e.g., [2]) and those
who impose no special shape on the boundary (e.g., [6], [9]).

The parameterization problem is more complicated when the mesh does not have
the topology of a disk. Many manifold 3D meshes are closed (i.e., have no
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boundary), so are topologically equivalent to a sphere, which is fundamentally
different from the topology of the texture map. The most straightforward way to
work around this is to somehow form an artificial ‘‘boundary’’ and then use the
methods designed for disks. A triangular boundary may be formed by removing
an arbitrary triangle from a closed mesh. A more elaborate boundary may be
formed by cutting along mesh edges [8]. This, however, usually introduces dis-
continuities where the edges are cut and may sometimes increase the parameter-
ization distortion in comparison to spherical parameterization.

While parameterizing to the plane is the most natural way to perform texture-
mapping, this is less natural for other mesh processing operations which also
require a parameterization. For applications such as morphing [1] and reme-
shing [5] it is best to parameterize the mesh over a domain which is topologi-
cally equivalent to it. So if the mesh has the topology of a sphere, it is best to
use a spherical parameter domain. Parameterizing a 3D mesh over the sphere is
equivalent to embedding its connectivity graph on the sphere, such that all the
resulting spherical polygons do not overlap. A classical result of Steinitz is that
a graph may be embedded on the sphere iff it is planar and 3-connected [4]. So a
closed genus zero triangulation can always be mapped to a spherical triangu-
lation.

The simplest way to map a closed triangulation to the sphere is to cut out one
triangle to serve as a boundary, parameterize the open mesh over the unit triangle,
and then use the inverse stereo projection to map the disk to the sphere (e.g. [3]).
The boundary triangle will contain the north pole of the sphere. The main
problem with this method is that most disk parameterization methods, when faced
with a triangular boundary (containing only three vertices), tend to cluster all the
interior vertices in the center of the triangle, leading to significant distortion in
both the disk and spherical parameterizations. Also, the inverse stereo projection
usually does not preserve any of the geometric properties of the planar triangu-
lation, so the result is quite distorted.

Another popular method is to cut the mesh into two pieces, each topologically
equivalent to a disk, parameterize each over a planar disk with a common
boundary, and then map each disk to a hemisphere. The common boundary
guarantees that the two hemispheres fit together at the equator. Each disk
parameterization will be better than the one described in the previous paragraph,
so the result will be less distorted. However, the result will depend strongly on the
specific cut used to obtain the two disks, so it can be difficult to optimize. In
addition the cut line will show up as a parameterization artifact.

Several methods for direct parameterization on the sphere have been developed.
The only one that seems to guarantee a valid spherical triangulation is that of
Shapiro and Tal [7]. This method works by simplifying the mesh by vertex
removal until only a tetrahedron remains. The tetrahedron is embedded on the
sphere, and then the vertices are inserted back one by one, so that the convexity of
the shape is preserved throughout the process. While this is quite an efficient
process, it is difficult to steer the parameterization towards any specific target, due
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to its greedy nature. Another direct embedding method was suggested by Kobbelt
et al. [5] and Alexa [1]. It is an iterative procedure, attempting to converge to an
embedding by applying local improvement (relaxation) rules. In practice, this
method works well in many cases. However, there is no guarantee that it will
terminate, and, even if it does, that the resulting embedding will be valid (i.e.,
contain non-overlapping triangles).

The common denominator of all these methods, as well as most of the disk
parameterization methods, is that the algorithms search for the values of the
parameters. In this paper we present an algorithm for spherical embedding that
extends the approach of Sheffer and de Sturler [9] for disk embeddings. Their
algorithm works by searching for the angles of the planar triangles rather than the
positions of the triangle vertices in the plane. A set of necessary and sufficient
conditions for the angles to form a valid planar triangulation is formulated. These
turn out to be mostly linear equalities and inequalities and just one non-linear
equality relation involving the sines of the angles. Once the angles have been
determined, the triangles are formed by an ‘‘unfolding’’ operation. Thanks to the
approach of working with angles, the resulting triangulation is valid and not
forced to have a convex boundary.

In this paper, we extend the method of Sheffer and de Sturler to parameterization
on the sphere. Here too, we work with angles, except these angles are spherical
angles, rather than planar angles. We formulate a set of necessary and sufficient
conditions for the angles to form a valid spherical triangulation. Once the angles
are determined, the spherical triangulation may be generated.

A preliminary version of this paper was presented at the 4th Israel-Korea
Bi-National Conference on Geometric Modeling and Computer Graphics [10].

2. Some Spherical Geometry

In this section we review some of the basics of spherical geometry and trignometry
on the unit sphere that we will need in the sequel. See Fig. 1 for an illustration. A
spherical triangle is the region enclosed by three great circles on the sphere (a
great circle is a circle on the sphere whose center is the origin). Denote the length
of the arcs who are the sides of the spherical triangle by a, b and c. These are
identical to the planar angles of the wedges defined by the origin and pairs of

Fig. 1. Spherical geometry
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vertices of the triangle. Certainly each of these is less than p. The spherical defect
of the triangle is D ¼ 2p)(a+b+c). A spherical angle is the dihedral angle
between the two planes defined by the two great circles, and we denote these by A,
B and C. The sum of the spherical angles of a spherical triangle is always more
than p and less than 3p. The spherical excess of that triangle is E ¼ A+B+C)p.
The solid angle defined by a spherical triangle is the area of the region on the
sphere defined by that triangle, and is equal to the excess of the triangle. Hence the
sum of all solid angles and the sum of all excesses in a spherical triangulation is
4p. Note that the sum of all spherical angles around any vertex in a spherical
triangulation is exactly 2p.

The spherical sine rule is:

sinA
sin a

¼ sinB
sin b

¼ sinC
sin c

: ð1Þ

and the spherical cosine rule is:

cosA ¼ � cosB cosC þ sinB sinC cos a;

cosB ¼ � cosC cosAþ sinC sinA cos b;

cosC ¼ � cosA cosBþ sinA sinB cos c:

ð2Þ

3. Conditions for Spherical Triangulation

Given a closed manifold genus-0 triangle graph (connectivity) of n vertices,
embedded on the sphere, this connectivity forms a valid spherical triangulation iff
a set of conditions on the spherical angles and excesses of the embedding hold. By
Euler’s theorem, the triangulation has t ¼ 2n)4 triangles, and m ¼ 3n)6 edges.

Following Sheffer and de Sturler [9] we denote the spherical angles of the triangles
as aj

i , i ¼ 1,…,t, j ¼ 0,1,2 in counter-clockwise order around the face normal.
We denote the spherical excess of each triangle as ei: i ¼ 1,…,t. Furthermore,
denote by Vj(k) (j ¼ 0,1,2) the lists of indices of the triangles whose aj angles are
incident on the kth vertex, by I1(l) and I2(l) the indices of the two triangles
incident on the lth edge, and by J1(l) and J2(l) the indices of the angles opposite
the edge in those two triangles. Now the following 8t+n+m conditions ((3)–(8))
on 4t variables (aij and ei) are necessary and sufficient for a valid spherical
triangulation:

aj
i > 0 i ¼ 1; . . . ; t; j ¼ 0; 1; 2 ð3Þ

ei > 0 i ¼ 1; . . . ; t ð4Þ
ei < 2aj

i i ¼ 1; . . . ; t; j ¼ 0; 1; 2 ð5Þ
a0i þ a1i þ a2i � ei � p ¼ 0 i ¼ 1; . . . ; t ð6Þ
X2

j¼0

X

i2VjðkÞ
aj

i � 2p ¼ 0 k ¼ 1; . . . ; n: ð7Þ
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Conditions (3)–(4) and (6)–(7) are identical to those of the planar case [9] with the
addition of the angular excess for each triangle. Condition (5) results from the
relationship between spherical angles and area on the sphere. The sine condition
described in [9] is replaced by a set of conditions (8) derived from the cosine rule
(2). In the plane this rule follows from the fact that the sum of angles in a triangle
is p. On the sphere this is not the case, so we must relate the angles within each
pair of triangles incident on a common edge. The condition for each such edge is

cosðaJ1ðlÞ
I1ðlÞ Þ þ cosðaJ1ðlÞ�1

I1ðlÞ Þ cosða
J1ðlÞþ1
I1ðlÞ Þ

sinðaJ1ðlÞ�1
I1ðlÞ Þ sinða

J1ðlÞþ1
I1ðlÞ Þ

¼
cosðaJ2ðlÞ

I2ðlÞ Þ þ cosðaJ2ðlÞ�1
I2ðlÞ Þ cosða

J2ðlÞþ1
I2ðlÞ Þ

sinðaJ2ðlÞ�1
I2ðlÞ Þ sinða

J2ðlÞþ1
I2ðlÞ Þ

l ¼ 1; . . . ;m:

ð8Þ

These conditions are necessary and sufficient to guarantee a spherical
triangulation. The necessity is obvious following the proof in [9]. To prove the
sufficiency, we first prove that the triangles incident on every vertex locally form a
valid ‘‘ring’’ of triangles, namely, all triangles have the same orientation and the
edges coincide in turn, as in Fig. 2a.

The proof proceeds in the following stages:

1. Any triplet of angles, and an excess which satisfy (3)–(6), form a spherical
triangle.

2. Any triplet of angles, an excess, and arc length which satisfy (3)–(8) form a
spherical triangle.

3. Any pair of triangles sharing a common edge lie on the sphere, i.e. they agree
on the length of the common edge. This follows from (8).

4. The spherical triangles whose angles and excesses satisfy (3)–(8) and have one
common vertex form a valid ring of spherical triangles around that vertex. The
sine rule condition necessary in [9] is replaced by (8), since if each pair of
triangles sharing an edge agrees on its length, then so does an entire ring.

It is then straightforward to see that if the embedding is locally valid everywhere,
then it must also be globally valid.

(a) (b) (c)

Fig. 2. Local embeddings. (a) Valid. (b), (c) Invalid
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Clearly, many different spherical triangulations exist for a given connectivity
graph. This can also be seen from the conditions (3)–(8), since the fact that there
are 2n ) 6 more variables than equalities implies that there are probably some
degrees of freedom in the solution. Hence we can attempt to ‘‘mould’’ the
triangulation by specifying target values for the spherical triangle angles and
areas. Given these target values, the problem becomes a constrained minimization
problem, where we minimize the least-squares distance of the solution values from
their target values (bj

i and e0i):

F ðaÞ ¼
Xt

i¼1

X2

j¼0
ðaj

i � bj
i Þ
2 þ

Xt

i¼1
ðei � e0iÞ

2: ð9Þ

This cost function allows us to control the shape of the parameterization by
optimizing spherical angle and/or area values. For example, if the input con-
nectivity originates in a 3D model, using the (normalized) 3D areas of the model
triangles as targets will aim at area preserving parameterization. Similarly, using
the original 3D angles as targets will aim at conformal mapping. None of the
methods reviewed in the introduction permits such control of parameterization
properties. By solving the constrained minimization problem defined above we
provide a parameterization method which is both robust and provides user
control of the mapping properties.

4. Solving the System

To minimize (9) under constraints (3)–(8), an optimizer for non-linear constrained
systems is required. We used the fmincon function of MATLAB, which converts
the constrained minimization problem into unconstrained minimization using
Lagrange multipliers. The unconstrained problem is then solved using a quasi-
Newton method combined with line-search. This method requires the gradients of
both the cost function and the constraints. Both were computed analytically and
supplied to the solver. To speed up the solution we supply an initial guess close to
the target, by solving the minimization subject only to the linear constraints
(3)–(7). This is a standard linear least squares problem. To further accelerate the
solution, we avoid introducing the inequality constraints (3)–(5) unless necessary,
since they significantly slow down the solver. Since the solution space is not empty
and the initial guess is all positive, those constraints are unlikely to be actually
needed. Hence we solve the system first with only equality constraints. If the result
contains negative angles or excesses, we introduce the inequality constraints and
repeat the solution.

5. Embedding on the Sphere

Once the spherical angles have been determined, it is possible to embed the
triangle vertices on the sphere by a recursive preorder traversal of the triangu-
lation connectivity structure as follows. The spherical cosine rule (2) defines the
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lengths of the edges of each spherical triangle as a function of the angles. Starting
from an arbitrary triangle, we compute the length a of its first edge from the
angles

a ¼ arc cos
cosAþ cosB cosC

sinB sinC

� �
: ð10Þ

We then embed its first vertex at an arbitrary location v1 and embed the second
vertex at a location v2 at spherical distance a on the sphere (at an arbitrary
orientation) to form its first edge.

The cosine rule (2) is applied again to similarly obtain the other two spherical edge
lengths:

b ¼ arc cos
cosBþ cosA cosC

sinA sinC

� �
;

c ¼ arc cos
cosC þ cosA cosB

sinA sinB

� �
:

ð11Þ

Using the planar sine rule, the Euclidean distances between the new vertex v3 and
the two already positioned are:

lb ¼ 2 sinðb=2Þ;
lc ¼ 2 sinðc=2Þ:

The third vertex coordinates are found by solving for the intersection of three
spheres, one of which is the unit sphere, the other two are centered at v1 and v2
with radii lb and lc, respectively. This is a system of three quadratic equations,
which may be solved analytically giving two solutions. The correct of the two is
chosen to be that closest to the fourth vertex of a parallelogram whose other three
vertices form the base triangle.

This forms the second and third edges of the first triangle. Once the triangle is
embedded on the sphere, recursively embed the two new triangles incident on the
second and third edges (starting by applying (11) to the spherical angles of the
new triangle). The embedding is complete once all triangles have been traversed,
and is unique up to global rotation on the sphere.

Similarly to the 2D case [9] the unfolding can accumulate a numerical error, which
increases with the number of triangles to unfold. We are examining ways to
reduce this error. One way could be to generate more than one unfolding sequence
and then use an averaging procedure to moderate the error.

6. Some Examples

Figure 3 shows some spherical embeddings of a cylindrical mesh (Fig. 3(a)), as
obtained from our algorithm, using a variety of target spherical angles and areas.
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Figure 3b is the output from Alexa’s algorithm [1], which aims for equal angles.
When our algorithm is told to aim for this effect too, we get a very similar result
(Fig. 3(c)). When equal areas are required, skinny triangles start to appear
(Fig. 3(d)). When the embedding is required to reflect the geometric properties of
the original cylindrical mesh, the similarities are evident. In Fig. 3(e), where the
original angles are targeted, the black triangle stays right-angled. In Fig 2(f),
where the original areas are targeted, the areas of the triangles corresponding to
those on the two bases are much larger than the others.

7. Discussion and Conclusion

We have formulated a set of necessary and sufficient conditions for the spherical
angles of a triangulation to form a valid spherical triangulation. We use this to
generate spherical embeddings with desirable properties by the use of an appro-
priate cost function.

The conditions we formulated are not minimal, in the sense that there exists some
redundancy in them. Some of them may be eliminated without changing the set of
solutions. We are not yet sure how to do this.

(a) (b) (c)

(f)(e)(d)

Fig. 3. Spherical embeddings. (a) Cylindermesh. (b) Embedding ofAlexa [1]. (c) Our embedding aiming
for equal angles. (d) Our embedding aiming for equal areas. (e) Our embedding aiming for the original
angles. (f) Our embedding aiming for the original areas. The black triangles correspond in each of the

meshes
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The numerical procedure we use today to solve the system is quite slow and not
practical for meshes containing more than a few hundred vertices. The main
challenge we currently face is finding an efficient numerical solution for mid-scale
to large meshes. We expect a combination of better tuned numerical techniques
combined with the use of mesh hierarchies to significantly accelerate the solution.
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