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Abstract. The curve-skeleton of a 3D object is an abstract geometrical and topological representation of its 3D
shape. It maps the spatial relation of geometrically meaningful parts to a graph structure. Each arc of this graph
represents a part of the object with roughly constant diameter or thickness, and approximates its centerline. This
makes the curve-skeleton suitable to describe and handle articulated objects such as characters for animation. We
present an algorithm to extract such a skeleton on-the-fly, both from point clouds and polygonal meshes. The
algorithm is based on a deformable model evolution that captures the object’s volumetric shape. The deformable
model involves multiple competing fronts which evolve inside the object in a coarse-to-fine manner. We first
track these fronts’ centers, and then merge and filter the resulting arcs to obtain a curve-skeleton of the object.
The process inherits the robustness of the reconstruction technique, being able to cope with noisy input, intricate
geometry and complex topology. It creates a natural segmentation of the object and computes a center curve for
each segment while maintaining a full correspondence between the skeleton and the boundary of the object.
Keywords: 3D curve-skeleton. deformable models. skinning.

Figure 1: On-the-fly curve-skeleton computation for a real scan of a woman model. Even in the presence large missing data (left),
the deformable model accurately interprets the shape to generate a thin curve skeleton with a meaningful segmentation.

1 Introduction
Computer graphics applications handle huge models

representing complex 3D objects. The most common rep-
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resentations for such objects are boundary meshes or point-
sets. However, applications such as editing, animation, mor-
phing or shape matching often need a higher level under-
standing of the shape and its structure. Such an understand-
ing can be conveyed through the use of an inner curve-
skeleton for the object. This geometrical and topological
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abstraction represents the 3D shape on an object, by map-
ping the relation of geometrically meaningful parts to a
graph structure with univariate arcs. Each arc represents one
of these meaningful parts by its centerline, assuming it has
roughly constant diameter around it. The curve-skeleton is
both concise and expressive enough to represent an abstrac-
tion of the 3D object. Moreover, it is easier to handle than
the medial axis since it avoids surface elements, while its
topological structure still represents the shape efficiently.

The main difficulty in computing curve-skeletons for
complex objects is to correctly interpret their shape. Ob-
jects may include complex local topology, large missing
parts and noise, and this requires a robust and accurate inter-
pretation mechanism. In this work we present an algorithm
to extract the curve skeleton from 3D objects represented as
boundary meshes as well as point-sets. The algorithm relies
on a surface reconstruction technique that can handle both
meshes and point-sets surfaces, while robustly interpreting
their shape.

The key idea is to track the reconstruction of a given ob-
ject using a deformable model similar to [Sharf et al. 2006].
It uses competing fronts that evolve inside the object until
they achieve a sufficient approximation of the shape. Since
the deformable model reconstructs the original object, we
compute the center curve of this model to define the center
skeleton of the object itself. To do so, during the model de-
formation we follow the fronts’ centers, generating a first
approximation for the curves of the skeleton. These are fil-
tered on-the-fly according to their geometry, their branch-
ing structure and the front competition performance, ob-
taining the final curve-skeleton (see Figure 1).

Furthermore, using the reconstructed model we can
maintain a full correspondence between the curve-skeleton
and the object boundary. For curve-skeleton of point sets,
this mapping is explicit on the reconstructed mesh, while
for 3D meshes it is defined by a simple closest-point projec-
tion. Such curve-skeleton computation inherits the robust-
ness of the deformable model technique, while performing
on-the-fly during the reconstruction process.

2 Related Works
Techniques to compute curve-skeletons of 3D mod-

els can be classified into three categories, according
to [Cornea et al. 2005]: voxel topology, computational ge-
ometry and continuous implicit. Some of the most relevant
works of each category are summarized next. We refer the
reader to [Cornea et al. 2005] for a more complete survey.

Voxel topology. The computation of the curve-skeleton
can be derived from computer vision techniques,
such as topological thinning [Borgefors et al. 1999,
Gagvani and Silver 1999]. These methods iteratively re-
move simple points from the boundary of a voxel set. They
differ mainly by the definition of these simple points.

Geometry. Curve-skeleton is a natural structure for
2D shapes, where it is usually computed as a sub-
set of the medial axis [Shaked and Bruckstein 1998].
For discrete shapes, this medial axis can be extracted
from the Voronoı̈ diagram of some points on or near
the shape [Dey and Zhao 2004, Attali et al. 2007].
However, for 3D shapes, the medial axis may con-
tain surface elements. The curve skeleton can be ex-
tracted from these 2D elements using their own medial
axis [Attali and Montanvert 1997, Amenta et al. 2001], a
distance field [Wu et al. 2003] or a more refined geodesic
field [Dey and Sun 2006]. This set of techniques allows a
definition of a curve-skeleton, but requires some delicate
sampling condition to reach the correct interpretation. Our
technique correctly interprets the data in various situations
including both noise and large missing pieces.

Implicit. Another set of techniques compute the
curve-skeleton from the ridge points of a 3D
field [Schirmacher et al. 1998, Palagyi and Kuba 1999,
Bitter et al. 2001]. These techniques generally de-
tect and track the ridge points using an implicit
method such as fast marching [Zhou and Toga 1999,
Hassouna and Farag 2005, Cornea et al. 2005*] or active
contours [Golland and Grimson 2000]. This uniform inte-
gration and the complex geometry tracking used in these
work typically assume that the shape thickness and com-
plexity decreases during tracking, which may lead to shape
misinterpretation in complex topology and noisy case.
Moreover, this implicit process does not maintain the cor-
respondence between the curve-skeleton and the shape. Our
technique shares some similarity with these approaches.
However, we do not extract the curve skeleton directly from
a field, but rather interpret it in a coarse-to-fine manner
using explicit evolving fronts.

Figure 2: The deformable model with competing fronts. The
fronts move in a coarse to fine manner, and may split to form
sub-fronts, inducing the branching structure of our skeleton.
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Figure 3: Tracking the center of fronts during reconstruction defines the inner curve-skeleton of a multi-torus object. The
topological events on the deformable model are mapped as loops in the curve-skeleton.

3 Curve-skeleton by Reconstruction
Complex local topology and large missing parts of an

object require a robust and accurate interpretation of its
shape. Following this observation, our technique for curve-
skeleton extraction uses strategies similar to the reconstruc-
tion method of [Sharf et al. 2006]. In particular, we utilize
a deformable model to interpret the shape. We first extract
from the deformation of the model a set of center curves.
We filter this set during the evolution to generate a clean
skeleton, while maintaining a full mapping between the
model and the skeleton. This whole process is performed
on-the-fly using inexpensive operations (see Algorithm 1
for pseudo-code of the whole process). In particular, the
front center’s tracking relies on an inexpensive marking
technique, avoiding delicate geometry calculus or discrete
integration.

Algorithm 1 On-the-fly curve-skeleton.
1: while evolving fronts do
2: counter + +
3: for all evolving front f do
4: create skeleton node sf from f
5: sf .arcid← (counter, f)
6: for all vertex v in front f do
7: (old c, old f)← v.arcid
8: NewArcs+ ←

Arc[(old c, old f) , (counter, f)]
9: v.arcid← (counter, f)

10: end for
11: end for
12: filter(NewArcs)
13: remap vertices to skeleton nodes
14: end while

The deformable model. Similarly to [Sharf et al. 2006],
our deformable model includes multiple evolving fronts
that reconstruct the fine features of the shape only after the
coarse ones are done. This coarse-to-fine interpretation of

the shape is achieved through a competition mechanism be-
tween the fronts on an explicit, dynamic mesh representa-
tion. Each front is a connected set of mesh vertices, which
moves in outward normal direction of the mesh (see Fig-
ure 2). This movement is proportional to the distance to
the surface, and constrained by a Laplacian system that en-
forces the smoothness of the mesh. This system is weighted
in order to control the tension of the mesh. A small weight
provides more elasticity, allowing it to evolve fast, while a
large tension slows its evolution. The competition mecha-
nism sets the tension of a front according to its geometry
and previous evolutions.

The vertices move while active, and are deactivated
when they are close enough to the target shape. Deactivat-
ing vertices eventually disconnects a front. In such case, the
front is split into connected sub-fronts, and each sub-front
continues to evolve separately. Collisions between fronts
are prevented during the evolution. At the end of the de-
formation, fronts collisions are interpreted as topological
events and are applied as handle attachments by connect-
ing the fronts that still collide. Even for complex topology
(see Figure 3), this reconstruction strategy leads to a robust
high level interpretation of the shape which we utilize for
our skeleton extraction

Skeleton nodes computation. We use the same technique
for both point-sets and meshes. The evolving fronts re-
construction algorithm is used to interpret the shape from
coarse to fine, while we follow the centers of the fronts to
define the centerline of the shape. Each front evolution is
tracked separately. At each iteration we insert a new skele-
ton node for every front at the barycenter of its mesh ver-
tices. For instance in Figure 5, the whole palm is conquered
with a single front, whose center does not move away from
the hand’s center.

Model to skeleton correspondence. During the evolution,
both the skeleton node (front barycenter) and the mesh
vertices of the fronts are assigned an arc identifier, which
is a pair composed of an iteration counter and the front
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Figure 4: Filtering of the curve-skeleton of a dragon mesh (left) from an initial curve set (center left). Filtering with loose (center
right) or tight (right) threshold removes the skeleton’s noise (in the dragon’s front leg) and fine details (spine’s bumps), while
preserving the main shape elements.

identifier (see Algorithm 1: lines 5 and 9). This identifier
links the vertex directly to the curve-skeleton nodes having
the same arc identifier. When a vertex is deactivated during
the model deformation, it keeps its last valid arc identifier.
Since the model guarantees a close reconstruction of the
original shape, we simply project the model onto the shape
to obtain the shape-to-skeleton correspondence (Figure 5).

Curve-skeleton structure. The skeleton nodes are con-
nected according to the fronts’ evolution that generates an
initial curve set (see Figure 4). We compute these connec-
tions based on an inexpensive marking technique using arc
identifiers in a union-find structure. At each iteration, the
arc identifiers of some front vertices are updated. Skele-
ton nodes corresponding to the old and new arc identifiers
are connected (see Algorithm 1: lines 7-9). Straight connec-
tions without branches belong to the same curve. Note that
the front identifier does not need to be coherent from one
iteration to the next one, since the vertices of the mesh both
define the movement and the skeleton connections.

Figure 5: Color mapping of the evolution tension parame-
ter (left). The initial skeleton structure (left) is filtered us-
ing the evolution tension parameter (center left), simplifying
the skeleton (center right) while preserving the skeleton/model
correspondence and segmentation (right).

Branching and topological events. During the evolution,
fronts eventually split and merge. Whenever a front splits,
we generate a branching node for the corresponding arc
and continue to track the different sub-fronts separately. For
example on the hand of Figure 5, the splitting of the initial
front at entering the fingers generates a branch for each
finger and separates a sub-front for the wrist. Fronts can
merge either due to topological events or to the dynamic
remeshing of the deformable model. When fronts merge
due to a topological events, we connect the two arcs to
close a loop in the curve graph which ensures that the
skeleton has the same homotopy as the deformable model
(see Figure 3). However, for local merging of close fronts
we do not link the two curve branches together, preserving
the correct topology of the skeleton. Instead, we merge the
two branches into the branch of smallest curvature.

Filtering. The final curve-skeleton is a subset of the ini-
tial curve set. Nevertheless, very similar to the medial axis,
it can become very noisy and contain spurious branching
especially near the object’s boundary. Hence, we allow to
simplify the initial curve graph connectivity by pruning and
merging; Depending on a user specified parameter, we re-
move from the curve skeleton arcs whose length or corre-
sponding front tension are smaller than the given threshold.
Removing end arcs is a simple pruning operation, while re-
moving intermediate arcs merge branchings. In both cases,
we remap corresponding vertices to the new nodes using
the union-find structure. Next, the tree (or graph with the
topological event’s loop) geometry can be further smoothed
to produce our curve-skeleton (see Figure 5) using a spline
filter but keeping the branching nodes fixed. Note that both
the filtered curve-skeleton and the model-skeleton mapping
can be computed on-the-fly during the evolution or eventu-
ally at the end of the process, without complex geometrical
calculii.

4 Results
We have tested our algorithms on various inputs ranging

from manifold meshes (Figures 7 and 6) to noisy points-
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5 On-the-fly curve-skeletons

Figure 6: Comparing our technique on a horse model. From left to right: The horse mesh. The curve-skeleton computed using
the distance field of [Gagvani and Silver 1999] (16 seconds). Using the topological thinning method of [Palagyi and Kuba 1999] (92
seconds). Using the potential field method of [Cornea et al. 2005*] (16 minutes). Our result, computed in 3.1 seconds.

sets with holes (Figure 1) including objects with complex
topology (Figures 3 and 9) and geometry (Figure 4). Ta-
ble 1 gives some timing results for the computation. We also
demonstrate how using our method, the skeleton can assist
in interpreting the shape and structure of an object. Fig-
ures 5 and 8 show a mapping of the skeleton curves to the
boundary mesh using the skeleton mapping to the boundary.
They also show how the skeleton segments the shape into
meaningful parts. This method can also support a hierarchi-
cal decomposition following major and minor skeleton arcs
Figure 4. In the illustrations of this work, the curve-skeleton
is drawn using cylinders for visualization purposes.

We compare our method with implicit techniques
using the code provided in [Cornea et al. 2005]. In
Figure 6, we use the same volumetric field for guid-
ing our model and for the other technique. The dis-
tance field of [Gagvani and Silver 1999] performs
in 16 seconds, the topological thinning method
of [Palagyi and Kuba 1999] in 92 seconds and the po-
tential field method of [Cornea et al. 2005*] in 16 minutes,
while our method last 3.1 seconds.

Figure 7: The result of our algorithm is a thin, 1D curve-
skeleton even in degenerated cases such as a 3D box. When the
initial model is not exactly centered (left), the skeleton quickly
recovers the symmetry of the input (center). The filtering
preserves the symmetry (right).

Our method guarantees the following properties (stated
in [Cornea et al. 2005] as curve-skeleton qualitative crite-
ria); Homotopic: Since we close a loop in the skeleton for

each topological event of the deformable model, the curve-
skeleton has the same homotopy as the deformable model
(Figures 3 and 9). Thin: As opposed to many topological
thinning and distance transform methods, our skeleton is
computed directly as a set of 1D curves, leading to a thin
skeleton (Figure 7). Robust component-wise differentiat-
ing: The deformable model performs a robust shape inter-
pretation of the data (Figures 3 and 9), which generates
a meaningful decomposition of both the surface and the
curve-skeleton (Figures 5 and 8). Efficient: Our technique
performs on-the-fly in only a few seconds and is among the
fastest curve-skeleton extraction algorithms (see Table 1).
Hierarchic: As many of the distance field techniques, we
use a filter to remove spurious branches. This filter can be
tuned to generate a hierarchical skeleton (Figure 4).

Nevertheless our method does not fully guarantee the
following two criteria: direct visibility of the shape from
the skeleton and centeredness. The centeredness property is
observed but not guaranteed in our method since we merely
use a tracking heuristic for the centers.

Conclusions

We propose an efficient and robust method to extract
a curve-skeleton from either meshes or point-set objects.
This work illustrates the similarity of shape interpreta-
tion for surface reconstruction and curve-skeleton computa-
tion. In both problems, correct interpretation and segmen-
tation must be performed to achieve high quality results.
Our method uses a deformable model borrowed from re-
construction techniques to robustly interpret the shape and
topology of the target object. The curve skeleton is then
computed on-the-fly during the model deformation. Its ro-
bustness and speed make it attractive for many applications
such as animation and matching, and we plan to utilize it to
such problems in the future.
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Figure 8: The front tension parameter from the skeleton to the boundary can distinguish between coarse and fine parts of the
object (color-mapped on left figures). The curve skeleton can also be used to interpret the shape: the different branches of the
skeleton impose a meaningful segmentation (color-mapped on right figures).

References
[Amenta et al. 2001] N. Amenta, S. Choi and R. Kolluri.

The Power Crust, unions of balls, and the medial axis
transform. Computational Geometry: Theory and Appli-
cations, 19(2–3):127–153, 2001.

[Attali et al. 2007] D. Attali, J.-D. Boissonnat and
H. Edelsbrunner. Stability and computation of medial
axes. to appear.

[Attali and Montanvert 1997] D. Attali and A. Montanvert.
Computing and simplifying 2D and 3D skeletons. Comp.
Vision and Image Understanding, 67(3):156–169, 1997.

[Bitter et al. 2001] I. Bitter, A. Kaufman and M. Sato.
Penalized-distance volumetric skeleton algorithm.
Transactions on Visualization and Computer Graphics,
7(3):195–206, 2001.

[Borgefors et al. 1999] G. Borgefors, I. Nystrom and
G. DiBaja. Computing skeletons in three dimensions.
Pattern Recognition, 32(7):1225–1236, 1999.

[Cornea et al. 2005] N. Cornea, D. Silver, X. Yuan and
R. Balasubramanian. Curve-skeleton applications. In
Visualization, pages 95–102. IEEE, 2005.

[Cornea et al. 2005*] N. Cornea, D. Silver, X. Yuan and
R. Balasubramanian. Computing hierarchical curve-
skeletons of 3d objects. The Visual Computer,
21(11):945–955, 2005.

[Dey and Zhao 2004] T. K. Dey and W. Zhao. Approxi-
mate medial axis as a Voronoı̈ subcomplex. Computer-
Aided Design, 36(2):195–202, 2004. Solid Modeling
and Applications ’04.

[Dey and Sun 2006] T. K. Dey and J. Sun. Defining and
computing curve-skeletons with medial geodesic func-

Preprint MAT. 03/07, communicated on February 10th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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Deformation Skeleton Filtering
foot 0.7 secs. 0.4 secs. 0.1 secs.
woman 4.9 secs. 3.5 secs. 0.4 secs.
horse 1.7 secs. 1.2 secs. 0.2 secs.
multi-torus 1.0 secs. 0.6 secs. 0.3 secs.
hand 0.5 secs. 0.1 secs. 0.2 secs.
CAD 1.9 secs. 1.2 secs. 0.1 secs.
dragon 8.6 secs. 6.1 secs. 2.3 secs.

Table 1: Computation time on a Pentium IV 1GHz / 1Gb.

Figure 9: Skeleton extraction for a complex CAD mesh.
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