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NURBS-Based Galerkin Method and  

Application to Skeletal Muscle Modeling 

Abstract 

Non-Uniform Rational B-spline (NURBS) is often used to 
construct the free-form boundary representation of three-
dimensional objects. In this paper, we propose a method for 
mechanical analysis for deformable bodies by combining NURBS 
geometric representation and the Galerkin method. The NURBS 
surface bounding a 3D body is extended to a trivariate NURBS 
solid by adding another parametric domain represented by 
additional control points. The displacement field of the body is 
constructed using the NURBS shape representation with the 
control point being the generalized coordinates. The interpolated 
displacement field is directly used to facilitate finite element 
formulation. In this manner, traditional FEM meshing is not 
required. In this work, the NURBS-FEM is applied to skeletal 
muscle modeling. Muscle is modeled as anisotropic, active 
hyperelastic solids. The directions of the contractile fibers can be 
uniform or along the tangent direction of NURBS curves. Typical 
contractive motions of isolated muscle are simulated.  

Categories and Subject Descriptors: I.3.5 [Computer 

Graphics] Computational Geometry and Object Modeling 

 

Keywords: NURBS solid, finite element method, physically 
based deformable body modeling.  

 

1   Introduction 

The aim of this work is to propose a method suitable for 
biomechanical modeling of human skeletal muscles in an 
interactive simulation environment. The direct application is 
digital human modeling, where the muscle analysis interacts with 
other modules such as skeletal motion prediction, comfort 
assessment, etc. The nature of the problem requires that the model 
to be physically realistic, and efficient to allow fast computation. 
By “physically realistic”, we mean that the shape and mechanical 
property of the muscle are accurately represented, and stress and 
deformation are predicted using the laws of mechanics. The 
standard finite element method could be used for biomechanical 

analysis of muscles; however, a full-scale FEM muscle model 
could result in large numbers of degree-of-freedoms and could be 
in some sense unnecessarily complicated. The challenge therefore 
is to balance the needs of physical realism and computational 
efficiency. Indeed, the same issue is frequently encountered in 
many other applications involving physical modeling and 
visualization of deformable bodies. In this paper, we propose a 
NURBS-based Galerkin method in which the muscle geometry is 
parameterized by NURBS primitives with reasonable small 
numbers of degree-of-freedoms, and the free-form representation 
is directly used to facilitate mechanical analysis. The method by 
itself is sufficiently general, and applicable to general deformable 
bodies. Being essentially a finite element method, the formulation 
retains most the desirable properties of the latter. In particular, the 
treatment of material constitutive model is well separated from 
other formulation aspect, thus allowing for realistic material 
models being easily used in the analysis.   

Over the past decades, physically based deformable modeling has 
been an interest for researchers in computer graphics and other 
technical fields. Several major methods have been proposed 
[Gibson and Mirtich 1997]: mass-spring models, finite element 
methods, finite volume models [Teran et al. 2003] and other low 
degree approximated continuum models. As an example of 
deformable objects, muscle is modeled with various approaches. 
Porcher-Nedel and Thalmann [1998] used an action line to 
represent the force produced by the muscle, and a surface mesh of 
muscle as a mass-spring network that can be deformed under 
applied force. Ng-Thow-Hing [2000; 2002] used the trivariate B-
spline solid to model individual muscle in animals and humans. 
Muscular deformation is also modeled by the embedding a mass-
spring-damper network defined in the B-spline solid. The mass-
spring model is simple and fast, but less accurate. A recent trend 
is to use FEM to simulate muscle behavior based on the realistic 
muscle shape and pointwise stress-strain relations. Chen and 
Zeltzer [1992] developed a finite element model of skeletal 
muscle to simulate muscle forces with Zajac’s [1986; 1989] 
dimensionless biomechanical model of muscle. The low DOF 
prismatic bounding box of muscle shape is used as the mesh for 
finite element simulation. The resulted muscle deformations were 
visualized by free-form deformation [Sederberg and Parry 1986] 
defined by the mesh. Teran et al. [2003] used finite volume 
method to perform rigorous large deformation analysis, where 
tetrahedral meshes of the biceps and triceps are generated form 
Visible Human Data Set [U.S. National Library of Medicine 
1994].  

There are essentially two issues in deformable body modeling: 
how to parameterize a body and how to bring in physical behavior 
to the system. B-Splines and NURBS have been widely used to 
parameterize geometric objects [de Boor 2001; Piegl and Tiller 
1997]. Many researchers have explored ways to couple the 
geometric representation to physical modeling. One of the 
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seminal works is the Dynamic NURBS (D-NURBS) method 
developed by Terzopoulos and Qin [1994]. In D-NURBS, the 
NURBS control points and the weights are used as generalized 
coordinates, and the dynamical equations are derived from the 
Hamiltonian principle. The deformation of a NURBS body is 
described by displacing the control points and alerting the 
weights. Hollig [2003] developed finite element formulations 
using weighted extended B-splines as basis functions to solve 
boundary vale problems. The FEM formulation utilizes a regular 
grid embedding the domain. To handle essential boundary 
condition, the B-spline basis is multiplied with weight function 
that vanishes on the boundary. de Boor [2001] used B-splines to 
solve boundary value problems by collocation. From the 
standpoint of computational mechanics, the B-splines finite 
element falls into the category of the meshfree methods 
[Belytschko et al. 1996; Li and Liu 2002; Liu et al. 1996], in 
which globally smooth basis functions constructed from 
piecewise least square fitting or other local smoothing schemes 
are used in place of the classical finite element interpolation 
functions.   

The present contribution is built upon the following existing 
ideas: representing a 3D body by trivariate NURBS solids 
[Hoschek et al. 1993; Ma et al. 2001; Ng-Thow-Hing and Fiume 
2002] and in particular, describing deformation of the body by 
moving the control points [Sederberg and Parry 1986]; deriving 
the discrete governing equation directly in terms of NURBS 
control points. Specifically, the NURBS solid is defined by 
augmenting the surface representations that typically comes with 
solid modeling with a third parametric direction that extends to 
the interior of the body [Ng-Thow-Hing and Fiume 2002]. The 
resulting representation is directly used in the weak form of the 
equilibrium equation, resulting in a set of nonlinear algebraic 
equations for the position of the control points. The method 
differs from the B-spline finite element method [Hollig 2003] in 
that both the deformed and undeformed bodies are represented by 
NURBS, and hence, the formulation is essentially an 
isoparametric finite element with the NURBS function being the 
basis functions. The formulation bears some similarities with the 
meshless method [Belytschko et al. 1996; Li and Liu 2002; Liu et 
al. 1996] in that the shape functions do not have the δ-property 
and hence, the “nodal” parameters, namely the control positions, 
are not the nodal values of the displacements. The NURBS 
control points are generalized nodes not necessarily lying in the 
domain. Nevertheless, they carry a clear geometric connotation 
since they directly determine the geometry of the body. Unlike 
meshfree method, there is an underlying mesh in the parametric 
space which can be readily used for numerical integration. 

The method is ideally suited to fast simulation of muscle 
response. The major muscles in human limbs are bodies bounded 
by smooth surfaces, and the surface shapes can be obtained from 
medical imaging data, e.g. the Visible Human Data Set [U.S. 
National Library of Medicine 1994]. The bounding surface of 
muscle can be readily converted into NURBS form, and hence, 
the whole body can be parameterized by reasonably small 
numbers of degree-of-freedoms. On the other hand, muscle’s 
mechanical response is extremely complicated. Over 
simplification of biomechanical aspect in a muscle model could 
lead to unacceptable error. The proposed formulation, like any 
Galerkin based method, allows one to implement highly realistic 
constitutive equations for muscles with minimal additional efforts. 
In this work, muscles are modeled as hyperelastic, anisotropic 
material embedded with active contractile fibers.  

The paper is organized as follows. Section 2 contains a brief 
review of trivariate NURBS solids and how a solid model can be 
extended from NURBS surface. In section 3, the NURBS-FEM 
formulation is discussed in the context of 3D nonlinear elasticity. 
Section 4 provides an account of the muscle model used in the 
paper. Examples of numerical simulation of muscle motion are 
presented in Section 5. 

 

2    Trivariate NURBS Solid 

2.1    Trivariate NURBS Solids 

A NURBS solid representation is the generalization of NURBS 
representation of curves and surfaces. It defines not only the 
surface boundary of an object but also its interior. Within this 
approach the position of a generic point in the solid is defined by 
[Hoschek et al. 1993; Ma et al. 2001] 
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where 
, ,i j kP are the position of the control points, 

, ,i j kW are the 
weights associated with the control points, and

, , ,i p j q k rN N N are the 
B-spline basis functions. The parametric variables { , , }u v w are 
defined on three non-decreasing sets of knots 
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The same applies to the basis functions for parameter v andw . 
The products 

, , ,

( ) ( ) ( )i p j q k rN u N v N w  are the trivarite tensor-
product b-spline basis functions defined by the knot sequences, 
and , ,p q r are the orders of the b-spline in each of the 
parametric variables.  

Introducing the piecewise rational shape functions 
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the NURBS solid representation (2.1) can also be  written as 
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Some important properties of the functions
, ,

( , , )i j kR u v w , which 
are the cornerstone for the success of Galerkin formulation, are 
summarized below. 

1. (Partition of unity): The shape functions 
, ,

( , , )i j kR u v w satisfy 
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3. In any given domain 
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there are at most ( 1)( 1)( 1)p q r+ + +  shape functions which are 
nonzero. In particular, the shape function 
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for 
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Property 1 ensures that the isoparametric representation used in 
this work is affine invariant, namely, an affine transformation is 
applied to the volume by applying to the control points. In other 
words, a linear displacement field can be exactly reproduced. This 
is a necessary requirement for the convergence of the numerical 
solution. Property 2 implies that the ensuing finite element 
equations are sparse.   

2.2   Constructing NURBS Solid from Surface 

In computer graphics, a 3D solid body is typically represented by 
its bounding surfaces, given for example by tensor-product 
NURBS surface 
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However, the boundary surface does not contain information 
about the interior the body. A NURBS solid represented by 
equation (2.2) can be obtained by adding another parametric 
domain w  and corresponding new control points. Some of 
commonly used method for solids construction are described in 
[Hoschek et al. 1993; Ma et al. 2001]. A particular 
parameterization by Ng-Thow-Hing and Fiume [2002] for a 
bounded body, where the third parameter represents the radius 
direction in the intuitive sense, is used in this paper. In general, 
the methods used in surface construction, such as ruling, 
sweeping and swing, can be applied to solid model construction. 
In addition, a method called shrinking [Ma et al. 2001] has been 
used frequently when dealing with a close or periodic NURBS 
surface. A NURBS solid can be constructed by shrinking a 
surface to a point or a curve. For example, a spheroid is derived 
by shrinking a sphere to its center point, and a cylinder solid is 
obtained by shrinking a cylinder surface to its centerline. The 
concept of shrinking naturally corresponds to the parameterization 
in [Ng-Thow-Hing and Fiume 2002].    

As an example, the 3D muscle belly shape shown in figure 1 was 
obtained by skinning the contour stack extracted from the Visible 
Human Data Set. The surface is then represented by NURBS. In 
general, denser contour stack will be used to reconstruct the 
muscle surface in order to capture better anatomical features. 

The NURBS surface, with 56 control points and cubic order, of 
muscle shape was then extended to NURBS solid by shrinking it 
into the longitudinal center line for the additional parameter 
domain. The NURBS solid, which can be seen in figure 6, with 63 
control points and 189 DOF, was used as initial muscle geometry 
in relaxed state. 

 

 

 

3 NURBS Based GALERKIN Method 

3.1   Isoparametric Mapping 

Equation (2.2) is a geometric mapping that maps the parametric 

domain  
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to the real geometry. For any point ( , , )
p

u v w ∈Ω , there is a 
spatial material point in the NURBS solid corresponding to it. In 
light of this, ( , , )u v w  is called the parametric coordinates of the 
spatial material point. If the Jacobian of (2.2) has the same sign 
throughout the domain, then the mapping is one-to-one, namely 
for every parametric point there is one and only one 
corresponding Cartesian point.   

In figure 2(a), the cubic represents the entire parametric domain, 
denoted by 

p
Ω . The domain is partitioned into a patch of small 

volumes called parametric elements. The partition of the whole 
parametric domain into elements is constructed by the tensor 

 

      

  

                (a)            (b)   (c) 

Figure 1. 3D reconstruction of muscle shape with NURBS: 
(a) Contour of muscle boundary in one slice; (b) Stacks of 

contours represented by NURBS curves; (c) NURBS 
surface by skinning the NURBS contours. 

               

                    (a)           (b) 

Figure 2. Schematics of NURBS mapping: (a) Parametric 
domain (

p
Ω ) and elements ( e

p
Ω );  (b) Spatial domain (Ω ) 

and elements ( e

Ω ). 
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products of knot intervals of ,u v and w . In other words, any 
small domain in the form of the trivariate tensor 
product

0 0 0 0 0 0
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p
Ω , is 

an element in the parametric domain 
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Ω . In the case where 
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non-degenerated. In the present formulation, the parametric 
elements define the underlying mesh where numerical integration 
is carried out.   

From the property 3 (in Section 2.1), it is easy to show that in any 
parametric element  
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influencing on it, namely the corresponding shape 
functions
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standard finite element method, here 
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, ,
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associated with the parametric element are treated as ‘nodes’ and 
‘shape functions’ of this parametric element. In addition, from the 
local support property of shape functions, any control point 
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we represent the coordinates of a generic material point in the 

reference (undeformed) configuration as 
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where 
α

X is the coordinates of control point 
α
P , and the 

summation is over the controls points which has nonzero 
contribution. At the same time, the coordinate of the same 
material point in the current (deformed) configuration is 
constructed by 
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where 
α
x are the coordinates of 

α
P  after deformation. Thus, the 

displacement field, defined as the difference of the current to the 
reference position, is given by 
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where 
ααα

Xxd −= is the displacement of the control point 
α
P , 

and ( , , )u v wd is the displacement of a spatial point whose 
parametric coordinates is ( , , )u v w . 

The central idea of this work is to use (3.1) and (3.2) as 
isoparametric mapping. With the kinematic mapping in hand, the 
basic procedure of isoparametric finite element formulation 
[Belytschko et al. 2002; Zienkiewicz and Taylor 2000] can be 
applied to NURBS solid. In what follows we describe the 
formulation in the context of large deformation analysis. 

3.2   Large Deformation Formulation 

Let
0

Ω be the region that a material body occupies in its reference 
configuration. Let ),( tXxx =  be the motion of the body, 
which maps 

0
Ω  into the region Ω  the body occupies in the 

current configuration. The governing equation for a static 
boundary value problem is expressed as 

 0ρ∇ + =σ b  in domain Ω  

 =d d , on essential (i.e. displacement) boundary 
ϕ

∂Ω  

 ⋅ =σ n t , on natural (i.e. force) boundary 
t

∂Ω  

where σ  is stress tensor, ρ is the current density of the material, 

b is the body force, t  is the boundary traction, and n is the 
normal vector of the natural boundary. In large deformation, the 
fundamental measure of deformation is the deformation gradient  

∂
=
∂

x
F

X

 

The strain at a material point can be described by the right 
Cauchy-Green deformation tensor T

=C F F . The constitutive 
equation for a nonlinear elastic solid is typically given by an 
equation =S S(C) , where S  is the 2nd Piola Kirchhoff stress. If 
the material is hyperelastic, the constitutive equation is specified 
with a strain energy density W W= (C) , such that  

2
dW

d
=S

C

. 

The true (Cauchy) stress σ  can be obtained as 

1 T

J
=σ FSF , 

where J  is the determinant of the deformation gradient. 

As a standard procedure in FEM, the governing equation is cast 
into the weak form   

        
 

t
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Ω Ω ∂Ω

⋅ − ⋅ − ⋅ =∫ ∫ ∫σ η b η t η 0  

where η  is any admissible variation of deformation, and “grad” 
stands for the Eulerian gradient operator. Using the standard finite 
element notation [Belytschko et al. 2002], the discrete balance 
equations emanating from (3.5)  is written in the form 
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B  is the nodal strain-displacement matrix defined by 
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Here, x, y, and z are the coordinates in the current configuration. 
The derivatives, i.e. Eulerian gradient of the shape functions, are 
computed with the aid of the chain rule 
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The Matrix J is the Jacobian of the geometric mapping (3.2). 
Using the geometric mapping (3.1) and (3.2), the deformation 
gradient in (3.4) can be computed according to 

α

α

α
R Grad⊗=∑ xF

 
where

 Grad R
α

is the referential gradient of the shape function, 
computed again using the chain rule, and “⊗ ” stands for the 
standard tensor product. The equation (3.6) is typically solved 
iteratively, for example using the Newton-Ralphson method in 
which a series of linearized equations are solved. The 
displacement increment at 

th
i iteration is computed from 

1 ( )
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i i+
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The derivative in the bracket gives the so-called tangent stiffness 
matrix K .  The tangent stiffness consists of two terms, 

GMjiji
T

dvBRdv KKIDBBK +=+= ∫∫
ΩΩ

  

,, βαβααβ σ  

where the first term is the material tangent 
M

K  arising from 
material non-linearity, in which D  is the matrix form of the 
material elasticity tensor tangent in the current configuration. The 
second term 

G
K defines a tangent term arising from the non-linear 

strain-displacement relation and is often called the geometric 
stiffness matrix. A detailed description of the stress, strain, and 
tangent moduli will be given in Section 4 with a constitutive 
model of muscle. An in-depth description of the nonlinear FEM 
formulation can be founded in standard textbooks [Belytschko et 
al. 2002; Zienkiewicz and Taylor 2000].  

3.3   Examples of Deformable Body Modeling 

To demonstrate the qualitative behavior of NURBS-FEM, some 
basic NURBS primitives are deformed under various loading 
conditions, as shown in figures 3-4. The neo-Hookean material, 
which will be presented in Section 4, is used for the simulation. In 
all the examples, we use only first order (linear) shape function 
for extended parameter (w ). This is equivalent to shrinking the 
boundary surface to its centerline or center point. In general, the 
order of shape function and number of extended control points 
can be increased so that the interior interpolation is smoother. 
Numerically, this will increase the accuracy of finite element 
computation due to increases “mesh” resolution. 

Figure 3 shows a sphere under applied stretch and pinching at its 
poles. The surface, in quadratic order, is described by 26 non-
repeated control points originally. By adding only one center 
point, a solid sphere obtained with totally 27 control points, and 
81 DOF.  

Figure 4 shows a torus under out-of-plane shear. Initially, there 
are 100 non-repeated control points for describing the torus 
surface with cubic order. And ten control points are duplicated out 
in order to separate the end surfaces. Another 11 inside control 
points are added by extending the torus surface to solid. Thus, 
there are totally 121 control points for the torus solid and 363 
DOF. 

 

 

4 Skeletal Muscle Modeling 

4.1   Constitutive Model 

Muscle tissue has a highly complex material behavior: it is active, 
nonlinear, incompressible, anisotropic, and hyperelastic [Herzog 
2000; Lemors et al. 2001; Oomens et al. 2003; Teran et al. 2003]. 
The microstructure of muscle is determined by the arrangement of 
the contractile elements (muscle fibers) and passive background 
tissue within a muscle. Following [Oomens et al. 2003], muscle is 
modeled as a hyperelastic solid. The strain energy function is 
assumed to be the sum of two parts   

( ) ( ) ( , )matrix fiberW W W aλ= +C C
 

where the first part ( )
matrix

W C  is the strain energy associated with 
the passive ground substance, and the second part ( , )fiberW aλ  

 

Figure 3. A sphere under tension and pinching: 

(a) Initial shape; (b) Tension; (c) Pinching 

(a) 

(b) 
(c) 

(3.7) 

(3.8) 

       

 

Figure 4.  Out-of-plane shear of a torus:  

(a) Initial shape; (b) Deformation 
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represents the active and passive muscle fiber strain energy. The 
ground substance consists of connective tissue, water, etc, and is 
typically isotropic. In this paper, it is modeled as a neo-Hookean 
material with an energy form 

2

1
( ) ( 2 ln 3) (ln )

2 2
matrix

W I J J
µ κ

= − − +C  

where
1

( )I tr= C is the first principal invariant of C, ,µ κ  are the 
material constants, and J det= F is the determinant of the 
deformation gradient. The constant κ may be best understood as 
a penalty parameter for incompressibility: nearly 
incompressibility can be approximately modeled with a large 
value of κ . A set of assumed parameters κ =500 N/cm2 and 
µ =10 N/cm2 are used in the simulation. 

The muscle fiber strain energy is assumed a form  

( , ) ( , ) ( )fiber act passW a W a Wλ λ λ= +
 

where ( , )
act

W aλ  is the active strain energy of the muscle fiber 
and ( )

pass
W λ is the passive strain energy of the muscle fiber due 

to stretch. The active strain energy is a function of the muscle 
fiber stretch λ  and the muscle activation level a , where 

CNN ⋅=λ  and N is the fiber direction in the reference 
configuration. The first derivative of ( , )fiberW aλ  with respect to 

λ  is defined as  

 2

max

( , )
[1 4( 1) ]act

W a
a

λ
σ λ

λ

∂
= − −

∂

 

and  

 

2

2
( 1)2

1
( ) ( 1), 1

0, 1

m

pass
W m e

λλ λ λ

λ λ

−∂ − >
= 

∂ ≤ . 

where 
1

m and 
2

m  are the coefficients for the passive property of 
muscle fiber [Oomens et al. 2003]. With these terms, the well-
known nonlinear stress-strain relationship of muscle fibers [Zajac 

et al. 1986; Zajac 1989], shown in figure 5, can be modeled in the 
continuum level. 

 

The second Piola Kirchhoff stress in a hyperelastic material is 
related to the strain by  

 
2 2( )

fibermatrix
matrix fiber

WWW ∂∂∂
= = + = +

∂ ∂ ∂
S S S

C C C  

where 

1 12 [ ] logmatrix

matrix

W
l Jµ

− −
∂

= = − +
∂

S I C C
C

 

Here I is the second order identity tensor, and 

2 2( )

1
2( ) ( )

fiber passact
fiber

pass passact act

W WW

W WW Wλ

λ λ λ λ λ

∂ ∂∂
= = +

∂ ∂ ∂

∂ ∂∂ ∂∂
= + = + ⊗

∂ ∂ ∂ ∂ ∂

S
C C C

N N
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The Cauchy (true) stress σ  takes the form  

( ) nnIIB

FSSFFSF
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









∂
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+==

λλ
κµ

σ

passact

T
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T
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J
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JJ

1
log)(

1
    

)(
11

 

where T
FFB = is the left Cauchy-Green tensor and n  is the fiber 

direction in the current configuration. The material elasticity 

tensor is defined as 

:

∂
=
∂

S

E
� . 

For hyperelastic material specified by a strain energy function W,  

2

: 4
W∂

=
∂ ∂C C

�
,  in component form, 

2

4
ABCD

AB CD

W

C C

∂
=

∂ ∂
�  

The spatial form of the material tensor, needed for computing the 
material stiffness matrix, is related to the elasticity tensor �  
through the relation 

1 T

J
= FF FF� �  

In components, 

1

abcd aA bB ABCD cC dD
F F F F

J
=� �

 

The spatial tangent matrix D  for the linearized tangent stiffness 
matrix at equation (3.8) is obtained by transforming the forth 
order tensor �  to a second order matrix using Voigt notation 
[Belytschko et al. 2002]. The details are omitted here. 

4.2   Fiber Representation 

The fiber arrangement of skeletal muscles can be classified into 
several categories [Lemors et al. 2001; Ng-Thow-Hing 2000]: 
parallel-fibred muscles (muscle fibers oriented in parallel to the 
muscle line-of-action), pennate-fibred muscles (all muscle fibers 
oriented at the same angel relative to the muscle line-of-action), 
fusiform muscles (long, fusiform like muscle with fibers attach to 
the two ends), triangular muscles (fibers radiate form a narrow 
attachment at one end to a broad attachment at the other end) and 
others. 

In our work, we use constant direction vector N in the 
undeformed configuration to model parallel-fibred muscles and 
unipennate-fibred muscles which have only one distinct fiber 
direction. In the work of Ng-Thow-Hing [2000; 2002], B-spline 
solid models were built to capture muscle architectural details of 
internal fiber arrangements by carefully fitting the isocurves (two 
parameter of B-spline solid are held constant while the third 
varies) of B-spline solid to the real fiber directions in actual 
muscle specimens. This idea is also used in our work. For non-
uniform fiber distribution, the fiber direction at any point is 
acquired by computing the tangent of an appropriate isocurve 
through that point. 
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Figure 5. Stress-strain relationship of muscle fiber 
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    (a) 

 

    (b) 

    (c) 

Figure 6. Passive stretch  

(a) Initial shape; (b) Deformation with end surfaces shape fixed;  
(c) Deformation without fixing end surfaces shape. 
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 �

(b)�
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Figure 7.  Active contraction (a) Initial shape; 

(b) Isometric contraction with total length unchanged; (c) 
Active shortening contraction. 

For example, if the fibers are parallel to the parametric curve 

.),( constwv = , namely 

0 0 0 0
( , , ) ( , , )u v w R u v w

α α

α

=∑P P  

Taking the derivative of the above equation with respect to u, the 
normalized tangent vector of this isocurve is expressed as 

0 00 0

0 0

0 0 0 0
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At each Gauss integration point, this vector is computed and is 
used to represent the fiber direction. 

 

5 Simulation of Muscle Stretch And Contraction 

Muscle response can be either active or passive. Active muscle 
generates forces inside the muscle by fiber contraction. The 
degree of fiber contraction is control by neural input which is 
mathematically represented by a scalar parameter a  in our 
constitutive model. If this scalar parameter equals to zero, the 
muscle is fully passive and do not generate any contractive force. 
There are two distinct types of muscle contraction. The first is 
isometric contraction, where the muscle contracts or tenses 
without changing its length; the other is isotonic contraction, 
where the length of a muscle changes while keeping the 
contractive force constant. In this Section, the NURBS-FEM 
muscle model is employed to simulate these typical contractions 
for an isolated muscle.  

Passive Stretch  The muscle is treated as totally passive material 
by setting the activation level 0a = . The results for passive stretch 
are showed in Figure 6. 

Isometric Contraction To simulate isometric contraction, the 
two end surfaces of the muscle solid are fixed to keep the length 
of muscle unchanged. The initial shape at rest, shown in Figure 
7(a), is applied the maximum activation level. The muscle fiber 
contracts and reaches the new balanced shape of muscle and stress 
level, as shown in Figure 7(b). Note the stress was calculated 
iteration by iteration at every gauss point for solving the balance 
equation (3.6), and the stress elsewhere can be obtained by an 
extrapolation scheme or calculated exactly by the constitutive 
model in section 4.   

Isotonic Contraction Under the constraint of fixing shape of end 
surface, the muscle model was loaded for different cases. The 
static analysis of muscle response is performed with passive 

   

          Figure 8. Force-extension curve 

With active 

contraction Passive stretching 

only 

Difference between 

active and passive 
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stretching, active lengthening contraction and active shortening 
contraction (Figure 7(c)). For all the cases, the muscle force-
extension curves are shown in figure 8 with different length 
changes. The curves show a behavior that qualitatively agrees 
what reported in the literature.  It can be seen that, with the same 
reaction force, the length of muscle is different between active 
and passive case, so the path of muscle shortening form the 
passive to active case is indeed an isotonic contraction.  

In these simulations, the end surfaces of muscles are subject to 
essential boundary conditions. Like meshfree methods, imposing 
essential boundary condition is not straightforward since the 
nodal variables are not the nodal values of displacements. In 
meshfree computations, a number of methods have been 
developed to treat the essential boundary conditions. In this work, 
the transformation method proposed by Chen and Wang [2000] is 
implemented.  

 

6 Concluding Remarks 

This work is the first step toward fast muscle modeling and 
simulation in an interactive environment [Yang et al. 2004]. We 
have proposed a NURBS based Galerkin method that combines 
the NURBS geometric representation with the finite element 
method. Salient features of the method include: (1) no additional 
meshing required; (2) better, smoother geometric description with 
less degree-of-freedoms compared to the standard finite element 
method. Although the method is still at the early stage of 
development, it has demonstrated some promising features and a 
great potential for application. 

The major limitation of the method at present lies in its inability 
to handle arbitrary geometry.  For instance, muscles composing of 
multiple branches can not be represented by one single tensor 
product NURBS solid. Nonetheless, the authors believe that the 
idea can also be extend to more advanced geometric modeling 
methods such as subdivision or multiresolution representations 
where arbitrary topology can be readily handled. Also, at present 
we only consider isolated muscles. In future, we will develop 
contact algorithm to handle mutually contacted muscle bundles. 
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