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The parametric, geometric, or Frenet frame continuity of a rational curve has often been ensured by 
requiring the homogeneous polynomial curve associated with the rational curve to possess either 
parametric, geometric, or Frenet frame continuity, respectively. In this paper, we show that this 
approach is overly restrictive and derive the constraints on the associated homogeneous curve that 
are both necessary and sufficient to ensure that the rational curve is either parametrically, geomet- 
rically, or Frenet frame continuous. 
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Computer-Aided Engineering-computer-aided design (CAD) 
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INTRODUCTION 
Rational parametric curves have been receiving considerable attention in the 
areas of computer graphics and geometric modeling. This is due in part to the 
fact that most common primitives such as tonics [38, 39, 41-431 as well as free- 
form geometry can be represented by this single formulation. The rational curve 
has manifested itself in various forms, including the nonuniform rational B- 
spline (or the NURB as it is popularly called) [43,47,48], the rational Bbzier curve 
[18, 401, and the rational Beta-spline [2, 4, 10, 21, 22, 311. Any parametric 
polynomial curve can be expressed as a rational curve, and most polynomial 
splines and curves have rational extensions. 

Since a single rational function usually does not have enough freedom to 
represent a given curve, several rational segments are used instead. To generate 
a curve of satisfactory smoothness, the segments must connect with some amount 
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of continuity. Thus, the use of rational curves, independent of the particular 
variety, creates a common problem: that of connecting rational segments to form 
piecewise rational curves l;hat are smooth. 

In this paper, we concern ourselves with three kinds of continuity for para- 
metric curves: parametric continuity, geometric continuity, and Frenet frame 
continuity. A curve is said to possess parametric continuity C” if each of the 
components of the curve is C”. It has been shown that a curve possesses geometric 
continuity G” if and only if each of the components of the curve satisfies a set of 
constraints called the Beta-constraints [5-7, 141. A curve possesses Frenet frame 
continuity if and only if it; satisfies a similar set of componentwise constraints 
[16]. To obtain rational curves with parametric or geometric continuity, para- 
metric continuity constraints or Beta-constraints have generally been applied, 
not to the components of t.he rational curve, but to the components of the curve 
represented in homogeneous coordinates. Alternatively, if the homogeneous curve 
is not required to be smooth, ad hoc methods have been used to show that the 
rational curve will be’ sm.ooth [2, 18, 21, 22, 31, 471. It is true that if the 
homogeneous curve satisfies the relevant continuity constraints then the rational 
curve will have the corresponding continuity. However, it is not true that the 
homogeneous curve must satisfy these constraints to have this continuity. That 
is, the constraints are sufficient but not necessary. In this paper, we derive the 
constraints that are both necessary and sufficient to ensure continuity for rational 
curves.l 

1. RATIONAL CURVES 

A rational function is a scalar function, r: R! + R’ that can be expressed as 

r(u) = $$ 

where f and g are polynomials in U. Clearly, all polynomial functions are rational 
functions. We restrict our use of the word polynomial as follows: A rational 
function is not a polynomial function unless its denominator divides its numer- 
ator. Such functions are sometimes referred to as integral functions to distinguish 
them from rational functions. On the other hand, for our purposes, polynomials 
include piecewise polynomials. A curve is simply a vector-valued function 
q: II2 3 Rd. A polynomial curve is a vector-valued function, each component of 
which is a polynomial, and a rational curve is a vector-valued function, each 
component of which is a rational function. There are at least two ways to visualize 
the mathematics of a rational curve. The curve q can be thought of as a 
vector-valued function, each component of which is a rational function, or 
q can be thought of as the composition of a vector-valued polynomial 
function Q: R + Rd” with a projection function that takes (x1, . . . , &, xd+l) to 
(xl/xd+l, -. . , xd/xd+l). 

In the first view, one would write 

q(u) = h(u), (k!(u), . * * , qdb)) (2) 

’ After reading an earlier version of this manuscript containing more computational proofs not based 
on n-jets, Goldman and Micchelli [23] independently found some similar proofs for many of these 
results. 
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where each component function, oi, is the rational function 

Qi(u) 
qib) = Qd+l(u) 

and the Qis are all polynomial functions. Note that the denominator of each 
component function is the same polynomial Qd+l. In general, this is not a severe 
restriction since, if the denominator of each qi were gi, one could multiply the 
numerator and the denominator of qi by Z(U)/gi(U), where 1 is the least common 
multiple of (gl, . . . , gd), to obtain a satisfactory set of Qis. 

In the second view, one might think of the same curve as a polynomial curve 
whose range is the homogeneous coordinate system of dimension d + 1. In this 
case, the division by Qd+l takes place implicitly. The rational curve q, discussed 
above, would be represented in this scheme by the polynomial curve Q, where 

Q(u) = (81(u), &z(u), . . . , Q&J, Q~+I(u)). (4) 

We refer to Q as the “homogeneous curve associated with q” (even though it 
is not unique) and q as the “projection of Q” (which is unique). Also, we use 
italics to indicate scalar-valued functions, such as qi or Qi; boldface lowercase to 
indicate vector-valued rational curves, such as q, whose range is IWd, the space in 
which the curve lies; and boldface uppercase to indicate the associated homoge- 
neous polynomial curve, such as Q. This second view of rational curves and some 
of the associated notation have been presented in earlier works by Roberts [44] 
and Cohen and Lee [12]. 

To illustrate more concretely, consider a curve formulation such as the rational 
Bezier curve, the rational B-spline curve, or the rational Beta-spline curve. Each 
is a function q: Iw + IWd that can be expressed as 

q(u) = Ca0 wiViBi(U) 

x&O WjBj(U) 
(5) 

where Vi are the control vertices, Bi(u) are the basis functions, and Wi are the 
weights for i = 0, . . . , m.’ One can also consider such a curve as a polynomial 
Bezier curve, B-spline, or Beta-spline curve in a higher dimensional space: 

Q(U) = f WiBi(u) (f-3) 
i=O 

where Wi are control vertices in iRd+l whose coordinates are Wi = (WiVi, wi) for 
i=O * - , m. Of course, when the IWd coordinates of q are required, the division 
must’ be performed. In Figure 1, we show how one might view an Iw2 rational 
curve as an [w2+’ polynomial curve. Each component of the Iw2’l curve is strictly 
polynomial, and the points on the 1w2 curve are obtained by projecting the (w2” 
curve onto the w = 1 plane. 

The advantage of this perspective is that algorithms to manipulate rational 
curves (i.e., evaluation, subdivision, degree elevation, bounding, continuity, etc.) 
can often be obtained by using the corresponding algorithm for polynomial 
curves. This yields a large body of information on polynomial curves that is 

* The weights are often restricted to be positive to prevent the denominator from bekoming zero and 
to ensure the convex hull property. 
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Fig. 1. A 2-D rational curve q and its associated 3-D 
homogeneous curve Q. 

almost always directly applicable to rational curves [18, 401. For example, to 
increase the degree of a rational curve q, we increase the degree of the polynomial 
curve Q via a well-known algorithm for a polynomial curve. To subdivide q, we 
subdivide Q, and so on. If we project Q to obtain q, it will be as if the manipulation 
had been performed on q. 

This method of reducing a problem associated with a rational curve to the 
analogous problem for its homogeneous counterpart has also been used for the 
problem of continuity between rational segments. Specifically, parametric and 
geometric continuity for a rational curve has often been obtained by requiring 
the associated homogeneous curve to be parametrically [47] or geometrically 
continuous [2]. In the cases where the homogeneous curve is not required to be 
smooth, ad hoc methods are used to show that the projected curve will be. 
Although valid, we show that requiring the homogeneous curve to be as smooth 
as the projected curve is overly restrictive, and we suggest a more flexible and 
comprehensive alternative. 

2. PARAMETRIC CONTINUITY 

Conventionally, the “smoothness” of a curve has been measured by testing the 
continuity of its derivatives. Specifically, a curve q is said to be C” at t if and 
only if 

lim q”‘(u) = lim q”‘(u) i= ,...,n 0 (7) CL-d+ u-d- 

where u -P t- denotes u --+ t with u C t and where u + t+ denotes u + t with 
u > t. In the above and in the remainder of this paper, we assume that the value 
of the curve at parameter value t is equal to at least one of the limits. 

If we have a homogeneous curve Q that is C” (with Qd+l(~) # 0 for all u), then 
the projection q of Q will also be C”. That is, if all the components (the QJ of Q 
are C” then all the components QJQ d+l of q are C”, simply because the quotient 
of two C” functions is C”. 

The converse is not true; there are homogeneous curves Q that are not C” even 
though their projections q are C”. In Section 10, we derive the conditions on a 
homogeneous curve Q that are exactly equivalent to its projection q being C”. 
ACM Transactions on Graphics, Vol. 9, No. 4, October 1989. 
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3. GEOMETRIC CONTINUITY 

Recently, it has been suggested that many useful smooth parametric curves do 
not possess parametric continuity but do have a more relaxed form of continuity 
called geometric continuity. Two forms of nth-order geometric continuity have 
been proposed: Beta-constraints [5-7, 13, 141 (sometimes referred to as repara- 
metrization or arc length geometric continuity) and continuity of the Frenet 
frame (i.e., continuity of generalized curvatures in higher dimensions) [16, 26, 
27, 461. In this paper we refer to the former concept as geometric continuity and 
the latter as Frenet frame continuity.3 

Both nth-order geometric continuity and nth-order Frenet frame continuity 
are generalizations of first- and second-order geometric continuity. This refers 
to continuity of the unit tangent and curvature vectors; various forms of this 
idea were proposed in the computer-aided-geometric-design literature in [l], [3], 
P71, WI, [201,[341,1371, and [45]. Geometric and Frenet frame continuity have 
become important topics of research, and recent work has been reported in 181, 
PI, NI, WI-[251, [281, and [301. 

Geometric continuity is a generalization of parametric continuity that is 
invariant under reparametrization. Consider objects represented by parametric 
curves and surfaces. When they are rendered or manufactured, they should show 
no trace of the manner in which they were parametrized. Thus, measures of 
continuity should be independent of parametrization. Specifically, a curve is said 
to be geometrically continuous, denoted G”, if and only if there exists a regular4 
C” parametrization of that curve. Equivalently, a curve is geometrically contin- 
uous if and only if its arc length parametrization is parametrically continuous 
(C”). Clearly, all regular C” curves are G”, but not conversely. Barsky and DeRose 
introduced the notion of geometric continuity and derived constraints, called 
Beta-constraints, on the components of q (not on the components of Q) that hold 
if and only if the curve is geometrically continuous [5-7, 13, 141. 

In this section, we discuss the zeroth through the second Beta-constraints. In 
Section 8, we discuss the Beta-constraints associated with G” for arbitrary n. 

The zeroth Beta-constraint is identical to the zeroth parametric continuity 
constraint; it requires that 

lim q”‘(u) = lim q”‘(u). 
u--G+ 03) U-d- 

The first Beta-constraint says that a curve q is G’ at t if and only if 

lim q”‘(u) = lim &q”‘(u) 
u--rt+ u-t- (9) 

for some p, > 0. That is, if two curve segments join in a way that appears to be 
C’ then their first derivatives need not be identical, but rather one need only be 
a positive scalar multiple of the other. 

a Although the term geometric continuity was originally coined in the computer graphics and modeling 
community in [ 11 and [3] and was used to refer to Beta-constraints in [5], it has also been subsequently 
used to indicate “Frenet frame continuity” in Ill], [15], [16], [26], and [27]. 
’ A parametrization of a curve q is regular if its first derivative vector q”’ is never the zero vector. 
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The curve q is G2 at t if and only if, in addition to eq. (9), 

lim q@‘(u) = lim [pfq’2’(u) + /?2q”‘(u)] 
u-e+ u-t- 

(10) 

for some p2. 
The variables & and pZ are called shape parameters. A curve that is G” will 

have n shape parameters. Although the shape parameters cannot be obtained 
from the shape of a curve alone, if we restrict our curves to be polynomial, for 
example, then varying the shape parameters will affect the shape of the curve, 
hence, the name [l, 31. 

It has been shown that if Q, the homogeneous curve associated with q, is G” 
and q is regular then q will be G”, [21, 221. Just as with parametric continuity, 
there are homogeneous curves Q that are not G” even though their projections, 
q, are G”. In Section 9 we generalize the notion of G” to include curves whose 
projections are geometrically continuous. 

4. FRENET FRAME CONTINUITY 

Frenet frame continuity is based on the continuity of generalized curvatures in 
higher dimensions. If q(u) is a curve in lRd that is parametrized by arc length, 
then its Frenet frame of orthonormal vectors vl(u), . . . , vd(u) and its higher 
order scalar curvatures are defined recursively by 

v,(u) = q’(u) 

Kc,(U) = 0 

(11) 

(12) 

Vi(U) + Ki-I(U)Vi-I(U) 
Vi+1(U) = - 

Ki(U) 
i=l,...,d-1 (13) 

where Ki(U) is chosen so that Vi+l(U) has unit length. In three dimensions, K~(u) 

and K~(U) are the familiar quantities curvature and torsion, respectively [15, 26, 
27,441. A curve q(u) is said to be Frenet frame continuous of order n (which we 
will denote F”) if and only if the Frenet frame vectors and curvatures of its arc 
length parametrization are continuous. 

Frenet frame continuity and geometric continuity agree for orders of continuity 
1 and 2. For n > 2, F” is a generalization of G”. Unlike G”, for n > 2, there are 
curves that are F” that do not possess a regular C” parametrization. It is important 
to note that all curves in [WC! that are Fd will trivially be F” for i z d. For example, 
all planar curves that are F2 are also F3, F4, . . . , and all curves in lR3 that are F3 
are also F4, F’, . . . . Thus, in Rd, Frenet frame continuity only distinguishes 
among d + 2 classes of curves: those that are positionally discontinuous, 
those that are only positionally continuous, those that are F’ but not Fi+l, i = 
1 ,***, d - 1, and those that are Fd. This contrasts with geometric continuity, 
which distinguishes between an infinite number of classes of curves. 

As with parametrically and geometrically continuous curves, if Q, the homo- 
geneous curve associated with q, is F” and q is regular then q will be F” [22, 231. 
There is a subtle difference, however. Just as with geometric continuity, there is 
a set of scalar values called shape parameters that are determined by the geometry 
and the parametrization of’ the curve. These are different shape parameters, 
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however, than those involved in the Beta-constraints; in fact, there are more 
shape parameters for Frenet frame continuity than for geometric continuity. In 
the case of geometric continuity, the shape parameters are invariant under 
projection. That is, the shape parameters for Q are the same as the shape 
parameters for q. For Frenet frame continuous curves in general, the shape 
parameters are not invariant under projection. It has been shown in [22] and 
[23] that no generalization of geometric continuity (such as Frenet frame conti- 
nuity) can have this invariance property; that is, the shape parameters are 
invariant if and only if the curve is geometrically continuous. Nevertheless, there 
exist homogeneous curves Q that are not F” even though their projections are 
F”. In Section 8, we generalize the notion of F” to include curves whose projections 
are Frenet frame continuous. 

5. THE NEED FOR MORE GENERAL CONTINUITY 

There exist curves Q, of practical use, that are not C”, and in fact are not even 
G” nor F”, but whose projections q are not only F” and G” but even C”. Our aim 
is to derive componentwise continuity constraints on Q that will be necessary 
and sufficient to ensure that q is either C”, G”, or F”. 

Complete circles are typically represented with rational curves using four 
quadratic rational segments-either four quadratic rational Bizier curves or 
equivalently by a quadratic NURB with four segments and double knots [47]. In 
Figure 2, we have shown this as a projection of a homogeneous curve, Q E [w’+l, 
onto the w = 1 plane, to obtain the rational curve q E [w2. Note that the 
homogeneous curve segments are copies of one another rotated 90 degrees about 
the w axis. 

We can see that Q is not C’ at Jhe knots. In fact, it is not even G1. On the 
contrary, Q has highly visible “kinks” in it. Since the segments of q lie on the 
circle, however, their tangents must be in the same direction as the circle tangents. 
Also, since the segments are congruent, the tangents must have the same 
magnitude. Thus, q is C1 and G1, even though Q is neither. And, even though 
the NURB q that represents this curve is C’, it must have double knots. This 
may be surprising because a piecewise polynomial curve of order k and continuity 
C” can be represented by a B-spline with knot multiplicity k - n - 1. If the curve 
under consideration is a B-spline with knot multiplicity greater than k - n - 1 
(but still of continuity Cn), knots can be removed (without changing the curve) 
until the knot multiplicity is k - n - 1. In the case mentioned above, k = 3 and 
n = 1, so that one might suspect that q would only need single knots. Be 
reminded, however, that q is a NURB and not necessarily a B-spline. Apparently, 
the B-spline multiplicity rule does not apply to NURBs. By viewing a NURB as 
a projection of a B-spline from [Wd’l to IWd, we remind ourselves that NURBs are 
not B-splines and yet are closely related. 

One might reasonably ask if it is possible to represent the circle with a sequence 
of quadratic segments that meet with C!’ continuity in [w2+l, thus dispensing with 
the need for a more generalized continuity. We will show that if two quadratic 
segments in Iw2+’ that project onto this circle meet with Cl continuity (in LL!‘+‘) 
then they are the same polynomial curve. Also, if a single quadratic segment is 
used, the parameterization must run from --co to a. 
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Fig. 2. 
curve. 

A circle represented by a piecewise rational 

.Q 

1 Fig. 3. A circle represented by a single rational segment. 

L 

In order for q to be a circle, Q must lie on the cone that projects to q. This 
cone is denoted K in Figure 3. Since all quadratic curves are planar, then, in 
particular, so is Q. The plane in which Q lies is denoted L in Figure 3. Thus, Q 
must lie in the intersection of K and L. Such an intersection will be either an 
ellipse, an hyperbola, or a parabola. Since Q must be strictly polynomial, the 
intersection must be a parabola. As u + --to or +a~, Q diverges and q slowly 
approaches the point A in Figure 3. 

One might try to obtain B more usable parameterization by composing Q from 
two quadratic segments P1 and P2 that meet with Cl continuity. P1 and Pp have 
to be the same polynomial (up to a linear change of parameter) for the following 
reason: At the point B in Figure 3, where P1 and PZ meet on the cone, P, and PZ 
must share a first derivative vector, D. Each of P1 and PZ must lie in one of the 
infinitely many planes defined by D and B. However, only one of these planes 
has an intersection with the cone that is a parabola. Thus, both P1 and P2 must 
lie in the same plane and on the same intersection parabola, and they must be 
the same parabola. Consequently, if we insist that our curves be quadratic, and 
a parameterization from -cx) to +m is not acceptable, then we must construct Q 
from several segments that do not meet with C’ continuity. 

This example demonstrates that we cannot apply parametric continuity con- 
straints or Beta-constraints to Q to test the continuity of q. That is, parametric 
continuity constraints and Beta-constraints are too restrictive to be applied to 
the homogeneous counterpart of a curve. However, the continuity constraints 
that we will derive admit the homogeneous curve Q in Figure 2. Since it is 
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necessary to be able to represent circles in a CAD application, we believe that 
there are important curves that satisfy our new continuity constraints but do not 
satisfy either the parametric continuity constraints or the Beta-constraints. 

6. PARAMETRIC CONTINUITY OF QUOTIENTS 

In the above, we have seen a homogeneous curve Q that is not Cl but whose 
projection q is C’. If we examine a single component Qi/Qd+l of q, we see that 
the quotient is C’ even though neither Qi nor Q d+l is. The problem, in general, is 
that it is not necessary for each of two scalar functions, Qi and Qd+l, to be C” in 
order that Qi/Qd+l be C”. 

What constraints must we impose on two scalar functions, Qi and Qd+l, in 
order that the quotient QJQd+l is C “? Later in this paper, we present a general 
method for deriving these continuity constraints, but first we present a more 
instructive approach. Consider a scalar function r(u) that is composed of two C” 
functions, p(u) for u 5 t and q(u) for u > t, where p(u) = Pi(U)/Pd+l(U) and 
q(u) = Qi(u)/Qd+l (u), as is the case with piecewise rational functions. Clearly, F 

will be C” if and only if 

(~)y~,=(*)y j=o )..., n. (14) 

6.1 Positional Continuity 

For positional continuity (n = 0), this reduces to 

Qi(t) _ Pitt) 
Qci+l (t) Pd+l(t) * 

If we cross multiply and introduce a parameter (Ye, then 

Qi(t) Qd+l(t) pio=p,,,o=ao* 

(15) 

(16) 

Note that (Y~ # 0 since neither Qd+l nor Pd+l is ever zero. We can separate the 
constraints on P and Q into 

and 

&i(t) = d’i(t) (17) 

Qd+l (t) = aOpd+l (t). (18) 

Written in this form, the constraint (17) on the ith components of P and Q is 
the same as the constraint (18) on the d + 1st components of P and Q, which is 
slightly surprising considering their asymmetric roles as numerator and denom- 
inator. However, this allows us to make the following observation: Consider a 
rational curve r(u) comprising two curves p(u) for u 5 t and q(u) for u > t, 
where p, q: R -+ Rd. The components of p(u) are Pi(u)/Pd+,(u) and similarly 
for q(u). If r is Co at t, then the ith component must be Co, and equation (17) 
must be satisfied for i = 1,. . . , d. Since a0 is determined by the d + lst component, 
then each component must satisfy equation (17) for the same value of are. Thus, 
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Fig. 4. For the rational curve r to be Co, P(t) and Q(t) 
need only be scalar multiples of tone another. 

in each dimension i, i = 1, . . . , d + 1, 

&i(t) = di(t)- (19) 

Consider the equivalent restrictions on the homogeneous curve R(u) associated 
with r(u); they would be 

Q(t) = d’(t). (20) 

In Figure 4, we show why this must be the case. Two homogeneous points 
represent the same projected point if and only if they are scalar multiples of 
each other. The geometric interpretation of cxo then is that a0 is the ratio of 
Q(t) to P(t). 
6.2 First Derivative Continuity 

Consider now the case when n = 1. In addition to eqs. (17) and (US), 

Differentiation yields 

Qi (t)Qd+l(t) - Qi(t)Ql;+l(t) = Pi (t)Pd+l (t) - Pi(t)Pi+l(t) 
QS+l (t) Pi+1 (t) 

By eqs. (17) and (18), 

Q! (t)a,Pd+, (t) - ayoPi(t)QA+l(t) = Pi (t)Pd+l(t) - Pi(t)P (t) 
@2+1(t) pz+1 (t) 

c-41) 

(22) 

(23) 

By cross multiplying, 

QI (t)Pd+l(t) - P,(t)Qi+l(t) = aopf (t)Pd+l(t) - ~oPi(t)Pi+l(t)- 

Reorganization of terms yi’elds 

(aoPA+l(t) - Qi+l(t))Pi(t) = (aoP((t) - Qf(t))Pd+l(t). 

If we divide and introduce a parameter (Ye, then 

aoPi+l(t) .- Q;+l(t) = aoPf(t) - Q:(t) = 
pd+l (t) Pi(t) 

-CY1. 

(24) 

(25) 

(26) 
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Q’(t) P’(t) 

Fig. 5. If r is C’, the first derivatives can differ by a 
vector parallel to the position vector. 

We can separate the constraints on the ith and the d + lst components of P and 
Q into 

and 

Q((t) = ~yoPf(t) + alPi (27) 

QA+l(t) = ao%+l(t) + wPc~+l(t). m3) 

Again, the same constraints are imposed on the ith component as on the 
d + lat. As before, consider the equivalent constraints on P and Q, the homo- 
geneous curves associated with p and q, respectively. By similar reasoning, the 
restrictions become 

Q’(t) = a,,P’(t) + alp(t). (2% 

We have depicted this constraint in Figure 5. It should be intuitively clear that 
if the first derivative of R(u) has a discontinuity that is along the position vector 
P(t) then this discontinuity is not apparent in r(u). We can attribute the 
following geometric significance to cxl : It is the amount of the position vector 
that just compensates for the discrepancy in the first derivative of the curve. 

We could continue in this manner, developing the continuity constraints for 
higher degrees of continuity one by one, but the amount of algebra grows 
unmanageably. We will develop some useful results that will help us to construct 
the continuity constraints for an arbitrary degree, n. 

7. JET SPACES 

We use a special case of jet spaces as described in [29] and [33]. Let f be a 
univariate function. The n-jet off is defined by 

jnf (u) = (f(O)(u) f (‘j(u) 7 , f”‘(u) , -a*, f +qU), f’“‘(u)) (30) 

or, equivalently, 

jlf (u) = fCi’(u). (31) 

If the space of functions f is denoted by F, then the space of n-jets associated 
with F will be denoted as J”(F). Just as with the function itself, one can consider 
the n-jet evaluated at a particular parameter value, or one can consider the n-jet 
over the entire range of parameter values. If one considers the n-jet over the 
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entire range of parameter values, then the n-jet completely determines the 
function. On the other hand, if one considers the n-jet at a particular parameter 
value then several different functions may share the same n-jet at the same 
parameter value. Note that it is possible to construct arbitrary n-jet functions 
(Y: R + J”(F). Such functions may not be the n-jet of any function. That is, there 
might not exist an f E F so that j”f(t) = a(t) for all t. For example, a(t) = 
(t, -1) E P(F). If jnf(t) = a(t), then we would have f(t) = t and f’(t) = -1 
simultaneously. Nevertheless, there is no reason we cannot consider such n-jet 
functions. 

If an operation between two functions f and g (e.g., addition, multiplication, or 
composition) yields a function h whose first n + 1 derivatives depend only on 
the first n + 1 derivatives off and g, then we can define a corresponding operation 
between the n-jet off and the n-jet of g. The result of the operation will be the 
n-jet of h. If the functions form a field under addition and multiplication of 
functions, then we can define these operations on the n-jets of the functions and 
form another field. Let us describe operations of addition and multiplication of 
n-jets in terms of the coordinates of the n-jets. 

The n-jet of the sum of two functions is the sum of the n-jets of the two 
functions 

jy f + g) = jnf + jng. (32) 

We can derive the explicit formula for the coordinates of the sum n-jet in terms 
of the coordinates of the addend n-jets. 

(j”f + jng)i = jr(f + g) = (f + g)ci) = f(i) + g(i) = jnf + jig. (33) 

Clearly, the zero element in the field is the n-jet of the zero function. Its 
coordinates are 

j”0 = (0, 0, 0, . . . , 0, 0) = 0. (34) 

The product between n-jets is defined so that the n-jet of a product of two 
functions is the product of the n-jets. 

jY fg) = jnf * j”g. (35) 

In this paper we use the symbol * exclusively to indicate the product of two 
n-jets. Again, we can derive the explicit formula for the coordinates of the product 
n-jet in terms of the coordinates of factor n-jets: 

(i”f * jng)i = jl(fg) = (fg)“‘. (36) 

We can expand this via the Leibnitz rule to yield 

(j”f * jng), = i fWgG-i) i 
I 

0 j 

= jio jlf ji”_ig j 
0 

. (37) 
j-0 

In eq. (37) one could interchange the positions of jj”f and j,Q in the summation 
without affecting the result.. Thus, the multiplication of n-jets is commutative: 

a*p=p*a. (38) 
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The identity element in the resulting field is 

j”1 = (1, 0, 0, . . . , 0). 

Also, the reciprocal of the n-jet off is the n-jet of the reciprocal off: 

f 
j”1 = j” _ = ‘” 

f Jf*j”:. 

We denote this 

Reciprocals follow the rule: 

347 

(39) 

(40) 

(41) 

(42) 

The composition, denoted 0, of n-jets is defined so that the n-jet of the 
composition of two functions is the composition of the n-jets of the two functions, 

j”(f 0 g) = j”f Ig 0 j”g. (43) 

Note that composition of n-jets is, in general, not commutative since the com- 
position of functions is not commutative. The explicit formula for the composition 
of two n-jets is more complicated than for addition and multiplication. It can be 
derived from the chain rule, 

j”(f ’ g)i = jio f”‘(g(u))Mij(g”‘(u), -. . 7 L?“‘(U))- (44) 

The formulas for M can be found in [32]. The matrix M(&, . . . , p”) has the 
following properties: It is lower triangular, and its entries are polynomials in 

/3 The variable pi does not appear in Mij(p) for j > i. Also, Moi(p) = 
go;&; ‘= “a’iop Mil(p) = pi f or i > 1, and M”(p) = 0: [21, 221. Note that right 
composition with j”g is a linear function on j”f, but that left composition with j”f 
is not a linear function on j”g, since M is, in general, polynomial in the derivatives 
of g. 

The identity with respect to n-jet composition is the n-jet of the identity map: 

j”I = (0, 1, 0, . . . , 0) = I. (45) 

It satisfies the following equation: 

j”f 0 j”I = j”( f 0 1) = j”f = j”(r 0 f) = j”I 0 j”f. (46) 

Note carefully the difference between composition (0) and multiplication (*) and 
their respective identities, I and 1. The function I takes u to u, whereas the 
function 1 takes u to 1. 

We define the inverse of the n-jet of a function as the n-jet of the inverse of 
the function 

j”I = j”(f 0 f-l) = j”f 0 j”(f-I). (47) 
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We denote the inverse n-jet, 

(j”f)-’ = jn(fpl). (48) 

In general, the operations of multiplication and composition do not commute, 

( jnf 0 j?) * jng # ( jnf * jng) 0 jnr, (49) 

since, in general, 

(f 0 rk = f(r(u)Mu) Z f(r(u)k(rb)) = (fg) 0 r. (50) 

We can, however, “almost commute” them in the following sense: 

(f 0 rk = f(rb)kb) = f(rb)M--‘(r(u))) = (fg’) 0 r (51) 

where g’ = g 0 r-l. Since this is true of functions in general, it is true for their 
n-jets: 

(j"f 0 jnr) * jng = (j"f * j,g') 0 jnr. (52) 

Given n-jets cy and p, t.here exists an (Y’ so that right composition with p 
followed by right multiplication by CY is equal to right multiplication by cy’ 
followed by right composit.ion with p: 

(Y o P) * OJ = (7 * a’) o P (53) 

for all y in J”(F). 
Finally, we introduce the family of linear transformations on J”(F), that is, all 

functions L: J”(F) + J”(F) that can be represented as 

(L jnf)i = 5 Liif(j)e (54) 
j=O 

Note that left and right multiplication and right composition are all linear 
transformations, whereas addition and left composition are not. Specifically, 
multiplication by jnf can be represented by a matrix that we denote j’+: 

jnf * jng = (jnf*)jng. (55) 

By denoting the matrix in this way, any n-jet multiplication a! * /3 can also be 
viewed as the multiplication of /3 by the matrix (Y*. Since we define the results of 
both operations to be the same, there should be no confusion regarding the dual 
interpretation. The definition of CY* must consequently be 

a* = 

a0 0 0 . . . 0 0 

a1 ffo 0 . . . 0 0 

a2 2% al . . . 0 0 

(n;;)a”-l (n;$“-2 (y$% II. (;I;)% 0 

(;)a” (l;)a,i (;)cG* . . . (n ” Jn, ($x0 

(56) 
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Right composition can be represented by a matrix that we denote (oj”g) or 
MC?%): 

where 

j”f 0 j”g = (oj”g)jnf = M(jng)jnf (57) 

o(3 = M(B) = 0 : : . . . : : (58) 

0 (cl”-1 * * * . * * p;-l 0 
0 p, . . . . . . . . . p; 

- 

for fl E J”(F). The matrix M(P) given above in (58) is used in Section 9 to 
express Beta-constraints or geometric continuity. Note also that, by inverting 
the matrices for multiplication and composition, one can compute the reciprocal 
and inverses of an n-jet, respectively. Since both M(j,f) and j”f* are lower 
triangular matrices, their determinants are the product,s of their diagonals: 

&t(M( j"f)) = ( f(1))n(n+1)12; 
(59) 

det( j”f*) = (f(O))“. (60) 

Thus, jnf has an inverse if and only if f(l) # 0; moreover, jnf has a reciprocal if 
and only if f(O) # 0. 

The following generalization of the matrix for right composition will be useful 
with regard to Frenet frame continuity. Let M be a lower triangular (n + 1) X 
(n + 1) matrix with the following restrictions [15, 22, 231: M~,I = Moi = ~$0 and 
Mii = M’,, > 0. Thus, the diagonal is the same as that for M(P), but the 
n(n - 1)/2 subdiagonal entries are entirely arbitrary. (In the case of M(P), 
the subdiagonal entries were polynomial functions of p1 . + . p,,.) A matrix of this 
form is called a Frenet frame matrix. Notationally, M and N will be used to 
denote Frenet frame matrices, while M(P) will be used to denote the special case 
when the Frenet frame matrix is also the matrix for right composition (i.e., the 
matrix used for Beta-constraints). 

As in the case for composition, multiplication by M and multiplication by an 
n-jet can almost be commuted. That is, given a Frenet frame matrix N and an 
n-jet p there exist an n-jet CY and a Frenet frame matrix M so that 

a * M = N/3*. (61) 

The above expression might appear to be missing its right-hand operands. 
However, when CY*, M, N, and ,6* are interpreted as matrices the expression is 
meaningful. First note that 

n n 
(a * M)io = C “*ijMjo = C ai-j 

0 
f Mjo = LYE. (62) 

j=O j=O 

Thus, we must have 

ai = (Np*)ioa (63) 
ACM Transactions on Graphics, Vol. 8, No. 4, October 1989. 



350 l M. E. Hohmeyer and B. A. Bat-sky 

And, in particular, we must have 

a0 = PO. (64) 

With CY specified, we must have 

M=&N@. (65) 

It remains to be shown that M is a Frenet frame matrix. The diagonal elements 
are 

Since (l/c~)~ = l/(czo) = l/(Po), we have 

n/r,, = ~ oNiiP, = Nii = Nil. 
0 

Thus, the diagonal elements are the powers of N,, . Also, 

Mio = ($ NB*)io = i0 (~)i_(~)(N@*)jO = j% (i)i-li)aj* (68) 

By the definition of l/a, we have 

Mio = 6io. (6% 

Note that, when we commute the operations of multiplication by an n-jet and 
multiplication by a Frenel; frame matrix, both the matrix and the n-jet are 
potentially changed. 

So far we have only considered n-jets for scalar-valued functions. If we are 
careful not to attempt to tak.e the reciprocal or inverse of a vector-valued function, 
then there is no reason that we cannot extend n-jets to vector-valued functions. 

8. RATIONAL FRENET FFlAME CONTINUITY 

In [16] it is shown that a curve q(u) is F” at t if and only if there exists a Frenet 
frame matrix M(t) such that 

lim j”q(u) = htm- M(t)j”q(U). 
u-d+ 

(76) 

A matrix, such as M(t), that relates the derivatives on one side of a parameter 
value to the derivatives on the other side of the parameter value is called a 
connection matrix. Thus, a curve is Frenet frame continuous if and only if it has 
a Frenet frame connection matrix. Using this, we can derive a set of linear 
componentwise constraints on Q that are equivalent to q E F”. 

THEOREM 1. Rational Frenet frame continuity. Let q: (a, b) + IWd, 
s=(Ql/Qcs+l,..., Q,JQd+l), be a regular curve. Suppose that Qd+l (u) # 0 for all 
u E (a, b) and that the one-sided limits of Q”‘(u) exist for i = 0, . . . , n. Then q(u) 
is F” if and only if there exist n-jets cr(t) and a Frenet frame connection matrix 
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M(t) with Mll(t) > 0 such that the associated homogeneous curue Q: R + Rd’l 
defined by Q = (Ql, . . . , Qd, Qd+l) satisfies 

Note that in this proof there are two Frenet frame continuity connection 
matrices M(t) and M’(t) associated with Q(u) and q(u), respectively. These 
matrices are obtained from one another by commuting with n-jets and thus might 
not be the same. In the special case that the Frenet frame connection matrix 
is a matrix obtained from right composition, however, commuting will leave 
iv(t) = AI’(t). 

PROOF. First, assume that q(u) is F”; by (70), there exists a Frenet frame 
connection matrix M’(t) with ML(t) > 0 so that 

lim j”q(u) 
u-a+ 

= M’(t) hl.. j”q(u). (72) 

Since q(u) = Q(u)/Qd+l(u), 

(u) = M’(t) lim jn (u). 
u-t- 

(73) 

Applying the definition of n-jet multiplication and allowing the factors to proceed 
to their limits independently yields 

1 
if?+ j%&+,(U) 

* lim jnQ(u) = M’ lim 
1 

u-t+ u-a- jnQd+lb) 
* lim j”&(u). (74) 

u-t- 

If we denote limU-,t+ jnQd+,(u) and lim,,,- l/jnQd+,(u) by 4(t) and $(t), 
respectively, we have 

lim j”Q(u) = 4-‘(t) * M’(t) $(t) * lim Q(~) , (75) 
(I-d+ u-et- 

By eq. (61), there exist some n-jet y(t) and Frenet frame connection matrix M(t) 
SO that y(t) * M(t) = M’(t)+(t) * and M,,(t) > 0, so that 

lim jnQ(u) = 4-‘(t) * y(t) * M(t) 
u--t+ (76) 

If we denote the product 4-‘(t) * y(t) by a(t), then we have arrived at eq. (71). 
Let us proceed the other way: Assume that eq. (71) holds for some a(t) and 

Frenet frame connection matrix M(t) with Mn(t) > 0, and then prove that q is 
F”. If we write Qd+l(u)q(u) for Q(u) in eq. (71), where q(u) is meant to be the 
embedding of q(u) in Rdf’ (i.e., (q(u), l)), then we have 

lim jnQd+l(U) * j”q(u) = a(t) * M(t) lim jnQd+l * j”q(u) 
u-e+ ( ) 

. (77) u-t- 

ACM Transactions on Graphics, Vol. 8, No. 4, October 1989. 



352 l M. E. Hohmeyer and B. A. Barsky 

If we denote limu-t+jnQd.+l by y(t) and lim,,,- jnQd+* by IL(t) and let the 
factors proceed to their limits independently, then 

Multiplying both sides by l/y(t) and substituting $‘(t) * M’(t) for 
gives: 

1 
lim j”q(u) = - 
u-d+ -Y(t) * &I * IC/‘(t) * M’(W~h~ j,q(u). 

(78) 

M(t)+ * (t) 

(79) 

The d + 1st component of q(u) is the constant function 1, so the above equation 
implies that 

jnl = & * a(t) * q'(t) * M'(t)jnl. 

Since M’(t)j’? = jnl, we have 

j”1 = -$j * a(t) * $‘@I. 

Thus, 

(80) 

lim jnq(u) = M’(t) i:ir- j”q(u), 
u-et+ 

(82) 

and thus, q(u) is Frenet frame continuous. 0 

9. RATIONAL GEOMETRIC CONTINUITY 

Recall that a curve q is geometrically continuous (G”) if there exists a repa- 
rametrization r(u) such that q(r(u)) is regular and parametrically continuous. 
Geometric continuity can be posed as a set of constraints on the components of 
q. Barsky and DeRose have shown [5-7, 141 that a regular curve q is G” if and 
only if there exist scalars Pi(t), i = 1, . . , , n with PI(t) > 0 such that 

where M@(t)) is the matrix defined by eq. (44). This equation is simply the 
Beta-constraints written in matrix notation. The Beta-constraints can be found 
in the Appendix. Using this, we can derive a set of linear componentwise 
constraints on Q that are equivalent to q E G”. 

COROLLARY 1. Rational geometric continuity. Let q: (a, b) + Rd, 
q = (Ql/Qd+l, . . . , Qd/&d+l)s be a regular curve. Suppose that &d+l(u) # 0 for all 
u E (a, b) and that the one-sided limits of Q’“(u) exist for i = 0, . . . , n. Then q(u) 
is G” if and only if there exist n-jets a(t) and ,8(t), with ,8*(t) = t and &(t) > 0, 
such that the associated homogeneous curve Q: R + Rd” defined by Q = (Q1, . . . , 
f&i, Qd+l) satisfies 

lim YQ(u) = a@) * M(P(t)) j-y- J Q(u) (i ‘n ) . (84) 
u-t+ 
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Note that if Qd+l (u) # 0 then any cro(t) satisfying (84) will be nonzero for all 
t. The continuity constraints are given explicitly in the Appendix. 

PROOF. If M@(t)) is substituted for M’(t) and M(t) in Theorem 1, then 
by eq. (53) the commutations in eqs. (76) and (79) can take place with 
M’(t) = M(t). q 

10. RATIONAL PARAMETRIC CONTINUITY 

COROLLARY 2. Rational parametric continuity. Let Q(u) be a homogeneous 
curve whose one-sided derivatives exist everywhere on an interval (a, b) and whose 
value at every parameter is equal to the limit from the left or the limit from the 
right. Further, assume that Qd+l (u) is never zero. The projection of Q(u) is C” on 
(a, b) if and only if there exists an n-jet a(t): (a, b) + J”(F) so that 

lim j“Q(u) = a(t) * hrm- j”Q(u). (85) 
u--et+ 

PROOF. If M(t) is set to the identity in Theorem 1, the corollary follows 
immediately. Cl 

Just as a matrix that relates the derivatives on one side of a parameter value 
to the derivatives on the other side of the parameter value is called a connection 
matrix, an n-jet that relates the derivatives on one side of a parameter value to 
the derivatives on the other side of the parameter value is called a connection 
n-jet. The above theorem states that a homogeneous curve Q projects to a C” 
curve q if and only if Q has a connection n-jet. 

11. SMOOTHING MULTIPLICATION 

We have seen that it is possible to divide each component of a function by a 
common function to obtain a function that is G” even if neither the original 
function nor the divisor was C”. One might ask a similar question about multi- 
plication instead of division. That is, what restrictions must be placed on g(u) 
and q(u) so that q(u)g(u) is G”? We have depicted this in Figure 6. 

COROLLARY 3. Multiplying to make curves geometrically continuous. A reg- 
ular curve q(u)g(u) will be G” on (a, b) if and only if there exist n-jets cr(t) and 
,6(t) with &(t) > 0 for all t such that 

lim j%(u) = cu(t) * 
( 
M@(t)) &-I- j”q(u) 

1 
(86) 

u-t+ 

and 
1 

lim jng(u) = - * 
( 
M(P(t))J\~- j%(u) . u-et+ a(t) ) 

PROOF. The curve q(u)g(u) in [Wd can be viewed as the projection from IWd+’ 
to [Wd of the curve (q(u), l/g(u)). By Corollary 1, q(u)g(u) will be G” if and only 
if there exist n-jets a(t), ,8(t): (a, b) -+ J”(F) such that 

lim jn(q(u), -&) = a(t) * (M(B(t))iim- j”(q(u)T &))* 
u-St+ (88) 
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Fig. 6. For q(u)g(u) to be G”, the connection n-jet for q must be 
the reciprocal of the connection wjet for g. 

This is equivalent to 

lim j%(U) = (y(t) * u-d+ ( 
M@(t)) lim j”q(u) 

u-a- ) 
and 

lim jn 
( 1 
-& = a(t) * M(@(t))lim jn 

1 
u-at+ L 1 

- 
u-et- (u) * 

Equation (90) can be rewritten as 

1 

lim jn -0 u-a+ L 1 = cu(t) * lim J 
u-G- -(& O B(t)). 

Inverting the n-jets gives 

1 
lim j”g(u) = - * 
u-et+ ff(t) ( 

lim jn g(u) 0 
u-et- 

P(t) 
) 

01 

1 
lim j”g(u) = - * 
u-at+ a(t) ( 

MW))~+y j%(u) . Cl 
) 

(89) 

(90) 

(91) 

COROLLARY 4. Multiplying to make curves parametrically continuous. The 
homogeneous curve q(u)g(u.) will be C” on an interval (a, b) if and only if q(u) 
has a connection n-jet on (a,, b) and that connection n-jet is the reciprocal of the 
connection n-jet for g(u). 

PROOF. This follows directly if we set /3(t) = J”I in Corollary 3. Cl 

Remark. A result similar to Corollaries 3 and 4 has not yet been shown for 
Frenet frame continuity. 

12. DISCUSSION 

In Figure 7, we have depicted rational geometric continuity of the first degree. 
We have depicted a curve R that is composed of P(U) for u 5 t and Q(U) for 
u > t. We concern ourselves with the constraints imposed on Q’(t) if P is 
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Fig. 7. Rational geometric continuity of the first 
degree. 

known. For simplicity, assume that R E Co. If we require that R be C’, then 
Q’(t) is specified exactly by P’(t). If we require that r be C’, then Q’(t) is 
constrained as shown in Figure 5. If we require that R be G1, then Q’(t) must be 
a positive scalar multiple of P’(t). If we only require that r be G’, however, then 
Q’(t) is only required to lie in the half plane L spanned by P(t) and positive 
scalar multiples of P’(t). 

In general, if P is known then the derivative Q”‘(t) will be determined by the 
set of cus and fis: 

Q”‘(t) = aiP(t) + ao@iP’(t) 
+ other terms involving aj and pj where j # i. 

(94) 

We would like to know if ai gives us a degree of freedom that we did not already 
have through pi* If P(t) and P’(t) are linearly independent, as we pictured them 
to be in Figure 7, then by varying ai we can specify Q”‘(t) in a way not possible 
with pi. By the following argument, if the curve p is regular then P(t) and P’(t) 
will be linearly independent. 

Suppose that p(u) is regular. Then 

p’(u) # 0. 

At least one component, pf (u), of p’(u) cannot be zero: 

(95) 

p!(u) = pI(“)Pd+ltu) - Pi(U)PA+l(U) z o 
I 

pi+1 (u) 
(96) 

Thus, 

PI(u)Pd+l(u) - Pi(U)PA+l(U) * 0. Km 

The left-hand side of (97) is the first component of A x B where A = (0, Pi(u), 
Pd+l(u)) and B = (0, PI(u), Pi+l(u)). Therefore, A x B # 0, and A and B are 
linearly independent. If a subset of the components of two vectors are linearly 
independent, then the vectors themselves must also be; thus, P(u) and P’(U) are 
linearly independent. Thus, we are guaranteed that each rational geometric 
continuity constraint will give us two independent degrees of freedom. 
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13. CONCLUSIONS 

In this paper we have shown that the three common measures of continuity- 
parametric, geometric, and Frenet frame continuity-are too restrictive to be 
applied to the homogeneous curve associated with a rational curve. By investi- 
gating the representation of a circle by piecewise rational curves, we have 
established the necessity of using rational curves whose homogeneous represen- 
tation is not smooth. We have derived the constraints on the homogeneous curve 
that are exactly equivalent to the parametric, geometric, and Frenet frame 
continuity of the rational curve. For every degree of continuity, the rational 
continuity constraints contain a degree of freedom not present in the correspond- 
ing continuity constraints for projected curves. The construction of spline curves 
based on these rational continuity constraints is investigated in [35, 361. 

APPENDIX 

Rational Parametric Continuity Constraints 

The projection of Q(U) will be C” at parameter value t if and only if there exist 
ai SO that 

i = 0, . . . , n. (98) 

The first few constraints are 

lim Q”‘(u) = lim c~~Q’~‘(u) , (99) 
u-t+ u-d- 

lim Q”‘(U) = lim [(Y~Q(‘)(u) + aoQ”‘(u)J 7 (100) 
u-at+ u-+t- 

lim Q”‘(u) = hm [cY~Q(‘)(u) + 2alQ”‘(u) + aoQ(2)(~)], (101) 
u-t+ u--t- 

lim Qc3’(u) = lim [(Y~Q(O)(U) + 3cz2Qu)(~) + ~cx~&(~)(u) + LYOQ(~)(U)], (102) 
l&-t+ u-et- 

lim Q’“‘(u) = lim [cx~Q(O)(U) + 4a3Q’l’(u) 
u-t+ u-+t- 

+ GLY~Q(~)(u) -I- 4cu,Q’3’(~) + aoQ(*)(u)]. 
(103) 

Note that if a0 = 1 and (yi = 0 for i 2 1 then rational parametric continuity 
reduces to simple parametric continuity. 

Geometric Continuity Constraints 

A curve q(u) will be G” at parameter value t if and only if there exist pi such that 
I 

lim q”‘(u) = lim C Mij(p)q’“(U) i = 0, . . . , n. (104) 
u-d+ U-+t- j=CJ 

These constraints are called the Beta-constraints. The first few constraints are 

Urn q”‘(u) = lim q”‘(u), 
u--et+ u-t- 

lim q”‘(u) = lim plqu’(u), 
u-t+ u-et- 
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lim q’*‘(u) = lim [@:q’“‘(u) + /32q”‘(U)], 
u-d+ u-B- 

lim qc3’(u) = hi-~- [@q’“‘(u) + 3Pl/32q(2)(u) + Pas”‘(u)], 
u-t+ 

(107) 

(108) 

lim qc4’(u) = E-IYI- [/3:qc4’(u) + 6P:/32q’3’(u) 
u-t+ 

+ (4PIP3 + 3P3q’2’b) + Pts”‘h)l. 
(109) 

Rational Geometric Continuity Constraints 

The projection of Q(U) will be G” if and only if there exist CY; and pi such that 

lim QCi’(u) = i lim 
u-d+ 0 

! ai-j 
.l 

i Mjk(P)Q’k’(U) i = 0, . . . , n. (110) 
j=O U-+t- k=O 

The first few constraints are 

lim Q”‘(u) = lim c~~Q(~‘(u), (111) 
u+t+ u-e- 

lim Q”‘(U) = lim [cx~&‘~‘(u> + LU&Q(~)(U)], (112) 
u+t+ o-bt- 

lim Q”‘(u) = lim [cc~Q(O)(U) + (c&2 + Pcu~~~)&“‘(u) + (Y&Q(~)(U)], (113) 
u-t+ u-d- 

h-n Q’3’(u) = &-I- [L~~Q(~Yu) + (a~/% + 3a1P2 + 3a2h)Qc1)(~) 
u-et+ 

(114) 

+ 3boPIP2 + wPT)Q’~‘(~) + a~P?Q’~‘(u)l, 

lim QC4’(u) = lim [cY~&‘~‘(u) + (aoP4 + 4al/33 + 6c~2p2 + 4a3&)Q(‘)(~) 
u-d+ u-t- 

+ (4aoP1P3 + 3aoPi + 12a1/31@2 + 6a2PS)Qc2)(u) (115) 

+ (6aoPSP2 + 4a1PT)Qc3)(u) + (~oPfQ(~)(u)l. 

If we let a0 = 1 and ai = 0 for i 2 1, then the rational geometric continuity 
constraints reduce to the Beta-constraints. On the other hand, if we let p1 = 1 
and pi = 0 for i 1 2, then the rational geometric continuity constraints reduce to 
the rational parametric continuity constraints. Finally, if both LY~ and pi are 
specified as above, the rational geometric continuity constraints reduce to simple 
parametric continuity constraints. 
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