@ Computer Graphics, Volume 24, Number 4, August 1990

Extended Free-Form Deformation:
A Sculpturing Tool for 3D Geometric Modeling

Sabine Coquillart

INRIA-Rocquencourt
Domaine de Voluceau
78153 Le Chesnay, France

Abstract

Current research efforts focus on providing more efficient
and effective design methods for 3D modeling systems.
In this paper a new deformation technique is presented.
Among other things, arbitrarily shaped bumps can be de-
signed and surfaces can be bent along arbitrarily shaped
curves,

The purpose of this research is to define a highly inter-
active and intuitive modeling technique for designers and
stylists. A natural way of thinking is to mimic traditional
trades, such as sculpturing and moulding.

Furthermore, with this deformation technique, the mod-
eling tool paradigm is introduced. The object is deformed
with a user-defined deformation tool.

This method is an extension of the Free-Form Deforma-
tion (FFD) technique proposed by Sederberg and Parry

[7).

CR Categories and Subject Descriptors: 13.5
[Computer Graphics]:Computational Geometry and Object
Modeling - Curve, surface, solid, and object representation;
Geometric algorithms, languages, and systems; Hierarchy
and geometric transformations; 1.3.6 [Computer Graphics]:
Methodology and Techniques - Interaction techniques.

Additional Keywords and Phrases: Solid geometric
modeling, deformations.

Presently on sabbatical at Thomson Digital Images, Paris.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1990 ACM-0-89791-344-2/90/008/0187 $00.75

1 Introduction

Geometric modeling has always been a major research area
in computer graphics. Geometric modeling includes both
the definition of the geometric model and the development
of design methods. Often, systems offer design methods im-
posed by the underlying geometric model or use geometric
models imposed by the design methods. This solution is ef-
ficient for specific applications. However, general modeling
systems require less specific geometric models and several
design methods that are as easy as possible to use and that
can be combined with each other to increase the power of
the system. A growing trend is thus to dissociate the un-
derlying geometric model and the design methods so that
the geometric model becomes transparent to the user.

This paper describes an interactive deformation tech-
nique independent of the geometric model. As we wanted
to define a highly interactive and intuitive modeling tech-
nique usable by designers and stylists, it was natural to try
to mimic traditional tools, such as sculpturing or moulding.
The use of the sculpturing metaphor for geometric model-
ing is not recent. Several authors have suggested tools that
allow a designer to see the design operations as sculpturing
tools [12, 19, 7, 2, 1, 5, 17, 8, 15).

Our goal is to change the shape of an existing surface ei-
ther by adding arbitrarily shaped bumps to it or by bending
it along an arbitrarily shaped curve. Four problems must
be considered:

e The position of the deformed region on the surface.

o The size of the deformed region.

e The shape of the boundary of the deformed region.

e The shape of the deformed region (inside the bound-
ary).

A common practice consists of interactively moving the
control points of a spline surface. This solution is not sat-
isfactory for the following reasons:

e The number of control points the user will have to
move depends on the size of the deformed region.
For example, the design of a large bump may require
moving many control points whereas designing small
bumps may be impossible.

187

SIGGRAPH "90, Daltas, August 6-10, 1990

o The shape of the deformed region (both along its
boundary and within its interior) is imposed by the
shape of the surface isoparametric lines, that is, by
the position of the neighbouring control points. De-
signing a bump with a circular boundary is almost
impossible.

¢ The position of the deformed region on the surface
is imposed by the position of the control points since
only the control points are moved.

Some of these problems, namely small bumps, can be
partially solved by using refinement techniques. Note, how-
ever, that refinement has the unpleasant property of being
non-local — it causes regions far from the region of interest
to be refined as well.

In [14] and [15] Piegl proposes a combination of control
point-based and weight-based modifications. The weight-
based technique, valid for rational B-spline surfaces, is a
nice solution for the size problem. The position problem is
partially solved by an automatic refinement technique.

In [8], Forsey and Bartels describe a new geometric model
where a surface is represented as a hierarchy of refined sur-
faces. This representation solves the size problem as the
user can choose the resolution of each region of the surface.
However, the shape problem is not considered since the
shape of the deformation is still influenced by the position
of the neighbouring control points. The position problem

is not solved either because the control point positions are
fixed.

In {1], Barr suggests a set of powerful transformations for
deforming a solid object. The transformations he presents
include stretching, bending, twisting, and tapering opera-
tors. In spite of the fact that arbitrarily shaped deforma-
tions are not possible, it is a very efficient method.

Cobb [5] presents the first modeling tool allowing the
user to define bumps with different shapes. She extends
the basic warp technique previously discussed in [12, 19,
7, 2] and introduces the region warp and the skeletal warp.
With region warp, the user specifies a polygonal region that
defines the shape of the warp boundary. Skeletal warp is
a variation of the region warp where the region is defined
by its skeleton. The size and the position of the deformed
region, as well as the shape of its boundary, are user defined
without any limitations but the shape of the interior is not
free. Notice that Cobb solves most of the previously listed
problems by the addition of a structure which consists of
a region or of a skeleton. This structure is independent of
the surface geometry. The user does not need to know the
underlying geometric model to deform the surface.

Sederberg and Parry [17] present a powerful deformation
tool in which the representation of the surface is also hidden
by a FFD lattice embedding the object. The deformations
of the FFD lattice are automatically passed to the object.
FFD has proved to be a very intuitive and efficient model-
ing technique highly appreciated by designers [3]. It solves
the size and the position problems but rot the shape one.
The intrinsic parallelepipedical shape of the FFD lattice
prohibits arbitrarily shaped deformations.

188

This paper introduces an extension of the FFD technique
called EFFD, for Extended Free-Form Deformation. The
new method uses non-parallelepipedical 3D lattices. The
shape of the user defined lattice will induce the shape of the
deformation. This paper mainly describes surface deforma-
tion although the technique is suitable for object deforma-
tion as well. Deformations produced by this technique are
more general than Cobb’s warps, they are not restricted
to bumps, and all the advantages of FFD are not only re-
tained but extended. In addition, both the boundary and
the interior of the deformation are arbitrarily shaped.

After a presentation of our implementation of Seder-
berg and Parry’s FFD technique, the EFFD method is
described. The steps of the deformation process are de-
tailed and different classes of EFFD lattices are presented.
Finally, some examples illustrate our approach.

2 Free-Form Deformations

Free-Form Deformation (FFD) [17, 16, 13] consists of em-
bedding the geometric model or the region of the model
that has to be deformed into a parallelepipedical 3D lattice
regularly subdivided, as shown in Figure 1. The deforma-
tions of the FFD lattice are then automatically passed to
the model. Let I, m and n be the number of subdivisions
along each of the three directions, U, V and W. These
numbers can be chosen by the user depending on the de-
formation he wants to produce (in Figure 1, I =2, m =1
and n = 2).

P636

» Peoe

b Psos

b Peoo

Figure 1: A parallelepipedical lattice

In our implementation the 3D lattice is represented by
a tensor product piecewise tricubic Bézier volume. This
volume is defined by an array of (314+1) x (3m+1) x (3n+1)
control points P;;x. Each subdivision element, also named

@ @ Computer Graphics, Volume 24, Number 4, August 1990

“chunk” by Clark in [4], is thus defined by :

3

L(wv,w)=) Bi(w)B;(®)Bx(w)Pisx (1)

6, J,k=0

with 0 < u,v,w < 1, where the Bi(t) are the degree 3
Berstein polynomials, the P;ji are the chunk control points.

The Free-Form Deformation technique is decomposed
into two steps :

o Before deforming the 3D lattice, the coordinates us,
v, and w,, in the lattice parameter space, of each ob-
ject point are computed. With parallelepipedical lat-
tices, this step requires only the solution of three lin-
ear equations. For any point X interior to the lattice,
0<us<l,0< v, <mand 0 <w,s <n.

e After deforming the 3D lattice, the deformed positions
of the object points are computed. The deformed po-
sition X¢¢q of an arbitrarily point X with coordinates
(s, vs, w,) in the lattice parameter space is computed
in two steps. First, determine the chunk where the
point lies by computing the floor values (uo, vo, wo)
of us,vs and w,. Let 4 = uy — 4o, v = vs — vo and
w = w, — wo be the X coordinates in the chunk pa-
rameter space. The second step consists of computing
the Cartesian coordinates of Xy ¢4 from u, v, w and the
matrix of the 4 x 4 X 4 control points P, of the chunk,
according to equation (1).

Tensor product Bézier volumes are used throughout the
paper. Naturally, as claimed by Sederberg and Parry, other
bases such as B-splines or volumes of higher degree could
be considered as well. The piecewise structure of the vol-
ume allows the user to design local deformations on the
3D lattice. This will be very important for the proposed
extensions.

In our implementation the deformation is specified by
moving the (14 1) x (m +1) x (n + 1) control points (the
Psi3;3k) corresponding to the corner control points of the
volume elements {or chunks). Only these points are rep-
resented on Figures 1 and 2. The tangents at the corner
control points can also be modified by the user. The other
control points are automatically updated. Two modes ex-
ist for the manipulation of corner control points. Constant
tangent mode, where the tangents of the point remain con-
stant when the point is moved, and non-constant tangent
mode where the tangents of the point are updated accord-
ing to the position of the neighbour points simulating a
C-Spline interaction [4]. These two modes can be chosen
independently for each of the three directions.

3 Extended Free-Form Defor-
mations
FFD is a very intuitive modeling technique but it is too

restrictive to allow real sculpturing of surfaces. The re-
striction is mainly due to the shape of the lattice. As seen

previously, FFD solves only the size and the position prob-
lems but not the shape one. For example, defining a circular
bump on a surface is not possible with FFD (see Figure 5a).
One would like to use a cylindrical lattice instead of the par-
allelepipedical one (see Figure 5b). The EFFD technique
presented in this paper allows arbitrarily shaped deforma-
tions by using non-parallelepipedical lattices. EFFD lat-
tices are equivalent to FFD lattices; only the initial lattice
shape is different. The EFFD technique can be described
in four steps:

1. Editing an EFFD lattice.

2. Associating an EFFD lattice with the surface.
3. “Freezing” an EFFD lattice.
4

. Deforming the surface.

Notice that the EFFD lattice is defined independently of
the surface to which it will be applied. The EFFD lattice is
a deformation tool that is designed by the user and stored
into a toolbox or a library until it is used. The modeling
tool paradigm faithfully reproduces traditional tools and
greatly increases the power of the modeling system. The
user can adapt the modeling system to his needs by defining
his own tools. Each of the four steps of EFFD will now be
explained in detail.

3.1 EFFD lattices

3.1.1 Prismatic lattices

The prismatic lattice is a very significant special case. Pris-
matic lattices are especially useful for applying a deforma-
tion to a surface. We have seen previously that the de-
formation technique consisting of moving interactively the
control points of a spline is not satisfactory because the
shape, the size, and the position of the deformation are
constrained by the geometry of the surface. The purpose
of prismatic lattices is to redefine the geometry of the sur-
face. From a user point of view, the geometry as well as
the type (polygonal, B-spline, Bézier...) of the surface are
hidden by a new user defined structure, the EFFD lattice.
The prismatic lattice is positioned on the surface such that
the surface passes through the lattice (see Figures 6a to
11a). Only the corner control points, the Ps;3 3 are shown
on the shaded pictures presented in this paper. Then, the
user works directly on the EFFD lattice by moving some
of its points and the deformations are automatically passed
to the surface. All the surface points inside the EFFD will
be deformed. The EFFD can be applied to non-planar sur-
faces or, for example, to surfaces that have already been
deformed with another EFFD lattice. The height of the
prismatic lattice must thus be adjusted such that the de-
sired region of the surface fits into it. The shape of the pris-
matic lattice is of paramount importance. Control points
and consequently isoparametric lines must be carefully po-
sitioned in order to allow the desired deformation.

Two classes of prismatic lattices are defined, the elemen-
tary prismatic lattices and the composite prismatic lattices.
There is no restriction on the shape of elementary prismatic

189

SIGGRAPH '90, Dallas, August 6-10, 1990

C
;Z&'&
S
>

H

»

lattices. All prismatic lattices obtained by moving or merg-
ing any points of a parallelepipedical lattice are valid. It is
therefore advised not to define lattices that intersect them-
selves. The cylindrical lattice (see Figure 2) is a useful

lattice obtained by welding two opposite faces of a paral--

lelepipedical lattice and by merging all the points of the
cylinder axis. Control points along one of the directions
(V on Figure 2) are defined in order to approximate cir-
cles. An exact representation of a cylindrical lattice is only
possible with rational splines. Other elementary prismatic
lattices can be designed by moving and merging some of
the points of a parallelepipedical lattice.

Psoe £o0
Ps36 Page | | P3o6
Pspa Pog
RN
Ps3s Pags | | Paes
Pso0 Pos
Psso Pago P390

Figure 2: A cylindrical lattice

3.1.2 Composite prismatic lattices

Elementary prismatic lattices are not general enough.
Composite lattices must be introduced in order to allow
the design of some unconnected shapes (see the “8” exam-
ple in Figure 9). Composite prismatic lattices are defined
as several elementary lattices welded together; see 3.1.4 be-
low.

3.1.3 Non-prismatic lattices

Non-prismatic lattices can also be used to create deforma-
tions of objects and some non-prismatic lattices such as
spherical lattices can be very attractive. Composite non-
prismatic lattices are also valid. However, the use of lattices
which are too complex can lead to unpredictable results.

3.1.4 EFFD lattice design process

From a user point of view, an EFFD lattice is defined either
from a predefined three-dimensionnal lattice or from two-
dimensionnal lattices.

o Predefined EFFD lattices include parallelepipedical
and cylindrical lattices. The number of subdivisions

(or chunks) along each axis is user definable. In Figure
6a, a predefined cylindrical lattice with respectively 2,

190

12 and 1 subdivisions along each of the three U, V and
W axis has been selected. This lattice has then been
transformed by selecting one plane of points out of
two and by moving them toward the axis. Valid edit-
ing methods include moving (both points and tangents
can be moved either alone or as a group), merging,
inserting (by subdividing the lattice) and removing
points.

o EFFD lattices can also be created from two-
dimensional lattices in the same way as surfaces are
defined from curves (loft, sweep, extrusion,...). 2D
lattices are similar to surfaces. Traditional surface
modeling methods are employed to define them. Valid
editing methods for non-predefined 3D lattices are the
same as for predefined 3D lattices. In the “S” exam-
ple (see Figure 8a), the 3D EFFD lattice is defined
from a two-dimensional lattice. The 2D lattice is a
loft on three curves, two of them being an offset from
the middle one.

Two elementary two-dimensional lattices can be welded
together in order to form a composite two-dimensional lat-
tice and further a composite three-dimensional lattice. The
welding operation is realised by merging the points of each
lattice. Two or more points of the same lattice can also
be merged. When merging two points (P0 and P1l), two
of their tangents (0 with t1 and #'0 with ¢'1) are merged
either automatically or on user request such that merged
points are equivalent to other points (see Figure 3). In
order to be able to assure tangent continuity at a merged
point, the two tangents #'0 and t”1 must be marked as
aligned, which is also done either automatically or by user
request.

"1
L]
P y
t1 t'1
10 t'0
PO
0t"0

Figure 3: Merging two points

Some tricky cases cannot be solved automatically, suck

as the one representing the center point of the “8” lattice,
in Figure 4. In this case, the four points, P0, P1, P2 and

@ Computer Graphics, Volume 24, Number 4, August 1990

P3 are merged together, as well as 10, t1, t2, ¥'2 and ¢'0,
1, 13, 3.

11
[]
P1 ,

” 1 71 i
- P2 P3 -
2 0 20 '3
Po
Te7o

Figure 4: Merging four points

When several points are merged together, such as the
center of a disc, some continuity problems may occur.
These problems are discussed in paragraph 3.1.5. While
the implemented welding method is very simple, some more
sophisticated ones such as the one presented in [9], could
be implemented as well. In the “8” example (see Fig-
ure 9a), the 3D EFFD lattice is defined from a compos-
ite two-dimensional lattice made from 3 elementary two-
dimensional lattices, two discs and an exterior lattice.

In the future, more specific two-dimensional lattice de-
sign methods will be developed. An example of these meth-
ods is to antomatically compute the 2D lattice from either
the skeleton of the shape or from its boundaries.

3.1.5 Continuity versus complexity

Continuity is one of the most important problems to con-
sider when working with piecewise surfaces or volumes. Be-
fore examining continuity constraints for volumes, let us
recall some results on piecewise surfaces continuity; see [6]
for a complete survey. Assuming non-degenerate 4-sided
cubic patches, known results are as follows:

e C!' and G" smooth connection between patches de-
fined over a topologically rectangular network can be
guaranteed.

o C! continuity cannot be guaranteed if more than 4
patches meet at a point.

o For G' continuity around an n-patch corner (n>4),
constraints intertwining often requires either to sub-
divide patches or to increase their degree (cf. [6]).

With degenerate patches constraints propagation is even
more important. With volumes the problem is more tricky.

Surface continuity property can easily be extended to pris-
matic volumes but general non-prismatic volumes can lead
to unsolved continuity problems. Even when a solution to
the continuity problem exists, maintaining this continuity
may be penalizing for the EFFD technique. For example,
as continuity constraints require the increase of the degree
or of the subdivision level of chunks, editing points have
to be added automatically, This is not convenient for the
user and allowing only lattices for which continuity prob-
lems are easily solved (without adding points) is too restric-
tive. Our choice is thus not to restrain volume complexity
but rather to insure lattice continuity only for the simplest
cases. What is important for the user is the surface con-
tinuity but not the lattice continuity. Depending on the
surface type, it is often possible to guarantee the surface
continuity even if lattice continuity is not assured (for ex-
ample with spline surfaces). Thus, from our point of view,
lattice continuity is not a primary concern.

3.2 Associating a lattice with the sur-
face

The next step consists in taking an EFFD lattice out of the
library and associating it with the desired surface. A list
of EFFD lattices may be associated with the surface. As-
sociating an EFFD lattice with a surface consists of adding
the lattice to the list. While an EFFD lattice is associated
with a surface, one can still edit it without deforming the
surface. At this time, an attractive capability is the posi-
tioning command which allows moving the EFFD lattice to
a user specified point on the surface.

3.3 Freezing a lattice

Everything is now ready to deform the surface. Assuming
that several lattices are associated with the surface, the user
must first select one of the EFFD lattices and “freeze” it.
Freezing a lattice consists in computing the u,, v, and w,
coordinates of each point of the surface in the EFFD lattice
parameter space. For each surface only one EFFD lattice
can be frozen at a time. With arbitrarily shaped lattices,
finding the (2., v., w,) coordinates of the surface points
is decomposed into two steps. First, the chunk where the
point is supposed to lie is determined by using the convex
hull property of Bézier volumes. The (u, v, w) coordinates
inside the chunk are then computed using Newton approx-
imation. Two problems have to be considered: the tech-
nique convergence and the degenerated chunks treatment.

o The convergence and consequently the determination
of the starting point of Newton iteration is usually
considered as a delicate problem. However, for our
problem, experience has proved that choosing u = 0.5,
v = 0.5 and w = 0.5 as a starting point leads to very
good convergence. No divergent cases have been so
far noted. A simple solution has thus been chosen.
It consists of subdividing the chunk in order to get a
better starting point when no convergence is detected.

191

SIGGRAPH '90, Dallas, August 6-10, 1990

o With degenerated chunks, matrix inversion required
by the Newton technique may not be possible because
of differential vanishing. In this case, as proposed by
Lukécs in [11], the pseudo-inverse matrix method is
used.

3.4 Deforming the surface

When an EFFD lattice is frozen, all the transformations
applied by the user to the lattice are passed to the surface
when the user selects the update command. Only moving
transformations are valid for frozen lattices. The C? conti-
nuity along the intersection of an exterior face of the lattice
with the object can be assured either by keeping the two
planes of control points adjacent to the lattice border fixed
or by guaranteeing the surface continuity as suggested in
3.1.5. The computation of the Xss4 coordinate points of
the deformed surface is equivalent to the FFD one.

The presented method has been implemented with polyg-
onal surfaces but, as FFD, it also works with other surfaces,
such as spline surfaces, and it should work with hierarchical
surfaces [8] as well. Whatever surface is used, a subdivision
technique such as that of Griessmair et al. [10] is recom-
mended in order to maintain an acceptable resolution of
the surface. The technique of Griessmair et al. is valid
for polygonal surfaces. Each polygon is subdivided into
triangles that are again subdivided according to a given
accuracy threshold.

Considering a surface with several lattices positioned on
1t, the deformation process can be described as follows:

Loop 1:

Deform the unfrozen lattices (move, insert, re-

move and merge control points)

Freeze one of the surface EFFD lattices

Loop 2:
Deform the frozen EFFD lattice (move
points)
Update the surface

End loop 2

Unfreeze the EFFD lattice
End loop 1

The ability to work with several EFFD lattices associated
with the same surface is very important; it allows the user
to apply successively different shaped deformations.

In order to allow for an exact repetition of the same de-
formation on several surfaces, a recording operator has to
be implemented.

4 Examples and concluding re-
marks

Some simple examples of surfaces deformed using the
EFFD technique are illustrated in Figures 6 to 11. Figures

192

6a to 1la present the initial surfaces with the EFFD lat-
tices positioned on them. In Figures 6b to 11b, the EFFD
lattices have been frozen, some of their points have been
moved, and the surfaces updated. Both the deformed lat-
tices and the deformed surfaces are shown. In Figures 6¢
to 11c, shaded pictures of the resulting surfaces or objects
are shown.

In Figures 6 and 7, the same EFFD lattice (see Figure 7a)
is used to define two different deformations. In Figure 6,
the axis and the intermediate cylinders of points are trans-
lated whereas in Figure 7, the axis and every second col-
umn of points of the intermediate cylinder have been moved
back. As shown in Figures 6c and 7c, sandpies are easily
modeled with EFFD. In Figures 8 and 9 two characters are
impressed onto a surface. The “8” is sculptured into a piece
of marble by “pulling” some of the lattice points whereas
the granite “S” is sculptured by “pushing” the points.

Sculpturing and moulding are accurately simulated by
EFFD. Other types of deformations can also be repro-
duced with this technique. The shape of cloth-like surfaces
can also be simulated. Figures 10 and 11 are two exam-
ples where folds are modeled with EFFD. In Figure 10c,
a leather-like cushion is shown. Starting with a surface of
revolution embedded into a cylindrical EFFD lattice, the
points of the lattice axis are first moved in order to create a
hull at the center of the cushion, then the folds are designed
by moving some of the intermediate points of the lattice
(see Figure 10b). In Figure 11, an oilcloth on a round table
has been modeled. Starting with a planar surface embed-
ded into a cylindrical lattice, the outermost points of the
EFFD lattice are moved as shown in Figure 11b to create
the folding effect. The resulting textured picture is shown
in Figure 11c.

EFFD is an easy to use and efficient method for modeling
cloth-like surfaces. Shapes cannot, of course, be as natural
as with physical methods [20] [18] but it can be an inter-
esting alternative when other methods are computationally
prohibitive or when naturalness is not the main objective.

Deforming a surface with EFFD technique is very effi-
cient. Only a few minutes were needed to design most of
the previous examples. It is very easy to implement EFFD
on a system including the FFD capability. This deforma-
tion technique is part of ACTION3D, a general interactive
modeling system developed jointly by SOGITEC and IN-
RIA.

5 Acknowledgements

I would like to thank Laurent Alt, Wen-Hui Du, Michel
Gangnet, Tony Kasvand, and Marie-Luce Viaud for help-
ful discussions and for reviewing early drafts of this paper.
I am grateful to INRIA’s audiovisual department for their
assistance with color images and video demonstrations. I
would also like to thank the reviewers for their helpful com-
ments.

e
@ Computer Graphics, Volume 24, Number 4, August 1990

References

(1]

2]

(3]

(4]

(5]

[6]

(1]

(8]

[10]

(11]

[14]

[15]

A. H. Barr. Global and Local Deformations of Solid
Primitives. In SIGGRAPH 84, volume 18, pages 21-
30. ACM, July 1984.

W.E. Carlson. Techniques for the Generation of Three
Dimensional Data for Use in Complex Image Synthe-
sis. PhD thesis, Ohio State University, 1982.

J.E. Chadwick, D.R. Haumann, and R.E. Parent. Lay-
ered Construction for Deformable Animated Charac-
ters. In SIGGRAPH’89, volume 23, pages 243-252.
ACM, 1989.

J.H. Clark. Parametric curves, surfaces and volumes
in computer graphics and computer-aided geometric
design. Technical Report 221, Stanford University,
1981.

B.S. Cobb. Design of Sculptured Surfaces Using the
B-Spline Representation. PhD thesis, University of
Utah, June 1984.

W.H. Du and F.J.M. Schmitt. Free-Form Surface
Modelling using Tensor Product Bézier Patches: A
Review with New Solutions. Technical Report Télé-
com Paris 89 D 014, Ecole Nationale Supérieure des
Télécommunications, 1989.

J.P. Duncan and G.W. Vickers. Simplified Method for
Interactive Adjustment of Surfaces. Computer Aided
Design, 12(6):305-308, November 1980.

D.R. Forsey and R.H. Bartels. Hierarchical B-Spline
Refinement. In SIGGRAPH’88, volume 22, pages
205-212. ACM, August 1988.

M.P. Gascuel. Welding and Pinching Spline Surfaces:
New Methods for Interactive Creation of Complex Ob-
jects and Automatic Fleshing of Skeletons. In Graph-
tcs Interface’89, pages 20-27, 1989.

J. Griessmair and W. Purgathofer. Deformation of
Solids with Trivariate B-Splines. In FUROGRAPH-
I1CS°89, pages 137-148. North-Holland, 1989.

G. Lukdcs. The Generalized Inverse Matrix and
the Surface-Surface Intersection Problem. In Theory
and Practice of Geometric Modeling, pages 167-185.
Springer-Verlag.

R. E. Parent. A System for Sculpting 3-D Data.
In SIGGRAPH’77, volume 11, pages 138-147. ACM,
July 1977.

S.R. Parry. Free-Form Deformations in a Construc-
tive Solid Geometry Modeling System. PhD thesis,
Brigham Young University, 1986.

L. Piegl. Modifying the Shape of Rational B-Splines.
Part 1 : Curves. Computer Aided Design, 21(8):509-
518, October 1989,

L. Piegl. Modifying the Shape of Rational B-Splines.
Part 2 : Surfaces. Computer Aided Design, 21(9):538—
546, November 1989.

[16]

[17]

(18]

[19]

[20]

T.W. Sederberg and S.R. Parry. Free-Form Deforma-
tion of Polygonal Data. In Second Image Symposium,
pages 633-639. CESTA, April 1986.

T.W. Sederberg and S.R. Parry. Free-Form Deforma-
tion of Solid Geometric Models. In SIGGRAPH’86,
volume 20, pages 151-160. ACM, August 1986.

D. Terzopoulos and K. Fleischer. Modeling Inelastic
Deformation: Viscoelasticity, Plasticity, Fracture. In
SIGGRAPH’88, volume 22, pages 269-278. ACM, Au-
gust 1988.

G.W. Vickers, J.P. Duncan, and V. Lee. Interactive
Surface Adjustment of Marine Propellers. Computer
Aided Design, 10(6):375-379, November 1978.

J. Weil. The Synthesis of Cloth Objects. In SIG-
GRAPH’86, volume 20, pages 49-54. ACM, August
1986.

193

SIGGRAPH '90, Dallas, August 6-10, 1990

Figure 5a: A sphere deformed with a parallelepipedical Figure 6a: A lattice positioned on a planar surface
lattice
b: A sphere deformed with a cylindrical lattice

Figure 6b: The deformed lattice and the deformed Figure 7b: Another lattice transformation and
surface the deformed surface

Figure 6¢c: A sandpie Figure 7c: Another sandpie

194

@ @ Computer Graphics, Volume 24, Number 4, August 1990

Figure 8a: An "S" lattice positioned on a sphere Figure 9a: An"8" lattice positioned on a planar
surface

Figure 8b: The deformed lattice and the deformed Figure 9b: The deformed lattice and the deformed
surface surface

Figure 8c: An "S" sculpted into a granit sphere Figure 9c: An "8" sculpted into a piece of marble

195

SIGGRAPH 90, Dallas, August 6-10, 1990

Sz

Vs

Figure 10a: A cylindrical lattice positioned on a surface Figure 11a: A cylindrical lattice positioned on a
of revolution planar surface

Figure 10b: The deformed lattice and the deformed Figure 11b: The deformed lattice and the deformed
surface surface

Figure 10c: A leather like cushion Figure 11c: An oilcloth

196

