Compression of Normal Meshes

Andrei Khodakovsky and Igor Gusko¥

I Caltechakh@cs.caltech.edu
2 University of Michiganguskov@eecs.umich.edu

DHRD

263B (e:131, p:38dB) 790B (e:37, p:49dB) 2788B (e:10, p:60dB) 35449B (e:2, p:74dB)

Fig. 1. Partial reconstructions from a progressive encoding of the molecule model. File sizes
are given in bytes, errors in multiples ®0~* and PSNR in dB (model courtesy of The
Scripps Research Institute).

Summary. Normal meshes were recently introduced as a new way to represent geometry.
A normal mesh is a multiresolution representation which has the property that all details
lie in a known normal direction and hence the mesh depends onlysingée scalar per

vertex Such meshes are ideally suited for progressive compression. We demonstrate such a
compression algorithm for normal meshes representing complex, arbitrary topology surfaces
as they appear in 3D scanning and scientific visualization. The resulting coder is shown to
exhibit gains of an additional 2-5dB over the previous state of the art.

1 Introduction

The growth of computing power of personal computers and recent progress in shape
acquisition technology facilitate the wide use of highly detailed meshes in industry
and entertainment. Similarly, scientific visualization applications tend to produce
ever finer meshes, such as iso-surfaces. In their raw, irregular form, acquired meshes
are complex and often unmanageable due to their sheer size and irregularity [23].
It is therefore important to find more efficient and compact representations. Algo-
rithms for efficient encoding of such meshes have been described in both single
rate [37, 15, 35, 30, 29, 2] and progressive settings [27, 28, 24, 18, 6, 34, 3, 1]. For
an overview of 3D geometry compression see [36].

One should recognize the fact that compression is always a trade-off between
size and accuracy. That is especially true for meshes that come from shape acqui-

2 Andrei Khodakovsky and Igor Guskov

sition or iso-surface extraction, and which always carry sampling error and acqui-
sition noise. Compression methods for such meshes can be lossy as long as the
approximation error of the reconstruction stage is comparable with the sampling
error. In the past eight years a number of efficient “remeshing” techniques have
appeared that replace the original mesh with a mesh consisting of a humber of
“regular” pieces, such as B-spline [12], NURBS [20], or subdivision connectiv-

ity [22, 11, 21] patches. Recently, even more regular resampling techniques were
introduced that use a single regular patch for the whole model [14]. Naturally, one
should expect that the remeshed model should behave much better with regards to
compression algorithms. This expectation was confirmed in [19], where the MAPS
algorithm [22] was included as part of a progressive geometry coder. In particu-
lar, the paper [19] makes it clear that any mesh representation can be considered as
having three components: geometry, connectivity, and parameterization; moreover,
the last two components are not relevant for the representation of the geometry. For
semi-regular mesh hierarchies, one can make a reasonable assumption that the nor-
mal component of the detail coefficients stores the geometric information, whereas
the tangential components carry the parametric information (see also [16, 9]).

Most of the existing remeshing algorithms purposefully remove almost all of the
connectivity information from the mesh, and also reduce the parametric information.
One may wondethow much of the parametric information can be removed from the
surface representationPhe answer isimost all of itas demonstrated in [17]. In
fact, by fixing the transform algorithm to use unlifted Butterfly wavelets it is possible
to build a semi-regular mesh whose details lie almost exclusively in the local normal
direction. Consequently, the geometry of “normal” meshes is fully represented by
a single scalar per vertex, instead of the usual three. Therefore it is natural to use
normal meshes for compression as we do in this paper.

Contribution The goal of this paper is to demonstrate the additional coding gains
possible when employing normal semiregular meshes rather than standard semireg-
ular remeshes (such as those produced by MAPS [22]).

2 Compression Algorithms

The progressive geometry coding described in [19] requires three necessary com-
ponents: a remeshing algorithm, a wavelet transform, and a zerotree coder. In [19]
the MAPS remesher [22] was used, followed by the Loop or Butterfly wavelet trans-
form. In this paper, we are using the normal remesher of [17] which was specifically
designed to produce detail coefficients with no tangential components whem an
lifted Butterflywavelet transform is applied to the produced semi-regular mesh. We
use the same zerotree coder as in [19]. The following sections will briefly overview
the algorithms used for compression. For a more detailed exposition, the reader is
referred to [19] and [17].

Compression of Normal Meshes 3
2.1 Normal Remesher

The normal remesher starts with a closed irregular mesh, and proceeds to build
a semi-regular mesh hierarchy approximating the original model. The algorithm is
described in [17] and consists of two stages. Using mesh simplification, a base mesh
is chosen that is topologically equivalent to the original mesh. The connectivity of
this base mesh will eventually become the connectivity of the coarsest level in the
semi-regular hierarchy. Also at this stage a net of surface curves is initialized that
splits the irregular mesh into a number of non-intersecting regions (these regions
are in a one-to-one correspondence with the coarsest level faces of the semi-regular
mesh being constructed). To complete the first stage of the algorithm, the net of
surface curves is propagated to the finest level of the original irregular mesh, and
a relaxation of global vertex positions within the surface is performed to even out
their distribution and improve aspect ratios of the base mesh triangles.

In the second stage of the algorithm, a “piercing procedure” is applied recur-
sively to obtain positions of finer level points of the semi-regular mesh. Thus, the
semi-regular mesh is refined and, to maintain the status quo, the corresponding re-
gions of the irregular mesh are split into smaller subregions. A global adaptive pa-
rameterization is maintained on the original mesh in order to keep the piercing pro-
cess under control and to enable fast construction of surface curves. Surface patches
are parameterized with Floater's parameterization scheme [13]. Every time a patch
is split into smaller ones, a new parameterization is computed for the resulting sub-
patches.

The described two-stage process produces a semi-regular mesh that has mostly
normal detail coefficients except for a small number of locations where the pierc-
ing did not find any “valid” intersection point with the original surface. For such
exceptional vertices, the recorded detail is not scalar, and will have three compo-
nents. The percentage of non-normal coefficients varies depending on the geometric
properties of a given mesh and the corresponding coarse level points chosen in the
first stage of the algorithm. Typically, the number of non-normal coefficients is be-
low 10% for adaptive meshes that have the same number of vertices as the original
irregular mesh. It may be possible to decrease the percentage of the non-normal de-
tails by a non-linear optimization approach, however we observed that the impact of
non-normal coefficients on the compression results is not significant.

The interpolating character of the Butterfly subdivision scheme makes the con-
struction of the normal remesh relatively straightforward since once a vertex is in-
troduced during refinement its position stays the same on finer levels of the hier-
archy. In contrast, the construction of normal meshes corresponding to any non-
interpolating subdivision scheme (such as Loop) would have to be much more in-
volved both algorithmically and computationally. In both interpolating and non-
interpolating cases the normality condition introduces a system of constraints on
the surface point sampling. However, for a non-interpolating scheme in order to
satisfy these constraints one would need to use a global nonlinear optimization pro-
cedure. The metamesh approach to the normal mesh construction used for Butterfly
normal meshes would become unwieldy for such an optimization, and a different,

4 Andrei Khodakovsky and Igor Guskov

possibly parameterization-based approach needs to be designed for Loop normal
mesh construction. We leave it as a direction for future work.

Displaced subdivision surface# similar goal of achieving a “scalar” geometry
description was addressed in the work on displaced subdivision surfaces [21]. That
approach represents the original shape as a single resolution normal displacement
from a base Loop subdivision surface, which is achieved by a careful construction
of the base mesh. While the DSS representation is purely scalar, the typical sizes of
the DSS base meshes are on the order of magnitude higher than the ones obtained
in the normal remesher even for geometrically simple models [17][21].

2.2 Wavelet Transform

A semi-regular surface representation is a sequence of approximations at different

levels of resolution: the corresponding nested sequence of linear spaces is given

asVp Cc Vi C ... C V,. HereV} is the space of coarse base meshes,gni

where the finest level meshes live. The wavelet transform maps this mesh hierarchy

into a representation that consists of the base mesh and the sequence of wavelet
coefficients that express differences between successive levels of the semi-regular
mesh hierarchy. Thus, the wavelet transform decomposes the surface with respect to
the hierarchy,, = Vo + Wi +...+ W,,, whereV; =V, + W, forj=1,...,n.

[26]

A

03 03 0.4 0.5 06 00 0.8 17 25 33
Fig. 2. Histograms of distribution of the original geometry and Loop wavelet coefficients for
Venus head model.

Typically, an appropriate wavelet transform achieves a better statistical distribu-
tion of the coefficients in the surface representation. This works well because vertex
coordinates of a smooth surface are correlated. This correlation can be exploited
through the prediction of finer level geometry based on the coarser level geometry
(low-pass filtering). The difference between the prediction and the actual geometry
is represented by wavelet coefficients (high-pass filtering). For smooth surfaces we
expect to achieve good prediction, which leads to smaller wavelet coefficients. Fig-
ure 2 shows the histograms of the distribution of original geometry coordinates as
well as the distribution of the corresponding wavelet coefficients. Note that there are
very few large coefficients (these actually contain important information) while the
remaining majority of the coefficients are almost zero. Therefore, this representation
is much more suitable for compression.

Compression of Normal Meshes 5

We start our wavelet construction by fixing a predictogthe subdivision
scheme. The subdivision defines an embedding V1.

st P, ;
()= (5
P, block computes positions of of newdd) vertices andP, is an update on the old
(ever) points. There are two classes of subdivision scheme&=spolatinge.g. But-
terfly) andapproximatinge.g. Loop or Catmull-Clark) [38]. Interpolating schemes
insert odd points as weighted averages of even points but never update the positions
of even points L, is the identity matrix). Approximating schemes not only compute
odd points but also update positions of even points.

The wavelet space expresses the difference between finer and coarser spaces.
The problem of designing the wavelet transform can be stated as a matrix com-
pletion problem: find such two matrice3. and @, that the whole transform
V; + W41 — V41 isinvertible.

J+1 J
() = (&) () @

Of course, the properties of the wavelet transform greatly depend on the choice of
the completion. In signal processing, the wavelets are typically required to define a
stable transform, to have some number of vanishing moments, and to satisfy some
orthogonality conditions. Additionally, the transforms with spatkeand @, are
preferable, since they can be implemented more efficiently. For surfaces, the wavelet
theory is far from being fully developed, and the importance of some of the above
mentioned qualities still has to be established.

In the remainder of this section we describe the particular wavelet transforms
that we use for the geometric compression of semi-regular meshes.

Linear subdivision.First, we consider a simple case of the linear prediction (sub-
division) scheme and the corresponding wavelet transform. The linear subdivision
scheme computes the predicted geometry position of an odd point as the average of
the two endpoints of the edge associated with the new point (Figure 4). The details
(wavelet coefficients) are the differences between predicted and original positions
of the odd points. Note, that this is an interpolating scheme, that is the even ver-
tices do not change their values between levels of the hierarchy. Therefore, details
are associated only with odd points. The wavelet transform preserves the number of
degrees of freedom. This is true in general, though for approximating schemes the
construction gets more complex [19].

After the above transform we adjust the scaling between the coarser coefficients
and the details. Namely, the details on leyeire divided by2’. This scaling arises
from the L, normalization of the subdivision basis functions. Linear subdivision
basis functions are hat functions centered at a vertex and supported on the one-ring
of that vertex. In the pure subdivision setting, basis functions are normalized to have
the same maximal value at all the levels of the hierarchy. However, for compression

6 Andrei Khodakovsky and Igor Guskov

purposes it is beneficial to decompose the surface with respectiip mormalized
basis. Since the area of the support shrinks by the factdrbetween successive
levels, the finer basis functions must be multiplied2byhich accumulates so that

the detail coefficients on levglmust be divided by’. Note that because of such a
normalization the coarser details will be encoded with higher precision than the finer
ones. The same scaling strategy applies not only for linear subdivision wavelets but
also for all higher order schemes described below.

coarse even coarse even

details @ odd details 5 odd

Fig. 3. The diagram illustrates the wavelet transform in the lifting framework. On the left the
initial construction, on the right an update step is added.

A two-level transform can be illustrated with the following diagram (Figure 3).
The wires on the left correspond to the coarse model (top) and details (bottom).
The right hand side corresponds to the finer level geometry. The forward transform
(analysis) is a transition from right to left: the predictor is evaluated on even vertices
and subtracted from the odd vertex positions. Finally, the top wire is divided.by
Reconstruction is a transition in the opposite direction: the top wire is rescaled back,
then the predictor, computed using coarser coefficients (bottom wire) is added to the
details. Equivalently, the transforms are expressed by the following formulas:

s\ 1 0 s ss\ (I 0 si=1
w!)T\ =277 P29 si) s8) T \P2I wl)

For stability and good approximation properties of a wavelet transform, it is
important that the wavelet basis has some number of vanishing moments. In our
construction, primal wavelets do not have even the zeroth vanishing moment. This
problem can be fixed using the lifting construction: During the analysis step we
modify coarse coefficients by subtracting a specially defined linear combination of
just computed details (Figure 3). For example, using only the closest details with
weight—0.125 enforces a zero moment of the primal wavelets. The same approach
can be used to improve other properties of the wavelets. For instance, instead of
enforcing moments, one can improve an angle between the wavelet 8paued
the coarser spadé _;.

Higher order schemesThe linear scheme is very simple and easy to implement

but it does not produce smooth surfaces. Several other methods for building wavelet
transforms on semi-regular meshes exist [26, 32, 4]. For compression of smooth
surfaces it is advantageous to use higher order schemes. Such schemes can achieve
better approximation leading to smaller detail coefficients and therefore to better

Compression of Normal Meshes 7

compression performance. In this work we used two particular wavelet transforms:
Loop wavelets and non-lifted Butterfly wavelets.

The Loop [25] wavelets we use were first described in [19]. These have the
advantage of using the Loop subdivision scheme in its inverse transform and per-
form quite well. However, a more natural wavelet transform to use in this work is
the unlifted version of Butterfly wavelets [10, 39] because ¢kactsame trans-
form is used to produce normal meshes. A detailed description of the construction
of Butterfly wavelets can be found in [32].

Figure 4 shows the Butterfly subdivision stencils in the regular case. The scheme
uses an eight-point stencil and produces smooth surfaces. Similar to the linear case,
an update step can be added to improve the wavelet transform. In general, such
an update step can improve coding performance, but it is not suitable for normal
mesh compression. The reason is that the normal mesh is constructed with respect
to “pure” butterfly transform. Therefore, the wavelet coefficients will not be normal
to the surface if any update step is added.

\
=l
o

.
16

[\
[\
Nl—

1

1
“Te 1 I

8

(=)

Fig. 4. Stencils for the linear (left) and Butterfly (right) subdivision in a regular case.

Note that the Butterfly wavelet transform uses finite filters for both analysis
and reconstruction, and is therefore faster than the forward Loop transform which
requires the solution of a sparse linear system. The Loop reconstruction filter has
support of the same size as the Butterfly filter. On the other hand, we found that
for non-normal meshes the Loop wavelet transform typically yields better visual
appearance than the Butterfly transform, with comparable error measures (Figure 9).

Local frames.Typically, thex, ¢, andz wavelet components are correlated [19]. We
exploit this correlation by expressing wavelet coefficients in local frames induced
by the coarser level. This is especially true for normal meshes. Almost all wavelet
coefficients computed for normal meshes have only a normal component. Figure 5
shows histograms of the latitude angtegthe angle from the normal axis) of the
Butterfly and Loop wavelet coefficients in a local coordinate frame. Since the nor-
mal mesh is built using Butterfly subdivision almost all Butterfly coefficients have
only normal components (those are seen as two pedksuadl 180 degrees of the
histogram).

8 Andrei Khodakovsky and Igor Guskov

180

0 920 .
Fig. 5. Histograms of the Loop (left) and Butterfly (right) wavelet coefficients Iatitﬂlf&egle
for the Venus head model in a local frame.

2.3 Zerotree Coding

We encode components of wavelet coefficients separately, that is, our coder essen-
tially consists of three independent zerotree coders. The bits from the three coders
are interleaved to maintain progressivity.

A general principle of wavelet coefficient encoding is to send the highest order
bits of the largest magnitude coefficients first. They will make the most significant
contributions towards reducing error. The zerotree algorithm [33, 31, 8] groups all
coefficients in hierarchical zerotree sets such that with high probability all coeffi-
cients in a given set are simultaneously below threshold.

Fig. 6. A coarse edge (left) is parent to four finer edges of the same orientation (right).

The main distinction of our setting from the image case is the construction of the
zerotrees. For images, one associates the coefficients with a quadrilateral face and
the trees follow immediately from the face quadtree. For semi-regular mesh hierar-
chies, the main insight is that while scale coefficients are associated with vertices,
wavelet coefficients have a one to one association with edges of the coarser mesh.
Vertices do not have a tree structure, but edges do. Each edge is the parent of four
edges of the same orientation in the finer mesh as indicated in Figure 6. Hence, each
edge of the base domain forms the root of a zerotree; it groups all the wavelet coef-
ficients of a fixed wavelet subband from its two incident base domain triangles. We
found that the hierarchies, which have such a subband separation property lead to
better compression performance (up to 0.5dB in some examples)

As was established in [19], the normal components of wavelet coefficients have
more effect on geometric error than the tangential components. We therefore scale
the normal components by four before quantization, so that they are effectively en-
coded with two more bits of precision than their tangential counterparts.

Compression of Normal Meshes 9

The scale coefficients from the coarsest level are uniformly quantized and pro-
gressively encoded. Each bitplane is sent as the zerotree descends another bit plane.
Finally, the output of the zerotree algorithm is encoded using an arithmetic coder
leading to about 10% additional reduction in the file size.

3 Adaptive Reconstruction

There is a trade-off between the remeshing error and the size of the resulting semi-
regular mesh. With adaptive remeshing this trade-off is local. We refine the mesh
where the error is maximal and leave it coarse where the remeshing error is small
(Figure 7). Note, that the coarse remesh and its refinement give the same compres-
sion performance at low bit-rates, since refinement usually introduces small details
at finer levels. These details are ignored by the zerotree coder at low bit-rates.

25
VAVAVAVAVAAVVAV"
avy AV
LR "“*‘&VAV

AVAV ‘ A AVM

VLVA 4
m

W,
‘gw)

A
4AVV ‘4'7
o o

Fig. 7. Adaptive normal mesh for the skull (19138 vertices) with relaiieerror of 0.02%
and relativeL, > error of 0.09%. The base mesh is a tetrahedron (4 vertices) while the original
mesh has 20002 vertices (model courtesy of Headus). For compression results see Figure 11.

The Butterfly based wavelet transform is fully adaptive: both analysis and re-
construction filters are finite. Therefore, it can take any adaptively remeshed semi-
regular mesh as input. All regions that are not subdivided to the finest level define
zero wavelet coefficients. These coefficients “virtually” exist as an extension of non-
uniform zerotrees. The situation is more complicated for Loop wavelets: the analysis
step requires solving a sparse linear system and its extension to adaptively refined
meshes is not currently supported.

The zerotree coder step is a separate procedure that is naturally adaptive: there
is no difference between non-uniform and uniform zerotrees with zeros attached to
extra nodes of the latter.

During the reconstruction (for both Butterfly and Loop compression) we sub-
divide faces only when we decode wavelet coefficients that belong to those faces.

10 Andrei Khodakovsky and Igor Guskov

After we decode all the coefficients we subdivide all the faces until we meet an adap-
tive flatness threshold [40]. This step is important since we want to produce smooth
surfaces even at low bit-rates. The flatness threshold is controlled by the user and
can be chosen depending on the reconstruction bit-rate and the performance of the
end-user graphics system.

4 Results and Discussion

We measured the performance of our coder [19] with normal meshes using both
Butterfly and Loop wavelet transforms. For comparison we use the CPM coder of
Pajarola and Rossignac [27] and the single-rate coder of Touma and Gotsman [37].
We plotted rate-distortion curves for the Touma-Gotsman coder by changing the
coordinate quantization between 8 and 12 bits. We also compare our results with
the performance of the coder of [19] for the Venus, horse and rabbit models.

Error was measured using the publicly available METRO tool [5]. All graphs
show error between the reconstruction and the irregular original model as a function
of the number of bits per vertex of the original mesh. All errors are given as PSNR
(PSNR= 20 log; ,(BBoxDiag/L?-error)).

Venus rabbit horse dinosaur skull molecule David

Vor 50K 67K 48K 14K 20K 10K 275K

Vs 42 71 112 128 4 53 283
E.,107* 0.47 0.47 0.51 1.7 23 6.3 1.04
Tn 1580 759 754 2973 1861 794 7500

Table 1.Number of vertices in original model¥y;), base domain of remeshdg}, relative
L? error (E,) in units of10~%, and the number of non-normal coefficients)(

We found that the coding with normal meshes has better performance compared
to MAPS meshes. Even using a Loop wavelet transform we observe an improve-
ment. For example, for the horse model (Figure 10) Loop wavelets on the normal
mesh allow 1.5 times (3.5dB) smaller distortion than on the MAPS mesh. Note,
that an improvement in the high bit-rate limit is due to the smaller remeshing error.
More important is that we have better distortion for all bit-rates which happens be-
cause of the normality of the mesh. The additional improvement of about a factor
of 1.2 (1.5dB) comes from using Butterfly wavelets summing up to a total of 5dB
improvement compared to [19]. For the rabbit and Venus models the coders using
MAPS and normal meshes have closer performance. However we still observe an
improvement of at least 2dB.

Better compression rate of normal meshes obtained using Butterfly wavelets is
not surprising given the fact that almost all the wavelet coefficients have a single
nonzero component instead of three. A more remarkable result is a better compres-
sion rate of the normal meshes versus other remeshes when the Loop wavelets are
used. Indeed, in that case one does not see scalar wavelet coefficients, and the rea-
son for better performance is less explicit. We believe that this better performance

Compression of Normal Meshes 11

10 ~ venus
—e— PGC normal butterfly
PGC normal Loop
81 —=-PGC MAPS Loop
——CPM
61 6
4 -
2 -
0 T T T T T
0 2 4 6 8 10
venus PSNR
90 -
80 +
70 A
60 1
50 7\#' T T 1
0 5 10 15

Fig. 8. Rate distortion for our coder with Butterfly and Loop wavelets using MAPS and
normal meshes, TG, and CPM coders for the Venus model. At the top relztieeror in
multiples of10~* as a function of bits/vertex. At the bottom the PSNR in dB.

can be explained by the smoothness of normal parameterization across the patch
boundaries. One indication why this can be true is given by the following invariance
property of the normal remeshagiven a Butterfly subdivision mesh as the input
(together with extraordinary vertices as base vertices), the normal remesher will
exactly reproduce the original medh.practice, we need to also assume that all the
normal piercing steps of the remesher succeeded which is usually true for meshes
with good triangle aspect ratios. It is clear then that given a mesh well approximated
by a subdivision surface one can hope to produce the normal mesh with small well
compressible wavelet details. Since the Butterfly subdivision surface parameteriza-
tion is smooth the normal mesh parameterization can be expected to be smooth as

12 Andrei Khodakovsky and Igor Guskov

Fig. 9. Comparison of partial reconstructions using butterfly (left) and Loop (right) wavelets
for approximately the same PSNR value (compressed files are around 10KB). Note the bumps
on the butterfly surface.

well. The corresponding result for the one-dimensional case of normal curves has
been recently proven in [7].

The above discussion makes explicit the fact that the Floater parameterization
is employed in the normal remesher in an auxiliary role — it is only used when the
normal piercing fails. Otherwise, the local point sampling is fully independent of
the particular parameterization scheme.

The fact that encoding with Loop wavelets benefits from Butterfly normal
meshes is remarkable. Experimentally we found that if we treat wavelet components
completely separately, Loop normal components compress better than Butterfly nor-
mal components. Given this evidence we should expect further improvement with
Loop based normal meshes.

Figure 11 shows rate-distortion curves for the dinosaur, skull, and molecule
models. These have coarser original meshes, therefore we allow a larger remesh-
ing error (see the discussion on the natural choice of remeshing error in [19]). Note,
that the adaptive remesh of the skull model has less vertices than the original, and
has a reasonably small remeshing error. The base domain for the skull is a tetrahe-
dron. In order to perform comparison with Loop based compression we uniformly
subdivided the adaptive remesh with the Butterfly scheme.

For all the meshes mentioned in this paper (except for the David model), the
remeshing step of our algorithm takes less than 10 minutes to complete. The for-
ward Loop transform of the coder requires the solution of a sparse linear system,
which takes about 30 seconds. Loop reconstruction and both Butterfly forward and
backward transforms take 2-3 seconds. Zerotree encoding and decoding take about
1 second.

The largest model we were able to transform into the normal representation
was a simplified model of the full David statue from the Digital Michelangelo
project [23] (see Figure 12). Both the original and the remeshed model had on
the order of 300,000 vertices. Our implementation of the normal remesher took

Compression of Normal Meshes 13

90 -
horse

80 -

70 4

60 4

S

50 T T T T T

90 ~ .
rabbit

80 -

70 A

|

I
p

8- PGC normal butterfly
PGC normal Loop
-# PGC MAPS Loop
-=-CPM
TG

50

2 4 6 8 10

Fig. 10. Rate-distortion for rabbit and horse models showing PSNR as a function of
bits/vertex.

thirty minutes to produce the normal mesh. It is clear that in order to remesh larger
models, one needs to implement an out-of-core variant of the remeshing algorithm.
Additionally, more efficient multigrid techniques for the patch parameterization can
also be beneficial for better performance. We leave these improvements as future
work.

o

5 Conclusions

In this paper we show that normal meshes improve performance of progressive ge-
ometry compression. We observe improvement of 2-5 dB depending on the model.

We also describe adaptive compression which allows finer control on the number of

vertices in the reconstructed model. The comparison between the Loop and Butter-
fly based compression methods is performed: in both cases compression is improved
with normal meshes, and while the meshes compressed with Butterfly wavelets ex-

hibit smaller mean-square error, the Loop based compression gives better visual
quality of the reconstructed surfaces.

14 Andrei Khodakovsky and Igor Guskov

80

dinosaur -

molecule &
80 4 Pie

70 1

60 1

50 4

40 + T a T T T T T T T

Fig. 11.Rate-distortion for our coder with Butterfly and Loop wavelets using normal meshes,
TG and CPM coders for dinosaur, skull, and molecule models in PSNR as a function of
bits/vertex.

Compression of Normal Meshes 15
80 -
75 1
70 A
65 -
60 -
55 -

50 -

45 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100
Fig. 12.Rate-distortion for our coder with Butterfly and Loop wavelets using normal meshes
for a david model in PSNR as a function of file size {7 Bytes).

Directions for future work include design of normal meshes using Loop wavelets,
as well as generalization of the normal meshing to more topologically complex and
dynamically changing surfaces.

AcknowledgmentsThis work was supported in part by NSF (ACI-9624957, ACI-
9721349, DMS-9874082, CCR-0133554). The paper was written with great encour-
agement and invaluable help from Wim Sweldens and Peteb8ehiKiril Vidimce
contributed to the current implementation of the normal remesher. Datasets are cour-
tesy Cyberware, Headus, The Scripps Research Institute, University of Washington,
and the Digital Michelangelo project at Stanford University [23].

References

1. ALLIEZ, P.,AND DESBRUN, M. Progressive compression for lossless transmission of
triangle meshes. IBIGGRAPH 2001 Conference Proceedif2801), pp. 198-205.

2. ALLIEZ, P.,AND DESBRUN, M. Valence-driven connectivity encoding of 3d meshes.
In Eurographics 2001 Conference Proceedii§spt. 2001), pp. 480-489.

3. Bajay, C. L., Rascuccy, V., AND ZHUANG, G. Progressive compression and trans-
mission of arbitrary triangular meshd&EE Visualization '991999), 307-316.

4. BERTRAM, M., DUCHAINEAU, M. A., HAMANN, B., AND Jov, K. |. Bicubic
subdivision-surface wavelets for large-scale isosurface representation and visualization.
In Proceedings of IEEE Visualization 2008000), pp. 389-396.

5. CIGNONI, P., RoccHINI, C.,AND SCOPIGNQ, R. Metro: Measuring error on simplified
surfacesComputer Graphics Forum 12 (1998), 167-174.

6. COHEN-OR, D., LEVIN, D., AND REMEZ, O. Progressive compression of arbitrary
triangular meshedEEE Visualization '991999), 67-72.

7. DAUBECHIES, |., RUNBORG, O.,AND SWELDENS, W. Normal multiresolution approx-
imation of curves. Preprint, Department of Mathematics, Princeton University, 2002.

8. Davis, G.,AND CHAWLA, S. Image coding using optimized significance tree quanti-
zation. InProdeedings Data Compression Confere(t@97), IEEE, pp. 387-396.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Andrei Khodakovsky and Igor Guskov

. DESBRUN, M., MEYER, M., SCHRODER, P.,AND BARR, A. H. Implicit fairing of

irregular meshes using diffusion and curvature floRroceedings of SIGGRAPH 99
(1999), 317-324.

DvN, N., LEVIN, D., AND GREGORY, J. A. A butterfly subdivision scheme for surface
interpolation with tension controACM Transactions on Graphics 2 (1990), 160-169.
EcK, M., DEROSE, T., DUCHAMP, T., HOPPE H., LOUNSBERY, M., AND STUETZLE,

W. Multiresolution analysis of arbitrary meshé&oceedings of SIGGRAPH $95995),
173-182.

Eck, M., AND HOPPE H. Automatic reconstruction of b-spline surfaces of arbitrary
topological type Proceedings of SIGGRAPH §6996), 325-334.

FLOATER, M. S. Parameterization and smooth approximation of surface triangulations.
Computer Aided Geometric Design (#997), 231-250.

GU, X., GORTLER, S.,AND HoPPE H. Geometry imagesACM SIGGRAPH 2002
(2002), 355-361.

GUMHOLD, S.,AND STRASSER W. Real time compression of triangle mesh connec-
tivity. Proceedings of SIGGRAPH §8998), 133—-140.

Guskov, I., SWELDENS, W., AND SCHRODER, P. Multiresolution signal processing
for meshesProceedings of SIGGRAPH 992999), 325-334.

Guskov, I., VIDIMCE, K., SWELDENS, W., AND SCHRODER, P. Normal meshes.
Proceedings of SIGGRAPH 20(Q2000), 95-102.

HoppPEg H. Efficient implementation of progressive mesh@smputers & Graphics 22
1(1998), 27-36.

KHODAKOVSKY, A., SCHRODER, P.,AND SWELDENS, W. Progressive geometry com-
pression.Proceedings of SIGGRAPH 20(®000), 271-278.

KRISHNAMURTHY, V., AND LEVOY, M. Fitting smooth surfaces to dense polygon
meshesProceedings of SIGGRAPH $6996), 313—324.

LEE, A., MORETON, H., AND HOPPE H. Displaced subdivision surfaces. Pmoceed-
ings of the Computer Graphics Conference 2000 (SIGGRAPH200)0), pp. 85-94.

LEE, A. W. F., SVELDENS, W., SCHRODER, P., COWSAR, L., AND DOBKIN, D.
Maps: Multiresolution adaptive parameterization of surface®roceedings of SIG-
GRAPH 98(1998), 95-104.

LEvoy, M. The digital michelangelo project. IRroceedings of the 2nd International
Conference on 3D Digital Imaging and Modelif@ttawa, October 1999).

Li, J.,AND Kuo, C. Progressive coding of 3-d graphic modeRroceedings of the
IEEE 86 6 (1998), 1052—-1063.

Loor C. Smooth subdivision surfaces based on triangles. Master’s thesis, University
of Utah, Department of Mathematics, 1987.

LOUNSBERY, M., DEROSE, T. D., AND WARREN, J. Multiresolution analysis for sur-
faces of arbitrary topological typ@CM Transactions on Graphics 16 (1997), 34-73.
Originally available as TR-93-10-05, October, 1993, Department of Computer Science
and Engineering, University of Washington.

PJAROLA, R.,AND ROSSIGNAG J. Compressed progressive meshes. Tech. Rep. GIT-
GVU-99-05, Georgia Institute of Technology, 1999.

PAJAROLA, R., AND ROSSIGNAG J. SQUEEZE: Fast and progressive decompression
of triangle meshes. IRroc. CGI(2000).

RossIGNAG J. Edgebreaker: Connectivity compression for triangle mesthegE
Transactions on Visualization and Computer Graphic4 §1999), 47-61.

ROSSIGNAG J.,AND SzYmczak, A. Wrap&zip: Linear decoding of planar triangle
graphs. Tech. Rep. GIT-GVU-99-08, Georgia Institute of Technology, 1999.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Compression of Normal Meshes 17

. SAID, A., AND PEARLMAN, W. A new, fast, and efficient image codec based on set
partitioning in hierarchical treedEEE Transaction on Circuits and Systems for Video
Technology 63 (1996), 243-250.

SCHRODER, P.,AND SWELDENS, W. Spherical wavelets: Efficiently representing func-
tions on the spheré?roceedings of SIGGRAPH 95995), 161-172.

SHAPIRO, J. Embedded image-coding using zerotrees of wavelet coefficidBEE
Transactions on Signal Processing,4P (1993), 3445-3462.

TAUBIN, G., GUEZIEC, A., HORN, W., AND LAZARUS, F. Progressive forest split
compressionProceedings of SIGGRAPH $8998), 123-132.

TAUBIN, G.,AND ROSSIGNAG J. Geometric compression through topological surgery.
ACM Transactions on Graphics 12Z (1998), 84—115.

TAUBIN, G., AND ROSSIGNAG, J., Eds.3D Geometry CompressiomNo. 21 in Course
Notes. ACM Siggraph, 1999.

TouMA, C.,AND GOTSMAN, C. Triangle mesh compressiofaraphics Interface '98
(1998), 26—34.

ZORIN, D., AND SCHRODER, P., EdsSubdivision for Modeling and Animatio@ourse
Notes. ACM SIGGRAPH, 1999.

ZORIN, D., SCHRODER, P.,AND SWELDENS, W. Interpolating subdivision for meshes
with arbitrary topology.Proceedings of SIGGRAPH 46996), 189-192.

ZORIN, D., SCHRODER, P., AND SWELDENS, W. Interactive multiresolution mesh
editing. Proceedings of SIGGRAPH 41997), 259-268.

