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Abstract. The reconstruction of a complete watertight model from scan data is still a difficult process. In particular,
since scanned data is often incomplete, the reconstruction of the expected shape is an ill-posed problem. Techniques
that reconstruct poorly-sampled areas without any user intervention fail in many cases to faithfully reconstruct
the topology of the model. The method that we introduce in this paper is topology-aware: it uses minimal user
input to make correct decisions at regions where the topology of the model cannot be automatically induced with
a reasonable degree of confidence. We first construct a continuous function over a three-dimensional domain.
This function is constructed by minimizing a penalty function combining the data points, user constraints, and
a regularization term. The optimization problem is formulated in a mesh-independent manner, and mapped onto
a specific mesh using the finite-element method. The zero level-set of this function is a first approximation of
the reconstructed surface. At complex under-sampled regions, the constraints might be insufficient. Hence, we
analyze the local topological stability of the zero level-set to detect weak regions of the surface. These regions
are suggested to the user for adding local inside/outside constraints by merely scribbling over a 2D tablet. Each
new user constraint modifies the minimization problem, which is solved incrementally. The process is repeated,
converging to a topology-stable reconstruction. Reconstructions of models acquired by a structured-light scanner
with a small number of scribbles demonstrate the effectiveness of the method.
Keywords: Surface reconstruction. Interactive tools.

Figure 1: Interactive reconstruction of the riding monk (left). Our finite-element field formulation (center-left) incorporates the
user’s interactive scribbles at automatically-detected weak-topology regions (center-right) to obtain the expected shape (right).
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1 Introduction
As 3D scanners are becoming commonplace, surface re-

construction is becoming a common step in modeling work-
flows. Thus, there is an emerging need to allow users to
create high-quality surfaces from scans, including imper-
fect scans. This need brought much attention to surface re-
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Figure 2: Reconstruction pipeline for a scanned elephant model. An initial coarse function is automatically computed from loose,
automatic inside/outside (blue/red balls) constraints (left). The topological analysis of this function selects weak regions (center-
left), where the user can make local decisions by scribbling over 2D tablets at a coarse resolution (center-right). Further iterations
at finer resolutions lead to a complete reconstruction of the model (right).

construction techniques. Recent research efforts have led to
significant progress in all aspects of the problem [18]. How-
ever, the reconstruction of a complete watertight model that
is faithful to the original physical object is still a difficult
process.

One of the major difficulties is the coverage of the
scanned model: As a result of physical inaccessibility, poor
visibility and material properties, the coverage is often
imperfect and significant portions of the surface are ei-
ther under-sampled or completely missing. The problem
is more acute for complex shapes with deep cavities and
bifurcations (e.g., Figure 1). While it is reasonable to as-
sume that scanning hardware will advance, future recon-
struction systems will still need to employ algorithms that
reconstruct under-sampled areas. Systems that reconstruct
poorly-sampled areas merely based on priors, without any
user intervention, fail in many cases to faithfully reconstruct
the expected shape. At the other extreme, systems that rely
only on explicit manual surface editing are too tedious.

Without prior assumptions and user constraints, the re-
construction problem is ill posed; an infinite number of sur-
faces pass through or near the data points. Smoothness and
watertight constraints usually regularize the problem and
remove the ill posedness. Nevertheless, even if the prob-
lem is successfully transformed into a well conditioned one,
the reconstructed object is not necessarily the expected one.
Our method is based on the observation that it is often pos-
sible to detect the ill conditioning and to ask the user for in-
side/outside constraints to locally resolve them and achieve
the expected shape.

In this paper we present a topology-aware reconstruc-
tion technique that requires minimal user input to make cor-
rect decisions at critical regions, where the topology of the
shape cannot be induced automatically with a reasonable
degree of confidence. Our method uses priors to reconstruct
the surface, but it also allows the user to influence the prior
distribution. Two aspects of the prior distribution are fixed:
we assume that the surface is smooth almost everywhere,

and that it should be watertight. Other aspects of the prior
distribution are controlled by the user who specifies con-
straint points that should be inside or outside the surface.

To reconstruct a watertight surface given raw scans
without normals, and possibly the user’s inside/outside
constraints, we first construct a continuous function over
a three-dimensional domain. The zero level-set of this
function approximates the data points. We construct this
function by minimizing a penalty that measures its non-
smoothness, the deviation of its zero level-set from the data
points, and its deviations from prescribed positive/negative
values at the inside/outside constraints. Our function op-
timization problem is formulated in a mesh-independent
manner, and mapped onto a specific mesh using the finite-
element method. Computationally, the function is con-
structed by solving a large sparse linear system. However,
at complex under-sampled regions these constraints might
be insufficient. Therefore, we analyze the local topological
stability of the zero level-set to detect weak regions of the
surface. These regions are suggested to the user for adding
local inside/outside constraints by merely scribbling over
a 2D tablet corresponding to a cross section of the field
(see Figure 2). The new user input augments the linear sys-
tem with additional constrains, improving the reconstruc-
tion. The stability analysis is then repeated. If the surface is
still topologically unstable, the user is prompted for addi-
tional constraints. This incremental process refines the sur-
face until it is topologically stable.

2 Related Works
The problem of reconstructing a surface from scans has

been researched extensively for almost two decades [12,
18]. Many different techniques have been developed, based
on signed distance functions [12, 8], Voronoı̈ diagrams [6,
2, 11], radial basis functions and local implicit functions [7,
22, 23], moving least square approximation [1, 3], or wrap-
ping techniques [5], to mention a few. Nevertheless, these
techniques are concerned with a faithful reconstruction of
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the local structure of the surface, whereas we also focus on
its global structure.

Some related works are concerned with the reconstruc-
tion of a surface from inhomogeneous sample density or
missing data [9, 11, 16, 25, 13]. These techniques use
some heuristics to define the locus of the surface in under-
sampled or noisy data. Our technique is similar to the works
of [16, 13] in that we use a global optimization technique,
which guarantees a watertight surface reconstruction. How-
ever, the method of Hornung and Kobbelt [13], requires the
definition of a watertight voxel crust in which the unknown
surface is supposed to lie. To define the crust, the authors
use flood-fill and dilation operators. The method of Kolluri
et al. [16], requires filtering of the Voronoı̈ diagram to ob-
tain a correct pole graph. To compute a watertight surface
the authors use global normalized cuts that smoothly com-
plete large missing parts. However, at problematic regions
where the topology of the data is unclear, both algorithms
cannot guarantee the generation of a topology-correct crust.
Instead, we automatically identify these weak regions for
further user interaction.

Our finite-element formulation of the reconstruction
shares similarity with the work of [7, 23, 15] in the def-
inition of the surface as a solution of a global linear sys-
tem. Carr et al. [7] use radial basis functions (RBF) con-
strained with surface and off-surface values. To make the
system sparser, Ohtake et al. [23] use local RBF. Recently,
Kazhdan et al. [15] use a Poisson system to define a surface
which agrees with the data points’ normals. These works
make intensive use of points’ orientation, which is often un-
reliable. In our work, we interactively reconstruct the sur-
face from raw unoriented scan data.

Recently, the use of scribbles as an interactive tool has
gained a lot of popularity in various computer graphics ap-
plications, such as image segmentation [29], matting [28],
colorization [17], or mesh editing [20]. Scribbles are easy-
to-use, loose, and do not require meticulous work. At the
same time, they provide the algorithm minimal but neces-
sary hints needed to solve a problem, which is otherwise ex-
tremely hard or even impossible to solve. Our work extends
the effective power of scribbles to assist ill-posed problems
in surface reconstruction. Nevertheless, it should be empha-
sized that, in this work, a careful analysis of the data leads
the user to where assistance is needed. Such an automatic
guidance is vital since, unlike previous work, the problem
domain is volumetric, and the scribbles are not drawn in im-
age space, but on a 2D tablet corresponding to an arbitrary
planar cross section in 3D.

3 Our Approach
Our surface reconstruction method initially computes

a smooth three-dimensional implicit function whose zero
level-set is a coarse approximation of the data points. The

Figure 3: A 2D illustration of a hummingbird reconstruction.
The reconstructed shape is extracted from the zero level-set
(in yellow) of an implicit function, computed using a finite-
element formulation (left). Our underlying hierarchy adapts
to the data points and to the automatic constraints (right).

method then explicitly extracts the reconstructed surface
from this function as its zero level-set. We formulate this
implicit function as the solution of a physical minimization
problem, which we solve using the finite-element method
(FEM). As Kazhdan et al. [15] showed, defining implicit
functions as a solution of a linear system guarantees a
global coherent solution that is watertight. Moreover, it
leads to a well conditioned sparse system whose size is
proportional to the reconstructed surface. Nevertheless, our
system is designed to be interactive and to incorporate the
user’s constraints.

The main challenge, shared by any method which fits
implicit functions [7], is to retrieve zero values only at the
surface. Necessarily, these methods require additional in-
formation, like the points’ orientations (i.e., the normal)
which is typically less precise than the points’ location. Fur-
thermore in under-sampled regions, the orientation of the
data points is not reliable. This may cause significant mis-
interpretation of the data, leading to an erroneous surface
reconstruction.

Therefore, we argue that user assistance is necessary
to correctly interpret the data, especially in under-sampled
regions. The key point in our work is to analyze the implicit
function and to identify topologically weak regions, in the
sense that small perturbations of the field lead to different
topological interpretations of the data. Our system indicates
such weak regions, allowing the user to merely draw few
scribbles over a corresponding 2D tablet to specify the
correct local sign of the implicit function. As the user
draws such scribbles, the solution in that region is correctly
constrained and the local topological stability increases.

A common source of errors is the use of a fixed hier-
archical data structure, since coarse resolution close to the
surface would generate erroneous reconstructions. The vol-
umetric nature and the required accuracy of the solution ne-
cessitate the use of an adaptive domain, which ideally is
coarse away from the surface and fine close to it. However,
since the locus of the surface is unknown a priori, the defi-
nition of a correct adaptive domain turns into a chicken/egg
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problem. Therefore, we use a dynamically adapted hierar-
chical structure, generated by triangulating the dual of an
octree (see Figure 3 (right)). Our reconstruction process
performs in a coarse-to-fine, incremental manner. At each
iteration, the hierarchy is locally refined close to the zero
level-set of the current implicit function. Next, the function
is updated and analyzed, suggesting finer user interactions
at weak regions.

We illustrate the process in Figure 2. Initially, a set
of automatic constraints is computed from the data points
(Figure 2 (left)), defining approximate inside/outside con-
straints. Next, the FEM system is solved and the topology of
the resulting implicit function is analyzed. At weak regions
(Figure 2 (center-left)), the user is guided to add scribbles
on 2D tablets for regularizing the local topology (Figure 2
(center-right)). Starting at this coarse resolution, the process
is iteratively refined by locally increasing the resolution un-
til achieving the expected shape (Figure 2 (right)).

Section 4 introduces our formulation of the reconstruc-
tion problem. In Section 5 we present the topological anal-
ysis of the implicit function, and the definition of weak re-
gions. These techniques are integrated into an interactive
framework described in Section 6. We conclude after show-
ing reconstruction results of structured light scans in Sec-
tion 7.

4 Constrained FEM Reconstruction
In this section, we describe the formulation of our im-

plicit function optimization. Let P s be the data points’ set,
and P in/P out be sets of inside/outside constraint points.
Our goal is to construct a smooth watertight surface Z that
is close to P s, and separates P in and P out.

The problem defines three criteria, one of which is bi-
nary (disconnectedness of P in and P out) and two of which
are continuous and high dimensional (smoothness of Z,
closeness of P s to Z). We look for a solution that discon-
nects P in and P out while balancing the smoothness of Z
and its closeness to P s.

Continuous optimization on implicit representation. We
first project the problem into a higher dimension; instead of

Figure 4: Adding scribbles to constrain weak regions achieves
the expected topology in the Hummingbird head: from the
data points and initial automatic constraints (left), a scribble
is drawn over the initial FEM field (center) to correct the local
topology (right).

searching for Z directly, we construct a continuous implicit
function u(p), p ∈ Ω defined over some domain Ω ⊂ R3,
and define Z = u−1({0}) to be its zero level-set (see
Figure 3 (left)). We translate the objectives defined with
respect to Z onto the function u, by requiring it to be
smooth (generically leading to a smooth Z) and to satisfy :

u(p) ≈ 0 for p ∈ P s (1a)

u(p) > 0 for p ∈ P in (1b)

u(p) < 0 for p ∈ P out (1c)

Unless the gradient of u near its zero level-set is small, the
points of P s are close to Z. In our interactive system, the
user can easily add points to P in and P out to stabilize Z
(see Figure 4). In the next section, we explain how to detect
areas where more constraints are needed.

The method replaces the constraints (1b) and (1c) by
specifying target values at P in and P out to remove the lin-
ear inequality constraints, and hence amenable to optimiza-
tion methods. Thus, the three criteria on u can be combined
into a single continuous score function Ψ, which assigns a
penalty to each candidate. The score Ψ(u) is a sum of two
scores, one that penalizes u for not being smooth and one
that penalizes it for being far from zero, positive and nega-
tive target values at P s, P in and P out.

Penalty functions. We define the non-smoothness penalty
for any function u that is differentiable almost everywhere
in Ω by:

Ψsmoothness(u) =
1
2

∫∫∫

Ω

[
(∂u∂x )2 + (∂u∂y )2 + (∂u∂z )2

]
dx dy dz .

(2)
This penalty has a physical interpretation [27, Sec. 3.3]: it
is the amount of work that is used to maintain state u in a
uniform isotropic diffusive problem (heat conduction, elec-
trostatics) with no forcing terms. If we add proper forcing
terms on the boundary of Ω, the steady-state solution of this
physical problem minimizes this penalty function and sat-
isfies the Laplace equation.

The penalty function Ψpoint constraints, penalizes u for be-
ing far from the point constraints. The target values t(p) are
defined by t(p) = 0 for p ∈ P s and heuristically setting
t(p) = −d(p) (resp. t(p) = +d(p)) for p ∈ P in (resp.
p ∈ P out), where d(p) is the distance to the nearest data
point :

Ψpoint constraints(u) =
∑

p∈P
(u(p)− t(p))2

,

where P = P s ∪ P in ∪ P out.
Finite-Element Method. The set of admissible functions
u is defined by interpolation using a finite element mesh M
that partitions Ω [14, Chap. III]. We denote the values of u
at the vertices of M by the vector uM .
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Figure 5: A 2D example of the FEM solution on two different
underlying grids: the smoothness penalty is independent of the
mesh, adapting automatically to different element sizes and
aspect ratio.

We use the finite-element method to construct a matrix
K such that:

Ψsmoothness(u) = uTMKuM . (3)

Thus, in our method, the mesh defines only the fam-
ily of admissible functions u. The non-smoothness penalty
Ψsmoothness(u) of a particular function is completely inde-
pendent of the mesh (see Figure 5), since it is intrinsically
defined using the mesh-free expression (2).

In this context, the finite-elements method is essentially
a recipe for constructing a matrix K given an integral ex-
pression such as (2) and a finite-dimensional set of admissi-
ble functions, such that K satisfies (3). The recipe is based
on computing the integral (2) on a set of basis functions
that span the space of admissible functions (see Appendix).
Here, we use a tetrahedral mesh and define the admissible
functions as piecewise tri-linear, interpolated from vertices’
values on each tetrahedron of the mesh. The matrix K is
sparse and easy to compute tetrahedron by tetrahedron.

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar ma-
trices from 2D meshes. The main advantage of our FEM-
based approach is that the smoothness penalty formulation
is independent of the mesh, since the left-hand side of Equa-
tion (3) is mesh free. Therefore it extends naturally to 3D
meshes. Our method automatically adapts to functions in-
terpolated on meshes with tetrahedrons of widely different
size and aspect ratio, common in our data structure (see Fig-
ure 5).

We sum Ψsmoothness and Ψpoint constraints to form a sin-
gle least squares optimization problem. For each constraint
point p ∈ P , we define cp such that cp uM = u(p). The row
cp represents a linear interpolation operator on M . It has at
most four non-zero values for a tetrahedral mesh. The con-
straint for point p now writes cp uM = t(p), and we weight
this constraint with weight ωp. The smoothness constraint
can be incorporated to the least squares formulation using

any matrix E such that ETE = K as follows:

min
uM

∥∥∥∥∥∥∥∥∥∥∥




E
ω1 c1
ω2 c2

...
ω|P | c|P |



uM −




0
ω1 t(p1)
ω2 t(p2)

...
ω|P | t(p|P |)




∥∥∥∥∥∥∥∥∥∥∥

2

2

,

The matrix E is never computed explicitly. Instead, we
solve the least-squares problem using its normal equation:


K +

∑

p∈P
ω2
p c

T
p cp


uM =

∑

p∈P
t(p) ω2

p c
T
p . (4)

We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cTi ci.
We solve these equations using a fast sparse Cholesky
factorization.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cTp cp
matrices and cTp t(p) vectors to left and right hand side of
Equation (4). To update the sparse Cholesky factorization
we use CHOLMOD [10]. Thus, the system factorizes the
initial matrix only once. In most cases, updating this factor-
ization is faster than factoring again.

Figure 7: Weak region for a 2D field: the red (resp. blue) line is
the +ε (resp. −ε) level-set for u: this small level perturbation
changes the level set connectivity, characterizing a critical
point.
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Figure 6: Weak regions computation, demonstrated on part of the hummingbird example from Figures 3 and 4. The link (in green)
of vertex v in our adaptive mesh (left) is composed of two sets of vertices: negative {w−1 , w−2 , w−4 , w−5 }, and positive {w+

3 , w
+
6 , w

+
7 }

(center), distributed in four connected groups Γ−1 ,Γ
−
3 and Γ+

2 ,Γ
+
4 (blue and red ellipses). Counting a total of four (≥ 3) Γ±i ’s, the

vertex v is critical. Adding a constraint loosely along the critical line connecting Γ−1 to Γ−3 changes the values around v (right),
making it a regular point (two Γ±i ’s).

5 Detection of Topological Stability
The computation of the implicit function described

above is designed to incorporate user information through
inside/outside constraints. To avoid the laborious task of
defining constraints everywhere, the system automatically
detects weak regions of unstable topology. The definition
of a weak region is quite intuitive. Its theoretical founda-
tion and its computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain Ω where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user.
These weak regions are generally due to the low resolution
of the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point
p is critical if, for an arbitrarily small ε, the u(p) − ε
and u(p) + ε level-set surfaces have different topologies
in a neighborhood of p (see Figure 7). The weak regions
are the regions of these topological changes. For small
values of |u(p)| they mark topological instabilities in the
reconstructed surface (zero level-set of u) induced by small
level shifts. Moreover, this definition addresses the small
gradient issue discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical re-
gions everywhere, which would require stochastic simula-
tions to select between them. Our approach uses a determin-
istic detection of the local stability by analyzing the topol-
ogy under level shifts. This directly relates to strong math-
ematical notions derived from Morse theory [19]. Morse
proved that for smooth, regular implicit functions u(p),
these critical regions are points p where the gradient van-

ishes: ~∇u(p) = ~0. This equivalence makes computable the
abstract definition of weak regions, as described next.

Discrete critical points. The topological changes of
smooth, regular implicit surfaces occur at critical points.
Based on further structural properties of Morse’s critical
points, Banchoff [4] introduced an equivalent definition for
these critical points on polyhedral mesh, where the implicit
function u is discrete, given only at the mesh vertices
and linearly interpolated on the faces of the mesh. This
definition is summarized as follows:

To determine whether a vertex v of a tetrahedral mesh is
critical, we consider its link graph, whose vertices wi are
connected to v and whose edges connect adjacent wi’s (see
Figure 6 (left) for a 2D example). We partition the wi’s into
two sets, one of positive vertices, for which u(wi) > u(v)
and one of negative vertices, for which u(wi) ≤ u(v). Each
set, connected by the edges of the link graph, is composed
of several connected groups Γ±i (see Figure 6 (center)). If
the total number of positive and negative connected groups
is 1 or above 3, the vertex is critical. On 2D meshes, a
critical point has typically one or four connected groups.
On 3D meshes, they have typically one or three connected
groups.

The level-set at u(v) − ε (resp. u(v) + ε) is contained
in the negative (resp. positive) sets of the link of v. If
these sets are made of several connected groups, the level-
shift necessarily causes the level-set to “jump” between the
connected groups Γ±i , inducing a topological change (see
zero level-set (yellow) in Figure 6 (right)). Since we assume
that the original object is connected, we ignore topological
changes that would create isolated components, i.e., critical
vertices where the total number of Γ±i equals 1. We further
discard the critical points v of high value |u(v)|, defining
weak regions only close to the zero level-set of u, which
will be the reconstructed surface.

The corresponding work was published in the proceedings of Siggraph, ACM, 2007..
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Figure 8: In complex shapes automatic detection of weak regions is necessary to guide the user: the original scan with the weak
regions (left), the reconstruction without scribbles generates some spurious connections (center), which are removed after the user
adds scribbles (right).

User interface. After having related the weak regions to
the formal definition of critical points, the remaining chal-
lenge is to provide, for each weak region, a 2D tablet over
which the user can draw scribbles to correct or reinforce
the topology of the zero level set. A correction either con-
nects or disconnects two parts of the object (see Figure 6
(right)). In the critical points definition, connecting two
parts of the implicit surface corresponds to merging two
connected groups Γ±i of the same sign set. Similarly, dis-
connecting corresponds to connecting the complementary
object. This requires drawing a constraint loosely across
the critical line, i.e. the line joining the barycenter of each
group.

Consequently in the interface, tablets are located at criti-
cal points, oriented perpendicularly to the critical lines (see
Figure 8). Note that with volumetric meshes, the common
critical points have three Γ±i , defining a single critical line,
and thus one tablet.

6 Technical Details
The dual hierarchical graph. The scanned data is given
by a set of range images, where each data point is associ-
ated with the scanner position. The range images are reg-
istered [18] to form a point cloud, which is structured by a
hierarchical domain that tessellates the 3D space.

We use a tetrahedral mesh, which is generated from the
dual of a dynamically adapted octree. This dual allows a
better representation of continuous functions, as required
by the FEM and the topological analysis. Each cell of the
dual is triangulated with a static pattern of 6-tetrahedrons
cube decomposition. To save memory, we keep only the
edge graph of the tetrahedrons. A 2D illustration of this
data structure is shown in Figure 3 (right). The initial octree
is adapted just to separate the data points, restricting its
maximum depth to five. Next, following user validation
of weak regions, the octree is iteratively refined close to
the zero level-set of the implicit function until reaching a

visually-validated local feature size.

Automatic initial reconstruction. To initiate the recon-
struction process, we use few, automatically generated,
loose inside/outside constraints. The location and the sign
of these initial automatic constraints can be computed
heuristically. In this work, we simply use the local maxima
of an unsigned distance transform over the initial hierar-
chy (in Figure 3(left) automatic constraints were extracted
from the medial-axis). We automatically classify these con-
straints as inside/outside applying a simplified space carv-
ing method [8]. Although this process is prone to errors,
it serves only as an initial coarse guess for the function
u, as described in Section 4. This technique actually per-
forms an initial reconstruction similar to automatic recon-
struction based on global optimizations such as [7, 22, 15]
(see Figure 9), without using the normals of the input scan.
In our experiments, this process could be easily skipped us-
ing only manual scribbles.

User interaction. The user can visualize arbitrary 2D
cross sections of the implicit function using a pseudo-color
map (see Figure 1 (center-left)). The user picks one of the
cross sections which are displayed at the weak regions (see
Section 5). This cross section of the field is reproduced in
a separate window, which we call a tablet, over which the
user draws the scribbles. The user is not required to pre-
cisely position the scribbles, but rather loosely define in-
side and outside relations locally at the weak regions. These
in/out scribbles are inserted as constraints to the FEM sys-
tem, with negative/positive sign and value according the
distance field.

With each additional constraint, the field and the weak
regions are updated within less than a second. This in-
teractivity relies on Equation (4), which allows a pre-
factorization of the FEM matrix. As the user adds more
scribbles, the topological stability of the implicit function
locally increases. After the user’s validation, the octree is
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Figure 9: Comparing our automatic initial reconstruction with other implicit techniques: (from left to right) the original scan with
our weak regions detection; reconstruction using MPU; using Poisson surface reconstruction; our FEM technique without any
user interaction; our interactive reconstruction with two scribbles only.

locally refined close to the zero level-set of the implicit
function, and the FEM matrix is pre-factorized again. Our
non-smoothness penalty constraint avoids spurious topo-
logical instabilities (as also observed in [21]), while incor-
porating the scribbles constraints. The whole process takes
between a few seconds and a few minutes, depending on
the octree depth and the complexity of the shape.

Note that except for the scribbles drawing, the user is not
required for any parameter tuning. The critical points filter-
ing is determined by the octree depth (|u(v)| < 8 ·2−depth),
and the relative weights ωp in Equation (4) are fixed to a low
value (0.01) for the initial constraints, medium (1) for the
data points and high (1000) for the user scribbles.

Final surface reconstruction. Once the implicit function
achieves the expected topology, a final mesh is extracted
from its zero level-set. Since the field is smooth everywhere
(see Figure 10), we can use any isosurfacing method. We
choose the dual marching cubes method [24] since it guar-
antees the resulting topology, and since it works on the
same data structure as our octree dual. We further improve
mesh quality using standard mesh optimization techniques
(edge flips/collapse and normal smoothing).

7 Results
To demonstrate the effectiveness of the proposed

method, we focused on complex objects, such as the riding
monk (Figure 1), which we acquired with few structured
light scans. This relatively inexpensive technology has the
advantage of being fast: each model was scanned from
6 to 12 shots in less than five minutes. Our experiments
exhibit the difficulties that are common to various scanning
techniques: uncoverable areas as the elephant’s trunk in
Figure 2 and the camel legs in Figure 13; highlights in the
sitting woman in Figure 14; object’s material as the riding
monk’s black areas in Figure 1; and shadows in the tiger’s
head in Figure 12. For illustration purposes, we rendered
the unoriented raw scans using normals computed from our

reconstruction. For a demonstration of the interactivity of
our system, we refer to the accompanying video.

To further analyze the specific characteristics of our
technique, we consider feature-specific models, generated
by an openGL-based virtual scanner. As we can see in
the triple Möbius band (Figure 10), our FEM formulation
yields a smooth field everywhere, even for thin shapes.
Furthermore, our topological analysis detects all the weak
regions to allow a complete reconstruction, even on models
as complex as the knot (Figure 8). We also demonstrate
the effectiveness of the interaction on virtual scans of real
models such as the hand (Figure 9) and the hip (Figure 11).

Our method can handle input data with very large miss-
ing parts and outliers. The smoothness constraint of the
FEM distinguishes gracefully between frontiers of under-
sampled regions and outliers as in the tiger’s head (Fig-
ure 12). In such cases, the smoothness criteria of the FEM,
smoothly completes the missing parts and discards outliers,
resulting in a watertight manifold surface. In similar noisy
situations, the topological analysis accurately detects weak

# # Auto- Inter- #
points shots matic action scribbles

Riding Monk 469 k 10 130 s. 3 min 9
Elephant 217 k 6 88 s. 2 min 7
Knot 497 k 15 206 s. 4 min 10
Hand 259 k 8 92 s. 30 s. 2
Saddle 284 k 11 118 s. 0 min 0
Hip 222 k 9 109 s. 30 s. 4
Tiger 340 k 10 157 s. 6 min 12
Woman 333 k 9 116 s. 5 min 12
Camel 282 k 12 128 s. 3 min 6

Table 1: Reconstruction timings for our scanned models. From
left to right: the number of data points, the number of struc-
tured light shots, the time of the automatic FEM reconstruc-
tion, the interaction time of the reconstruction session and the
number of scribbles used.

The corresponding work was published in the proceedings of Siggraph, ACM, 2007..
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9 Interactive topology-aware surface reconstruction

regions such as the arm-leg contacts of the woman in Fig-
ure 14. Furthermore, user’s scribble constraints can gener-
ate coherent geometries in under-sampled regions such as
the camel’s legs (Figure 13), while guaranteeing watertight-
ness and avoiding spurious connected components.

We compare the automatic part of our reconstruc-
tion technique with the implicit reconstruction techniques
of [22] and [15]. As shown in Figure 9 for a clean data set,
the results are of comparable quality. The timings of the
three methods are about the same, e.g., for this hand model,
[22] performed in 141 seconds at octree depth 20, [15] in
273 seconds for octree depth 10, and our initial reconstruc-
tion in 92 seconds at depth 8 (see Table 1). Note that our
method does not require the data points’ normals. For the
sake of this comparison, we provided the normals of our
reconstructed surface to the other implicit techniques. Fur-
thermore, the addition of only two scribbles recovers the
correct model.

As a limitation, this work focuses only on the topological
aspects of the reconstruction and not specifically on its ge-
ometry. The constraints we associate to the scribbles correct
the local topology of the shape. Our scribbles merely indi-
cate whether a region is inside or outside the shape. There-
fore, this mechanism does not precisely define the geometry
of the resulting shape. In particular, it completes smoothly
large missing parts (such as the woman’s shoulder in Fig-
ure 14). Thus, the method does not deal with important is-
sues such as the reconstruction of sharp features.

Figure 10: The smoothness penalty of the FEM formulation
yields a field that is smooth everywhere, even for thin shapes.

8 Conclusions
To conclude, we presented an interactive tool for sur-

face reconstruction, where the user assists the interpretation
of data at automatically detected topologically unstable re-
gions. The use of inside/outside scribbles at these regions
allows achieving the expected topology of the object. The
reconstructed surface is faithful to the data points and guar-
anteed to be watertight even with noisy under-sampled data.
Our experiments show that from only a dozen of structured
light shots, we are able to reconstruct coherent models. In
the future, we want to be able to guide the geometry of the

reconstructed surface in the missing areas. This can be done
in the same framework, by adding other semantics to scrib-
bles, such as specifying additional data points, associating
sharp features or smoothness.
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Appendix: Construction of the matrix K
The construction of K is a standard finite-elements one, based

on [14] but simplified to our particular case and made completely
explicit.

Let {(xi, yi, zi)}ni=1 be the coordinates of the vertices of the
mesh and let {(n(1)

j , n
(2)
j , n

(3)
j , n

(4)
j )}mj=1 be the vertices’ indices

of the tetrahedrons in the mesh. For each tetrahedron we compute
the 4-by-4 matrix (linear tetrahedral element):

Kj =
|det(Jj)|

6
E∗jEj , where
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and Ej is a 3-by-4 matrix which is the solution of the following
linear system

J∗j Ej =




1 0 0 −1
0 1 0 −1
0 0 1 −1


 .

We define K̂j to be an n-by-n symmetric matrix which is
zero except for rows and columns n(1)

j , n
(2)
j , n

(3)
j , n

(4)
j , where

K̂j(n
(a)
j , n

(b)
j ) = Kj(a, b). Finally, we sum the K̂j to generate

K =
∑m
j=1 K̂j .
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11 Interactive topology-aware surface reconstruction

Figure 12: The smoothness penalty discards outliers and completes smoothly missing parts, as can be seen in the tiger’s head.
From left to right: the original statue, the raw data points (the missing parts are in black), the FEM field with two close-ups on
outliers and large missing parts in the head, and our interactive reconstruction of the model with 12 scribbles.

Figure 13: Due to the statue’s base (left), the camel’s legs cannot be covered (center-left). Scribble constraints drawn on
automatically generated 2D tablets (center-right) can be used to generate a coherent geometry (right).

Figure 14: The topological analysis detects weak regions (center-right) in the presence of noise. Weak regions are typically located
where two parts of the shape are close and the topology is ambiguous, such as the arm-leg contacts in the sitting woman. Missing
parts with unambiguous topology, such as her right shoulder, are automatically smoothly completed.
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