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Abstract

We describe how some simple properties of discrete one-forms directly relate to some old and new results
concerning the parameterization of 3D mesh data. Our first result is an easy proof of Tutte’s celebrated “spring-
embedding” theorem for planar graphs, which is widely used for parameterizing meshes with the topology of a
disk as a planar embedding with a convex boundary. Our second result generalizes the first, dealing with the case
where the mesh contains multiple boundaries, which are free to be non-convex in the embedding. We characterize
when it is still possible to achieve an embedding, despite these boundaries being non-convex. The third result is
an analogous embedding theorem for meshes with genus 1 (topologically equivalent to the torus). Applications of
these results to the parameterization of meshes with disk and toroidal topologies are demonstrated. Extensions tc
higher genus meshes are discussed.
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1. Introduction

In 1963, Tutte (1963) proved his celebrated “spring embedding” theorem for planar graphs. This the-
orem maintains that a 3-connected planar graph may be easily drawn in the plane by embedding the
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graph boundary as a strictly convex polygon and solving a linear system for each of the two coordinates
of the interior vertices. The linear system forces each interior vertex to lie at the centroid of its neigh-
bors. Tutte proved that the result is indeed a straight line plane drawing, and, furthermore, the faces are
non-degenerate, bounding convex regions in the plane.

Tutte’s simple procedure remains a popular planar graph drawing method to date. It was generalized
by Floater (1997) who showed that the theorem still holds when the boundary is not strictly con-
vex (i.e., adjacent boundary vertices may be collinear), and when each interior vertex is positioned
at a general convex combination of its neighbors coordinates. The method has established itself as
the method of choice for parameterizing a three-dimensional mesh with the topology of a disk to
the plane in geometric modeling and computer graphics, along with a multitude of variations on this
theme (e.g. (Colin de Verdiéere et al., 2003; Desbrun et al., 2002; Kanai et al., 2002)). The main rea-
son for the method’s popularity is that it is computationally simple, and also guarantees an injective
parameterization homeomorphic to a disk, meaning that the individual planar polygons are convex
and do not intersect. The latter is crucial for the correctness of many algorithms relying on an under-
lying parameterization. As such, Tutte’'s theorem is the basis for solutions to other computer graph-
ics problems, such as morphing (e.g. (Floater and Gotsman, 1999; Gotsman and Surazhsky, 2001;
Kanai et al., 2002)). Many recipes exist for the convex combination weights in order to achieve vari-
ous effects in the parameterization. Typically, it is desirable to reflect the geometry of the original 3D
mesh in the 2D parameterization, so the 2D version should be a minimally distorted 2D version of the
3D original. Depending on how distortion is measured, different weights are used. For more details, see
the recent survey by Floater and Hormann (2004).

Inspired by recent work on the theory of discretee-formgBenjamini and Lovasz, 2003; Gu and Yau,

2003; Mercat, 2001) and their use in mesh parameterization (Gu and Yau, 2003) as well as related results
in vector field visualization (Polthier and Preuss, 2003; Tong et al., 2003), we show how some properties
of these one-forms on meshes can be used to prove the injectivity of a number of mesh parameterization
algorithms.

In a nutshell, a one-form is essentially an assignment of a value to each edge of the mesh. A sim-
ple counting argument then produces an Index theorem for these discrete one-forms; this is a discrete
analog of the Poincaré—Hopf index theorem for smooth vector fields on surfaces. Imposing additional
balancing conditions on the one-forms results in a linear subspace which is shown to be related to spring
embeddings of the type described by Tutte.

One-forms on meshes turn out to be a very useful tool for mesh processing. In particular, the central
result of Tutte’'s planar embedding theorem, when formulated in terms of the vector valued differences
along edgesof the graph, follows as a special case of the Index theorem with no more than simple
counting arguments and elementary geometry. The techniques used in our proof are considerably simplel
than those used in proofs of different versions of Tutte’s theorem which evolved over the years (Becker
and Hotz, 1987; Colin de Verdiére et al., 2003; Floater, 2003a; Floater and Pham-Trong, 2005; Richter-
Gebert, 1996; Thomassen, 2004). Moreover, the same arguments allow us to relax the conditions on the
embedding of the mesh boundary, and even allow multiple boundaries. We show that it is sufficient that
the embedding is well behaved (in a manner to be made precise later) at the vertices along the boundaries
even if they are non-convex, in order that the entire embedding be well-behaved. Since the requirement
of a (pre-determined) convex boundary is the (only) major drawback of Tutte’s method, this result could
make Tutte’s method even more popular than it already is. It introduces extra degrees of freedom into the
solution, which may be used to produce less distorted parameterizations.
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While variants of Tutte's theorem for meshes with the topology of a disk (namely genus 0 with one
boundary) are easy consequences of our Index theorem, novel and more interesting results may be ob
tained for meshes with higher genus. Particularly important results may be obtained for the toroidal
(genusg = 1) case. Since, due to the different topologies, it is impossible to map the torus homeomor-
phically to the plane without cutting it, the most we can hope for is a parameterization method which
has this behavioiocally. Gu and Yau (2003) showed how to generate local parameterizations with so-
called “conformal” structure. In the torus case, their parameterizations have the following properties:
(1) Any connected submesh having the topology of the disk is mapped to a disk in the plane. (2) Any
two connected submeshes with non-empty intersection, all (the two submeshes and their intersection)
having the topology of the disk, are mapped to disks in the plane, such that the two parameterizations
coincide, up to a translation of the plane, on their intersection. Gu and Yau do not prove that the resulting
mappings of the disks to the plane are actually embeddings. Additionally Gu and Yau restricted their
attention to a specific subset of the possible parameterizations, to triangular meshes. We apply our one-
form theory to close this gap, providing a generalization of their basic algorithm, and prove that all these
parameterizations are locally injective. This may be considered a “Tutte-like” embedding theorem for the
torus.

For higher genusg(> 1) meshes, the situation is more complex. Any 2D parameterization must con-
tain 2¢ — 2 “double wheels”, which are neighborhoods of vertices whose faces wind twice around the
vertex, so the parameterization cannot be locally injective at these vertices. While we do not yet fully un-
derstand this case, we are able to provide some mathematical and algorithmic insight into how to control
and generate such parameterizations.

Beyond the theoretical interest, seamless local parameterization of higher genus meshes is useful for
applications such as “cut and paste” operations (Biermann et al., 2002), texture mapping (Kraevoy et al.,
2003) and meshing (Tewatri et al., 2005).

2. Related work

The concept of a discrete one-form is identical to a one-cochain from simplicial cohomology (Hatcher,
2002). In fact, de Rham (1931) original work on the topology of differential forms effectively defined
cochains as a way of discretizing differential forms. Whitney (1957) showed how co-chains could be
interpreted as continuous forms. We will use the term one-form to emphasize this connection, as has
been done before by others (Bossavit, 1999; Mercat, 2001; Hirani, 2003; Gu and Yau, 2003).

In the finite-element community, methods to discretize physical equations (Nedelec, 1980; Raviart
and Thomas, 1977) led to discrete equations that manipulate discrete differential forms (Kotiuga, 1984;
Bossavit, 1999; Hiptmair, 2002; Sen et al., 2000). This approach involves a simplicial complex, as well
as its dual, which is used to define the various relevant operators, suchHsdipe starThe relationship
between discrete forms and discrete vector fields is studied by Hirani (2003). Forman (1998) studies a
different notion of discrete vector fields.

Harmonicdiscrete one-forms over a mesh are studied by Mercat (2001). His analysis is based on si-
multaneously looking at a mesh angerpendicular(also called semi-critical) dualizatiokdge weights
are defined using the ratio of the length of a primal edge and its dual. As described by Pinkall and
Polthier (1993), for the special caseroid-perpendiculafalso calleccircumcentri¢ dualizations, these
ratios will result exactly in the so-callecbtangent weightsThis relationship is made explicit by Hi-
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rani (2003). (These same cotangent weights can also be derived by computing the Dirichlet energy of
a piecewise linear map (Pinkall and Polthier, 1993).) In this paper, we are unconcerned vatnihe
formal structureof the input mesh, thus we will deal with arbitrary edge-weights. Edge weights can be
used to define &lodge-staroperation (e.g. (Mercat, 2001)), which among other things, results in a de-
finition of co-closednesavhich we use in this paper. One-forms that are both closed and co-closed are
called harmonic Pairs of discrete harmonic one-forms that are related by the Hodge-star operator are
used by Mercat to construbblomorphicone-forms. Mercat then shows how these discrete holomorphic
one-forms converge in the limit to smooth holomorphic one-forms.

Benjamini and Lovasz (2003) prove a number of combinatorial properties of harmonic one-forms.
Their work includes a definition equivalent to thign-changeshat we will use later in this paper. In-
dependently, Lovasz (2004) describes an index theorem which we prove below in a similar way, and a
Tutte-like embedding theorem for the torus, which we prove in quite a different way.

Gu and Yau (2003) use the same notion of harmonic, but define a different discrete Hodge-star oper-
ation over these harmonic one-forms, which does not involve a dual mesh. They then use this definition
to form pairs of harmonic one-forms which are used to create planar parameterizations of meshes.

3. One-formson meshes and the Index theorem

In this section we first review the concept of a discrete one-form over a mesh. We then prove a discrete
analog of the Poincaré—Hopf index theorem that relates the number of singularities in the one-form to
the Euler characteristic of the mesh.

3.1. Harmonic one-forms

LetG =(V, &, F) be ameshy, £ andF are the sets of vertices, edges and faces afontainingV
vertices,E edges and- faces respectively. In this paper we will be concerned witherently oriented
meshes which are closed manifolds and have ggn&nce the mesh is oriented we can use the cyclic
ordering of the vertices to define a cyclically ordered sdtaif-edgesSince the orientation is coherent,
the two “twin” half-edges incident on two adjacent faces have opposite orientations. From now on, when
we say “oriented”, we will mean coherently oriented.

For face f, df is the boundaryoperator applied tgf, yielding the set of half-edges bounding
There is a well defined ordering of these half edges induced'®yrientation. For vertex, v is the
coboundaryoperator applied to the vertex, returning the set of half-edges emanating frohere is a
well defined ordering over these half edges induced’dyrientation.

Definition 3.1. A discrete one-formiG, Az] is an assignment of a real valuez,,, to each half edge
(u, v) of G such thatAz,, = —Az,,. A half-edge (or edge) will be calledegeneratéf the one-form
vanishes at that half-edge. A face or vertex is catledeneratéf all of its half-edges are degenerate,
otherwise it will be callechon-degenerateA one-form is calledlegeneratéf all of its faces and vertices
are degenerate, otherwise it is called non-degenerate. A one-form isatistiingif at least oneof its
half-edges is degenerate, otherwise it is cafled-vanishingi.e., all its edges have non-zero values in
the one-form).
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Since this paper will deal only with discrete one-forms, we will omit the word “discrete” from now on.
As we will see, we will be able to characterize the scenario of Tutte’s theorem in terms of non-vanishing
one-forms on a genus-0 mesh. These one-forms will have certain balances, which will constrain the
behaviors of the one-form on faces and vertices. We now restrict our attention to this subset of one-
forms.

Definition 3.2. Given a set of (not necessarily symmetric) positive weight@ssociated with each half
edgeh in G and a one-forniG, Az], a vertexv is calledco-closed with respect fovrt) w if

> wy Az, =0. )
hesv

A face f is calledclosedif
S Az =0, e
hedf

A one-form whose faces are all closed and all vertices co-closed wrt some set of weights i©aalled
monic

We finish by stating a well known general theorem concerning harmonic one-forms on meshes. This
theorem is analogous to a classical theorem on continuous one-forms. The related fact that any vector
field on a surface has a unique Hodge decomposition is the basis of the vector visualization techniques
of Polthier and Preuss (2003) and Tong et al. (2003).

Theorem 3.3 (Benjamini and Lovasz, 2003; Gu and Yau, 2003; Mercat, 2000 is a closed oriented
manifold mesh of genus then the linear space of harmonic one-forms wrt some set of positive weights
has dimensiorzg.

The reader may be convinced of the correctness of Theorem 3.3 by observing the following: The rank
of the set of Eq. (1) i" — 1. This is despite the fact that there d@resquations, since if all but one of
the faces are closed, then this implies that the last face must be closed too. The same is true for the set o
Eq. (2) — their rank i&/ — 1. The number of unknowns 8, hence the dimension of the solution space
is E — (V + F — 2), which, by Euler’s formula, is 2

Note that Theorem 3.3 implies that the only harmonic one-form on a closed spherical mesh is the
degenerate (all zeros) one-form. Hence, to analyze Tutte parameterizations of disk-like meshes, we will
be using one-forms which are harmonic except at boundary vertices, which may not all be co-closed.

3.2. Sign changes and indices

Of particular interest are the sign patterns of a non-vanishing one-form at the half-edges associated
with a vertex or face of the mesh. We use these to classify the vertices and faces, as illustrated in Fig. 1.

Definition 3.4. Let [G, Az] be a non-vanishing one-form. Thdexof a vertexv in [G, Az] isind(v) =
(2—-sdv))/2, wheresd(v) is the number of sign changes in the value\afas one traverses the half-
edges ofsv in order. Theindexof a facef in [G, Az] isind(f) = (2 —sAf))/2, wheresd( f) is the
number of sign changes in the values/of as one traverses the half edges¢fin order.v is called
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source vertex non-singular vertex ddl rt
no sign changes 2 sign changes >52asig:cvheanz)((es
index =1 index=0 index < 0
vortex face non-singular face saddle face
no sign changes 2 sign changes >2 sign changes
index =1 index = index < 0

Fig. 1. lllustration of Definition 3.4. Classification of vertices and faces by number of signh changes. Arrows denote the orienta-
tion of the half-edge with a positive value of the one-form.

a non-singularvertex if ind(v) = 0 and asaddlevertex if ind(v) < 0. If ind(v) = 1, and all values of
Az atv are positivep is called asource otherwisev is called asink f is called anon-singularface if
ind(f) = 0 and asaddleface ifind(f) < 0. If ind(f) =1, f is called avortex

Note that since (by definition) the number of sigh changes at a vertex or face must be even, the index is
always an integer. Moreover, the index can never exgeed/Vhen the index is negative, its magnitude
indicates the frequency of the one-form sign changes on its half-edges.

This notion of a non-zero index is a discretized notion of the index of a singularity of a smooth one-
form. In the smooth case, the index of a smoetistor fieldat an isolated singularity is defined as the
(signed) rotation number of the vectors as one traverses a small loop around a point where the field
vanishes. The index of a singularity of a smootie-formcan be defined by a using some chosen metric
to dualize the one-form to a vector field. It is easy to show that the index computed in this manner is
invariant to the choice of metric. As is apparent in Fig. 1, sources, sinks, vortices and dadkipsite
like their continuous counterparts. The index 0 cases correspond, in the smooth case, to regions with no
singularities.

The following theorem now characterizes the global distribution of indices of vertices and faces of a
mesh in terms of its genus:

Theorem 3.5 (Index theorem)If G is a closed oriented manifold mesh of gergysthen any non-
vanishing one-formMiG, Az] satisfies

> Cind(v) + ) ind(f) =2 - 2.

veV feF

Pr oof.

> ind(v) + ) ind(f) = %Z(z —sqv)) + % > (2-saf)

veV feF veV feF
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=V4+F— }<Zso(v) + Zsc(f))

2

veV feF

1
=V+F- E(ZE)
=V+F-F
=2-2g.

The third equality is due to the total number of sign changes in the mesh (over vertices and faces)
being equal to the number of half-edges in the mesh. To see this, consider a haiflzalgering some
face f and co-bordering some vertex Considerh ¢, the clockwise successor toin f, andh,, the
counterclockwise successor/ian v. Clearly,# » andh, are half-edge mates, hence must have opposite
signs in the one-form. Thus exactly one of these must account for a sign change with and the

other in f. The fifth equality is Euler's formula, which can be proven independently in numerous ways,
including calculations of the homology groups (Giblin, 19811

This is simply a discretized version of the Poincaré—Hopf index theorem (Guillemin and Pollack,
1974). An equivalent statement of our Index theorem appeared independently in (Lovasz, 2004). A spe-
cial case was obtained by Banchoff (1970) and used by Lazarus and Verroust (1999). However, their
theorem applies only to so-calledll-cohomologousne-forms (arising from the differences of a scalar
potential field defined on the mesh vertices) over a triangle mesh, and thus does not consider faces of
non-zero index. Consequently, their summation of indices is over vertices exclusively, whereas we sum
over faces as well. Indeed, in Section 4 we deal with non-triangular interior faces (which we need to
prove are not saddles), and more importantly, with a non-convex exterior face (that im dagaddle).
Furthermore, in Section 5 we deal with closed meshes of genus one and higher, where we will deal
exclusively with one-forms which are not null-cohomologous.

Closedness of faces and co-closedness of vertices are directly related to their indices:

Corollary 3.6. If a face f is closed in a non-vanishing one-form then (gl < O. If a vertexv is co-
closed wrt to some set of positive weights, therjinel O.

Proof. If f were a vortex, then all of the terms of the sum in (1) would be positive and thus could not
sum to zero. The same holds foa source or sink. O

4, Parameterizing a disk
Tutte’s theorem may be stated as follows:

Theorem 4.1 (Tutte (1963)) Let G = (V, £, F) be a3-connected planar graph with boundary vertices

B c V defining a unique unbounded exterior fafe Supposédf, is embedded in the plane agl@ot
necessarily strictlyconvex planar polygon, and each interior vertex is positioned in the plane as a strictly
convex combination of its neighbors, then the straight-line drawing of G with these vertex positions is an
embedding. In addition, this embedding has strictly convex interior faces.
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A graph is called 3onnectedif it remains connected after the removal of any two vertices and their
incident edges. A manifold megly, £, F} is called 3eonnectedf its one-skeleton, the graphy, £}, is
3-connected. As we will see, this property is necessary to preclude various types of degeneracies in the
drawing.

A drawing isan embedding no two edges intersect, except at vertices.

Tutte constructs such an embedding by solving the following linear system fardhdy coordinate
values of the vertices:

E wijszxi, i=1,...,V—B,

vjEN(v,-)
Z wijyj:yi, izl,...,V—B,
vjEN(vl-)
x;=b", i=V-B+1..,V,
yi=bl, i=V-B+1..,V, (3)

where the interior vertices are labeled as. . ., V — B}, and the remaining boundary verticeq 8s- B +
1,..., V}. Theb; are the coordinates of the vertices of a convex polygon.uhgassociated with each
half edgee;;, are any set of positive numbers with unit row sums (hence thedenvex combinations
We do not assume that;; are symmetricN (v;) is the set of vertices neighboring.

We denote by G, x, y] the straight line plane drawing using this solution as coordinates for the ver-
tices, and call it & utte drawing

4.1. Single convex boundary

In Tutte’s scenario, the boundary polygon, whose coordinatesharg’] is assumed to be (not nec-
essarily strictly) convex. It is well known that (3) has a unique solugigry]. This follows directly from
the fact that the linear system is irreducible, and is weakly diagonally dominant with at least one strongly
diagonally dominant row (Varga, 2000).

Proving Tutte’s theorem amounts to showing that a Tutte drawing is an embedding. We proceed in this
direction by examining the properties span(x, y)—all the different projections of the drawing, and
constructing a one-form o@. For any choice of reals andg, define for each vertey; at coordinates
(xi, yi), the quantityz; = ax; + By;.

At every interior vertex;, we have:

zi =ox; + By

= Z winj+/8 Z Wiy

U_,'EN(U,’) U_/'EN(UI)

= Z wij(exj + By;j)

vieN (v;)

= Z W;;Zj. (4)

v;ieN (v;)
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source

v

sink

Fig. 2. The generic structure of a Tutte drawing, looking at the one-form which is the projection of the drawing along the
vertical z. All vertices and faces are non-singular, except for one source and one sink on the boundary. Arrows mark the
orientation of the half-edges possessing positive values of the one-form.

Now define the one-formhz;; = —Az;; = z; — z;. Since the rows ofv;; sum to unity, (4) implies that
every interior vertexw of [G, Az] is co-closed wriv:

Furthermore, because the; are differences of the values at vertices, they must sum to zero along any
directed closed loop i. In particular, each facg satisfies

ZAZ},IO

hedf

meaning[G, Az] is closed.

Fig. 2 illustrates the generic structure of the one-fakm Due to the convexity of the boundas,
a property which is preserved under linear transformatiBnsill generically contain one vertex with a
maximumz and one with a minimum. Every other vertex o8 has one neighbor i with a strictly
greater; value, and its other neighbor Hiwith a strictly smaller; value. As a result, none of these other
vertices can be sources or sinkd @, Az], i.e., they must have non-positive index.

The following lemma concerning one-forms characterizes to the one fiaimasz] obtained from a
Tutte drawing.

Lemma4.2. If G has genu® and[G, Az] is a non-vanishing one-form such that &llfaces are closed,
V — B vertices are co-closed wrt some set of positive weights and of the remanuegtices,B — 2
have index< 0, then[G, Az] has no saddle vertices and no saddle faces.

Proof. By the Index theorem (Theorem 3.5), the sum of the indices over all of the faces and vertices on
a spherical mesh must total2. By Corollary 3.6, all the faces anid — 2 vertices can contribute only
non-positive values to this sum. The only way to achieve the su#0 for all F faces andv — 2 of

the vertices to have vanishing index, and for the remaining two vertices to have the maximal index value
of +1. In other words[G, Az] has no saddles (but it does have a source vertex and a sink vertex).
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It is possible for a one-formiz as constructed above from a Tutte drawfidg x, y], to be vanish-
ing. For example, if an interior edge has zero length, then it will produce a degenerate one-form in all
projections. Such a one-form will be vanishing and Lemma 4.2 will not directly apply. Fortunately it is
possible to slightly perturb any vanishing one-form into a hon-vanishing onexgtimout altering the
signs of the one-form values on the non-degenerate edges. Appendix A shows how this is achieved. In
particular it defines aonsistent perturbatiomwith the following properties: the perturbed one-fona’
is non-vanishing, no saddles are removed by the perturbation, and no new positive-indexed vertices or
faces are created. The following three lemmas are proven in Appendix A.

Lemma A.5. Let Az be a one-form derived from a Tutte drawing as in Secfidhusing anyx and 8.
Then there exists some consistent perturbation of

Lemma A.6. Let Az be a one-form derived from a Tutte drawing as in Sectidhusing anyx and 8.
Then for any consistent perturbation af;, the perturbed one-form is non-vanishing and has at most
two vertices with positive index.

Lemma A.7. For any consistent perturbationz’ of Az, if there were sc sign changes aroufifl (5v
respectivelyin Az, ignoring zeros, then ingf) < 1—s¢/2 (ind(v) < 1 — sc¢/2 respectivelyin Az'.

From Lemma A.6, using the same reasoning as in the proof of Lemma 4.2, we obtain:

Corollary 4.3. If [G, x, y] is a Tutte drawing, then for any, 8 and (any consistent perturbations )of
[G, Az] constructed as if4), no vertex or interior face is a saddle &7, Az].

To proceed, we will need to rely on the fact that there are no degeneracies in a Tutte drawing. The
following lemma is proved in Appendix B, using the 3-connectedne«s, @nd we will proceed under
this assumption.

Lemma B.5. In a Tutte drawing there can be no face with zero area, no edge of zero length and no angle
of 0 or r within any interior face.

(For arbitraryn-gons, these notions are all distinct.) Essentially this is proven by showing that if there
were any such degeneracy, then there must exist a consistent perturbatidoesrasult in a saddle,
contradicting Corollary 4.3.

Next, we show that the faces and vertex one-rings in the draiing, y] must beproperly behaved
as defined below. In particular, we show that if they are not properly behaved, then there must be a
span(x, y) such thafG, Az] has either a saddle vertex or a saddle face (which would be in contradiction
to Corollary 4.3).

Definition 4.4. A face f of G is called aconvexface of[G, x, y] if its boundary is a simple, strictly
convex polygon in the plane with non-zero area.

Definition 4.5. Let v be a vertex ofG. Let «; be the signed angles between adjacent half-edgés in
(angles are measured by going the “short” way between half edgess $@;0< 7). v is called awheel
vertex of[G, x, y] if «; all have the same sign and_ «;| = 2.
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wheel vertex non-wheel vertex non-wheel vertex
line intersects 2 wedges line intersects 4 wedges line intersects 4 wedges
convex face non-convex face non-convex face
line intersects 2 edges line intersects 4 edges line intersects 4 edges

Fig. 3. lllustration of Definitions 4.4 and 4.5 and proof of Theorems 4.6 and 4.7. The horizontal dashed lines demonstrate that
there always exists a line that intersects a non-wheel in more than two wedges and a non-convex face at more than two edges.

Fig. 3 shows some examples of non-convex faces and vertices which are not wheels.
Theorem 4.6. If [G, x, y] is a Tutte drawing, then all interior faces 6f are convex.

Proof. Suppose the fac¢ of G is non-convex inG, x, y]. Then there exists a linkin the plane that
intersects four or more edges gf Rotate the drawing in the plane using matrix

(2)-C ) C)

z) \a B Vi

such that is horizontal (see the dashed lines in Fig. 3). Theomponent now represents the vertical
component of the rotated drawing. This means that the half-ed@gsdrhibit at least four sign changes
(ignoring zero values). 1Az is non-vanishing, theif is a saddle face ifG, Az]. (By Lemma A.5, there
exist consistent perturbations, and by Lemma A.7, for any consistent perturbatidihremain a saddle

face. If Az is vanishing, then by Lemma A.7, for any consistent perturbatfowjll be a saddle face.)
The existence of this saddle contradicts Corollary 4.3.

Theorem 4.7. If [G, x, y] is a Tutte drawing, then all interior vertices 6f are wheels.

Essentially we want to show that if a particular vertexs not a wheel, then we can always find
a line ! throughwv that intersects four or more wedges (an angular extent between two topologically
neighboring edges at) of the drawing. Then, as argued above, the appropriate choieeanfl 8 will
makel horizontal and a saddle ifG, Az], again contradicting Corollary 4.3.
To be more precise, for a particular vertexdefine a mapn : S* — S* as follows. Imagine placing
then edges that are incident toevenly spaced around the unit circle (the domaim®faccording to
the orientation ofv. In the Tutte embedding, these edges each point in some direction, with adjacent
edges separated by angkes We use this to define the magm, for each of the evenly spaced edges
in the domain. Between each pair of adjacent edges along a wedge, we can complete itheontep
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angularly linear. The maj will have some integer degreé: Since the wedges form a cycle, we must
have| Y ;| = 2nrd,

Any non-wheel falls into one of the three distinct cases:

d > 2 (i.e., the edges cycle aroundmore than once): Then any directigry in the drawing must
have at least two orientation preserving (or two orientation reversing) preimagesmngermust—g.

This yields a lind intersecting at least four wedges.

d =0 (i.e., the edges must wind and unwind the same amount): By Lemma’'8rigighbors cannot
lie on a single line. Since is in the strict convex hull of its neighbors, there must exist a vector such that
both+¢ and—q pass through at least one wedgevoBut sinced = 0, +¢ must have an equal number
of orientation preserving and reversing preimage&iThis means that-g must intersect at least two
wedges. The same holds feg. This yields a lind intersecting at least four wedges.

d =1 (i.e., the edges wind around once before meeting up) and there are two adjacent wedges with
opposite signed angles: We can find a directianthat intersects both adjacent wedges. This direction
must have at least one orientation preserving and one orientation reversing preimagéds order to
sum tod = 1 there also must be at least one more preimage. This implies-thaitersects at least three
wedges. The opposite directiery must also have at least one preimage:irand thus must intersect at
least one wedge. Thus the lihspanned byt+g intersects at least four wedgesa

(Similar reasoning shows that the “half-ring” of interior faces around each boundary vertex maps
homeomorphically to a “half-disk”.)

Corollary 4.8. Two faces that share an edge are disjoint in a Tutte drawing.

Proof. G is a manifold, and so each interior edgés on the boundary of two faces. By Theorem 4.6
these faces are convex. And so both faces must lie either completely in the same or opposite half-plane
defined bye. By Theorem 4.7, these two faces must also be part of a wheel in a neighborhood of the any
of the two vertices ok. Thus these two convex faces must lie on opposite sidesaof are therefore
disjoint. O

As aresult of Corollary 4.8 we say that the drawinfpisally an embedding, or, as Floater (2003a) calls
it—locally injective The following theorem establishes that a Tutte drawing is also a global embedding
(or, what Floater callglobally injective), namely thaanytwo faces in the drawing are disjoint.

Theorem 4.9. All of the faces in a Tutte drawing are disjoint.

Proof. Each point in the plane is contained in a finite number of bounded convex facdaedtsount
We will show that this number must lmneat every point inside the convex hull of the boundary ver-
ticesB.

Each interior vertex is in the strict convex hull of its neighbors, and so cannot be an extremal vertex of
CH(V)—the convex hull of all of the vertices @ . As a result, CKIB) = CH(V). As a result, no interior
vertex can be outside of Q). Thus the face count must be zero for any point outsidé&)H

We can incrementally compute the face count for any ppiitside the convex hull, by starting at
any point outside CK3) and walking along a straight path po This path can cross the convex exterior
face f, only once at one boundary edge. Crossing this boundary edge must increment the face count by
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one. SinceG is manifold, whenever the path crosses an interior edge, it must be incident to exactly two
faces. By Theorem 4.8 these faces are disjoint, and therefore, the edge count must remain at one. Henc
the face count ab must be one. O

Corollary 4.10. No two edges of a Tutte drawing can intersect, except at a vertex.

Corollary 4.10 and Theorem 4.6 together are equivalent to Tutte’s Theorem 4.1, thus our proof of
Tutte’s theorem is complete.

To summarize the basic steps of the proof: Given a set of edge weights, and convex boundary mapping,
there is a unique Tutte drawir(@, x, y]. For any projection (and any perturbation of it) we construct
a non-vanishing one-forifiG, Az]. By Corollary 4.3, (derived from the Index theorem) due to the lack
of sources, sinks, and vortices, there can be no saddles in anyGudlz]. By Theorems 4.6 and 4.7,
if there were any non-convex faces or non-wheel verticeGiny, y], then wecould construct such
a [G, Az] with saddles, which would be a contradiction. Since our drawing has all convex faces and
wheel vertices, Corollary 4.8 states that this implies local injectivity. This local property coupled with
the convexity of the boundary mapping implies global injectivity in Theorem 4.9.

4.2. Multiple non-convex boundaries

While the scenario of Tutte’'s theorem requires the single boundary to be convex in order that the
resulting drawing be a planar embedding (i.e., contain only wheel vertices and convex faces), our theory
permits the presence of non-convex vertices (so-cadieixvertices) in the boundary. In fact, we permit
the presence ahultiplenon-convex boundaries.

We can thus think of our mesi as a topological sphere with some faces labeledxssrior. One
of these exterior faces will benboundedn the planar drawing, while the rest will d@unded The
boundaries of these exterior faces will be mapped to the plane, and impose boundary conditions in the
system of equations (3). In order to produce a correctly oriented drawing, we will require that the turning
number of the boundary of the unbounded exterior face ®e and the turning number of the boundaries
of the bounded exterior faces b&s. We will also require that every reflex vertex be in the strict convex
hull of its neighbors. As we will see, these restrictions force the drawing to be an embedding. First a few
definitions.

Note: our discussion here assumes that the unbounded exterior f&de ofiented clockwise, while
the bounded exterior faces are oriented counter-clockwise. The entire discussion is, of course, also true
if we consistently reverse these conventions.

Definition 4.11. Let P be a straight line mapping of an oriented polygon to the plane, with all edges
having positive length (but allowed to cross). Tthening angleof P at vertexv is the external angle at

v as one traverseB consistent with its orientation. This angle is positive if the turn &ta right turn in

the plane and negative if the turn is a left turn. Taming numberof P is the sum of the turning angles

at the vertices of.

Definition 4.12. Let P be as above. A vertex is calledconvexin P if the turning angle av is non-
negative. Otherwise is calledreflexin P.
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Note that a bounded exterior face that is drawn as a convex polygon with turning nwi&bewill
in fact haveall reflex vertices (since these boundaries have been drawn counterclockwise).

Definition 4.13. Let P be as above. A vertex of P is calledextremuntelative to a directionl in the
plane, if the edges emanating framall project positively or all negatively ont.

Lemma 4.14. Let P be as above with turning number2r (—2r respectively. Denote byC its set of
convex extrema, and kR its set of reflex extrema with respect to any directibrThen|C| — |R| =2
(|R] — |C| = 2 respectively.

Proof. Imagine a continuous “flattening” operation applied to the polygon which simply s@alssa
factor of s along the direction orthogonal tbwith decreasing. Since the scaling is orthogonal &g it
cannot change any dot products withand thus cannot create or remove any extrema. At thedimitO,
the turning angle will bet-r at eactv € C, —m at everyv € R, and 0 at all other vertices. Since the total
turning number ist-2r (—27 respectively), this means that| C| — |R|) =27 (= (| C| — |R|) = —27
respectively), namelyC| — |R| = 2 (|R| — |C| = 2 respectively). O

In our parameterization setting, the boundary of each exterior face is mapped to the plane. This map-
ping imposes boundary conditions on the linear system of equations (3). Under this mapping (and chosen
orientation forG), the turning number of each external face’s boundary is well-defined, and its vertices
may be classified as convex or reflex.

Lemma 4.15. Suppose that(1) G is an oriented3-connected mesh of genQ$aving multiple exterior
faces.(2) The boundary of the unbounded exterior face is mapped to the plane with positive edge lengths
and turning numbeBr . (3) The boundaries of the bounded exterior faces are mapped to the plane with
positive edge lengths and turning numbe2r. (4) [G, x, y] is the straight line drawing ot; where

each internal vertex is positioned as a convex combination of its neight®rin [G, x, y] the reflex
vertices of all of the exterior face boundaries are also in the convex hull of their neighbors. Then for any
o, B and[G, Az] constructed as ii4), no vertex or interior face is a saddle ji&r, Az].

Proof. As illustrated in Fig. 4, assume thé boundaries ofG, x, y] form one unbounded and — 1
bounded polygonal exterior faces in the plane withvertices each, of whicle’; are convex extremum
vertices, andR; are reflex extremum vertices. Consider the one-fpémAz]. Since all the extremal
vertices of the exterior faces produce sign changelGofAz] in those faces, and only those do, the
indices of the exterior faces are-1(C; + R;)/2. The interior faces are closed and the interior vertices
are co-closed, hence their indices &®. Having both positive and negative values/af on their co-
boundaries, the indices of the non-extremal boundary verticesc&eBeing inside the convex hull
of their neighbors, the indices of the reflex extrema are &l<h Trivially, the convex extrema have
indices< 1. Denote bys the sum of the (negative) indices of the saddle interior faces and vertices. So
the sum of the indices over the entire meskii3 (1 — (C; + R;)/2) + Y_ C; + 5. But the Index theorem
maintains that this sum i$2, implying 2< N + ) (C; — R;)/2+ s. Now Lemma 4.14 applied to the
exterior faces implies thadt (C; — R;) =2 — 2(N — 1) =4 — 2N. This means that > 0, but since, by
definitions < 0, we conclude that = 0, namely, saddles do not exist in the interior faces or vertices.

Using arguments identical to those of the previous section, we conclude:
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0 unbounded exterior face

Extremum in exterior
face

O Reflex vertex

Fig. 4. The multiple non-convex boundary scenario. The one-form considered is the projection on the vertical (namely
Az = Ay). Arrows mark the half-edges having positive values of the one-form. Vertices are labeled with their indices.

Theorem 4.16. Under the conditions of Lemn¥al5 all interior faces of[G, x, y] are convex and all
interior vertices are wheels. Moreover, if all the exterior faces are embedded as disjoint simple polygons
(edge crossings are not allowgdhen all faces ofG, x, y] are disjoint.

A natural question is whether Theorem 4.16 is of any use in practical parameterization scenarios, as
Tutte’s theorem is. Forcing the boundary vertices to form a convex shape, as in the Tutte scenario, is easy,
but is it possible to relax that requirement, yet force these boundary reflex vertices to be in the convex
hulls of their neighbors without compromising the same property of neighboring vertices? This seems to
be quite difficult, since it is impossible to determine apriori which boundary vertices will be convex, and
which reflex. Fortunately, Theorem 4.16 implies that the injectivity of the drawing is determined entirely
by the behavior of the boundary vertices, hence we have to worry only about these. One way to do this is
to replace the B linear boundary equalities in (3) witB bilinear inequalities whereB is the number
of interior faces along the boundaries, expressing the fact that all the wedges formed by these faces have
the correct orientation. This involves considerably less inequalities than what would have been required
had Theorem 4.16 not been true, as in that case, at feastqualities would have been required, one
for each face. However, being inequalities (as opposed to equalities), this will introduce many degrees of
freedom into the solution.

A more practical approach is to require more of the boundary. In many applicatioosf@malpa-
rameterization is sought, meaning one that preserves angles as much as possible in the transition fron
3D to 2D. Traditional linear conformal parameterizations use the Tutte methodetdhgentveights
(Pinkall and Polthier, 1993), however, these weights can sometimes be negative, hence are actually in-
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appropriate for the Tutte scenario. Floater (2003b) recently proposed to replace these cotangent weights
with so-calledmean-valuaveights, which are always positive and seem to result in parameterizations
which are close to conformal. The Angle-Based Flattening (ABF) method of Sheffer and de Sturler
(2001) addresses the problem in the triangular case by solving directly for the angles of the triangles, and
reconstructing the embedding from that. Forcing all the angles to assume values in the {i®eryal

(along with other constraints) guarantees that the resulting 2D triangulation is injective. This approach is
non-linear, but has the advantage of a free boundary.

Here we describe one alternative we have explored. Given a 3D triangleidhashnput, with angles
0 « a; < 7 incident on the boundaries, agdelsewhere, we construct an injective 2D parameterization
of M, such that the 2D angles are as close as possihle and 8;. Theorem 4.16 implies that in order
to obtain an embedding, it suffices to force the boundary angles to be clase dod compute the
interior vertices’ positions by solving a linear system using mean-value weights derived frgan the
the resulting boundary angles are between Osanthen reflex vertices will naturally be in the convex
hull of their neighbors, hence the result an embedding. Since we do not know in advance which vertices
will be reflex, we apply our constraint on the angles aroathtboundary vertices.

Fig. 5 shows some results of this parameterization algorithm on two 3D input meshes. The first input
is the “ear” mesh, which is embedded as a triangulation with a non-convex boundary. Note how the 2D
boundary has a shape very close to that of the 3D boundary and how the angles are very similar. The sec:
ond input is the “face” mesh, containing multiple boundaries (“holes”). Note that the hole corresponding
to the “mouth” has a non-convex character in the 3D input, which is preserved in the resulting 2D em-
bedding. The third input is a hemisphere, in which three slits have been cut. The resulting 2D embedding
takes advantage of these slits when forming the boundary for the resulting conformal parameterization.

A linear system for free boundary parameterization is described by Desbrun et al. (2002) for a tri-
angulated mesh with single boundary. However, that method may result in drawings which are not
embeddings, for some inputs, even when all of the interior edge weights are positive.

Recent work of Karni et al. (2005) shows how to possibly improve on the results of Desbrun et al.
(2002) byiterating a linear system of equations. Karni et al. show how Theorem 4.16 implies that if this
iteration converges, then the limit drawing is guaranteed to be an embedding.

The following remains an important open problem: Is it possible to generate a straight-line embedding
of a 3-connected triangulated 3D mesh with a single exterior boundary face, by posing a singlmset of
ear equations on all the 2D mesh vertex coordinates, including the boundary vertices, possibly coupling
thex andy coordinates. The coefficients in the equations should be derived from the 3D geometry, such
that if the input mesh is already a planar embedding, the output should be identical to the input (this is
called a 2Dreproducingscheme).

Colin de Verdiere (personal communication) has recently shown us how to prove Theorem 4.16 di-
rectly from Tutte’s theorem. However, his proof does not distinguish between local and global injectivity
of the embedding. Our approach has the advantage of cleanly separating the conditions required for local
injectivity (Theorem 4.15) from the extra ones needed for global injectivity (simplicity of the boundaries,
as in Theorem 4.16).

The proof of Colin de Verdiere proceeds as follows: Consider the convex hull of the boufidsry
the unbounded exterior face. Sinteis simple, the difference between the two is the union of sim-
ple polygons. Triangulate each of these polygons, as well as the bounded exterior faces. The result is a
straight-line plane drawing of a new 3-connected graph with no unbounded exterior faces, whose bound-
ary is embedded to a convex shape. Each interior vertex in the new drawing is connected to at least all the
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Fig. 5. Parameterizing a mesh with free boundaries: (a), (c), (e) Original 3D meshes. (b), (d), (f) 2D parameterizations of (a),
(c) and (e) when boundaries (bounded and unbounded) are free but forced to have boundary angles as close as possible to 3l
originals. Mean-value weights were used in the harmonic equations for the interior vertices.

vertices it was connected to in the old drawing. Each interior vertex of the old drawing is still an interior
vertex in the new drawing. Each reflex boundary vertex of the old drawing is now an interior vertex in
the new drawing, positioned inside the convex hull of its neighbors. Each convex boundary vertex of the
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old drawing is now either a convex boundary vertex of the new drawing, or an interior vertex of the new
drawing positioned inside the convex hull of its neighbors. Thus the new drawing satisfies the conditions
of Tutte’s theorem, hence is an embedding.

5. Parameterizing atorus

While our use of one-forms on meshes allowed us to obtain Tutte’s theorem for disks and extensions,
it has a more natural application in the case of a toroidal mesh. This case is actually easier to analyze
because, in its simplest form, there is no boundary to complicate matters. On the other hand, it is more
difficult to envision a parameterization in this case, since the torus obviously cannot be mapped in an
injective manner to the plane. The traditional solution to this is to cut the mesh along an artificial boundary
to form a disk, and then parameterize as any other disk-like mesh. While this is certainly possible, cutting
the mesh introduces new problems such as optimization of this boundary, and obvious discontinuities in
the parameterization along the boundary.

Another way to parameterize a toroidal mesh without encountering the cutting problem, is to parame-
terize itlocally, meaning injectively embed any submesh with disk topology, yet in a way such that all
local parameterizations fit together in a seamless manner. So, while one never attempts to parameterize
the entire mesh, if two intersecting disk-like regions (whose intersection is also disk-like) are parame-
terized to the plane, the parameterization coincides on the intersection, possibly after an appropriate
translation. See Fig. 6.

Seamless local parameterization is important for a variety of mesh processing applications, in par-
ticular “cutting and pasting” between meshes (Biermann et al., 2002), texture mapping (Kraevoy et al.,
2003), meshing (Tewari et al., 2005) and remeshing.

Gu and Yau (2003) showed how seamless local parameterizations for the torus can be achieved using
one-forms. In particular, the parameterization is driven by a pair of harmonic one-forms. Each of the
two one-forms provides the information needed to synthesize each of the two coordinate values for the
vertices in the plane. Their paper did not address whether the algorithm would produce a locally-planar
embedding.

Here, we prove, based on the Index theorem (Theorem 3.5) that this algorithm will in-fact succeed
in producing an injective parameterization. In this sense, this is a Tutte-like embedding theorem for the
torus.

(Our theorem applies to a slightly more general case than that originally explored in (Gu and Yau,
2003). Gu and Yau dealt specifically with spedatangenieights in their Eq. (1). They also only dealt

Fig. 6. Seamless local parameterization of disk-like submeshes of the torus.
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with pairs of one-forms related by a special Hodge-star operator which they define, and only considered
meshes with triangular faces. Our theorem applieartitrary positive weightsany pair of linearly
independent harmonic one-forms, and applies to meshesaviitrary sized faces.)

A recent paper of Steiner and Fischer (2004) makes observations similar to ours, in particular that
linearly independent harmonic one-forms generate locally-injective parameterizations of the torus. The
proofs they give, however, are rather complicated. Another quite different (and also more complicated)
proof for this appeared independently in (Lovasz, 2004).

As opposed to the disk case, where we considered the planar coordinates of the embedding, and thel
converted them to a one-form to prove Tutte’s theorem, in the toroidal case the algorithm starts off with
one-forms, and then synthesizes the local embeddings from that.

The algorithm begins by picking two linearly independent harmonic one-forms. Theorem 3.3 implies
that the space of harmonic one-forms on the torus is two-dimensional. A basis for this space can be
found by simply solving for the null-space of the matrix representing the closedness and co-closedness
constraints. This matrix is typically quite large, but also very sparse (six entries per row on the aver-
age), hence its nullspace may be computed using efficient numerical methods for sparse matrices. Twa
linearly independent one-forms may be then sampled from this space in a variety of ways. (Note that
unlike the original description of Gu and Yau (2003), this process does not require computibgsay
loops)

To construct a local parameterization for the torus, the algorithm chooses any two linearly independent
harmonic one-formsAx and Ay, which are linearly independent solutions to (1) and (2). Now, given a
submesh with the topology of a disk, we assign the coordin@e3 in the planar parametric domain to
an arbitrary vertex of that submesh. Any other vertex is assigned coordinat@gégyrating(summing)
the one-form along a directed path fragto v. Since the one-form is closed, it does not matter which
path is used:

(x0, yo) = (0, 0), )
(xi, yi) = ( > Am. Y Ayh)- (6)
heP(vo,v;) heP(vo,v;)

Because the space is two-dimensional, it does not really matter which two harmonic one-forms are used,
as long as they are independent. Any other pair of one-forms will be a linear combination of these,
meaning the resulting parameterizations will be related to each other by an affine transformation.

The proof that this algorithm will produce an injective mapping proceeds as follows. We begin with
an analog of Lemma 4.2 for a torus:

Lemma5.1. If G is a closed oriented manifold mesh with gerduand Az a non-vanishing harmonic
one-form onG, then[G, Az] has only non-singular vertices and faces.

Proof. By Theorem 3.5, the sum of the indices of the vertices and fadgs,afz] is 0. Since all vertices
are co-closed and all faces are closed, their indices are all non-positive. Thus the only way these indices
can sum to zero is if they are all zeroo

We now use Lemma 5.1 to prove the analog of Theorems 4.6 and 4.7 for the torus:
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Fig. 7. Parameterization of a torus containing 32 vertices and 64 faces. (a) 3D torus. (b) Parameterization of the torus to the
plane using two harmonic one-forms generated with uniform weights. Vertices are numbered. The color coded edges along the
boundary correspond. (c) Double periodic tiling of the plane using the drawing in (b). (For interpretation of the references in
color in this figure legend, the reader in referred to the web version of this article.)

Theorem 5.2. If G is a 3-connected oriented manifold mesh with gedusAx and Ay two non-
degenerate and linearly independent harmonic one-forms ,andG’ a submesh of G with the topology
of a disk, then all faces df7’, x, y] are convex and all vertices §&’, x, y] are wheels, where and y
are constructed as i(b).

Proof. Identical to the proofs of Theorems 4.6 and 4.7, using Lemma 5.1 instead of Lemma 4.2. Note
that if the two harmonic one-forms are linearly dependent, then the whole mapping will collapse to a line.
In this case, there exist projections for which the one-forepimpletelydegenerate, and the arguments

in Appendix B cannot be applied.C

Note that if the method of (5) is run twice, each time with a different vertexgathe two resulting
parameterizations will, by definition, be related to each other by a simple translation in the plane. The
translation vector will be the coordinates of the second origin in the first parameterization (or vice versa).

Theorem 5.2 is a statement of local injectivity. It can also be shown that a pair of harmonic one-forms,
in fact creates a globally injective mapping from the universal cover of the torus to the entire plane. As
a result, there can be no edge crossings in these parameterizations. The proof relies on Theorem 5.2, bt
also on some notions from algebraic topology, and is thus omitted.

Fig. 7 shows such an parameterization of a toroidal mesh, where the disk-like submesh is actually
the entire mesh, after it was cut twice along thasisloops of the handle. Because of the periodicity
of the torus, the resulting embedding can be used to tile the plane in a doubly-periodic seamless man-
ner.

Although we will not prove this, we believe that a toroidal mesh with boundaries (“holes”) may be
locally parameterized in an injective embedding in a manner similar to that of Section 4.2, namely, by
allowing some vertices along the boundaries to be non-harmonic. This will hold if these boundaries have
turning number-2r, and the reflex vertices on the boundaries are contained in the convex hulls of their
neighbors.
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6. Higher genus

While we have applied our Index theorem (Theorem 3.5) only to the disk and to the genus 1 case to
prove Tutte-like embedding theorems, the theory is applicable also to higher genus meshes, except there
matters are more complicated. By Theorem 3.3, the dimension of the space of harmonic one-forms for
g > 1lis at least 4 and so there are many fundamentally different “pairs of harmonic one forms” that can
be chosen from the space in order to create a parameterization.

In addition, forg > 1, the Index theorem implies the existence of at least two saddle vertices and/or
faces in every such harmonic one-form.stmnethingnust go awry when we apply the parameterization
approach of Section 5.

As observed by Gu and Yau (2003), the “best” one can hope for is to have all of the “badness” in the
parameterization isolated ag 2- 2 vertices or faces. In this case we may have a vertex thddibly
whee] where the co-boundary edges will cycle in the drawing around the vertex twice. Or we may have
a face that isloubly convexwhere the boundary edges cycle around the face twice (see the third column
of Fig. 3). At these bad spots, the embedding cannot be even locally injective. Note that if the mesh has
only triangular faces, doubly convex faces cannot occur.

Here we prove that if a pair of harmonic one-forms is chosen such that ithas??2suchdoubles,
then the rest of the resulting parameterization is locally injective.

Theorem 6.1. If G is a closed oriente@-connected manifold mesh of gengisand Ax and Ay are

harmonic one-forms oy and [G, x, y]—the corresponding drawing in the plane—contaias— 2

vertices or faces that are doubly wheel/convex, then all other vertice§,of, y] are wheels and all
faces are convex.

Proof. In anyprojection of[G, x, y], a vertex that is doubly wheel, or face that is doubly convex, will be

a saddle. If there areg2— 2 doubles, then the Index theorem (Theorem 3.5) implies that there can be no
other saddles. So all other vertices and faces are always non-singular in every projection, hence all other
vertices must be wheels and all faces convex.

Of course, since the mapping is not everywhere locally injective, it is obviously not globally injective.
But the drawing will at least contain faces which are all oriented consistently.

While we do not have a closed characterization of which two independent one-forms fromg-the 2
dimensional solution space will, when usedvaandy coordinates in the plane, form such an embedding,
we can generate them using the following randomized (Las-Vegas) algorithm:

1. Compute a basis of the2limensional space of harmonic one-forms@®n

2. Select a one-formx at random from the space whose basis was computed in (1), e.g., a random lin-
ear combination of the basis functions. When integrated, this one-form will generatedloedinate
of the embedding.

3. Solve for another one-formy such that{G, Ax, Ay] has Z — 2 “doubles”. SinceAx has been
fixed in step 2, this can be written as a linear program. In this program, every pair of adjacent edges
at the saddles oAx is constrained to have a positive angle (i.e., positive cross product of the two
one-forms of those edges). If it exists, thiy is called amateof Ax.

4. If step 3 failed, goto step 2.
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o2
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Fig. 8. Parameterization of the two-hole torus. Left: the 3D mesh, containing 495 triangular faces. Middle: The parameterization

of the mesh to the plane using uniform weights. The two double-wheel vertices are marked in red and green. The green one
appears twice along the boundary. Right: Zoom into the red double-wheel vertex. (For interpretation of the references in color

in this figure legend, the reader in referred to the web version of this article.)

It is easy to see that ilx and Ay are mates, then any two linear combinationshaf and Ay are
also mates. Hence, in practice, it is possible to impose orthogonality @dAy in the linear program
solved in step 3.

We emphasize that step 3 does indeed fail for some random choices made in step 2, meaning there dc
exist one-formsAx for which there imo mateAy (not even theAy generated by applying the discrete
Hodge star operation of Gu and Yau (20034®). However, in practice, the linear program fails to find
a mate in step 3 only rarely, so the algorithm usually terminates after a small number of steps. We have
observed experimentally, though, that this failure rate increases with the genus.

The embeddings in Fig. 8 were generated using this algorithm.

We conclude this discussion by stating some natural questions which are left open:

1. Which vertices inG can be saddles in a harmonic one-form? (We know that vertices with valence 3
cannot be saddles, because three edges cannot generate more than 2 sign changes of the one-form.

2. Which vertices inG can appear as double wheels? (We known vertices with val€rteannot be
saddles since each of the four angles mustbe, yet their sum must ber).

3. If a vertex can be a saddle or double wheel, how can we generate a one-form or pair of one-forms
having this property?

4. Is there any natural characterization of the one-forms that have mates?

7. Conclusion

The concept of one-forms on meshes used in this paper, although simple, seems to be quite powerful.
It unleashes a wealth of classical mathematical theory for which discrete analogs seem to exist. This
is also related to some recent developments in polytopal graph theory (Mihalisin and Klee, 2000) and
planar tilings using harmonic functions on graphs (Kenyon, 1998).
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This paper deals with the general case of asymmetric weights: w;; in (3). Many other papers
(including Tutte (1963)) deal only with the symmetric case. This is appealing because then the system
has a physical interpretation of a spring system, and the Tutte drawing minimizes the sum of the squares
of the weighted spring lengths, hence the system’s energy. Some of the recipes for generating barycentric
coordinates for given embeddings yield symmetric weights, including the so-called cotangent weights
(Pinkall and Polthier, 1993). However, most do not (e.g., the mean-value weights (Floater, 2003b)), and
it seems that the one-form theory presented here is powerful enough to deal with this.

Theorem 4.16 raises hope for other possible applications. One of these is constrained parameterizatior
(see e.g. (Kraevoy et al., 2003)), which is of paramount importance for texture mapping, guaranteeing
that key features of a texture are mapped to the corresponding features on a mesh. This problem calls fol
an embedding a disk-like mesh in the plane, such that the parameterization is injective, but also satisfies
positional constraints at a (usually small) subset of the interior vertices. The results of Section 4 indicate
that if all the “problematic” regions of the mesh are embedded properly, then harmonicity will take care
of the rest. In the scenario of Section 4—the problematic regions are the boundary vertices, which are
taken care of either by forcing convexity or explicit positive angles. This can be generalized to the case
of constrained parametrization by considering the constrained vertices to also be “problematic” (or, in
other words, part of a non-connected boundary), so it seems that fdraihthe boundary verticeand
the constrained vertices to be wheels should solve the problem. However, it remains to see how this can
be done in a computationally efficient manner. First results in this direction have been obtained recently
by Karni et al. (2005).

A possible application of local parameterization of the torus is for parameterizing a disk-like mesh
with a free boundary. Since Tutte's theorem requires a convex boundary, one common way around this is
to “pad” the disk with a number of layers of “virtual” faces, forming a new “virtual” boundary. This larger
mesh is embedded in the plane using the convex boundary method, and the extra padding then discardec
This method, due to Lee et al. (2002), gives the true boundary more flexibility, and it will typically
end up being non-convex. It is, however, still influenced by the virtual boundary and the connectivity
of the virtual faces, hence is not artifact-free. Making use of our method for local parameterization of
the torus, we believe it is more natural to embed the original disk withioras rather than a larger
disk, as the torus seems to be the “cleanest” mesh. After solving for a harmonic one-form on the torus,
this is transformed into an embedding of just the original disk-like submesh. This procedure eliminates
boundary conditions entirely, hence should contain less artifacts.
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Appendices

The appendices provide some technical theorems which simplify the main results of this paper. The
theorems will be formulated for the case of a mesh with a disk-like topology and convex boundary. With
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the appropriate modifications, these theorems carry over to the other cases (nhon-convex boundary, highe
genus) as described.

Appendix A. Perturbing a vanishing one-form into a non-vanishing one-form

We will show how any (possibly vanishing) one-form on a disk-like mesh obtained from a Tutte
drawing that contains vanishing values maydomsistently perturbethto a non-vanishing one-form.
Since the perturbation will beufficiently smallit will not change the signs of any of the non-zero
values. As a result, any such perturbation will not be able to remove any saddles from the original one-
form. Moreover, because the perturbatiorcissistentthe perturbed one-form will not have any new
sources, sinks or vortices (indexl) that were not in the original one-form.

The perturbed one-from may have non co-closed vertices. But as mentioned in Section 4, the key
to Lemma 4.2 is that all but two of the vertices have non-positive values of the one-form on their co-
boundaries. This is weaker than the co-closedness property. More formally:

Definition A.1. A vertex (respectively face) imixedin a one-form if it has at least one positive and at
least one negative value of the one-form on its co-bounélayespectively boundargf).

Definition A.2. A one-form is calledmixedif all its vertices and faces are mixed. A one-form is called
almost mixedf all its faces are mixed and all its vertices are mixed, with the exception of at most two
vertices.

The following key lemma follows as a special case of Theorem 2.2 of Linial et al. (1988):

LemmaA.3.If G is a 2-connected oriented manifold mésh £, F) ands andr any two distinct vertices

of G, then there exists a hon-vanishing one-fqh A f], whose faces are all closed and whose vertices,
(except fors, which is a source, and, which is a sink, are all co-closed with respect to some set of
positive edge weights;;.

Clearly such 4G, Af] is almost mixed

Denote by f, the outer face of the mesh. Tutte’s method dictates dlfatis embedded as a non-
degenerate convex polygon, with no two vertices coincident. For any specific chaicanafs, in the
rotated Tutte drawin@G, w, z] (where the rotation is determined byandg), the boundary loop f, has
vertices on its left side, and vertices on its right side. The left side has a top (and bottom) vertex, as does
the right side. With respect to a generic choicexadnd 8, both sides will share their top (and bottom)
vertex with each other. With respect to some non-generic choicesaofl 8, the upper or lower edges
may be perfectly horizontal and so the two sides may not share their top (or bottom) vertices. In this case
there will be a distinct top-left and top-right vertex. In addition, if the boundary is only weakly convex,
then for a specific choice @f and g8, there can also be “strictly top” and “strictly bottom” vertices that
are strictly in between the left and right sides. (See Fig. A.1.)

Definition A.4. Pick any two vertices and: on af, that are not strictly top or strictly bottom vertices.
Let Af be any non-vanishing almost mixed one-form with souwand sinkz. Let ¢ be a non-zero
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AZ + eAf = AZ’

source

@,
BL=BR sink

Fig. A.1. Scenario of Lemma A.6. Arrows mark the orientation of the half-edges possessing positive values of the one-form.
Edges without arrows have vanishing (zero) values.

scalar that is small enough such that addidgf to Az will not to change the signs of the previously
non-vanishing values ofz. Any such perturbation is calledansistent perturbatiorSee Fig. A.1 for
an illustration of this.

Lemma A.5. Let Az be a one-form derived from a Tutte drawing as in Secfidhusing anyx and 8.
Then, there exists a consistent perturbation.

Proof. By Lemma A.3, for any choice ofandt, such aA f must exist. Additionally, sincaz is defined
over a finite number of edges, suchsaaf sufficiently small magnitude must exist

Lemma A.6. Let Az be a one-form derived from a Tutte drawing as in Secfidhusing anyx and 8.
Then, for any consistent perturbation, the resultitg is non-vanishing and almost mixed.

Proof. Since Af is non-vanishing, and sufficiently small, the resulting\z’ = ¢Af + Az is non-
vanishing.

Next we proveAz’ is almost mixed by analyzing a small set of cases.

(1) Any degenerate face iz is determined completely b 1, hence is mixed im\z'.

(2) Any non-degenerate fageis mixed inAz, hence for sufficiently sma#l remains so imz’. Hence
all faces are mixed iz’

(3) The sign pattern of any degenerate veriéR Az is completely determined inz’ by Af. Since
s andt were explicitly chosen to be non-degenerate vertices, a degenezatmot be one of the chosen
s ort. Hence suchy must be co-closed (with respect to some weights) jnand thus mixed im\z’.

(4) Any mixed vertex inAz, for sufficiently smalle, must remain so i\z'.

(5) The only non-degenerate, not mixed vertices possibieziare the extreme ones: the top-left (TL),
bottom-left (BL), top-right (TR), bottom-right (BR), strictly top (ST), and strictly bottom (SB) vertices.
We now show that there cannot be more than two non-mixed vertices from this set in the resglting

If TL and TR coincide, then it can account for at most one non-mixed vertexin

If TL and TR are distinct, then we use the following argument. By Lemma 4.2, there are no saddle
faces inAf, and so there can be only 2 sign changes as one cid¢lefnly ats andr). HenceAz’
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must go in one direction (wlog say from left to right) along the top (resp bottorY,ofsee Fig. A.1).
Therefore, the ST vertices and TR will have both positive and negative values on their co-boundaries in
AZ, hence be mixed. Thus TL can account for at most one non-mixed vertex.

An identical argument shows that BL and BR can account for at most one non-mixed vertex.

Lemma A.7. For any consistent perturbationz’ of Az, if there were sc sign changes aroudfl (v
respectivelyin Az, ignoring zeros, then ingf) < 1—s¢/2 (ind(v) < 1 — sc¢/2 respectivelyin Az'.

Proof. The sign of a non-degenerate edge\afis preserved im\z’. Hence the number of sign changes
can only increase and the index only decrease.

This means that this consistent perturbation cannot remove any saddles.

For the non-convex boundary, in Lemma A.6, we choose fand: any two boundary vertices that
have at least one boundary edge with non-zero valugzinThe resulting perturbed one-formyz’ will
have the appropriate properties for Lemma 4.2 to apply.

For the torus, (and higher genus) case we must assume that the one-form is not degenerate. Thel
for a consistent perturbation, we can choasg two non-degenerate vertices aand:. The resulting
perturbed one-formAz” will have all mixed vertices and faces and thus appropriate for Lemma 5.1
(respectively Theorem 6.1) to apply.

Appendix B. No degenerate vertices or faces

In this appendix we prove that a Tutte embedding does not contain degenerate elements. First we
define what these are:

Definition B.1. Let Az be a one-form on a mesh. degenerateorner is a (vertex, face) pair whose two
associated edges are degenerate.

For this appendix we need a slightly stronger version of Lemma A.3, which also follows directly from
a variant of the arguments in (Linial et al., 1988).

Lemma B.2. If G is a2-connected oriented manifold me8h, £, F), s andr any two distinct vertices

of G, and p any directed simple path fromto ¢, then there exists a hon-vanishing one-fdith Af],

with all positive values along the half-edgespgfwhose faces are all closed and whose verti¢es;ept

for s, which is a source, and which is a sink, are all co-closed with respect to some set of positive edge
weightsw;;.

We now prove a series of lemmas leading to the desired result.

LemmaB.3. Let[G, x, y] be a Tutte drawing. Then in any projected one-fgith Az] there can be no
non-degenerate interior vertex participating in a degenerate corner.
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Voo,

Fig. B.1. Scenario of Theorem B.3. Arrows mark the orientation of the half-edges possessing positive values of the one-form.
Edges without arrows have vanishing (zero) values.

Proof. Let vg be an interior vertex. Since it is non-degenerate, it must be mixed. We wish to show that
if it participates in a degenerate corner, then we can Ap@—an appropriate perturbation afz of the

form described in Lemma A.6—which is a non-vanishing almost mixed one-fatma saddle abyg.

This would contradict Lemma 4.2.

Call the two edges of the degenerate comer ege. These edges connegf to v, andv,. SinceG is
3-connected, the grapli — {vg} is 2-connected. Therefore for any two verticegnd: we can find two
vertex-disjoint paths connecting andv, to s andr (we cannot say in advance which will be connected
to which) such thatg is not in either path (Linial et al., 1988). By including all of the edges in these
two paths in addition to the edges andeg,, we obtain a simple directed path fronto ¢ that proceeds
in the order{vy, vo, v2] OF [, vo, v1]. See Fig. B.1. By Lemma B.2, there exigtg: a non-vanishing
almost mixed one-form with sourceand sink: that either passes in ord@r, vg, v2] Or [v2, v, v1].
ConsiderAz = Az + e Af. This is a non-vanishing almost-mixed one-form with non-vanishing values
on the edgegg; andeg,. With the proper choice of sign far, we can increases the number of sign
changes aroundh, creating a saddle at in Az’. This contradicts Lemma 4.2.0

Next we show that if there was any degenerate corner at an interior face, there would have to be some
degenerate corner with a participating non-degenerate vertex.

LemmaB.4. Let[G, x, y] be a Tutte drawing. Then in any projected one-fgih Az] there can be no
degenerate corner at an interior face.

Proof. Assume(vg, f) is a degenerate corner. If it is not part of a triangle (which would have to be
degenerate by closedness), then introduce a new gddetween vertices; andv, (the neighbors of

vo at the degenerate corner); this spliténto a degenerate triangle and some remainder face fates

split operation cannot change the 3-connectedness.dfhe addition of this edge cannot change the
co-closedness af; andv,. Repeat this operation for any degenerate corner. In thedinahy interior
face with a degenerate corner must be a degenerate triangle.

Since[G, x, y] is not degenerate, there must be some interior jatieat is not degenerate sharing an
edgeeq;, between verticesy andv,, with a degenerate face. Eithey or v; must be an interior vertex,
otherwiseeg; would be an interior edge connecting two boundary vertices, which is impossible in a
3-connected planar graph.



50167-8396 (05)00053-1/FLA AID:940 Vol.eee(eee) [DTD5] P.28 (1-30)
COMAID:m2 v 1.39 Prn:29/06/2005; 12:09 Cagd940 by:violeta p. 28

28 S.J. Gortler et al. / Computer Aided Geometric Desigia (eeee) eee—see

Fig. B.2. The scenario of Lemma B.4.

Without loss of generalityg is an interior vertex.f has another vertex+s—that shares an edge
eo3 With vg. The one-form must be non-vanishing on this edge, otherggisandegs would have been
a degenerate corner andwould have been a degenerate triangle. See Fig. B.2:,,3® an interior
non-degenerate vertex at a degenerate corner, in contradiction of LemmarB.3.

Lemma B.5. In a Tutte drawing there can be no face with zero area and no edge of zero length and no
angle of0 or s within any interior face.

Proof. Suppose there was a face with zero area. It is then possible to pick a projectg)ms(ch that
the resulting one-form vanishes on all edges of this face. Similarly, if there is areedtfezero length,
then pick ¢, 8) such that the resulting one-form will vanish on one of the edges neighboriglon
both cases, we will have a degenerate corner in the one-form, in contradiction of Lemma=B.4.

The proofs of Appendix B apply directly to the non-convex boundary case of Theorem 4.16. They
also apply directly to one-forms on the torus. The equivalent to Lemma B.4 for the torus will state that
in any (non-degenerate) harmonic one-fofi, Az], there can be no degenerate corner. This implies
no geometric degeneracies in any drawiy, x, y] integrated from a pair of non-degenerate harmonic
one-forms.

Harmonic one-forms on higher genus meshes have saddle vertices or faces and are thus more compli
cated. In this case there will exist one-forfits, Az] with degenerate corners. But, in the special cases
treated by Theorem 6.1, the saddles are all “accounted for”, so again, no degenerate corners can exist.
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