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Abstract

We describe how some simple properties of discrete one-forms directly relate to some old and new
concerning the parameterization of 3D mesh data. Our first result is an easy proof of Tutte’s celebrated
embedding” theorem for planar graphs, which is widely used for parameterizing meshes with the topolo
disk as a planar embedding with a convex boundary. Our second result generalizes the first, dealing with
where the mesh contains multiple boundaries, which are free to be non-convex in the embedding. We cha
when it is still possible to achieve an embedding, despite these boundaries being non-convex. The third
an analogous embedding theorem for meshes with genus 1 (topologically equivalent to the torus). Applica
these results to the parameterization of meshes with disk and toroidal topologies are demonstrated. Exte
higher genus meshes are discussed.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In 1963, Tutte (1963) proved his celebrated “spring embedding” theorem for planar graphs. Th
orem maintains that a 3-connected planar graph may be easily drawn in the plane by embed
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graph boundary as a strictly convex polygon and solving a linear system for each of the two coor
of the interior vertices. The linear system forces each interior vertex to lie at the centroid of its
bors. Tutte proved that the result is indeed a straight line plane drawing, and, furthermore, the fa
non-degenerate, bounding convex regions in the plane.

Tutte’s simple procedure remains a popular planar graph drawing method to date. It was gen
by Floater (1997) who showed that the theorem still holds when the boundary is not strictly
vex (i.e., adjacent boundary vertices may be collinear), and when each interior vertex is pos
at a general convex combination of its neighbors coordinates. The method has established
the method of choice for parameterizing a three-dimensional mesh with the topology of a d
the plane in geometric modeling and computer graphics, along with a multitude of variations o
theme (e.g. (Colin de Verdière et al., 2003; Desbrun et al., 2002; Kanai et al., 2002)). The ma
son for the method’s popularity is that it is computationally simple, and also guarantees an in
parameterization homeomorphic to a disk, meaning that the individual planar polygons are
and do not intersect. The latter is crucial for the correctness of many algorithms relying on an
lying parameterization. As such, Tutte’s theorem is the basis for solutions to other computer
ics problems, such as morphing (e.g. (Floater and Gotsman, 1999; Gotsman and Surazhsk
Kanai et al., 2002)). Many recipes exist for the convex combination weights in order to achiev
ous effects in the parameterization. Typically, it is desirable to reflect the geometry of the origin
mesh in the 2D parameterization, so the 2D version should be a minimally distorted 2D version
3D original. Depending on how distortion is measured, different weights are used. For more deta
the recent survey by Floater and Hormann (2004).

Inspired by recent work on the theory of discreteone-forms(Benjamini and Lovasz, 2003; Gu and Ya
2003; Mercat, 2001) and their use in mesh parameterization (Gu and Yau, 2003) as well as relate
in vector field visualization (Polthier and Preuss, 2003; Tong et al., 2003), we show how some pro
of these one-forms on meshes can be used to prove the injectivity of a number of mesh paramet
algorithms.

In a nutshell, a one-form is essentially an assignment of a value to each edge of the mesh.
ple counting argument then produces an Index theorem for these discrete one-forms; this is a
analog of the Poincaré–Hopf index theorem for smooth vector fields on surfaces. Imposing ad
balancing conditions on the one-forms results in a linear subspace which is shown to be related t
embeddings of the type described by Tutte.

One-forms on meshes turn out to be a very useful tool for mesh processing. In particular, the
result of Tutte’s planar embedding theorem, when formulated in terms of the vector valued diffe
along edgesof the graph, follows as a special case of the Index theorem with no more than s
counting arguments and elementary geometry. The techniques used in our proof are considerably
than those used in proofs of different versions of Tutte’s theorem which evolved over the years (
and Hotz, 1987; Colin de Verdière et al., 2003; Floater, 2003a; Floater and Pham-Trong, 2005; R
Gebert, 1996; Thomassen, 2004). Moreover, the same arguments allow us to relax the condition
embedding of the mesh boundary, and even allow multiple boundaries. We show that it is sufficie
the embedding is well behaved (in a manner to be made precise later) at the vertices along the bo
even if they are non-convex, in order that the entire embedding be well-behaved. Since the requ
of a (pre-determined) convex boundary is the (only) major drawback of Tutte’s method, this resul
make Tutte’s method even more popular than it already is. It introduces extra degrees of freedom
solution, which may be used to produce less distorted parameterizations.
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While variants of Tutte’s theorem for meshes with the topology of a disk (namely genus 0 wit
boundary) are easy consequences of our Index theorem, novel and more interesting results ma
tained for meshes with higher genus. Particularly important results may be obtained for the t
(genusg = 1) case. Since, due to the different topologies, it is impossible to map the torus home
phically to the plane without cutting it, the most we can hope for is a parameterization method
has this behaviorlocally. Gu and Yau (2003) showed how to generate local parameterizations wi
called “conformal” structure. In the torus case, their parameterizations have the following prop
(1) Any connected submesh having the topology of the disk is mapped to a disk in the plane. (
two connected submeshes with non-empty intersection, all (the two submeshes and their inter
having the topology of the disk, are mapped to disks in the plane, such that the two parameter
coincide, up to a translation of the plane, on their intersection. Gu and Yau do not prove that the re
mappings of the disks to the plane are actually embeddings. Additionally Gu and Yau restricte
attention to a specific subset of the possible parameterizations, to triangular meshes. We apply
form theory to close this gap, providing a generalization of their basic algorithm, and prove that a
parameterizations are locally injective. This may be considered a “Tutte-like” embedding theorem
torus.

For higher genus (g > 1) meshes, the situation is more complex. Any 2D parameterization mus
tain 2g − 2 “double wheels”, which are neighborhoods of vertices whose faces wind twice arou
vertex, so the parameterization cannot be locally injective at these vertices. While we do not yet fu
derstand this case, we are able to provide some mathematical and algorithmic insight into how to
and generate such parameterizations.

Beyond the theoretical interest, seamless local parameterization of higher genus meshes is u
applications such as “cut and paste” operations (Biermann et al., 2002), texture mapping (Kraevo
2003) and meshing (Tewari et al., 2005).

2. Related work

The concept of a discrete one-form is identical to a one-cochain from simplicial cohomology (Ha
2002). In fact, de Rham (1931) original work on the topology of differential forms effectively de
cochains as a way of discretizing differential forms. Whitney (1957) showed how co-chains co
interpreted as continuous forms. We will use the term one-form to emphasize this connection,
been done before by others (Bossavit, 1999; Mercat, 2001; Hirani, 2003; Gu and Yau, 2003).

In the finite-element community, methods to discretize physical equations (Nedelec, 1980;
and Thomas, 1977) led to discrete equations that manipulate discrete differential forms (Kotiuga
Bossavit, 1999; Hiptmair, 2002; Sen et al., 2000). This approach involves a simplicial complex, a
as its dual, which is used to define the various relevant operators, such as theHodge star.The relationship
between discrete forms and discrete vector fields is studied by Hirani (2003). Forman (1998) s
different notion of discrete vector fields.

Harmonicdiscrete one-forms over a mesh are studied by Mercat (2001). His analysis is base
multaneously looking at a mesh and aperpendicular(also called semi-critical) dualization.Edge weights
are defined using the ratio of the length of a primal edge and its dual. As described by Pink
Polthier (1993), for the special case ofmid-perpendicular(also calledcircumcentric) dualizations, thes
ratios will result exactly in the so-calledcotangent weights. This relationship is made explicit by H
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rani (2003). (These same cotangent weights can also be derived by computing the Dirichlet en
a piecewise linear map (Pinkall and Polthier, 1993).) In this paper, we are unconcerned with thcon-
formal structureof the input mesh, thus we will deal with arbitrary edge-weights. Edge weights c
used to define aHodge-staroperation (e.g. (Mercat, 2001)), which among other things, results in
finition of co-closedness, which we use in this paper. One-forms that are both closed and co-clos
calledharmonic. Pairs of discrete harmonic one-forms that are related by the Hodge-star opera
used by Mercat to constructholomorphicone-forms. Mercat then shows how these discrete holomor
one-forms converge in the limit to smooth holomorphic one-forms.

Benjamini and Lovasz (2003) prove a number of combinatorial properties of harmonic one-
Their work includes a definition equivalent to thesign-changesthat we will use later in this paper. In
dependently, Lovasz (2004) describes an index theorem which we prove below in a similar way
Tutte-like embedding theorem for the torus, which we prove in quite a different way.

Gu and Yau (2003) use the same notion of harmonic, but define a different discrete Hodge-st
ation over these harmonic one-forms, which does not involve a dual mesh. They then use this d
to form pairs of harmonic one-forms which are used to create planar parameterizations of meshe

3. One-forms on meshes and the Index theorem

In this section we first review the concept of a discrete one-form over a mesh. We then prove a
analog of the Poincaré–Hopf index theorem that relates the number of singularities in the one-
the Euler characteristic of the mesh.

3.1. Harmonic one-forms

Let G = 〈V,E,F〉 be a mesh.V , E andF are the sets of vertices, edges and faces ofG, containingV
vertices,E edges andF faces respectively. In this paper we will be concerned withcoherently oriented
meshes which are closed manifolds and have genusg. Since the mesh is oriented we can use the cy
ordering of the vertices to define a cyclically ordered set ofhalf-edges.Since the orientation is coheren
the two “twin” half-edges incident on two adjacent faces have opposite orientations. From now on
we say “oriented”, we will mean coherently oriented.

For facef, ∂f is the boundaryoperator applied tof , yielding the set of half-edges boundingf .
There is a well defined ordering of these half edges induced byf ’s orientation. For vertexv, δv is the
coboundaryoperator applied to the vertex, returning the set of half-edges emanating fromv. There is a
well defined ordering over these half edges induced byv’s orientation.

Definition 3.1. A discrete one-form[G,�z] is an assignment of a real value�zuv to each half edge
(u,v) of G such that�zuv = −�zvu. A half-edge (or edge) will be calleddegenerateif the one-form
vanishes at that half-edge. A face or vertex is calleddegenerateif all of its half-edges are degenera
otherwise it will be callednon-degenerate. A one-form is calleddegenerateif all of its faces and vertice
are degenerate, otherwise it is called non-degenerate. A one-form is calledvanishingif at least oneof its
half-edges is degenerate, otherwise it is callednon-vanishing(i.e., all its edges have non-zero values
the one-form).
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Since this paper will deal only with discrete one-forms, we will omit the word “discrete” from now
As we will see, we will be able to characterize the scenario of Tutte’s theorem in terms of non-van
one-forms on a genus-0 mesh. These one-forms will have certain balances, which will constr
behaviors of the one-form on faces and vertices. We now restrict our attention to this subset
forms.

Definition 3.2. Given a set of (not necessarily symmetric) positive weightswh associated with each ha
edgeh in G and a one-form[G,�z], a vertexv is calledco-closed with respect to(wrt) w if∑

h∈δv

wh�zh = 0. (1)

A facef is calledclosedif∑
h∈∂f

�zh = 0. (2)

A one-form whose faces are all closed and all vertices co-closed wrt some set of weights is callhar-
monic.

We finish by stating a well known general theorem concerning harmonic one-forms on meshe
theorem is analogous to a classical theorem on continuous one-forms. The related fact that an
field on a surface has a unique Hodge decomposition is the basis of the vector visualization tec
of Polthier and Preuss (2003) and Tong et al. (2003).

Theorem 3.3 (Benjamini and Lovasz, 2003; Gu and Yau, 2003; Mercat, 2001). If G is a closed oriented
manifold mesh of genusg, then the linear space of harmonic one-forms wrt some set of positive we
has dimension2g.

The reader may be convinced of the correctness of Theorem 3.3 by observing the following: T
of the set of Eq. (1) isF − 1. This is despite the fact that there areF equations, since if all but one o
the faces are closed, then this implies that the last face must be closed too. The same is true for
Eq. (2) – their rank isV − 1. The number of unknowns isE, hence the dimension of the solution spa
is E − (V + F − 2), which, by Euler’s formula, is 2g.

Note that Theorem 3.3 implies that the only harmonic one-form on a closed spherical mesh
degenerate (all zeros) one-form. Hence, to analyze Tutte parameterizations of disk-like meshes
be using one-forms which are harmonic except at boundary vertices, which may not all be co-clo

3.2. Sign changes and indices

Of particular interest are the sign patterns of a non-vanishing one-form at the half-edges ass
with a vertex or face of the mesh. We use these to classify the vertices and faces, as illustrated in

Definition 3.4. Let [G,�z] be a non-vanishing one-form. Theindexof a vertexv in [G,�z] is ind(v) =
(2 − sc(v))/2, wheresc(v) is the number of sign changes in the values of�z as one traverses the ha
edges ofδv in order. Theindexof a facef in [G,�z] is ind(f ) = (2 − sc(f ))/2, wheresc(f ) is the
number of sign changes in the values of�z as one traverses the half edges of∂f in order.v is called
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Fig. 1. Illustration of Definition 3.4. Classification of vertices and faces by number of sign changes. Arrows denote the
tion of the half-edge with a positive value of the one-form.

a non-singularvertex if ind(v) = 0 and asaddlevertex if ind(v) < 0. If ind(v) = 1, and all values o
�z at v are positive,v is called asource, otherwisev is called asink. f is called anon-singularface if
ind(f ) = 0 and asaddleface if ind(f ) < 0. If ind(f ) = 1, f is called avortex.

Note that since (by definition) the number of sign changes at a vertex or face must be even, the
always an integer. Moreover, the index can never exceed+1. When the index is negative, its magnitu
indicates the frequency of the one-form sign changes on its half-edges.

This notion of a non-zero index is a discretized notion of the index of a singularity of a smooth
form. In the smooth case, the index of a smoothvector fieldat an isolated singularity is defined as t
(signed) rotation number of the vectors as one traverses a small loop around a point where t
vanishes. The index of a singularity of a smoothone-formcan be defined by a using some chosen me
to dualize the one-form to a vector field. It is easy to show that the index computed in this ma
invariant to the choice of metric. As is apparent in Fig. 1, sources, sinks, vortices and saddleslook quite
like their continuous counterparts. The index 0 cases correspond, in the smooth case, to regions
singularities.

The following theorem now characterizes the global distribution of indices of vertices and face
mesh in terms of its genus:

Theorem 3.5 (Index theorem). If G is a closed oriented manifold mesh of genusg, then any non-
vanishing one-form[G,�z] satisfies∑

v∈V

ind(v) +
∑
f ∈F

ind(f ) = 2− 2g.

Proof.
∑

ind(v) +
∑

ind(f ) = 1

2

∑(
2− sc(v)

) + 1

2

∑(
2− sc(f )

)

v∈V f ∈F v∈V f ∈F
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(∑
v∈V

sc(v) +
∑
f ∈F

sc(f )

)

= V + F − 1

2
(2E)

= V + F − E

= 2− 2g.

The third equality is due to the total number of sign changes in the mesh (over vertices and
being equal to the number of half-edges in the mesh. To see this, consider a half edgeh bordering some
facef and co-bordering some vertexv. Considerhf , the clockwise successor toh in f , andhv, the
counterclockwise successor toh in v. Clearly,hf andhv are half-edge mates, hence must have oppo
signs in the one-form. Thus exactly one of these must account for a sign change withh in v and the
other inf . The fifth equality is Euler’s formula, which can be proven independently in numerous
including calculations of the homology groups (Giblin, 1981).�

This is simply a discretized version of the Poincaré–Hopf index theorem (Guillemin and Po
1974). An equivalent statement of our Index theorem appeared independently in (Lovasz, 2004)
cial case was obtained by Banchoff (1970) and used by Lazarus and Verroust (1999). Howev
theorem applies only to so-callednull-cohomologousone-forms (arising from the differences of a sca
potential field defined on the mesh vertices) over a triangle mesh, and thus does not consider
non-zero index. Consequently, their summation of indices is over vertices exclusively, whereas
over faces as well. Indeed, in Section 4 we deal with non-triangular interior faces (which we n
prove are not saddles), and more importantly, with a non-convex exterior face (that in factis a saddle).
Furthermore, in Section 5 we deal with closed meshes of genus one and higher, where we w
exclusively with one-forms which are not null-cohomologous.

Closedness of faces and co-closedness of vertices are directly related to their indices:

Corollary 3.6. If a facef is closed in a non-vanishing one-form then ind(f ) � 0. If a vertexv is co-
closed wrt to some set of positive weights, then ind(v) � 0.

Proof. If f were a vortex, then all of the terms of the sum in (1) would be positive and thus cou
sum to zero. The same holds forv a source or sink. �

4. Parameterizing a disk

Tutte’s theorem may be stated as follows:

Theorem 4.1 (Tutte (1963)). Let G = 〈V,E,F〉 be a3-connected planar graph with boundary vertic
B ⊂ V defining a unique unbounded exterior facefe. Suppose∂fe is embedded in the plane as a(not
necessarily strictly) convex planar polygon, and each interior vertex is positioned in the plane as a s
convex combination of its neighbors, then the straight-line drawing of G with these vertex position
embedding. In addition, this embedding has strictly convex interior faces.
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A graph is called 3-connected, if it remains connected after the removal of any two vertices and
incident edges. A manifold mesh{V,E,F} is called 3-connectedif its one-skeleton, the graph{V,E}, is
3-connected. As we will see, this property is necessary to preclude various types of degeneraci
drawing.

A drawing isan embeddingif no two edges intersect, except at vertices.
Tutte constructs such an embedding by solving the following linear system for thex andy coordinate

values of the vertices:
∑

vj ∈N(vi)

wijxj = xi, i = 1, . . . , V − B,

∑
vj ∈N(vi)

wijyj = yi, i = 1, . . . , V − B,

xi = bx
i , i = V − B + 1, . . . , V ,

yi = b
y

i , i = V − B + 1, . . . , V , (3)

where the interior vertices are labeled as{1, . . . , V −B}, and the remaining boundary vertices as{V −B+
1, . . . , V }. Thebi are the coordinates of the vertices of a convex polygon. Thewij , associated with eac
half edgeeij , are any set of positive numbers with unit row sums (hence the termconvex combinations).
We do not assume thatwij are symmetric.N(vi) is the set of vertices neighboringvi .

We denote by[G,x,y] the straight line plane drawing using this solution as coordinates for the
tices, and call it aTutte drawing.

4.1. Single convex boundary

In Tutte’s scenario, the boundary polygon, whose coordinates are [bx, by ] is assumed to be (not ne
essarily strictly) convex. It is well known that (3) has a unique solution[x, y]. This follows directly from
the fact that the linear system is irreducible, and is weakly diagonally dominant with at least one s
diagonally dominant row (Varga, 2000).

Proving Tutte’s theorem amounts to showing that a Tutte drawing is an embedding. We procee
direction by examining the properties ofspan(x, y)—all the different projections of the drawing, an
constructing a one-form onG. For any choice of realsα andβ, define for each vertexvi at coordinates
(xi, yi), the quantityzi ≡ αxi + βyi .

At every interior vertexvi , we have:

zi ≡ αxi + βyi

= α
∑

vj ∈N(vi)

wijxj + β
∑

vj ∈N(vi)

wijyj

=
∑

vj ∈N(vi)

wij (αxj + βyj )

=
∑

wijzj . (4)

vj ∈N(vi)
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Fig. 2. The generic structure of a Tutte drawing, looking at the one-form which is the projection of the drawing alo
vertical z. All vertices and faces are non-singular, except for one source and one sink on the boundary. Arrows m
orientation of the half-edges possessing positive values of the one-form.

Now define the one-form�zij = −�zji ≡ zj − zi . Since the rows ofwij sum to unity, (4) implies tha
every interior vertexv of [G,�z] is co-closed wrtw:∑

h∈δv

wh�zh = 0.

Furthermore, because the�z are differences of thez values at vertices, they must sum to zero along
directed closed loop inG. In particular, each facef satisfies∑

h∈∂f

�zh = 0

meaning[G,�z] is closed.
Fig. 2 illustrates the generic structure of the one-form�z. Due to the convexity of the boundaryB,

a property which is preserved under linear transformations,B will generically contain one vertex with
maximumz and one with a minimumz. Every other vertex ofB has one neighbor inB with a strictly
greaterz value, and its other neighbor inB with a strictly smallerz value. As a result, none of these oth
vertices can be sources or sinks in[G,�z], i.e., they must have non-positive index.

The following lemma concerning one-forms characterizes to the one forms[G,�z] obtained from a
Tutte drawing.

Lemma 4.2. If G has genus0 and[G,�z] is a non-vanishing one-form such that allF faces are closed
V − B vertices are co-closed wrt some set of positive weights and of the remainingB vertices,B − 2
have index� 0, then[G,�z] has no saddle vertices and no saddle faces.

Proof. By the Index theorem (Theorem 3.5), the sum of the indices over all of the faces and vert
a spherical mesh must total+2. By Corollary 3.6, all the faces andV − 2 vertices can contribute onl
non-positive values to this sum. The only way to achieve the sum of+2 is for all F faces andV − 2 of
the vertices to have vanishing index, and for the remaining two vertices to have the maximal inde
of +1. In other words,[G,�z] has no saddles (but it does have a source vertex and a sink vertex).�
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It is possible for a one-form,�z as constructed above from a Tutte drawing[G,x,y], to be vanish-
ing. For example, if an interior edge has zero length, then it will produce a degenerate one-form
projections. Such a one-form will be vanishing and Lemma 4.2 will not directly apply. Fortunatel
possible to slightly perturb any vanishing one-form into a non-vanishing one-formwithout altering the
signs of the one-form values on the non-degenerate edges. Appendix A shows how this is achi
particular it defines aconsistent perturbationwith the following properties: the perturbed one-form�z′
is non-vanishing, no saddles are removed by the perturbation, and no new positive-indexed ve
faces are created. The following three lemmas are proven in Appendix A.

Lemma A.5. Let �z be a one-form derived from a Tutte drawing as in Section4.1 using anyα andβ.
Then there exists some consistent perturbation of�z.

Lemma A.6. Let �z be a one-form derived from a Tutte drawing as in Section4.1 using anyα andβ.
Then for any consistent perturbation of�z, the perturbed one-form is non-vanishing and has at m
two vertices with positive index.

Lemma A.7. For any consistent perturbation�z′ of �z, if there were sc sign changes around∂f (δv

respectively) in �z, ignoring zeros, then ind(f ) � 1− sc/2 (ind(v) � 1− sc/2 respectively) in �z′.

From Lemma A.6, using the same reasoning as in the proof of Lemma 4.2, we obtain:

Corollary 4.3. If [G,x,y] is a Tutte drawing, then for anyα,β and (any consistent perturbations o)
[G,�z] constructed as in(4), no vertex or interior face is a saddle in[G,�z].

To proceed, we will need to rely on the fact that there are no degeneracies in a Tutte drawin
following lemma is proved in Appendix B, using the 3-connectedness ofG, and we will proceed unde
this assumption.

Lemma B.5. In a Tutte drawing there can be no face with zero area, no edge of zero length and no
of 0 orπ within any interior face.

(For arbitraryn-gons, these notions are all distinct.) Essentially this is proven by showing that if
were any such degeneracy, then there must exist a consistent perturbation thatdoesresult in a saddle
contradicting Corollary 4.3.

Next, we show that the faces and vertex one-rings in the drawing[G,x,y] must beproperly behaved,
as defined below. In particular, we show that if they are not properly behaved, then there must bz ∈
span(x, y) such that[G,�z] has either a saddle vertex or a saddle face (which would be in contrad
to Corollary 4.3).

Definition 4.4. A face f of G is called aconvexface of [G,x,y] if its boundary is a simple, strictl
convex polygon in the plane with non-zero area.

Definition 4.5. Let v be a vertex ofG. Let αi be the signed angles between adjacent half-edgesδv

(angles are measured by going the “short” way between half edges, so 0< |αi | < π ). v is called awheel
vertex of[G,x,y] if α all have the same sign and|∑α | = 2π .
i i



ARTICLE IN PRESS
S0167-8396(05)00053-1/FLA AID:940 Vol.•••(•••) [DTD5] P.11 (1-30)
COMAID:m2 v 1.39 Prn:29/06/2005; 12:09 cagd940 by:violeta p. 11

S.J. Gortler et al. / Computer Aided Geometric Design••• (••••) •••–••• 11

trate that
o edges.

t

cal
s

)

nd
ically

jacent
es
Fig. 3. Illustration of Definitions 4.4 and 4.5 and proof of Theorems 4.6 and 4.7. The horizontal dashed lines demons
there always exists a line that intersects a non-wheel in more than two wedges and a non-convex face at more than tw

Fig. 3 shows some examples of non-convex faces and vertices which are not wheels.

Theorem 4.6. If [G,x,y] is a Tutte drawing, then all interior faces ofG are convex.

Proof. Suppose the facef of G is non-convex in[G,x,y]. Then there exists a linel in the plane tha
intersects four or more edges off . Rotate the drawing in the plane using matrix(

wi

zi

)
=

(
β −α

α β

)(
xi

yi

)

such thatl is horizontal (see the dashed lines in Fig. 3). Thezi component now represents the verti
component of the rotated drawing. This means that the half-edges in∂f exhibit at least four sign change
(ignoring zero values). If�z is non-vanishing, thenf is a saddle face in[G,�z]. (By Lemma A.5, there
exist consistent perturbations, and by Lemma A.7, for any consistent perturbation,f will remain a saddle
face. If �z is vanishing, then by Lemma A.7, for any consistent perturbation,f will be a saddle face.
The existence of this saddle contradicts Corollary 4.3.

Theorem 4.7. If [G,x,y] is a Tutte drawing, then all interior vertices ofG are wheels.

Essentially we want to show that if a particular vertexv is not a wheel, then we can always fi
a line l throughv that intersects four or more wedges (an angular extent between two topolog
neighboring edges atv) of the drawing. Then, as argued above, the appropriate choice ofα andβ will
makel horizontal andv a saddle in[G,�z], again contradicting Corollary 4.3.

To be more precise, for a particular vertexv, define a mapm :S1 → S1 as follows. Imagine placing
then edges that are incident tov evenly spaced around the unit circle (the domain ofm), according to
the orientation ofv. In the Tutte embedding, these edges each point in some direction, with ad
edges separated by anglesαi . We use this to define the map,m, for each of the evenly spaced edg
in the domain. Between each pair of adjacent edges along a wedge, we can complete the mapm to be
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angularly linear. The mapm will have some integer degree:d . Since the wedges form a cycle, we mu
have|∑αi | = 2πd ,

Any non-wheel falls into one of the three distinct cases:
d � 2 (i.e., the edges cycle aroundv more than once): Then any direction+q in the drawing mus

have at least two orientation preserving (or two orientation reversing) preimages underm. So must−q.
This yields a linel intersecting at least four wedges.

d = 0 (i.e., the edges must wind and unwind the same amount): By Lemma B.5,v’s neighbors canno
lie on a single line. Sincev is in the strict convex hull of its neighbors, there must exist a vector such
both+q and−q pass through at least one wedge ofv. But sinced = 0, +q must have an equal numb
of orientation preserving and reversing preimages inm. This means that+q must intersect at least tw
wedges. The same holds for−q. This yields a linel intersecting at least four wedges.

d = 1 (i.e., the edges wind around once before meeting up) and there are two adjacent wedg
opposite signed angles: We can find a direction+q that intersects both adjacent wedges. This direc
must have at least one orientation preserving and one orientation reversing preimages inm. In order to
sum tod = 1 there also must be at least one more preimage. This implies that+q intersects at least thre
wedges. The opposite direction−q must also have at least one preimage inm, and thus must intersect
least one wedge. Thus the linel spanned by+q intersects at least four wedges.�

(Similar reasoning shows that the “half-ring” of interior faces around each boundary vertex
homeomorphically to a “half-disk”.)

Corollary 4.8. Two faces that share an edge are disjoint in a Tutte drawing.

Proof. G is a manifold, and so each interior edgee is on the boundary of two faces. By Theorem 4
these faces are convex. And so both faces must lie either completely in the same or opposite ha
defined bye. By Theorem 4.7, these two faces must also be part of a wheel in a neighborhood of t
of the two vertices ofe. Thus these two convex faces must lie on opposite sides ofe and are therefore
disjoint. �

As a result of Corollary 4.8 we say that the drawing islocally an embedding, or, as Floater (2003a) ca
it—locally injective. The following theorem establishes that a Tutte drawing is also a global embe
(or, what Floater callsglobally injective), namely thatanytwo faces in the drawing are disjoint.

Theorem 4.9. All of the faces in a Tutte drawing are disjoint.

Proof. Each point in the plane is contained in a finite number of bounded convex faces—itsface count.
We will show that this number must beoneat every point inside the convex hull of the boundary v
ticesB.

Each interior vertex is in the strict convex hull of its neighbors, and so cannot be an extremal ve
CH(V)—the convex hull of all of the vertices ofG. As a result, CH(B) = CH(V). As a result, no interio
vertex can be outside of CH(B). Thus the face count must be zero for any point outside CH(B).

We can incrementally compute the face count for any pointp inside the convex hull, by starting
any point outside CH(B) and walking along a straight path top. This path can cross the convex exter
facef only once at one boundary edge. Crossing this boundary edge must increment the face c
e
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one. SinceG is manifold, whenever the path crosses an interior edge, it must be incident to exac
faces. By Theorem 4.8 these faces are disjoint, and therefore, the edge count must remain at on
the face count atp must be one. �
Corollary 4.10. No two edges of a Tutte drawing can intersect, except at a vertex.

Corollary 4.10 and Theorem 4.6 together are equivalent to Tutte’s Theorem 4.1, thus our p
Tutte’s theorem is complete.

To summarize the basic steps of the proof: Given a set of edge weights, and convex boundary m
there is a unique Tutte drawing[G,x,y]. For any projection (and any perturbation of it) we constr
a non-vanishing one-form[G,�z]. By Corollary 4.3, (derived from the Index theorem) due to the l
of sources, sinks, and vortices, there can be no saddles in any such[G,�z]. By Theorems 4.6 and 4.7
if there were any non-convex faces or non-wheel vertices in[G,x,y], then wecould construct such
a [G,�z] with saddles, which would be a contradiction. Since our drawing has all convex face
wheel vertices, Corollary 4.8 states that this implies local injectivity. This local property coupled
the convexity of the boundary mapping implies global injectivity in Theorem 4.9.

4.2. Multiple non-convex boundaries

While the scenario of Tutte’s theorem requires the single boundary to be convex in order t
resulting drawing be a planar embedding (i.e., contain only wheel vertices and convex faces), ou
permits the presence of non-convex vertices (so-calledreflexvertices) in the boundary. In fact, we perm
the presence ofmultiplenon-convex boundaries.

We can thus think of our meshG as a topological sphere with some faces labeled asexterior. One
of these exterior faces will beunboundedin the planar drawing, while the rest will bebounded. The
boundaries of these exterior faces will be mapped to the plane, and impose boundary condition
system of equations (3). In order to produce a correctly oriented drawing, we will require that the t
number of the boundary of the unbounded exterior face be+2π and the turning number of the boundar
of the bounded exterior faces be−2π . We will also require that every reflex vertex be in the strict con
hull of its neighbors. As we will see, these restrictions force the drawing to be an embedding. Firs
definitions.

Note: our discussion here assumes that the unbounded exterior face ofP is oriented clockwise, while
the bounded exterior faces are oriented counter-clockwise. The entire discussion is, of course,
if we consistently reverse these conventions.

Definition 4.11. Let P be a straight line mapping of an oriented polygon to the plane, with all e
having positive length (but allowed to cross). Theturning angleof P at vertexv is the external angle a
v as one traversesP consistent with its orientation. This angle is positive if the turn atv is a right turn in
the plane and negative if the turn is a left turn. Theturning numberof P is the sum of the turning angle
at the vertices ofP .

Definition 4.12. Let P be as above. A vertexv is calledconvexin P if the turning angle atv is non-
negative. Otherwisev is calledreflexin P .
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Note that a bounded exterior face that is drawn as a convex polygon with turning number−2π , will
in fact haveall reflex vertices (since these boundaries have been drawn counterclockwise).

Definition 4.13. Let P be as above. A vertexv of P is calledextremumrelative to a directiond in the
plane, if the edges emanating fromv all project positively or all negatively ontod .

Lemma 4.14. Let P be as above with turning number+2π (−2π respectively). Denote byC its set of
convex extrema, and byR its set of reflex extrema with respect to any directiond . Then|C| − |R| = 2
(|R| − |C| = 2 respectively).

Proof. Imagine a continuous “flattening” operation applied to the polygon which simply scalesP by a
factor ofs along the direction orthogonal tod with decreasings. Since the scaling is orthogonal tod , it
cannot change any dot products withd , and thus cannot create or remove any extrema. At the limits → 0,
the turning angle will be+π at eachv ∈ C, −π at everyv ∈ R, and 0 at all other vertices. Since the to
turning number is+2π (−2π respectively), this means thatπ(| C| − |R|) = 2π (π(| C| − |R|) = −2π

respectively), namely|C| − |R| = 2 (|R| − |C| = 2 respectively). �
In our parameterization setting, the boundary of each exterior face is mapped to the plane. Th

ping imposes boundary conditions on the linear system of equations (3). Under this mapping (and
orientation forG), the turning number of each external face’s boundary is well-defined, and its ve
may be classified as convex or reflex.

Lemma 4.15. Suppose that: (1) G is an oriented3-connected mesh of genus0 having multiple exterior
faces.(2) The boundary of the unbounded exterior face is mapped to the plane with positive edge
and turning number2π . (3) The boundaries of the bounded exterior faces are mapped to the plan
positive edge lengths and turning number−2π . (4) [G,x,y] is the straight line drawing ofG where
each internal vertex is positioned as a convex combination of its neighbors.(5) In [G,x,y] the reflex
vertices of all of the exterior face boundaries are also in the convex hull of their neighbors. Then f
α, β and[G,�z] constructed as in(4), no vertex or interior face is a saddle in[G,�z].
Proof. As illustrated in Fig. 4, assume theN boundaries of[G,x,y] form one unbounded andN − 1
bounded polygonal exterior faces in the plane withBi vertices each, of whichCi are convex extremum
vertices, andRi are reflex extremum vertices. Consider the one-form[G,�z]. Since all the extrema
vertices of the exterior faces produce sign changes of[G,�z] in those faces, and only those do, t
indices of the exterior faces are 1− (Ci + Ri)/2. The interior faces are closed and the interior vert
are co-closed, hence their indices are� 0. Having both positive and negative values of�z on their co-
boundaries, the indices of the non-extremal boundary vertices are� 0. Being inside the convex hu
of their neighbors, the indices of the reflex extrema are also� 0. Trivially, the convex extrema hav
indices� 1. Denote bys the sum of the (negative) indices of the saddle interior faces and vertice
the sum of the indices over the entire mesh is�

∑
(1− (Ci + Ri)/2) + ∑

Ci + s. But the Index theorem
maintains that this sum is+2, implying 2� N + ∑

(Ci − Ri)/2 + s. Now Lemma 4.14 applied to th
exterior faces implies that

∑
(Ci − Ri) = 2− 2(N − 1) = 4− 2N . This means thats � 0, but since, by

definitions � 0, we conclude thats = 0, namely, saddles do not exist in the interior faces or vertices.�
Using arguments identical to those of the previous section, we conclude:
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Fig. 4. The multiple non-convex boundary scenario. The one-form considered is the projection on the vertical
�z = �y). Arrows mark the half-edges having positive values of the one-form. Vertices are labeled with their indices.

Theorem 4.16. Under the conditions of Lemma4.15, all interior faces of[G,x,y] are convex and al
interior vertices are wheels. Moreover, if all the exterior faces are embedded as disjoint simple po
(edge crossings are not allowed), then all faces of[G,x,y] are disjoint.

A natural question is whether Theorem 4.16 is of any use in practical parameterization scena
Tutte’s theorem is. Forcing the boundary vertices to form a convex shape, as in the Tutte scenario
but is it possible to relax that requirement, yet force these boundary reflex vertices to be in the
hulls of their neighbors without compromising the same property of neighboring vertices? This se
be quite difficult, since it is impossible to determine apriori which boundary vertices will be convex
which reflex. Fortunately, Theorem 4.16 implies that the injectivity of the drawing is determined en
by the behavior of the boundary vertices, hence we have to worry only about these. One way to d
to replace the 2B linear boundary equalities in (3) withBF bilinear inequalities, whereBF is the number
of interior faces along the boundaries, expressing the fact that all the wedges formed by these fa
the correct orientation. This involves considerably less inequalities than what would have been r
had Theorem 4.16 not been true, as in that case, at leastF inequalities would have been required, o
for each face. However, being inequalities (as opposed to equalities), this will introduce many deg
freedom into the solution.

A more practical approach is to require more of the boundary. In many applications, aconformalpa-
rameterization is sought, meaning one that preserves angles as much as possible in the transi
3D to 2D. Traditional linear conformal parameterizations use the Tutte method withcotangentweights
(Pinkall and Polthier, 1993), however, these weights can sometimes be negative, hence are ac
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appropriate for the Tutte scenario. Floater (2003b) recently proposed to replace these cotangen
with so-calledmean-valueweights, which are always positive and seem to result in parameteriza
which are close to conformal. The Angle-Based Flattening (ABF) method of Sheffer and de S
(2001) addresses the problem in the triangular case by solving directly for the angles of the triang
reconstructing the embedding from that. Forcing all the angles to assume values in the interva(0,π)

(along with other constraints) guarantees that the resulting 2D triangulation is injective. This appr
non-linear, but has the advantage of a free boundary.

Here we describe one alternative we have explored. Given a 3D triangle meshM as input, with angles
0	 αi 	 π incident on the boundaries, andβi elsewhere, we construct an injective 2D parameteriza
of M , such that the 2D angles are as close as possible toαi andβi . Theorem 4.16 implies that in orde
to obtain an embedding, it suffices to force the boundary angles to be close toαi , and compute the
interior vertices’ positions by solving a linear system using mean-value weights derived from theβi . If
the resulting boundary angles are between 0 andπ , then reflex vertices will naturally be in the conv
hull of their neighbors, hence the result an embedding. Since we do not know in advance which
will be reflex, we apply our constraint on the angles aroundall boundary vertices.

Fig. 5 shows some results of this parameterization algorithm on two 3D input meshes. The firs
is the “ear” mesh, which is embedded as a triangulation with a non-convex boundary. Note how
boundary has a shape very close to that of the 3D boundary and how the angles are very similar.
ond input is the “face” mesh, containing multiple boundaries (“holes”). Note that the hole correspo
to the “mouth” has a non-convex character in the 3D input, which is preserved in the resulting 2
bedding. The third input is a hemisphere, in which three slits have been cut. The resulting 2D emb
takes advantage of these slits when forming the boundary for the resulting conformal parameteri

A linear system for free boundary parameterization is described by Desbrun et al. (2002) fo
angulated mesh with single boundary. However, that method may result in drawings which a
embeddings, for some inputs, even when all of the interior edge weights are positive.

Recent work of Karni et al. (2005) shows how to possibly improve on the results of Desbrun
(2002) byiterating a linear system of equations. Karni et al. show how Theorem 4.16 implies that
iteration converges, then the limit drawing is guaranteed to be an embedding.

The following remains an important open problem: Is it possible to generate a straight-line emb
of a 3-connected triangulated 3D mesh with a single exterior boundary face, by posing a single selin-
ear equations on all the 2D mesh vertex coordinates, including the boundary vertices, possibly c
thex andy coordinates. The coefficients in the equations should be derived from the 3D geometr
that if the input mesh is already a planar embedding, the output should be identical to the input
called a 2D-reproducingscheme).

Colin de Verdiere (personal communication) has recently shown us how to prove Theorem 4
rectly from Tutte’s theorem. However, his proof does not distinguish between local and global inje
of the embedding. Our approach has the advantage of cleanly separating the conditions required
injectivity (Theorem 4.15) from the extra ones needed for global injectivity (simplicity of the bound
as in Theorem 4.16).

The proof of Colin de Verdiere proceeds as follows: Consider the convex hull of the boundarB of
the unbounded exterior face. SinceB is simple, the difference between the two is the union of s
ple polygons. Triangulate each of these polygons, as well as the bounded exterior faces. The re
straight-line plane drawing of a new 3-connected graph with no unbounded exterior faces, whose
ary is embedded to a convex shape. Each interior vertex in the new drawing is connected to at lea
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Fig. 5. Parameterizing a mesh with free boundaries: (a), (c), (e) Original 3D meshes. (b), (d), (f) 2D parameterization
(c) and (e) when boundaries (bounded and unbounded) are free but forced to have boundary angles as close as pos
originals. Mean-value weights were used in the harmonic equations for the interior vertices.

vertices it was connected to in the old drawing. Each interior vertex of the old drawing is still an in
vertex in the new drawing. Each reflex boundary vertex of the old drawing is now an interior ver
the new drawing, positioned inside the convex hull of its neighbors. Each convex boundary verte
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old drawing is now either a convex boundary vertex of the new drawing, or an interior vertex of th
drawing positioned inside the convex hull of its neighbors. Thus the new drawing satisfies the con
of Tutte’s theorem, hence is an embedding.

5. Parameterizing a torus

While our use of one-forms on meshes allowed us to obtain Tutte’s theorem for disks and exte
it has a more natural application in the case of a toroidal mesh. This case is actually easier to
because, in its simplest form, there is no boundary to complicate matters. On the other hand, it
difficult to envision a parameterization in this case, since the torus obviously cannot be mappe
injective manner to the plane. The traditional solution to this is to cut the mesh along an artificial bo
to form a disk, and then parameterize as any other disk-like mesh. While this is certainly possible,
the mesh introduces new problems such as optimization of this boundary, and obvious discontin
the parameterization along the boundary.

Another way to parameterize a toroidal mesh without encountering the cutting problem, is to p
terize it locally, meaning injectively embed any submesh with disk topology, yet in a way such th
local parameterizations fit together in a seamless manner. So, while one never attempts to para
the entire mesh, if two intersecting disk-like regions (whose intersection is also disk-like) are pa
terized to the plane, the parameterization coincides on the intersection, possibly after an app
translation. See Fig. 6.

Seamless local parameterization is important for a variety of mesh processing applications,
ticular “cutting and pasting” between meshes (Biermann et al., 2002), texture mapping (Kraevoy
2003), meshing (Tewari et al., 2005) and remeshing.

Gu and Yau (2003) showed how seamless local parameterizations for the torus can be achiev
one-forms. In particular, the parameterization is driven by a pair of harmonic one-forms. Each
two one-forms provides the information needed to synthesize each of the two coordinate values
vertices in the plane. Their paper did not address whether the algorithm would produce a locally
embedding.

Here, we prove, based on the Index theorem (Theorem 3.5) that this algorithm will in-fact su
in producing an injective parameterization. In this sense, this is a Tutte-like embedding theorem
torus.

(Our theorem applies to a slightly more general case than that originally explored in (Gu an
2003). Gu and Yau dealt specifically with specialcotangentweights in their Eq. (1). They also only dea

Fig. 6. Seamless local parameterization of disk-like submeshes of the torus.
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with pairs of one-forms related by a special Hodge-star operator which they define, and only con
meshes with triangular faces. Our theorem applies toarbitrary positive weights,any pair of linearly
independent harmonic one-forms, and applies to meshes witharbitrary sized faces.)

A recent paper of Steiner and Fischer (2004) makes observations similar to ours, in particu
linearly independent harmonic one-forms generate locally-injective parameterizations of the tor
proofs they give, however, are rather complicated. Another quite different (and also more comp
proof for this appeared independently in (Lovasz, 2004).

As opposed to the disk case, where we considered the planar coordinates of the embedding,
converted them to a one-form to prove Tutte’s theorem, in the toroidal case the algorithm starts o
one-forms, and then synthesizes the local embeddings from that.

The algorithm begins by picking two linearly independent harmonic one-forms. Theorem 3.3 im
that the space of harmonic one-forms on the torus is two-dimensional. A basis for this space
found by simply solving for the null-space of the matrix representing the closedness and co-clos
constraints. This matrix is typically quite large, but also very sparse (six entries per row on the
age), hence its nullspace may be computed using efficient numerical methods for sparse matric
linearly independent one-forms may be then sampled from this space in a variety of ways. (No
unlike the original description of Gu and Yau (2003), this process does not require computing anbasis
loops.)

To construct a local parameterization for the torus, the algorithm chooses any two linearly indep
harmonic one-forms,�x and�y, which are linearly independent solutions to (1) and (2). Now, give
submesh with the topology of a disk, we assign the coordinates(0,0) in the planar parametric domain
an arbitrary vertexv0 of that submesh. Any other vertex is assigned coordinates byintegrating(summing)
the one-form along a directed path fromv0 to v. Since the one-form is closed, it does not matter wh
path is used:

(x0, y0) = (0,0), (5)

(xi, yi) =
( ∑

h∈P(v0,vi )

�xh,
∑

h∈P(v0,vi )

�yh

)
. (6)

Because the space is two-dimensional, it does not really matter which two harmonic one-forms a
as long as they are independent. Any other pair of one-forms will be a linear combination of
meaning the resulting parameterizations will be related to each other by an affine transformation

The proof that this algorithm will produce an injective mapping proceeds as follows. We begin
an analog of Lemma 4.2 for a torus:

Lemma 5.1. If G is a closed oriented manifold mesh with genus1 and �z a non-vanishing harmoni
one-form onG, then[G,�z] has only non-singular vertices and faces.

Proof. By Theorem 3.5, the sum of the indices of the vertices and faces of[G,�z] is 0. Since all vertices
are co-closed and all faces are closed, their indices are all non-positive. Thus the only way these
can sum to zero is if they are all zero.�

We now use Lemma 5.1 to prove the analog of Theorems 4.6 and 4.7 for the torus:
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Fig. 7. Parameterization of a torus containing 32 vertices and 64 faces. (a) 3D torus. (b) Parameterization of the to
plane using two harmonic one-forms generated with uniform weights. Vertices are numbered. The color coded edges
boundary correspond. (c) Double periodic tiling of the plane using the drawing in (b). (For interpretation of the refere
color in this figure legend, the reader in referred to the web version of this article.)

Theorem 5.2. If G is a 3-connected oriented manifold mesh with genus1, �x and �y two non-
degenerate and linearly independent harmonic one-forms onG, andG′ a submesh of G with the topolog
of a disk, then all faces of[G′, x, y] are convex and all vertices of[G′, x, y] are wheels, wherex andy

are constructed as in(5).

Proof. Identical to the proofs of Theorems 4.6 and 4.7, using Lemma 5.1 instead of Lemma 4.2
that if the two harmonic one-forms are linearly dependent, then the whole mapping will collapse to
In this case, there exist projections for which the one-form iscompletelydegenerate, and the argume
in Appendix B cannot be applied.�

Note that if the method of (5) is run twice, each time with a different vertex asv0, the two resulting
parameterizations will, by definition, be related to each other by a simple translation in the plan
translation vector will be the coordinates of the second origin in the first parameterization (or vice

Theorem 5.2 is a statement of local injectivity. It can also be shown that a pair of harmonic one-
in fact creates a globally injective mapping from the universal cover of the torus to the entire pla
a result, there can be no edge crossings in these parameterizations. The proof relies on Theorem
also on some notions from algebraic topology, and is thus omitted.

Fig. 7 shows such an parameterization of a toroidal mesh, where the disk-like submesh is
the entire mesh, after it was cut twice along twobasisloops of the handle. Because of the periodic
of the torus, the resulting embedding can be used to tile the plane in a doubly-periodic seamle
ner.

Although we will not prove this, we believe that a toroidal mesh with boundaries (“holes”) ma
locally parameterized in an injective embedding in a manner similar to that of Section 4.2, nam
allowing some vertices along the boundaries to be non-harmonic. This will hold if these boundarie
turning number−2π , and the reflex vertices on the boundaries are contained in the convex hulls o
neighbors.
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6. Higher genus

While we have applied our Index theorem (Theorem 3.5) only to the disk and to the genus 1
prove Tutte-like embedding theorems, the theory is applicable also to higher genus meshes, exc
matters are more complicated. By Theorem 3.3, the dimension of the space of harmonic one-fo
g > 1 is at least 4 and so there are many fundamentally different “pairs of harmonic one forms” th
be chosen from the space in order to create a parameterization.

In addition, forg > 1, the Index theorem implies the existence of at least two saddle vertices a
faces in every such harmonic one-form. Sosomethingmust go awry when we apply the parameterizat
approach of Section 5.

As observed by Gu and Yau (2003), the “best” one can hope for is to have all of the “badness
parameterization isolated at 2g − 2 vertices or faces. In this case we may have a vertex that isdoubly
wheel, where the co-boundary edges will cycle in the drawing around the vertex twice. Or we ma
a face that isdoubly convex, where the boundary edges cycle around the face twice (see the third c
of Fig. 3). At these bad spots, the embedding cannot be even locally injective. Note that if the m
only triangular faces, doubly convex faces cannot occur.

Here we prove that if a pair of harmonic one-forms is chosen such that it has 2g − 2 suchdoubles,
then the rest of the resulting parameterization is locally injective.

Theorem 6.1. If G is a closed oriented3-connected manifold mesh of genusg, and �x and �y are
harmonic one-forms onG and [G,x,y]—the corresponding drawing in the plane—contains2g − 2
vertices or faces that are doubly wheel/convex, then all other vertices of[G,x,y] are wheels and al
faces are convex.

Proof. In anyprojection of[G,x,y], a vertex that is doubly wheel, or face that is doubly convex, wil
a saddle. If there are 2g − 2 doubles, then the Index theorem (Theorem 3.5) implies that there can
other saddles. So all other vertices and faces are always non-singular in every projection, hence
vertices must be wheels and all faces convex.�

Of course, since the mapping is not everywhere locally injective, it is obviously not globally inje
But the drawing will at least contain faces which are all oriented consistently.

While we do not have a closed characterization of which two independent one-forms from tg-
dimensional solution space will, when used asx andy coordinates in the plane, form such an embedd
we can generate them using the following randomized (Las-Vegas) algorithm:

1. Compute a basis of the 2g-dimensional space of harmonic one-forms onG.
2. Select a one-form�x at random from the space whose basis was computed in (1), e.g., a rando

ear combination of the basis functions. When integrated, this one-form will generate thex coordinate
of the embedding.

3. Solve for another one-form�y such that[G,�x,�y] has 2g − 2 “doubles”. Since�x has been
fixed in step 2, this can be written as a linear program. In this program, every pair of adjacen
at the saddles of�x is constrained to have a positive angle (i.e., positive cross product of th
one-forms of those edges). If it exists, this�y is called amateof �x.

4. If step 3 failed, goto step 2.
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Fig. 8. Parameterization of the two-hole torus. Left: the 3D mesh, containing 495 triangular faces. Middle: The paramet
of the mesh to the plane using uniform weights. The two double-wheel vertices are marked in red and green. The g
appears twice along the boundary. Right: Zoom into the red double-wheel vertex. (For interpretation of the reference
in this figure legend, the reader in referred to the web version of this article.)

It is easy to see that if�x and�y are mates, then any two linear combinations of�x and�y are
also mates. Hence, in practice, it is possible to impose orthogonality of�x and�y in the linear program
solved in step 3.

We emphasize that step 3 does indeed fail for some random choices made in step 2, meaning
exist one-forms�x for which there isno mate�y (not even the�y generated by applying the discre
Hodge star operation of Gu and Yau (2003) to�x). However, in practice, the linear program fails to fi
a mate in step 3 only rarely, so the algorithm usually terminates after a small number of steps. W
observed experimentally, though, that this failure rate increases with the genus.

The embeddings in Fig. 8 were generated using this algorithm.
We conclude this discussion by stating some natural questions which are left open:

1. Which vertices inG can be saddles in a harmonic one-form? (We know that vertices with vale
cannot be saddles, because three edges cannot generate more than 2 sign changes of the o

2. Which vertices inG can appear as double wheels? (We known vertices with valence� 4 cannot be
saddles since each of the four angles must be< π , yet their sum must be 4π ).

3. If a vertex can be a saddle or double wheel, how can we generate a one-form or pair of on
having this property?

4. Is there any natural characterization of the one-forms that have mates?

7. Conclusion

The concept of one-forms on meshes used in this paper, although simple, seems to be quite p
It unleashes a wealth of classical mathematical theory for which discrete analogs seem to ex
is also related to some recent developments in polytopal graph theory (Mihalisin and Klee, 200
planar tilings using harmonic functions on graphs (Kenyon, 1998).
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This paper deals with the general case of asymmetric weightswij 
= wji in (3). Many other paper
(including Tutte (1963)) deal only with the symmetric case. This is appealing because then the
has a physical interpretation of a spring system, and the Tutte drawing minimizes the sum of the
of the weighted spring lengths, hence the system’s energy. Some of the recipes for generating ba
coordinates for given embeddings yield symmetric weights, including the so-called cotangent w
(Pinkall and Polthier, 1993). However, most do not (e.g., the mean-value weights (Floater, 2003b
it seems that the one-form theory presented here is powerful enough to deal with this.

Theorem 4.16 raises hope for other possible applications. One of these is constrained paramet
(see e.g. (Kraevoy et al., 2003)), which is of paramount importance for texture mapping, guara
that key features of a texture are mapped to the corresponding features on a mesh. This problem
an embedding a disk-like mesh in the plane, such that the parameterization is injective, but also
positional constraints at a (usually small) subset of the interior vertices. The results of Section 4 i
that if all the “problematic” regions of the mesh are embedded properly, then harmonicity will tak
of the rest. In the scenario of Section 4—the problematic regions are the boundary vertices, wh
taken care of either by forcing convexity or explicit positive angles. This can be generalized to th
of constrained parametrization by considering the constrained vertices to also be “problematic”
other words, part of a non-connected boundary), so it seems that forcingboth the boundary verticesand
the constrained vertices to be wheels should solve the problem. However, it remains to see how
be done in a computationally efficient manner. First results in this direction have been obtained r
by Karni et al. (2005).

A possible application of local parameterization of the torus is for parameterizing a disk-like
with a free boundary. Since Tutte’s theorem requires a convex boundary, one common way aroun
to “pad” the disk with a number of layers of “virtual” faces, forming a new “virtual” boundary. This la
mesh is embedded in the plane using the convex boundary method, and the extra padding then d
This method, due to Lee et al. (2002), gives the true boundary more flexibility, and it will typ
end up being non-convex. It is, however, still influenced by the virtual boundary and the conne
of the virtual faces, hence is not artifact-free. Making use of our method for local parameteriza
the torus, we believe it is more natural to embed the original disk within atorus, rather than a large
disk, as the torus seems to be the “cleanest” mesh. After solving for a harmonic one-form on th
this is transformed into an embedding of just the original disk-like submesh. This procedure elim
boundary conditions entirely, hence should contain less artifacts.
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Appendices

The appendices provide some technical theorems which simplify the main results of this pap
theorems will be formulated for the case of a mesh with a disk-like topology and convex boundar
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the appropriate modifications, these theorems carry over to the other cases (non-convex bounda
genus) as described.

Appendix A. Perturbing a vanishing one-form into a non-vanishing one-form

We will show how any (possibly vanishing) one-form on a disk-like mesh obtained from a
drawing that contains vanishing values may beconsistently perturbedinto a non-vanishing one-form
Since the perturbation will besufficiently small, it will not change the signs of any of the non-ze
values. As a result, any such perturbation will not be able to remove any saddles from the origin
form. Moreover, because the perturbation isconsistent, the perturbed one-form will not have any ne
sources, sinks or vortices (index+1) that were not in the original one-form.

The perturbed one-from may have non co-closed vertices. But as mentioned in Section 4,
to Lemma 4.2 is that all but two of the vertices have non-positive values of the one-form on th
boundaries. This is weaker than the co-closedness property. More formally:

Definition A.1. A vertex (respectively face) ismixedin a one-form if it has at least one positive and
least one negative value of the one-form on its co-boundaryδv (respectively boundary∂f ).

Definition A.2. A one-form is calledmixedif all its vertices and faces are mixed. A one-form is cal
almost mixedif all its faces are mixed and all its vertices are mixed, with the exception of at mos
vertices.

The following key lemma follows as a special case of Theorem 2.2 of Linial et al. (1988):

Lemma A.3. If G is a 2-connected oriented manifold mesh〈V,E,F〉 ands andt any two distinct vertices
of G, then there exists a non-vanishing one-form[G,�f ], whose faces are all closed and whose vertic
(except fors, which is a source, andt , which is a sink), are all co-closed with respect to some set
positive edge weightswij .

Clearly such a[G,�f ] is almost mixed.
Denote byfe the outer face of the mesh. Tutte’s method dictates that∂fe is embedded as a non

degenerate convex polygon, with no two vertices coincident. For any specific choice ofα andβ, in the
rotated Tutte drawing[G,w,z] (where the rotation is determined byα andβ), the boundary loop∂fe has
vertices on its left side, and vertices on its right side. The left side has a top (and bottom) vertex,
the right side. With respect to a generic choice ofα andβ, both sides will share their top (and bottom
vertex with each other. With respect to some non-generic choices ofα andβ, the upper or lower edge
may be perfectly horizontal and so the two sides may not share their top (or bottom) vertices. In th
there will be a distinct top-left and top-right vertex. In addition, if the boundary is only weakly con
then for a specific choice ofα andβ, there can also be “strictly top” and “strictly bottom” vertices th
are strictly in between the left and right sides. (See Fig. A.1.)

Definition A.4. Pick any two verticess andt on ∂fe that are not strictly top or strictly bottom vertice
Let �f be any non-vanishing almost mixed one-form with sources and sinkt . Let ε be a non-zero
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Fig. A.1. Scenario of Lemma A.6. Arrows mark the orientation of the half-edges possessing positive values of the o
Edges without arrows have vanishing (zero) values.

scalar that is small enough such that addingε�f to �z will not to change the signs of the previous
non-vanishing values of�z. Any such perturbation is called aconsistent perturbation.See Fig. A.1 for
an illustration of this.

Lemma A.5. Let �z be a one-form derived from a Tutte drawing as in Section4.1 using anyα andβ.
Then, there exists a consistent perturbation.

Proof. By Lemma A.3, for any choice ofs andt , such a�f must exist. Additionally, since�z is defined
over a finite number of edges, such anε of sufficiently small magnitude must exist.�
Lemma A.6. Let �z be a one-form derived from a Tutte drawing as in Section4.1 using anyα andβ.
Then, for any consistent perturbation, the resulting�z′ is non-vanishing and almost mixed.

Proof. Since�f is non-vanishing, andε sufficiently small, the resulting�z′ = ε�f + �z is non-
vanishing.

Next we prove�z′ is almost mixed by analyzing a small set of cases.
(1) Any degenerate face in�z is determined completely by�f , hence is mixed in�z′.
(2) Any non-degenerate facef is mixed in�z, hence for sufficiently smallε remains so in�z′. Hence

all faces are mixed in�z′.
(3) The sign pattern of any degenerate vertexv in �z is completely determined in�z′ by �f . Since

s andt were explicitly chosen to be non-degenerate vertices, a degeneratev cannot be one of the chose
s or t . Hence suchv must be co-closed (with respect to some weights) in�f and thus mixed in�z′.

(4) Any mixed vertex in�z, for sufficiently smallε, must remain so in�z′.
(5) The only non-degenerate, not mixed vertices possible in�z are the extreme ones: the top-left (TL

bottom-left (BL), top-right (TR), bottom-right (BR), strictly top (ST), and strictly bottom (SB) vertic
We now show that there cannot be more than two non-mixed vertices from this set in the resultin�z′.

If TL and TR coincide, then it can account for at most one non-mixed vertex in�z′.
If TL and TR are distinct, then we use the following argument. By Lemma 4.2, there are no

faces in�f , and so there can be only 2 sign changes as one circles∂f (only at s and t). Hence�z′

e
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must go in one direction (wlog say from left to right) along the top (resp bottom) of∂fe (see Fig. A.1).
Therefore, the ST vertices and TR will have both positive and negative values on their co-bound
�z′, hence be mixed. Thus TL can account for at most one non-mixed vertex.

An identical argument shows that BL and BR can account for at most one non-mixed vertex.�
Lemma A.7. For any consistent perturbation�z′ of �z, if there were sc sign changes around∂f (δv
respectively) in �z, ignoring zeros, then ind(f ) � 1− sc/2 (ind(v) � 1− sc/2 respectively) in �z′.

Proof. The sign of a non-degenerate edge of�z is preserved in�z′. Hence the number of sign chang
can only increase and the index only decrease.�

This means that this consistent perturbation cannot remove any saddles.

For the non-convex boundary, in Lemma A.6, we choose fors and t any two boundary vertices tha
have at least one boundary edge with non-zero value in�z. The resulting perturbed one-form�z′ will
have the appropriate properties for Lemma 4.2 to apply.

For the torus, (and higher genus) case we must assume that the one-form is not degenera
for a consistent perturbation, we can chooseany two non-degenerate vertices ass and t . The resulting
perturbed one-form�z′ will have all mixed vertices and faces and thus appropriate for Lemma
(respectively Theorem 6.1) to apply.

Appendix B. No degenerate vertices or faces

In this appendix we prove that a Tutte embedding does not contain degenerate elements.
define what these are:

Definition B.1. Let �z be a one-form on a mesh. Adegeneratecorner is a (vertex, face) pair whose tw
associated edges are degenerate.

For this appendix we need a slightly stronger version of Lemma A.3, which also follows directly
a variant of the arguments in (Linial et al., 1988).

Lemma B.2. If G is a 2-connected oriented manifold mesh〈V,E,F〉, s and t any two distinct vertices
of G, andp any directed simple path froms to t , then there exists a non-vanishing one-form[G,�f ],
with all positive values along the half-edges ofp, whose faces are all closed and whose vertices,(except
for s, which is a source, andt , which is a sink), are all co-closed with respect to some set of positive e
weightswij .

We now prove a series of lemmas leading to the desired result.

Lemma B.3. Let [G,x,y] be a Tutte drawing. Then in any projected one-form[G,�z] there can be no
non-degenerate interior vertex participating in a degenerate corner.
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Fig. B.1. Scenario of Theorem B.3. Arrows mark the orientation of the half-edges possessing positive values of the o
Edges without arrows have vanishing (zero) values.

Proof. Let v0 be an interior vertex. Since it is non-degenerate, it must be mixed. We wish to sho
if it participates in a degenerate corner, then we can find�z′—an appropriate perturbation of�z of the
form described in Lemma A.6—which is a non-vanishing almost mixed one-formwith a saddle atv0.
This would contradict Lemma 4.2.

Call the two edges of the degenerate cornere01, e02. These edges connectv0 to v1 andv2. SinceG is
3-connected, the graphG − {v0} is 2-connected. Therefore for any two verticess andt we can find two
vertex-disjoint paths connectingv1 andv2 to s andt (we cannot say in advance which will be connec
to which) such thatv0 is not in either path (Linial et al., 1988). By including all of the edges in th
two paths in addition to the edgese01 ande02, we obtain a simple directed path froms to t that proceeds
in the order[v1, v0, v2] or [v2, v0, v1]. See Fig. B.1. By Lemma B.2, there exists�f : a non-vanishing
almost mixed one-form with sources and sinkt that either passes in order[v1, v0, v2] or [v2, v0, v1].
Consider�z′ = �z + ε�f . This is a non-vanishing almost-mixed one-form with non-vanishing va
on the edgese01 and e02. With the proper choice of sign forε, we can increases the number of s
changes aroundv0, creating a saddle atv0 in �z′. This contradicts Lemma 4.2.�

Next we show that if there was any degenerate corner at an interior face, there would have to b
degenerate corner with a participating non-degenerate vertex.

Lemma B.4. Let [G,x,y] be a Tutte drawing. Then in any projected one-form[G,�z] there can be no
degenerate corner at an interior face.

Proof. Assume(v0, f ) is a degenerate corner. If it is not part of a triangle (which would have t
degenerate by closedness), then introduce a new edgee12 between verticesv1 andv2 (the neighbors o
v0 at the degenerate corner); this splitsf into a degenerate triangle and some remainder face. Thisface-
split operation cannot change the 3-connectedness ofG. The addition of this edge cannot change
co-closedness ofv1 andv2. Repeat this operation for any degenerate corner. In the finalG, any interior
face with a degenerate corner must be a degenerate triangle.

Since[G,x,y] is not degenerate, there must be some interior facef that is not degenerate sharing
edgee01, between verticesv0 andv1, with a degenerate face. Eitherv0 or v1 must be an interior vertex
otherwisee01 would be an interior edge connecting two boundary vertices, which is impossible
3-connected planar graph.
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Fig. B.2. The scenario of Lemma B.4.

Without loss of generalityv0 is an interior vertex.f has another vertex—v3—that shares an edg
e03 with v0. The one-form must be non-vanishing on this edge, otherwisee01 ande03 would have been
a degenerate corner andf would have been a degenerate triangle. See Fig. B.2. Sov0 is an interior
non-degenerate vertex at a degenerate corner, in contradiction of Lemma B.3.�
Lemma B.5. In a Tutte drawing there can be no face with zero area and no edge of zero length a
angle of0 or π within any interior face.

Proof. Suppose there was a face with zero area. It is then possible to pick a projection (α,β) such that
the resulting one-form vanishes on all edges of this face. Similarly, if there is an edgee with zero length,
then pick (α,β) such that the resulting one-form will vanish on one of the edges neighboring one. In
both cases, we will have a degenerate corner in the one-form, in contradiction of Lemma B.4.�

The proofs of Appendix B apply directly to the non-convex boundary case of Theorem 4.16
also apply directly to one-forms on the torus. The equivalent to Lemma B.4 for the torus will sta
in any (non-degenerate) harmonic one-form[G,�z], there can be no degenerate corner. This imp
no geometric degeneracies in any drawing[G′, x, y] integrated from a pair of non-degenerate harmo
one-forms.

Harmonic one-forms on higher genus meshes have saddle vertices or faces and are thus mor
cated. In this case there will exist one-forms[G,�z] with degenerate corners. But, in the special ca
treated by Theorem 6.1, the saddles are all “accounted for”, so again, no degenerate corners can
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