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Abstract. Performances of actual mesh compression algorithms vary significantly depending on the type of model
it encodes. These methods rely on prior assumptions on the mesh to be efficient, such as regular connectivity,
simple topology and similarity between its elements. However, these priors are implicit in usual schemes,
harming their suitability for specific models. In particular, connectivity–driven schemes are difficult to generalise
to higher dimensions and to handle topological singularities. GEncode is a new single–rate, geometry–driven
compression scheme where prior knowledge of the mesh is plugged into the coder in an explicit manner. It encodes
meshes of arbitrary dimension without topological restrictions, but can incorporate topological properties, such as
manifoldness, to improve the compression ratio. Prior knowledge of the geometry is taken as an input of the
algorithm, represented by a function of the local geometry. This suits particularly well for scanned and remeshed
models, where exact geometric priors are available. Compression results surfaces and volumes are competitive
with existing schemes.
Keywords: Mesh Compression. Geometry–driven techniques. Arbitrary Meshes. Arbitrary Dimension.
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Figure 1: GEncode compression: once the geometry is decoded, the decoder attaches triangles to edges of the front by identifying
its apex w: A list of candidates is computed from an encoded geometric range and ordered according to a geometric criterion (here
the distance from w to the edge midpoint). Then w is identified by its position in the list.
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1 Introduction
Computer Graphics developments handle each time big-

ger meshes, using processes of increasing complexity.
Compression algorithms followed these developments by
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improving the compression ratio, enlarging the range of
models that can be encoded, simplifying their implementa-
tion and increasing execution performances. However, they
are still not fully adapted to the wide variety of models
and applications of Computer Graphics: scans in artistic
and archaeological modelling, isosurfaces for medical and
mathematical visualisation, re–meshed models for reverse
engineering, finite–element meshes for simulation, high–
dimensional meshes for solid representation, meshes with
high co–dimension for non–linear optimisation, among oth-
ers. Actually, the performances of state–of–the–art com-
pression algorithms highly depend on the nature of the
model. We will focus here on compression schemes adapted
to the priors of specific applications, in particular for the
most time–consuming mesh generation algorithms: recon-
struction and the re-meshing.

Geometry–driven compression. Meshes are usually de-
scribed by their geometry (the coordinates of its vertices)
and their connectivity (the combinatorial elements that in-
terpolate these vertices, usually triangles or simplices). This
composite nature leads to classify compression algorithms
between: on one hand connectivity–driven ones, when the
connectivity is coded separately and the geometry is par-
tially deduced from it, and on the other side geometry–
driven ones, when the geometry is coded separately and the
connectivity is coded using the geometry. The efficiency
of connectivity–driven algorithms usually relies on a reg-
ular connectivity, whereas the newer trend of geometry–
driven methods are expected to perform better on geomet-
rical meshes, such as reconstructed or re-meshed models.
This work proposes a new geometry–driven method, which
encodes arbitrary meshes in arbitrary dimension, and com-
pares nicely to connectivity–driven methods for surfaces
(Figure 1) and for volumes (Figure 11).

Related works. The first mesh-compression algorithms
were connectivity–driven, in the sense that the geometry
encoding depends on the connectivity encoding rules.
Among those, the Edgebreaker [33, 29, 27, 23] per-
forms well on generic mesh, with guaranteed practical
worst–case close to the theoretical optimum [19]. On the
other side, Valence Coding [35, 9, 18] has a theoretical
asymptotic compression ratio close to the optimum [1].
It has been widely extended since the original work, and
performs very well in practise, especially on meshes with
a regular connectivity. Some singularities of the mesh can
further be handled by specific algorithm, in particular for
the non–manifold case [13, 30].

These connectivity–driven approaches can be extended
to higher dimension, but the complexity of the codes
increases dramatically. Even for tetrahedral meshes, the ex-
tensions of the surface approaches [14, 32, 17] are delicate.

As an intermediate towards geometry–driven ap-

proaches, some connectivity–driven schemes use the
previously coded geometry to predict the connectiv-
ity [20, 21, 11, 18]. Each of these algorithms uses a
different prior on the geometric regularity of the mesh.

On the contrary, geometry–driven approaches intro-
duced by [12] handle gracefully complex connectivity.
Still, the compression ratios of the geometry are not yet op-
timal, since these schemes are quite new to the community.
However, for the case of isosurfaces, specific compression
schemes [34, 22, 24] outperform any connectivity–driven
approach.

Contributions. This work proposes a new geometry–
driven scheme called GEncode, which works for meshes
of arbitrary topology and dimension embedded in spaces
of arbitrary dimension. To our knowledge, GEncode is the
first compression method that works at that level of gener-
ality and still compares nicely to state–of–the–art compres-
sion methods for triangulated surfaces and volumes. As op-
posed to [12], GEncode is single rate, but copes with gen-
eral meshes, and shows better compression ratios: For sur-
face, the resulting compression ratios are competitive with
the Edgebreaker with the parallelogram prediction, and
for volumes it is highly competitive with Grow&Fold [32]
and with streaming compression [16].

Aside from its generality, GEncode treats the priors
of the mesh as an input, and can therefore easily adapt
to specific classes of meshes. These priors include on one
side global topological properties such as manifoldness,
the presence of boundary and eventually the degree of the
facets, and on the other side local geometrical properties
represented by a scalar function of the vertices of a facet.
For example, a common prior for usual Computer Graph-
ics models assumes that the mesh is a triangulated mani-
fold without boundary, and that the triangles maximise their
circumradius or their aspect ratio. In particular, if the mesh
can be reconstructed from its vertices with a geometric
prior, the GEncode connectivity encoding with that prior
leads to a zero entropy code.

This work is an extended version of [25] and part of
Thomas Lewiner’s Ph.D. [26]. It describes GEncode at its
high level of generality, investigates different geometric pri-
ors and separates the geometric range definition from the
geometric prior in order to reduce the constraints on the ge-
ometric function defining the prior. Moreover, the authors
are grateful to the referees, since they motivated tests on
tetrahedral meshes, where GEncode turned out to be par-
ticularly competitive.

Overview. This work is organised as follow. section 2 Gen-
eral Meshes recalls the basic notions of meshes, expressed
in arbitrary dimension. Then section 3 Independent Encod-
ing of the Geometry introduces the two methods we consid-
ered for compressing the geometry, and how we synthe-
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Figure 2: Cell complex elements topology and cell attachment
operation.

sised them. The main part of GEncode is introduced at
section 4 Connectivity Encoding: Geometric Range and Apex
Identifiers, followed in section 5 Geometric Priors by a dis-
cussion on priors that can be plugged into the algorithm to
compress efficiently usual models. Finally, section 6 Results
provides some results and comparisons with state–of–the–
art methods on common models, and compares them with
the Edgebreaker for surfaces, and with Grow&Fold and
streaming methods for volumes.

2 General Meshes
This section introduces the basic definitions that are used

in this work, especially the notion of convex cell com-
plexes [15]. This notion is introduced formally, but corre-
sponds to the usual meshes used in Computer Graphics,
and the reader can think of this notion as a generalisation of
triangulated surfaces. They can be constructed in an incre-
mental manner by the single operation of cell attachment.
This construction is usually referred as advancing front, and
entails most of the mesh decoding algorithms.

Convex cells. A convex cell σ in Rp is a non-empty com-
pact subset ofRn which is the solution set of a finite number
of equations fipxq � 0 and inequalities gipxq ¥ 0, where
fi and gi are affine functions of the form px1, x2, ..., xpq ÞÑ
λ0 � λ1x1 � λ2x2 � ...� λpxp.

A cell σd has dimension d if it contains d � 1 affine in-
dependent points but no more. A subcell τ of σ is a cell
obtained by changing some of the inequalities gipxq ¥ 0 to
equalities. We will say that σ is incident to τ . The collec-
tion of all the subcells of σd of dimension d�1 is denotedBσ.

Points, line segments, triangles, quadrangles, tetrahedræ,
cubes are examples of convex cells. Among these convex
cells are the simplices, which generalise the notion of line
segment, triangle and tetrahedron: A d–simplex is the con-
vex hull of pd�1q affine independent points in the space.

Convex cell complex. A convex cell complex K is a co-
herent collection of distinct convex cells, where coherence
means that the collection contains the subcells of each cell

and the intersection of any two cells. A convex cell complex
K is pure of dimension n if every cell in K is of dimension
n or is a subcell of a cell of dimension n belonging to K. A
facet of a pure n–complex K is a cell of K of dimension n.

The vertices of a cell are its subcells of dimension 0. The
geometry of a complex usually refers to the coordinates of
its vertices, while its connectivity refers to the incidence of
higher dimensional cells on these vertices. Observe that a
cell is uniquely determined by its vertices.

Cell attachment. An n–cell σ can be attached to a
complex K by identifying a collection of its subcellstτ1, � � � , τku with some of the cells of K, preserving its
nature of cell complex.

If one of the cells τ of K is of dimension n�1, this cell
attachment can be considered as the attachment of σ onto τ ,
and we will write σ � τ �tw1, . . . , wmu, where the verticestw1, . . . , wmu are those of σ not subcells of τ (Figure 2).
These vertices are called the apexes of the cell attachment.
If σ is a simplex, there is only one apex (m � 1).

Manifolds. Among these convex cell complexes, the class
of combinatorial manifolds is the most widely used. A com-
binatorial n–manifold M is a pure complex of dimension
n where for each vertex v, the union of each open simplex
containing v is homeomorphic to the open n–ball Bn or the
intersection of Bn with a closed half–space. This implies
that each pn�1q–cell is a subcell of either one or two n–
cells. The set of pn�1q–cells subcells of only one n–cell is
called the boundary ofM (Figure 2).

3 Independent Encoding of the Geometry
GEncode is a pure geometry–driven scheme, and the

coordinates of the vertices of the mesh are thus encoded
separately before the connectivity compression. We con-
sidered two geometry coding techniques, described in [12]
and in [8], and propose a synthesis of them. This synthesis
has similar compression ratios as both [12] and [8], but em-
phasises their strong points and could be the basis for fur-
ther improvements on this part of the coding. In our exper-
iments, the proposed synthesis is generally more efficient
on small models (below 3000 vertices) or on the three–
dimensional meshes we tested (Figure 11), whereas [12]
gets the best results for larger models.

Space partition encoding. The coordinates of all the ver-
tices are encoded globally as a space partition tree. This
kind of techniques works for vertices with an arbitrary num-
ber of coordinates, allowing encoding meshes of arbitrary
co–dimension. In particular in [12] and [8], the space is di-
vided with a particular binary space partition where each
separator is perpendicular to the axis, as an octree for di-
mension 3: the axis alternates from one level to the next
one (X,Y,Z,X,Y. . . in R3), and each part is subdivided in
two equal sub-parts, as on Figs. 3, 4 and 5. The subdivision
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is performed until each part contains only one vertex. We
will now compare and synthesise these techniques.

5

5

⇒ 0

4
⇒ 1

2

⇒ 2

1 1

⇒ 1
⇒ 1

Figure 3: The geometry encoder of [12] codes first 5 as a stan-
dard 32 bits number, then 5 on rlog2p6qs bits, and then 4 on
rlog2p6qs bits. The right vertex relative position is then coded.
Then 2 is coded on rlog2p5qs bits, and both 1 on rlog2p3qs bits.
The position of the last vertices is coded.

Lower nodes efficient. In [12], each node of the space
partition is encoded by the number of vertices #vl its left
children contains. The number of vertices of the other node
#vr is simply deduced by difference from the number
of the vertices of the parent’s node #vf which is known
from the recursion. This technique wastes many bits at the
beginning of the encoding: the number of nodes must be
encoded on rlog2p#vf � 1qs bits, since the number of node
of the left child can be t0, . . . ,#vfu (except the first node
which is on 32 bits by convention), as for the example
of Figure 3. At the end, when there is only one vertex per
node, it is encoded with 1 bit per level, which is optimal.

+

0

+ +
+

+

+ +

++ ++

0

0

Figure 4: The geometry encoder of [8] codes the following
sequence: �0, ��, ��, 0�, ��, ��, 0�. Then follow 0�
and �0 to reach the desired number of bits.

Higher nodes efficient. In [8], each node is encoded by
one out of 3 symbols: �� if both children contain at least
one vertex, �0 if only the left child contains a vertex,
and 0� if only the right one contains a vertex, as for the
example of Figure 4. Note that at least one child must
contain a vertex, since the parent did. The encoding stops
at a predefined level. This method spends more bits at the
end of the encoding, since the decoder does not know when
there is only one vertex in a node. Therefore, the encoder
sends log2p3q bit for each level, which is greater than the 1
bit of [12] for the last part.

Synthesis proposal. The goal of this synthesis is to take
the best part of both. First, it encodes each node by one
of 6 symbols: �� if both children contains more than one
vertex, �1 and 1� if one child contains more than one
vertex, and the other only one, 11 if they both contain
only one vertex, and �0 and 0� if one child contains
more than one vertex, and the other child is empty, as for
the example of Figure 5. With this encoding, the encoder

+

0

+ 1
+

+

1 1

11

Figure 5: Synthesis: the encoder codes the following sequence:�0, �1 and the right vertex relative position is then coded,
and then ��, 11, 11. The position of the remaining vertices is
then coded.

detects when there is only one vertex in a node, and then
uses the technique of [12]. The coder further benefits from
the different probability of the symbols. Moreover, these
probabilities are used differently depending on the level
of the node to encode: nodes closer to the root are more
frequently of type ��, whereas these are rare when going
closer to the leaves.

4 Connectivity Encoding:
Geometric Range and Apex Identifiers
The main contribution of GEncode is its connectivity

coding (Algs. 1: gencode and 2: gdecode). As a generic
geometry–driven compression scheme, the geometry is
known before the connectivity is decoded, either because it
is already available as a point cloud, or because it has been
decoded by a method like the one we presented above. The
connectivity decoding then works similarly to greedy ad-
vancing front reconstruction algorithms such as [6, 28, 31],
but the best match used by the reconstruction algorithm is
continuously corrected by the encoded stream. Therefore,
for meshes that can be reconstructed with a greedy strat-
egy, GEncode can achieve a zero entropy message for the
connectivity.

Coding Principle. The algorithm encodes an initial n–
cell and then works as an advancing front triangulation,
maintaining an ordered queue of pn�1q–cells and attaching
at each step a cell τ �tw1, . . . , wmu to τ , the cell of the front
with the highest priority, or removing τ from the front, for
example when τ is on the boundary of the final mesh. When
an n–cell is attached, its pn�1q–faces are added to the front.
The compression of a connected component ends when the
front is empty. The difference with greedy reconstruction
algorithms is that vertices wj are not always the ones that
minimise a given geometric criterion G pτ, wjq, such as the
circumradius of τ � wj used by [6]. Such criteria will be
discussed in section 5 Geometric Priors. To identify the apex
wj , we actually encode its position in a list of candidates,
generated by a geometric range rRmin,Rmaxs and ordered
by geometric criterion G.

Geometric Range. The list of candidates for w could be
the list of all vertices, but that would allow O p#vertsq
choices, which is too expensive to encode. In order to re-
duce the size of that list and the time used to compute it,
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front cell τ
apex w

geometric fun.
R(τ, w)

6(a): Coder side: geometric function R pτ, wq �}τmid � w}.
6(b): Both sides: geometric rangeRmin ¤ R pτ, wq   Rmax.

6(c): Both sides: apex candidates are ordered by the geometric
prior G pτ, viq � ρ pτ � viq.

new front cell

6(d): Decoder side: the decoded apex identifier #3
defines the cell attachment τ � w.

Figure 6: GEncode principle: the geometric function (a) is encoded. Its quantisation restricts the apex candidates, which are then
filtered by the topological priors (b). The candidates are ordered (c) and the encoder transmits the candidate number in the list
(here #3), which allows the decoder to perform the cell attachment (d) and continue on the next front cell.

a geometric function R pτ, wq is transmitted (Figure 6(a)).
However, the quantisation process encodesR pτ, wq as one
of the predefined ranges: R pτ, wq P rRmin,Rmaxs. The
list of candidates will then be the vertices vi such that
R pτ, viq belongs to rRmin,Rmaxs (Figure 6(b)).

The definition of the geometric function R must be ef-
fective for identifying the candidate vertices. In particu-
lar, for simple geometric priors G on the mesh, we choose
R � G. Moreover, the binary space partition of the geo-
metric encoding is used to accelerate the localisation of the
candidates.

Apex Identifiers. Once the list of apex candidates tviu is
generated, it is ordered by the geometric prior G pτ, viq. For
example on Figure 6(c), the best candidate according to G
gets identifier 1, the second best match receives identifier
2. The original apex gets identifier 3, and this number is
transmitted to the decoder, which can then perform the right
cell attachment (Figure 6(d)). This ordering gives a higher
probability to the lower identifiers and thus reduces the

entropy.

Non–simplicial meshes. If the mesh is not simplicial,
a third number needs to be encoded: the number m of
apexes for the cell attachment τ � tw1, . . . , wmu (line 8 of
Alg. 1: gencode). Moreover, there is one range per apex
wj , but only the smallest and the biggest ranges of the wj
are actually encoded. In that case, we know that the second
and following apexes are restricted to be on the affine
hyperplane defined by τ � w1. This reduces the candidate
list, which improves the entropy of the apex identifiers
stream.

Quantisation trade–off. This scheme actually encodes
the apex by two means: the geometric range and the apex
identifier. The quantisation of the geometric function is thus
a trade-off: On one hand, if the quantisation is rough, there
will be many candidates, which requires more time to gen-
erate the list and an expensive encoding of the position of
wj in the list of the candidates, as show the histograms
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7(a): range: roughly quantised
(low entropy).

7(b): number of candidates (high
entropy).

7(c): range: precisely quantised
(high entropy).

7(d): number of candidates (low
entropy).

Figure 7: Quantisation trade–off: rough quantisation of R leads to lower entropy for the range, but more candidates, thus higher
entropy for the apex identifier.

of Figure 7. On the other hand, if the quantisation is too
refined, the quantised geometric range will be expensive to
encode.

Topological Priors. GEncode compresses pure meshes
of arbitrary dimension, embedded in any co–dimensional
space, orientable or not, with any kind of topology. If the
mesh contains more than one connected component, the al-
gorithms are applied separately on each of them. Further

Algorithm 1 gencode(R,G): encodes one component of a
pure n–complex.

// Encodes the first n–cell, and adds its facets to the queue

1: σ Ð encode first pinitial cell pqq
2: q ÐH ; q.push pBσq
// Front propagation

3: while τ Ð q.top pq do
4: if τ .mark then continue end

// Encodes all uncoded the cells incident to τ

5: for all σ ¡ τ do
6: if σ.mark then continue end

// Encodes the degree of the facet (non–simplicial case)

7: tw1, . . . , wmu Ð apexes pσ, τq
8: encode pmq

// Computes and encodes the geometrical function

9: rRmin,Rmaxs Ð
quantise range pτ, tw1 . . . wmuq

10: encode pRmin,Rmaxq
// Apex candidates in that range, best matches first

11: tv1, . . . , vku Ð candidates pτ, rRmin,Rmaxsq
12: sort ptv1, . . . , vku ,Gq

// Encodes the position of each apex in the list

13: for j P v1,mw do encode pi : wj � viq end
14: q.push pBσq ; σ.mark Ð true
15: end for

// End of incident n–cells (non–closed manifold case)

16: encode p�1q ; τ.mark Ð true
17: end while

information on the mesh will then improve the compres-
sion ratio: We already saw that if the mesh is simplicial,
the encoding of the face degree (parameter m line 8 of
Alg. 1: gencode) can be avoided. Even if this is not known
to the coder, the sequences of m will be constant, and thus
have entropy zero.

Computer Graphics meshes are usually manifolds. In
that case, GEncode is optimised in two ways: firstly, by re-
moving from the list the candidates that would create a non–
manifold object, i.e. the vertices that are not on the bound-
ary of the reconstructed mesh (Figure 6(b)). Secondly, anpn�1q–cell will be processed at most once. Therefore, the
m � �1 code of line 16 of Alg. 1: gencode only serves as

Algorithm 2 gdecode(R,G): decodes one component of a
pure n–complex.

// Decodes the first n–cell, and adds its facets to the queue

1: σ Ð decode first pq
2: q ÐH ; q.push pBσq
// Front propagation

3: while τ Ð q.top pq do
4: if τ .mark then continue end

// Decodes the degree of the facet or the code for next τ

5: while mÐ decode pq && m � �1 do
// Decodes the geometrical range

6: rRmin,Rmaxs Ð decode pq
// Apex candidates in that range, best matches first

7: tv1, . . . , vku Ð candidates pτ, rRmin,Rmaxsq
8: sort ptv1, . . . , vku ,Gq

// Decodes each apex by its position in the list

9: for j P v1,mw do i Ð decode pq ; wj Ð vi
end

// Attach the new cell

10: σ Ð attach pτ, τ � tw1, . . . , wmuq
11: q.push pBσq ; σ.mark Ð true
12: end while
13: τ.mark Ð true
14: end while
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a marker for boundary cells, reducing its range to 0{ � 1
and thus improving the entropy of that code. If the complex
is a simplicial manifold without boundary, the encoding of
m can be omitted for both the number of apexes and the
boundary marker (lines 8 and 16 of Alg. 1: gencode).

Non–pure complexes. The above algorithms can be ex-
tended to cope with more general topology. If the n–
complex K is not pure, as the one of Figure 2, we first
encode it as if it were a pure complex. The uncoded cells
will then be the non–pure elements ofK. They form a com-
plex K 1 of dimension lower than n. We then encode K 1 as
above and continue recursively. This involves at most n�1
calls to Alg. 1: gencode or Alg. 2: gdecode, which main-
tains the linear complexity of these algorithms (considering
that the localisation of the candidates is constant).

Guarantees. Given a convex cell complex K, the
GEncode compression encodes a sequence of cell at-
tachments, starting from an empty cell, and ending at K.
The decompression reconstructs K by this sequence, and
identifies each cell attachment uniquely by the front cell,
the number of apexes and their identifiers. The definition of
a convex cell complex implies that this is enough to define
the geometric realisation of the attached cell |σ|. However,
there can be more than one combinatorial description of|σ| if two p–cells of the boundary of σ are aligned (con-
tained in a p–affine plane). If this degenerated case does
not occur in K, GEncode is then guaranteed to recon-
struct K. If it occurs, the model can be either perturbed,
or Algs. 1: gencode and 2: gdecode can be modified to
encode the combinatorial structure of degenerated cells.

5 Geometric Priors
GEncode relies on two complementary geometric func-

tions: the geometric range rRmin,Rmaxs and the geometric
prior G that orders the apexes by their probability to com-
plete the front cell. In a rough sense,R encodes the highest
bits of the apexes, which are usually the same as the highest
bits of the front cell τ , and G predicts the best apex in that
range.

We will consider here two uses for the geometric func-
tionR: either to encode a specific geometric property of the
mesh or to localise the apexes. In the first case, it should be
equal to G (as in [25]). In the second case, its simplest ex-
pression would be the distance to the barycentre of the front
cell τ . We will thus focus now on G.

Geometric criterion. The geometric criterion G pτ, wq is
an arbitrary real valued function that should be minimal
with high probability when the cell τ � w is a cell of the
mesh. This criterion uses the local geometry of τ � w, and
may take into account the decoded mesh, although we will
not use this feature here. The more the criterion fits to
the coded mesh, the better the compression ratio, since the

parameter i to encode on line 13 of Alg. 1: gencode will
be equal or close to 0 with high probability, reducing the
entropy of these codes.

Closest point criteria. The simplest geometric criterion
is the distance to the barycentre of τ : Gd pτ, wq �}w � bary pτq}. In that case, the geometric function R
can be normalised by the volume (length) of τ quan-
tised on r0,8r with an exponential function: Rd pτ, wq �Q
log2

�Gd pτ, wq {vol pτq �U. For regularly sampled meshes,
the geometric range should then be always a low value.

Mesh quality criteria. Geometric Modelling gener-
ally aims at generating meshes composed of well–
shaped cells. The usual definition for well–shaped
triangles are the aspect ratio Ga pτ � pv1, v2q , wq �
}v1�v2}2�}w�v1}2�}w�v2}2

areapv1,v2,wq and the Delaunay constraint
Gc pτ, wq � circumradius pτ � wq. The first one usu-
ally concerns rendering applications and for local mesh
improvement [2], whereas the second one is widely used
in reconstruction [6, 5, 10] and global remeshing [3, 4].
These criteria can also be used for the geometric function
R with an exponential quantisation, noticing that they
are bounded from below (by 16?

5
for the aspect ration and

1
2 for the circumradius normalised by the edge length
(Figure 8)). We can observe that the Delaunay criterion
mimics the Ball Pivoting [6, 28] algorithm, where the
geometric range encodes the variations of the ball radius.
In higher dimension, these criteria can be extended using
the Cayley–Menger determinant (especially for computing
the circumradius [7]) or replaced by the cell volume for
faster computation.

Figure 9: Traversal of a sphere and of a Klein bottle models,
from cold to hot colours: good orders can improve the com-
pression.

Traversal strategy. The criterion G actually depends of
which front cell is chosen at each step. Therefore, the order
in which the complex is traversed has an influence on the
compression ratio, as most of the advancing front (greedy)
algorithms (Figure 9). Normalised criteria as the distance
or the circumradius will be a priori better quantised if the
normalisation is bigger. Since the volume of the front cell
gives is the natural normalisation (Figure 8), we store the
front as a priority queue ordered by the volume of the cells.
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8(a): circumradius 8(b): edge length 8(c): quantised range

Figure 8: Normalisation of the geometric range significantly reduces the entropy.

6 Results
Compression results. GEncode originally intended to
compress better meshes that have a nice geometry. The De-
launay criterion is particularly adapted to reconstruction al-
gorithms [6, 5, 10] or some techniques of re–meshing [3, 4].
The results of Tab. 1 shows this behaviour stands in prac-
tise, as the remeshed models and the scans sculptures are
better compressed than the other models (Figure 10). Al-
though the results presented here are of dimensions two and
three, the algorithm has been implemented for any dimen-
sion and co–dimension, and the illustrations of this work
represent the models decoded by our implementation. The
only two features that were not implemented in high dimen-
sion are the non–pure compression and the manifoldness
recognition (which is NP–hard).

Geometric priors. The adaptation power of GEncode al-
lows using different priors on the same model to check
which is the most efficient. Tab. 2 compares different meth-
ods on the same range of models as Tab. 1, showing the per-
centage of best results for each quantised range, range pre-
cision and geometric criterion. The range precision repre-
sents the above–mentioned trade–off between range quan-

Geometry Connectivity
animal 19.343 1.980
art 19.561 1.491
cad 18.566 1.682
math 21.499 1.996
medical 21.220 2.411
scans 18.639 1.372
original 19.334 2.246
re–meshed 18.882 1.269
all 19.089 1.717

Table 1: GEncode compression ratio, in bits per vertex, using
the Delaunay constraint for both the quantised range and the
geometric criterion. These results are an average over 200
models, using an order one arithmetic coder.

tisation and apex identifiers. The best result can be reached
by various geometric criteria, particularly when the mesh
is very regular or when the quantised range encodes almost
completely the apex.

Comparison. GEncode compares nicely to existing
compression scheme, although it is able to compress
a wider range of models. Tab. 3 details some compar-
isons with the Edgebreaker algorithm [29, 27, 23] for
the meshes illustrating this work. These comparisons
were made using the parallelogram prediction for the
Edgebreaker, with the same quantisation for the vertices
(12 bits per coordinate). Observe that even for surfaces,
connectivity–driven compression schemes handle with dif-
ficulty non–simple topology, as for the mechanical piece,
which has a pinched vertex or the Klein bottle, which is
not orientable, whereas these are handled gracefully by the
GEncode.

GEncode turns out to be very effective for volumes
embedded in R3 (Figure 11), as shown on Tab. 4. We com-
pared with the connectivity–driven compression of [32]
for the connectivity, and with the streaming compression
of [16]. Although this last method shows some similar-
ity with this work, the compression ratios of GEncode

10(a): geometric range 10(b): apex identifier

Figure 10: Compression of scanned models: the connectivity
is encoded almost at zero rate: # is not transmitted, and thus
almost only 0 codes are encoded.
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Quantised RangeR Quantisation precision Geometric Criterion G
distance circumradius rough regular detailed distance volume aspect circumradius

animal 17% 83% 7% 17% 76% 100% 83% 77% 83%
art 5% 95% 43% 90% 0% 26% 31% 67% 54%
cad 45% 55% 96% 3% 1% 47% 19% 7% 50%
math 67% 33% 55% 21% 24% 54% 5% 22% 35%
medical 0% 100% 100% 0% 0% 61% 0% 0% 39%
sculpture 78% 22% 21% 41% 38% 80% 0% 1% 19%

Table 2: Percentage of best results obtained by each geometric function, range precision, geometric criterion on the models used
for Tab. 1. The best result can be reached by various geometric criteria, leading to a sum over 100%.

nv EB GEncode
geom conn geom conn

terrain 16641 17.09 0.28 13.11 2.71
mechanical 71150 NA NA 15.86 0.82
david 24988 25.80 2.71 16.99 1.63
horse 19851 24.86 3.01 18.22 0.85
gargoyle 30059 20.99 2.32 18.38 0.58
bunny 34834 17.05 2.18 18.77 0.97
blech 4102 21.55 2.10 20.73 2.79
fandisk 6475 19.56 2.25 21.52 1.31
klein 4120 NA NA 22.11 2.63
sphere 642 27.98 2.27 24.65 0.03
rotor 600 31.67 3.69 24.08 5.18

Table 3: GEncode compression ratio (in bits per vertex) for
triangulated surfaces compared with Edgebreaker [29, 23].
The mechanical model is not manifold, and the Klein bottle
is not orientable, which prevented the Edgebreaker to work.

are in average more than 35% better than for streaming
compression, to the cost of being slower.

7 Conclusion
This works proposed a new geometry–driven compres-

sion scheme that is, to our knowledge, the first compression
method that encodes meshes of any dimension and arbitrary
topology, while being efficient compared to compression
methods for triangulates surfaces. Prior knowledge on the
model is used independently by GEncode: as an input for
the geometric priors and as optimisation of the execution
and compression ratio for the topological priors. In particu-
lar for scanned and re–meshed models, classical geometric
priors such as the aspect ratio or Delaunay constraint im-
prove significantly the compression ratio.

There is a computational price for the gain in compres-
sion: the localisation procedure, which consumes the main
part of the execution time, is still slow for general geomet-
rical ranges. In particular when comparing with streaming
compression methods, the 35% gain required a three or four
times more time in our experiments. Moreover, the separate

nv G&F Stream GEncode
conn geom conn geom conn

sph simul. 12229 76.36 34.00 75.87 22.50 12.76
iron piece 6103 51.93 29.90 25.17 18.17 10.45
molecule 5853 54.00 34.57 23.51 21.77 19.82
triceratops 4344 55.41 34.84 25.82 19.39 18.06
seismic fault 3403 63.50 36.17 35.15 22.57 11.97
dog 3286 55.50 34.31 17.13 20.13 16.86
fandisk 3000 64.85 36.23 18.11 24.26 9.06
turbine 2953 NA 33.91 11.80 22.95 14.71
rattle 2514 NA 33.84 11.40 22.48 13.12
solid torus 1004 60.52 41.04 15.69 26.68 9.22
sphere1000 986 65.01 41.19 18.76 31.46 10.01
points on S2 770 43.56 33.14 8.76 21.87 8.34
bended cube 400 57.86 42.52 15.36 23.54 14.59
gear 234 48.62 47.18 15.01 26.18 10.92
finite elem 141 53.22 53.05 19.29 29.77 11.98
sphere100 100 55.84 57.36 19.68 31.49 8.61

Table 4: GEncode compression ratio (in bits per vertex) for
tetrahedral meshes compared with Grow & Fold [32] and
streaming compression [16].

encoding of the geometry still limits the final compression
ratio. On one hand, the geometric compression can be im-
proved, and the synthesis proposed in this work is a first
attempt in that direction. On the other hand, improvements
based on mixed geometry/connectivity encoding are feasi-
ble with GEncode.
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http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www.multires.caltech.edu/~mathieu/
ftp://ftp-sop.inria.fr/geometrica/alliez/eg2001.pdf
ftp://ftp-sop.inria.fr/geometrica/alliez/eg2001.pdf
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www.cs.caltech.edu/~mmeyer/
http://www.multires.caltech.edu/~mathieu/
ftp://ftp-sop.inria.fr/prisme/alliez/remeshing.pdf
ftp://ftp-sop.inria.fr/prisme/alliez/remeshing.pdf
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www-sop.inria.fr/geometrica/personnel/David.Cohen-Steiner/
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
http://www.loria.fr/~levy/
http://www.multires.caltech.edu/~mathieu/
ftp://ftp-sop.inria.fr/geometrica/alliez/anisotropic.pdf


T. Lewiner, M. Craizer, H. Lopes, S. Pesco, L. Velho and E. Medeiros 10

11(a): A bended cube, decompressed from
cold to hot colours.

11(b): A mesh of poor quality, generated from
points closed to the sphere S2, with the
distribution of their circumradii.

11(c): A turbine model, similar to the ro-
tor surface, with the distribution of the
apex identifiers during the decoding.

Figure 11: Compression on tetrahedral meshes works exactly as for triangulated surfaces.

Siggraph. ACM, 2003.
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