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Abstract. The typical surfaces models handled by contemporary Computer Graphics applications have millions
of triangles and numerous connected component, handles and boundaries. Edgebreaker and Spirale Reversi are
examples of efficient schemes to compress and decompress their connectivity. A surprisingly simple linear–time
implementation has been proposed for triangulated surfaces homeomorphic to a sphere and was subsequently
extended to surfaces with handles. Here, we further extend its scope to surfaces with multiple components, handles,
and multiple boundaries. The result is a simple and efficient compression/decompression solution for the broad
class of orientable manifold surfaces.
Keywords: Edgebreaker. Spirale Reversi. Mesh Compression. Triangular Meshes.

sphere violin (135 comps, 138 bdries) pig (6 bdries) rose (51 comps, 64 bdries, χ =
0)

cathedral (717 comps) blech mask (7 bdries) skull (genus 51)

bunny (5 bdries) terrain david gargoyle

Figure 1: Some of the models used for the experiments, with the beginning of Edgebreaker’s dual spanning tree.
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1 Introduction
The Edgebreaker scheme [12] encodes the connectivity

of any manifold triangle mesh homeomorphic to a sphere
with a guaranteed worst case code of 1.83 bits per trian-
gle [6]. The Spirale Reversi algorithm [5] enhanced the
Edgebreaker decompression worst–case complexity from
O(n2) to O(n). But the true value of Edgebreaker and Spi-
rale Reversi lies in the efficiency and in the simplicity of
their implementations [14], which is very concise. They can
be simply implemented on a reduced topological data struc-
ture (the Corner–Table) which only uses two arrays of inte-
gers to represent the connectivity of the mesh. This simple
algorithm has been extended to deal with surfaces with han-
dles in [8]. Because of its simplicity, Edgebreaker is viewed
as the emerging standard for 3D compression [15] and may
provide an alternative for the current MPEG–4 standard
which is based on the Topological Surgery approach [16].

Prior Works. There are many different compression
schemes for triangular meshes. In order to encode effi-
ciently their geometry, the best known methods traverse
the cells of the mesh, and differ in the way they encode
this traversal. The Edgebreaker scheme has been enhanced
and adapted from the Topological Surgery [16] to yield
an efficient but initially restricted algorithm [12], and sub-
sequently extended to more general meshes [5, 7]. Edge-
breaker encodes the connectivity of the mesh by producing
the clers string of symbols taken from the set C,L,E,R,S.
A different approach encodes the connectivity of the mesh
by the valence of its vertices [17, 1]. Valence–based com-
pression approaches are very efficient, especially for regu-
lar meshes and it can also be extended to general polygonal
meshes. Another approach [10] computes a uniquely de-
fined traversal for a given mesh, leading to asymptotically
optimal results for the worst case. However, it is restricted
to meshes without boundary and without handle.

The Spirale Reversi algorithm [5] enhanced the Edge-
breaker original decompression [12] and the Wrap&Zip de-
compression [13]. It reconstructs the connectivity encoded
in the clers string in only one pass, and performing the same
tests as the compressor. However, it needs to read it in a re-
verse way.

The Edgebreaker algorithm has been previously ex-
tended to efficiently support surfaces with handles in [8],
introducing the handle stream to store in an efficient way
two edges for each handle on the surface. Those edges to-
gether with the clers string are sufficient to recover all the
surface connectivity. This extension doesn’t add a new sym-
bol to the Edgebreaker original clers set.

Surfaces with boundary are usually encoded by closing
each boundary curve, using a dummy vertex to maintain
the triangular structure [4, 12]. This is a very simple but
expensive solution: first, it requires encoding each bound-

ary edge with a useless triangle; second, it requires extra
code to localize the dummy vertex; and third, it gives bad
geometrical predictors on the boundary. The original Edge-
breaker encodes boundary curves with an extra symbol M,
and writing the length of each boundary curve. This allows
a better geometrical prediction, but gives a complex imple-
mentation with an implicit representation of the topology,
and it requires extra codes which harm the coding of the
clers string. The scheme introduced here does not require
more symbol than the original Edgebreaker for closed sur-
faces, and encode each boundary with only two integers.

Contributions. In this paper, we provide efficient and ro-
bust extensions of the Edgebreaker compression and of
the associated Spirale Reversi decompression schemes for
surfaces with an arbitrary topology. This new approach is
based on a new semantics, which enables us to use the
Edgebreaker 5–symbols clers string to encode the con-
nectivity of an orientable surface, possibly having several
connected components, handles or boundary curves. To do
so, we exploit a topological analogy between handles and
boundaries, and capitalize on the simplicity with which
edges may be identified in the topology stream. Moreover,
the resulting compression format represents separately the
topology, the local connectivity and the geometry of the sur-
face, leading to a simple and robust implementation.

Paper outline. Section 2 Basic concepts introduces some
basic concepts. Section 3 Corner–Table Data Structure de-
scribes the Corner–Table data structure. Section 4 Surface
Duality and the Edgebreaker establishes some notation and
presents important properties that connect the surface du-
ality to the Edgebreaker algorithm. Section 5 Algorithm
overview presents the algorithm overview. Section 6 Com-
pression and section 7 Decompression introduce, respectively,
the enhanced Edgebreaker compression and the extended
Spirale Reversi decompression algorithms. The theoretical
analysis of the algorithm is presented in Section 8 Theoret-
ical Analysis. Finally, Section 9 Results shows some results
and comparison with former Edgebreaker algorithm.

2 Basic concepts
We will consider an orientable triangulated combinato-

rial surface. This is the general case of manifold triangle
meshes embedded in R3, but we are only concerned with
their connectivity, e.g., the triangle/vertex incidence and the
triangle/-triangle adjacency information.

Definition 1 (Combinatorial surface) A triangle mesh S
is a combinatorial surface if:

– Every edge in S is bounding either one or two trian-
gles.

– The link of a vertex in S is homeomorphic either to an
interval or to a circle.
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The set of edges in S incident to only one triangle is
called the boundary of S , denoted by ∂(S). A boundary
curve of a surface is a maximal connected set of adjacent
edges of the boundary. Each boundary curve is closed.
From now on, we denote by T (S), E(S) and V(S) the set
of triangles, edges and vertices of S .

Theorem 2 (Surface classification) [2] Any compact ori-
ented connected surface S is homeomorphic to a sphere
(g(S) = 0) or a connected sum of g(S) tori (g(S) > 0),
in both cases with possibly some finite number b(S) ≥ 0 of
open disks removed. The number g(S) is called the genus of
S , and b(S) its number of boundary curves. The Euler char-
acteristic χ(S) of S is equal to χ(S) = |T (S)| − |E(S)|+
|V(S)| = 2− 2 · g(S)− b(S).

Figure 2: Handlebody decomposition of a torus [8].

Each torus of the connected sum above is composed by
two 1–handles, as shown on Figure 2. This decomposition
can be generalized using the Handlebody theory [8]. Since
this concept of handle contains a complete representation of
boundaries, it will play a fundamental role in our algorithm.

3 Corner–Table Data Structure
The Corner–Table is a very concise data structure for tri-

angular meshes. It uses the concept of corner to represent
the association of a triangle with one of its bounding ver-
tices, or equivalently the association of a triangle with its
bounding edge opposite to that corner: it may be viewed as
a compact version of the half–edge representation of trian-
gular meshes.

Figure 3: Corner notations.

In this data structure, the corners, the vertices and the tri-
angles are indexed by non–negative integers. Each triangle
is represented by 3 consecutive corners that define its ori-
entation. For example, corners 0, 1 and 2 correspond to the
first triangle; the corners 3, 4 and 5 correspond to the second
triangle and so on. . . Consequently, a corner with index c is
associated with the triangle of index c.t = c ÷ 3. Assum-
ing a counter–clockwise orientation, for each corner c of a
triangle c.t, the next (c.n) and previous (c.p) corners of c.t
are obtained by the use of the following expressions: c.n =
3 · c.t + (c + 1) mod 3, and c.p = 3 · c.t + (c + 2) mod 3.

The Corner–Table data structure represents the geometry
of a surface S by the association of each corner c with its
geometrical vertex index c.v. The edge–adjacency between
the neighboring triangles of S is represented by associating
with each corner c its opposite corner c.o, which has the
same opposite geometrical edge (formally c.n.v = c.o.p.v
and c.o.o = c, see Figure 3). This information is stored in
two integer arrays, called the V and O tables. For conve-
nience, we define the left corner of c as c.l = c.p.o and the
right corner of c as c.r = c.n.o.

Corner O table V table

0 3 0
1 10 1
2 7 2

3 0 3
4 6 2
5 11 1

6 4 0
7 2 3
8 9 1

9 8 2
10 1 3
11 5 0

Figure 4: A tetrahedron with its corners and its Corner–Table.

To illustrate the data structure tables consider the tetra-
hedron of Figure 4. During the decompression, the corners
will be enumerated in the order they were visited furing the
compression.

4 Surface Duality and the Edgebreaker
In this section we provide some notations and introduce

important properties that will be used to describe and ana-
lyze the algorithm.

The primal graph of a surface S is the simple graph
whose nodes are the vertices V(S) and whose lines are
the edges E(S) (e.g., a line connect adjacent vertices). The
dual graph of a surface S is the graph whose nodes are
the triangles T (S) and whose lines represent the edges
E(S) (e.g., a line connect adjacent triangles). For example,
Figure 5 represents the primal and the dual graph of a
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Figure 5: (left): the primal graph and (right): the dual graph
of a triangulated sphere.

triangulated sphere.

Figure 6: (left): a dual spanning tree Θ(S) extracted from the
dual graph of Figure 5(rioght). (right): the primal remainder
Γ(S) of Θ(S), which is a subgraph of the primal graph of
Figure 5(left).

Edgebreaker algorithms encode the dual and primal
graphs of a triangular mesh S by an efficient use of sur-
face duality. They extract a spanning tree Θ(S) of the dual
graph of S (see Figure 6) by traversing and encoding the
triangles of S in a spiral way. This encoding describes si-
multaneously the primal remainder (see Figure 6): The pri-
mal remainder is the maximal subgraph of the primal graph
of S which does not intersect Θ(S), in other words:

Definition 3 (primal remainder) Given a connected sur-
face S and a spanning tree Θ(S) of the dual graph of S, the
primal remainder Γ(S) is the simple graph whose nodes are
the vertices V(S) and whose lines are the edges of S which
are not in Θ(S).

The following theorem relates the Euler characteristic of
the surface to the connectivity of the primal remainder.

Theorem 4 For any connected surface S and any dual
spanning tree Θ(S), the primal remainder Γ(S) is a con-
nected graph with |V(S)| nodes and |V(S)| − χ(S) + 1
lines. In particular, Γ(S) is a tree if and only if S is home-
omorphic to a sphere.

Proof : Clearly Γ(S) is connected, although the formal
proof can involve basic topological techniques as thicken-
ing [2] or cell collapse (the fundamental group is unchanged
by removing a dual spanning tree [3]). By definition, Θ(S)
is a tree with |T (S)| nodes, hence, it has |T (S)| − 1 lines.

Also by definition, Γ(S) has |V(S)| nodes, and the num-
ber of lines of Θ(S) and Γ(S) together is |E(S)| . Hence,
the number of lines of Γ(S) is |E(S)| − (|T (S)| − 1) =
|V(S)| − χ(S) + 1. Then, Γ(S) is a tree if and only if
its number of nodes equals its number of lines plus one:
|V(S)| = (|V(S)| − χ(S) + 1) + 1. That is, iff the Euler
characteristic of S is 2, e.g., iff S is a sphere (see Theo-
rem 2). ¥

Figure 7: (left): a primal remainder on a torus (genus 1):
the topmost and bottommost horizontal edges are identified,
and so do the leftmost and rightmost ones. (right) a primal
remainder on an annulus (two boundary curves).

For example, in the case of a sphere, the primal remain-
der is a tree (see Figure 6). For a mesh with genus one or
two boundaries, the primal remainder is a graph with two
cycles (see Figure 7). We can deduce the following theo-
rem:

Theorem 5 For every spanning tree Ψ(S) extracted from
Γ(S), the number of edges that are in Γ(S) but not in Ψ(S)
will be 2 · g(S) + b(S).

Proof : We know that Γ(S) has |V(S)| nodes. Ψ(S) is a
spanning tree of Γ(S), then it also has |V(S)| nodes and
|V(S)| − 1 lines. Therefore, the number of lines of Γ(S)
that are not in Ψ(S) is (|V(S)|−χ(S)+1)−(|V(S)|−1) =
2− χ(S) = 2 · g(S) + b(S). ¥

5 Algorithm overview
Original Edgebreaker The Edgebreaker algorithm tra-
verses spirally the dual graph of a surface in order to gen-
erate a spanning tree. At each step, a decision is made to
move from a triangle Y to an adjacent triangle X . To per-
form this decision, all visited triangles and their incident
vertices are marked. Let Left and Right denote the other
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two triangles that are incident upon X. Let v be the vertex
common to X , Left, and Right. The edge opposed to v is
called the gate. Five situations are distinguished according
to Figure 8. Those cases are denoted by the letters C, L,
E, R and S. The arrow indicates the direction to the next
triangle. Previously visited triangles are filled in gray.

v Left Right
C not visited not visited not visited
L visited visited not visited
R visited not visited visited
E visited visited visited
S visited not visited not visited

Figure 8: The Edgebreaker encoding.

To have a concise implementation of the Edgebreaker,
the compression is done by the use of a recursive procedure
that traverses the surface. The recursion starts only at trian-
gles that are of type S and compresses the branch adjacent
to the right edge of such a triangle. When the correspond-
ing E triangle is reached, the branch traversal is complete
and the routine returns from the recursion to pursue the left
branch.

The original Edgebreaker does not handle surfaces with
genus, and gives two options to compress the boundary
curves. The first one [6] consists in closing each bound-
ary curve by adding a dummy vertex, and joining it to the
boundary vertices to form dummy triangles. The mesh does
not have anymore boundary, and can be compressed using
the algorithm described above. This is a very simple but ex-
pensive solution: first, it requires encoding each boundary
edge a useless triangle; second, it requires extra code to lo-
calize the dummy vertex; and third, it gives bad geometrical
predictors on the boundary. The second option [12] encodes
the first triangle that reaches the boundary with an extra
symbol M and sends the length of the boundary curve. At
this step of the compression, encoding and removing this
M triangle joins the boundary curve reached with the ex-
ternal boundary curve, and the resulting mesh has one less
boundary curve.

Handles When the surface S has genus g(S) > 0, the
primal remainder Γ(S) is not a tree anymore (see Theo-
rem 4). For a surface without boundary, Γ(S) has |V(S)| −

χ(S) + 1 = |V(S)| − 1 + 2 · g(S) lines: there are 2 · g(S)
lines in excess [8]. These edges have been simply de-
tected and efficiently encoded in [8], preserving the original
Edgebreaker compression scheme. When the Edgebreaker
traversing procedure finds an S triangle, the recursion starts
and two situations are now distinguished. If the Left triangle
has not been visited during the right branch traversal (case
of normal S), we move to the left neighbor and continue our
encoding of the left branch. Otherwise (case of a handle S)
the pair of opposite corners separated by the left edge of the
S triangle are sent to a stream or a file called topology and
the routine returns. These corners will be matched during
decompression to reconstruct the handle. The encounter of
an E that does not match an S again terminates the com-
pression process of the connected component.

Boundaries The work presented here extends these prior
results to surfaces with handles, multiple boundary curves
and multiple components. The former techniques for en-
coding boundaries and holes introduced in [12] are more
costly, since they are using extra symbols or encoding more
elements. In particular, they do not guarantee anymore the
worst–case 1.83 bit per symbol. To improve the conciseness
of our codification, we distinguish two distinct cases: a con-
nected component with one boundary curve, and with more
than one boundary curve.

Consider first a surface component S with genus g(S)
and only one boundary curve. We will close this component
by adding a face incident to each boundary edge of S ,
called the infinite face. The resulted surface S+ has no
boundary, and the same genus, i.e., g(S+) = g(S). We
could almost use the extended Edgebreaker algorithm of [8]
to encode S+. However, the infinity face is not a triangle.
In the same way that the first triangle of the Edgebreaker
classical algorithm is not encoded, we will not encode the
infinity face, and start the compression from this one (see
Figure 10(a)). As in the original Edgebreaker algorithm, we
encode first all its vertices, e.g., all the vertices belonging
to the boundary of S . Therefore, we only need to know if
the surface component has a boundary or not.

Now, consider a surface component with more than one
boundary curve. We distinguish arbitrarily one of them as
the external boundary, and call the others internal boundary
curves (holes) (see Figure 10(b)). The external boundary
curve is encoded as above. All the vertices of the internal
boundary are marked as visited. Consequently, the first
triangle to reach a boundary curve will always be an S
triangle and we encode the opposite corners of its left
edge in the topology stream. According to Theorem 5, the
compression will store 2 · g(S) + b(S) − 1 edges in this
topology stream.
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Reaching first S triangle Reaching second S triangle The lower–right E triangle closes
the handle.

The upper–left E triangle closes
the handle.

Figure 9: Coding of a torus: the creation of two handle S triangles: the first and the second S symbols.

6 Compression
The compression processes successively each surface

component. When the component has a boundary, the com-
pression encodes explicitly the first triangle, and the bound-
ary containing an edge of this first triangle will be chosen
as the external one. The vertices of this external boundary
are encoded first during the component compression.

The compression of a component follows a dual span-
ning tree Θ(S). A stack stores the S triangles, e.g. the
branchings of Θ(S), above the node being processed. Af-
ter an S triangle has been pushed, the algorithm compresses
first the branch adjacent to the right edge of the S trian-
gle, until the corresponding E triangle is reached. At this
point, two situations are distinguished. If the Left triangle
has not been visited during the right branch traversal (case
normal S), we move to the left neighbor (popping the stack)
and continue our encoding of the left branch until we reach
another E. Otherwise, the triangle will be called a handle
S or boundary S depending whether the triangle touches
an unvisited boundary or not. The left edge of a handle or
boundary S is encoded in the topology stream, and the stack
is popped. When the stack is empty, the connected compo-
nent has been entirely compressed.

To illustrate the algorithm, consider firstly the surface
given by the model for a triangulated torus as shown on
Figure 9. Identifying the edges on the opposite sides of the
rectangle, one can build a simplicial complex in R3 whose
polyhedron is homeomorphic to the torus. Figure 9 illus-
trate the labels of all triangles defined by the Edgebreaker
compression algorithm. At the end of the algorithm, the
clers string obtained for the torus surface is CCCCRC-
SCRSSRLSEEE. As one can observe, in this example,
there are four triangles labeled with S. In the string se-
quence, the last two S are normal, since their right and left
branches are traversed in the compression algorithm. On the
other hand, the left branches of the first and of the second S
triangles are not traversed since their left adjacent triangle
have been visited during their right branch traversal. There-
fore, the two opposite corners of each left edge drawn in red
are encoded separately in the topology stream.

The first triangle is chosen
adjacent to a boundary. The
vertices of the central infi-
nite face are encoded.

An unvisited boundary is
reached: the corresponding
S triangle is a boundary S
triangle.

Figure 10: Coding of an annulus: initialization and creation of
boundary S triangles.

On Figure 10, the only handle S triangle is the first
triangle with a vertex on the internal boundary that we
encounter during the traversal. As said before, there are
2 · g(S)+ b(S)−1 such handle S triangles for each surface
component with genus g(S) and b(S) boundary curves.

7 Decompression
The decompression procedure proposed here is an ex-

tension of the Spirale Reversi algorithm [5], which decodes
the clers string in a one–pass reverse order, allowing the de-
compression to perform exactly the same tests as the com-
pression. First, we read the topology stream, extracting the
number of vertices, triangles and components with bound-
ary. Then, we assign opposite vertices over the handles read
from the topology stream. Then, we parse the clers string
for reverse reading and for the component detection. We ac-
tually process backwards the clers string, and hence parse
it only once, but we will expose two passes for the sake of
clarity. The symbols S and E acts as parentheses, and each
new component opens a parentheses. When all the opened
parentheses are closed (at a symbol E), a new component
begins on the next symbol. When the number of compo-
nents exceeds the number of components with boundary
read in the topology stream, we add an extra P symbol at the
beginning of the component, because the first triangle of a
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component without boundary is not explicitly encoded. The
handle and boundary S triangles are distinguished from the
normal S ones by their left corner, which has been assigned
while reading the topology stream. We do not consider han-
dle S symbols as open parentheses, as they do not match an
E symbol. We notice here the power of Edgebreaker that
explicitly labels each corner of the mesh by the position of
its symbol in the clers string.

After this preprocessing step, we read the clers string
backwards, as Spirale Reversi does. For each symbol, we
decode the adjacency of the corresponding gate. When a
boundary S symbol is read when a new component with
boundary is processed, the geometry corresponding bound-
ary curve is read (backwards) from the vertex stream. When
a C symbol is read, we close the star of the active corner v
and assign the corresponding corners to a new decoded ver-
tex. At the end of this procedure, the connectivity and the
geometry of the mesh is entirely restored in linear time.

8 Theoretical Analysis
From the graph theory point of view, the connectivity

of a surface S is completely described by the dual tree
Θ(S) and the primal remainder Γ(S), and the way they are
interlaced. We will justify here why the algorithm presented
here can reconstruct those graphs, and consequently, the
surface connectivity.

The strategy of the original Edgebreaker [12] builds si-
multaneously a spanning tree Θ(S) on the dual graph and
implicitly encodes a spanning tree Ψ(S) on the primal re-
mainder Γ(S). Branches on Θ(S) are created with sym-
bol S, and ended by symbol E that corresponds to a leaf in
Θ(S). The other symbols (C, L and R) create the internal
nodes of the dual tree Θ(S).

Each symbol C also creates the nodes of the tree Ψ(S).
The left edges of all C triangles are lines of Ψ(S). If the
surface component being encoded has no boundary, two
edges of the starting triangle also belong to Ψ(S) [8]. The
lines of the primal remainder Γ(S) that are not on Ψ(S) are
stored in the topology stream.

Concluding, the clers stream encodes explicitly Θ(S)
and implicitly Ψ(S). And by the use of the topology stream
we explicitly encoded the edges that are missing to recon-
struct Γ(S). As those graphs are encoded simultaneously,
the way Θ(S) and Γ(S) are interlaced is obvious and the
connectivity of S can be reconstructed.

9 Results
We encoded the Edgebreaker symbols using a range

encoder [9, 11], which is a one–pass approximation of the
entropy coder. This gives very good results for big meshes
(on the contrary of the ‘sphere’ model of Table 1, or meshes
with high auto–similarity (like the model ‘cathedral’ of
Table 1).

Our experimental results are recorded on Table 1 and
Figure 11. We compared with the original Edgebreaker
implementation with the Huffman encoding of [6], and our
encoding with a simple arithmetic coder. Our experimental
results are always better than the original Edgebreaker,
mainly due to the range encoder. However, the entropy of
our codes is always better than the other implementations
of Edgebreaker (see Figure 11(b)).

Size of the compressed file vs complexity of the model.

Entropy vs complexity of the model.

Figure 11: Comparison of the final size and entropy: for the
range encoder, those parameters depends more on the regu-
larity than on the size of the model, but our algorithm really
enhances the previous results.

10 Conclusion
We introduced here a simple, efficient and robust algo-

rithm to code and decode the connectivity of an orientable
manifold surface. The compression scheme is based on
Edgebreaker, although we use only the 5 original symbols
to encode topological features, maintaining explicit label-
ing of vertices and the ability to use a geometric predic-
tive encoding. The decompression scheme is an extension
of Spirale Reversi, which ensures a linear complexity and a
one–pass decompression complexity. This guarantees less
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Model |V(S)| |T (S)| Dum Ori Ours Ori/Ours Dum/Ours
sphere 1 848 926 3.39 3.39 3.45 0.98 0.98
violin 1 508 1 498 3.16 2.21 2.25 0.98 1.41
pig 3 560 1 843 3.26 3.24 3.13 1.03 1.04
rose 3 576 2 346 3.37 2.95 2.64 1.12 1.28
cathedral 1 434 2 868 2.25 1.00 0.19 5.27 11.86
blech 7 938 4 100 3.25 3.18 2.40 1.33 1.35
mask 8 288 4 291 3.19 3.12 1.93 1.62 1.65
skull 22 104 10 952 3.51 3.51 3.30 1.06 1.06
bunny 29 783 15 000 3.36 3.34 1.27 2.62 2.64
terrain 32 768 16 641 3.03 3.00 0.40 7.43 7.51
david 47 753 24 085 3.45 3.85 3.07 1.25 1.12
gargoyle 59 940 30 059 3.28 3.27 2.11 1.55 1.55

Table 1: Comparative results on different models (drawn on Figure 1). ‘Dum’ stands for the dummy vertex method to encode
meshes with boundaries [6], and ‘Ori’ stands for the original Edgebreaker [12], and ‘Ours’ for the algorithm introduced here. The
size of the compressed symbols (columns ‘Dum’, ‘Ori’ and ‘Ours’) is expressed in bit per vertex. Our algorithm has a compression
ratio in weighted average 2.5 better than the other two. The ‘sphere’ model has the same encoding in all the above algorithms, but
the range coder used has a lower performance since there are few symbols to encode. The ‘cathedral’ model is the output of an
architecture modeling program, which is almost unstructured: all the connected components are pairs of triangles.

than 2 bits per triangle connectivity compression, with a
2 · log2(|T (S)|) bits over–cost for each half handle and for
each boundary curve, and bests previous Edgebreaker’s en-
coding for surfaces with boundaries. Moreover, the use of a
range encoder significantly improves the final compression
results.
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Appendix A: Main Algorithms

procedure Compress()8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

MV[]:= { 0 . . . }, MT[]:= { 0 . . . };
T:=0, nB:=0;

for (c:=0; c< 3�nT)�
if (c.o< 0) then
{ c.o := -1; MV[c.p.v] := 1; MV[c.n.v] := 1; }

Write(topology, nT, nV);

for (c:=0; c< 3�nT)8<: if (c.o< 1 && !MT[c.t]) then�
WriteBoundary(c.n); T--;
CompressComponent(c); nB++; T++;

for (c:=0; c< 3�nT)8>>>><>>>>: if (!MT[c.t]) then8>><>>: MT[c.t] := 1;
MV[c.v] := MV[c.n.v] := MV[c.p.v] := 1;
WriteVertex(c.v, c.n.v, c.p.v);
CompressComponent(c.r); T++;

Write(topology, nB)

# tables for marking vertices and triangles
# last triangle, nb of comps with boundary

# tests all corners for a boundary
# looks for edges on the boundary
# marks vertex and unmarked boundary (-1)

# writes number of triangles and vertices

# compress component with boundary
# starts from an unvisited border triangle
# encodes the geometry of this boundary
# starts the compression of this component

# compress component without boundary
# starts with an unvisited triangle
# marks triangle as visited
# marks vertices as visited
# encodes the geometry of this triangle
# starts the compression of this component

# writes the nb of comps with boundary

procedure Decompress()8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

T:=0, N:=0, nC:=0, symb:=“”;
Read(topology, nT, nV);

while (Read(topology,c0,c1))
{ Match(c0, c1); }
Read(topology, nB)
FC[] := { 0, . . . }

while (T<nT)8>>>>>>>>>><>>>>>>>>>>:
Read(clers,s); c:=3�T; symb[T++]:=s;
if (s=’S’ && c.l=-1)
then { i ++; }
if (s=’E’) then8>><>>: if (i>0) then { i--; } else8<: nC++;

if (nC� nB) then { FC[nC]:=T; }
if (nC� nB) then { symb[T++]:=P; }

SpiraleReversi(nC,nB,symb,FC)

# triangle, vertex; nb of comps,clersstring
# reads the number of triangles and vertices

# reads each pair of handle
# fills the opposite corners
# reads the number of comps with boundary
# first corner of each comp with boundary

# parse theclersstring
# reads and stores next symbol
# on anS symbol not related to a handle
# increases the number of parentheses
# on anE symbol
# if theS are not all matched
# else increases the number of components
# stores the end of the component
# if the next comp has no boundary, addP

# decodes the connectivity of the mesh

Figure 12: Main procedures.
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Appendix B: Compression Algorithm

procedure CompressComponent(c)8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

repeat8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

MT[c.t] := 1; T++;
CheckHandle(c);

if (!MV[c.v] 6= 1) then8<: Write(clers, C);
WriteVertex(c.v); MV[c.v] := 1;
c := c.r;

else if (c.r < 0 k MT[c.r.t])8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

then if (c.l < 0 k MT[c.l.t])8>>>>>><>>>>>>: then

8>>>><>>>>: Write(clers, E);

do

8<: if (stack.empty())
then { return ; }
c := stack.pop();

while (MT[c.t]);
else { Write(clers, R); c := c.l; }

else if (c.l < 0 k MT[c.l.t])8>>>>>>>>>><>>>>>>>>>>:
then { Write(clers, L); c := c.r; }

else

8>>>>>>>><>>>>>>>>:
Write(clers, S);
if (BoundaryOf(c) = -1)

then

�
WriteBoundary(c);
MT[c.t] := - 3�T-2;

else { MT[c.t] := 3�T+2; }
stack.push(c.l);
c := c.r;

# visits the triangle-spanning tree
# marks current triangle as visited
# checks for handles

# tests whether the tip vertex was visited
# caseC: unvisited tip vertex
# encodes the vertex and marks it
# continues with the right neighbor

# tests whether right triangle was visited

# tests whether left triangle was visited
# caseE: both visited
# if the stack is empty
# returns
# otherwise, pops stack pushed byS
# pops until finding a non–handle corner
# caseR: right visited, left not; moves left

# tests whether left triangle was visited
# caseL: left visited, right not; moves right
# caseS: both unvisited
# if the corner is on an unvisited boundary
# stores corner number (potential boundary)
# else stores corner number (potential handle)
# encodes the internal boundary
# pushes the left corner on the stack
# moves right

procedure WriteBoundary(b)8>>>>>>>>><>>>>>>>>>:
b := b.n;
while (b.r � 0) { b := b.r; }

do8<: b := b.n; b.o := -2;
while (b.r � 0) { b := b.r; }
WriteVertex(c.p.v);

while (b.r 6= Bid);

# decreases the boundary id and goes the next triangle
# goes to right towards the boundary

# starts the boundary encoding
# starts from the next triangle and marks the boundary
# goes to the rightmost triangle
# encodes the vertex
# stops when all the boundary is marked

procedure CheckHandle(h)8>>>>><>>>>>: if (h.r � 0 && MT[h.r.t]) then�
Write(topology, MT[h.r.t], 3�T+1);

if (h.l � 0 && MT[h.l.t]) then�
Write(topology, MT[h.l.t], 3�T+2);

# checks for handle from the right
# encodes pair of corners to be glued as a handle

# checks for handle from the left
# encodes pair of corners to be glued as a handle

Figure 13: Compression subroutines.

The corresponding work was published in the proceedings of the Sibgrapi 2004, pp. 218–225 IEEE Press, 2004.
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Appendix C: Decompression Algorithm

procedure SpiraleReversi(T,N,nC,nB,symb,FC)8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

while (nC � 0)8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

c:=-1; nC--;
while (nC � nB k T � FC[nC])8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

switch (symb[T])8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

case C:�
b:=3�T+1; c.o:=b; b.o:=c;
CloseStar(3�T+2,N--);

case L: { Match(c, 3�T+1); }

case R: { Match(c, 3�T+2); }

case S:8>>>>>>>><>>>>>>>>:
Match(c, 3�T+1);
c:=3�T+2; if (c.o = -1)
then { Match(c, stack.pop()); }
else if (c.o < 0)8<: Match(c, -c.o);

while (b.r � 0) { b := b.r;}
ReadBoundary(b.p,N);

case E: { if (c>0) then { stack.push(c); }}

case P:8>>>><>>>>: Match(c, 3�T);
CloseStar(3�T+1, N-2);
CloseStar(3�T+2, N-1);
CloseStar(3�T, N);
N-=3; nC--; c:=-1;

c:=3�T; T--;

if (nB 6=0) ReadBoundary(3�FC[nC]+1,N)

# reads theclers string backwards
# initiates first corner
# filters components with boundary
# test the next symbol
# caseC:
# matches the right gate
# closes star of the corner

# caseL: matches the right gate

# caseR: matches the left gate

# caseS:
# matches the right gate
# if this is not a handle
# matches the left gate
# if it is an interior boundary
# goes backward on the boundary
# decodes the interior boundary

# caseE: push on the stack

# caseP:
# matches the gate
# closes star of the next corner
# closes star of the previous corner
# closes star of the corner
# updates for a new component

# updates for a new component

# decodes exterior boundary

procedure Match(b,c) f c.o := b; b.o := c; # associates opposite cornersg
procedure ReadBoundary(b,N)8>>>><>>>>: while (b.l � 0) { b := b.l }

do

8<: ReadVertex(N); b.v := N;
b := b.p; b.o := -2;
while (b.l � 0) { b := b.l; b.n.v := N; }

while (b.v < 0);

# goes to the left towards the boundary
# decodes vertex geometry
# marks the corner
# updates all incident corners to the vertex
# until closing the boundary

procedure CloseStar(c,N)8><>: ReadVertex(N); b := c;
while (b.l � 0 && b.l 6= c) { b.n.v := N; b := b.l; }

b.n.v := N; Match(b.p, c);

# read new vertex
# assigns incident corner to the new vertex

# closes the star

Figure 14: Deompression subroutines.

Preprint MAT. 07/03, communicated on September 30th, 2003 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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