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Abstract. Many applications of geometry processing and computer vision rely on geometric properties of curves,
particularly their curvature. Several methods have already been proposed to estimate the curvature of a planar
curve, most of them for curves in digital spaces. This work proposes a new scheme for estimating curvature and
torsion of planar and spatial curves, based on weighted least–squares fitting and local arc–length approximation.
The method is simple enough to admit a convergence analysis that take into acount the effect of noise in the
samples. The implementation of the method is compared to other curvature estimation methods showing a good
performance. Applications to prediction in geometry compression are presented both as a practical application and
as a validation of this new scheme.
Keywords: Differential Geometry. Curvature Estimation. Weighted Least–Squares. Geometry Processing.
Geometry Compression and Predictors.
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Figure 1: Spatial curves used for testing: Clelia, Conical Helix, Baseball and Toric Solenoid. The color indicates curvature.

1 Introduction
Many applications of geometry processing [19] and

computer vision [18] rely on geometric properties of
curves. Two of the most fundamental characteristics of a
curve are its curvature and torsion, which measure how
a curve bends. Curvature motion [22], curve reconstruc-
tion [1, 3], adaptive curve approximation [17] and geometry
compression [13] are examples of contemporary computer
graphics applications that require accurate curvature esti-
mation.

Motivation. Several methods have already been proposed
for curvature estimation, most of them for the particular
case of digital spaces, i.e. curves extracted from images [8].
This work studies sampled curves, i.e. piecewise-linear ap-
proximations of a smooth curve. This general framework,
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which includes the digital curves, permits a clear theoretical
analysis. Moreover, it is well suited for applications to geo-
metric modelling and computer graphics. In the context of
these two areas, sampled curves may proceed from different
sources: polygonal approximation of parametric or implicit
curves, curve acquisition, curve reconstruction, among oth-
ers.

The original motivation of this work was to develop an
accurate curvature and torsion estimator to serve as predic-
tor for geometric encoding, particularly for implicit curve
compression schemes [13] and triangular mesh compres-
sion schemes, such as the Edgebreaker [21, 14]. In both sit-
uations the predictor must guess the position of the next
vertex to be encoded based on the sequence of points that
have already been transmitted.

Problem statement. A piecewise linear approximation of
a curve r is an ordered finite collection of points {pi} of
the curve, called samples. This sampled curve may contain
some noise, i.e., the points pi stay close to the curve, but
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not necessarily lie on it. This paper presents estimators
for the tangent vector and the curvature of a curve r at a
sample point p of {pi}. For the case of spatial curves, it
also proposes a torsion estimator.

Contributions. This paper introduces a new method for
curvature and torsion estimation based on weighted least–
squares fitting. More precisely, the method approximate the
samples by a parametric curve that have one of its coordi-
nate functions given by a second (or third)–order polyno-
mial. The paper shows the convergence of the estimators
under reasonable conditions over the sampling of the curve
and the amplitude of the noise. It also provides a practical
implementation of this method. The results show that the
proposed method compares nicely to the state–of–the–art,
and that it has a strong stability over different conditions of
noise and sampling.

Paper outline. Section 2 Curvature and torsion of a paramet-
ric curve introduces the concepts and notations from differ-
ential geometry of curves that will be used along this work.
Section 3 Previous and related works discusses the previous
and related works. Section 4 Theoretical framework presents
the theoretical analysis of the new method. Section 5 Com-
putational framework gives details of the implementation of
the scheme. The algorithm is compared to the state–of–the–
art in section 6 Experimental results. Finally, section 7 Appli-
cations to compression introduces an application of the pro-
posed curvature estimator to geometry compression.
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Figure 2: The arc–length s(t) helps defining the tangent and
the normal vectors T(t) and N(t).

2 Curvature and torsion of a parametric
curve
A parametric curve is a smooth function r : I ⊂ R →

Rn. When n = 2 it is called a planar curve and when n = 3
it is called spatial curve. The parametric curve r is said to
be regular if r′(t) = dr

dt (t) never vanishes on I . From now
on, r will denote a regular parameterized curve.

The arc–length s from the point r(t0), t0∈I , to a given
point r(t1), t1 ∈ I , is defined by s(t1) =

∫ t1
t0
‖r′(u)‖du.

When the curve is regular, s(t) is strictly increasing, and has
therefore an inverse t(s). The curve can be parameterized
by the arc–length by considering r(s) = r ◦ t(s).

The vector T(s) = r′(s) is called the tangent vector.
In the case of planar curves, the normal vector N(s) is
obtained from the tangent vector by a rotation of 90 degrees
in the anti-clockwise sense. The vectors T′(s) and N(s)
are collinear, i.e. there exists a function κ(s) such that
T′(s) = κ(s)N(s), which is called the curvature of the
curve at the point r(s).

The curvature at a point also corresponds to the variation
of the tangent direction with respect to the arc–length:
κ(s) = θ′(s), where θ(s) = ∠(T(s), (1, 0)) is the angle of
the tangent vector with a fixed direction. The sign of κ(s)
indicates whether the curve is locally convex or concave
at point r(s). The curvature k(s) is also the inverse of the
radius of the osculating circle at r(s). When the curve r(t)
is not parameterized by the arc–length, its curvature is given
by

κ(t) =
r′ × r′′

||r′||3 (1)

For spatial curve, the tangent vector is again defined by
T(s) = r′(s). The normal vector is defined by N(s) =
r′′(s)/‖r′′(s)‖, and the bi–normal vector is given by the
cross-product of T(s) and N(s), i.e., B(s) = T(s)×N(s).

For spatial curve, the curvature κ(s), also defined by
the formula T′(s) = κ(s)N(s), is always positive. The
torsion is defined by the formula B′(s) = τ(s)N(s). When
the curve r(t) is not parameterized by the arc–length, its
curvature is given by the absolute value of equation ((1))
and the torsion is given by

τ(t) = −
(
r′ × r′′

) · r′′′
||r′ × r′′||2 . (2)

For more details related to curvature and torsion, see [4].

3 Previous and related works
Several methods have already been proposed for esti-

mating curvature, most of them for planar curves. This sec-
tion introduces the most significant ones. All these meth-
ods have been implemented for the comparisons of section
6 Experimental results. They are classified in three groups: the
methods that use gaussian smoothing, the methods that es-
timate curvature directly from three points and the methods
that use least squares approximations.

(a) Methods based on gaussian smoothing

The methods considered in this section were developed
for digital curves, but they can be easily adapted to sampled
curves. The first method of [25] computes the curvature at a
point p0 from the convolution of the estimated angle θ̂ with
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the derivative of the gaussian kernel (Gσ), as follows:

κ̂ = θ̂ ∗G′σ , with θ̂(j) = tan−1
( yj+1 − yj

xj+1 − xj

)
.

where
G′σ(j) = −2σje−σj2

.

A variation of this method is obtained by making a re-
sampling using linear interpolation and then applying the
method. This variation can be written as

κ̂ =
θ̂ ∗G′σ
1.107

, with θ̂(j) = tan−1
( yr

j+1 − yr
j

xr
j+1 − xr

j

)
,

where (xr, yr) are the new samples and the constant 1.107
is the re-sampling biais in the digital curve context [25].

The last method of [25] uses equation (1) to estimate the
first and second derivative directly by the convolution of
the coordinate functions with the derivatives of the gaussian
kernel:

r̂′ = r ∗G′σ , r̂′′ = r ∗G′′σ .

The last method of this group, described in [9], is based
on the Fast Fourier Transform. In the time domain, this
method also corresponds to a convolution with the gaus-
sian kernel. For this method, one considers the samples
r(n) = (x(n), y(n)), n = 0, ..., N −1, as a complex signal
u(n) = x(n) + iy(n), where i2 = −1. A basic property
of the discrete Fourier transform is that the derivative of
a signal u(n) corresponds to the multiplication by i of the
transform U(s). Based on this property, the first and second
derivatives of u(n) are estimated in the transform domain
and then the inverse discrete Fourier transform is applied.

In the comparisons of section 6, these methods will be
respectively referred as G1, G2, G3 and G4.

(b) Methods that estimates curvature from three points

The first method of this group, proposed in [6], is based
on the angle variation in a neighborhood of the point. Con-
sidering the points (p−q,p0,pq), the estimated curvature
at p0 is given by

k̂(p0) =
∠(p−qp0,p0pq)

||p−qp0||+ ||p0pq|| ,

where ∠(p−qp0,p0pq) is the angle between the vectors
p0p−q and p0pq .

A variation of this method, proposed in [11], estimates
the curvature from the external angle. The estimated cur-
vature at p0 is given by k̂(p0) = φ0/

(
2l0 cos( φ0

2.1 )
)

,
where φ0 is the external angle (π − ∠(p−qp0,p0pq)) and

l0 =
||p−qp0||+ ||p0pq||

2
.

Another method, presented in [7], is based on an ap-
proximation of the osculating circle at a point p0. It ap-
proximates it by the circle circumscribing the triangle
(p−q,p0,pq). The radius R of this circle is given by

R =
||p−qp0|| · ||p0pq|| · ||p−qpq||

4 · area(p−q,p0,pq)
.

The last method of this group, cited in [2], uses the same
three points (p−q , p0, pq) to estimate the first and second
derivatives at p0. These derivatives are computed by

r′ =
pq − p0

||p0pq|| +
p0 − p−q

||p−qp0|| −
pq − p−q

||p−qp0||+ ||p0pq||

r′′ = 2 · (p−q − p0) · ||p0pq||+ (pq − p0) · ||p−qp0||
||p−qp0|| · ||p0pq|| · (||p−qp0||+ ||p0pq||) .

The methods of this group will be respectively referred
as T1, T2, T3 and T4.

(c) Methods that use least squares approximation

The methods presented in this section estimate the cur-
vature from a window of 2q + 1 points around p0, with
q ≥ 1. They use least square approximation and have the
advantage of reducing the effect of noise in the sampling.

Circle fitting

This method fits a circle to the sample points of the
window, using [20], and deduces the curvature from the
inverse of the radius of the fitted circle. The algorithm
of [20] finds the coefficients of the circle equation A(x2 +
y2) + Bx + Cy + D = 0 by least squares approximation.
In this algorithm, the value of A was fixed as 1. Figure 3
illustrates one circle obtained by this method.

p

Figure 3: Osculating circle estimation at a point p of the curve
r(t) = (sin(t), sin(t) · cos(t)) : t ∈ [π

5
, π

2
] sampled with 30

points and using a centered window with 5 points.

As mentioned in [20], the restriction A = 1 generates
instability for circles of big radius. This phenomenon can
be observed on Figure 4. If another coefficient is fixed, the
problem for low curvature can be solved, but appears for
other classes of curves. The analysis of the impact of noise
on the curvature approximation is studied in [24].
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Figure 4: Circle fitting at a point of very low curvature.

Implicit parabola fitting

In this method, proposed in [5], the curve is described as
a graph of y = f(x) or x = f(y). The variation of x and
y inside the window determines which parameterization to
use : if the variation of x is bigger than the one of y, the
algorithm takes y = f(x), and vice-versa. As both cases
are similar, only the case y = f(x) will be described next.

In order to simplify the notation, assume that p0 =
(0, 0). The objective is to find f ′0 and f ′′0 that minimize

Ex(f ′0, f
′′
0 ) =

q∑

i=−q

(
yi − f ′0 xi − 1

2 f ′′0 x2
i

)2
.

The solution of this least squares problem is given by

f ′0 =
cg − bh

ac− b2
, f ′′0 =

ah− bg

ac− b2
,

where




a =
∑q

i=−q x2
i , g =

∑q
i=−q xi yi,

b = 1
2

∑q
i=−q x3

i , h = 1
2

∑q
i=−q x2

i yi,

c = 1
4

∑q
i=−q x4

i .
.

With these estimates, the curvature is then easily computed.
This method is a particular case of [5], where the approxi-
mating polynomial is limited to the second order.

4 Theoretical framework
This section introduces a new approach for the problem

of curvature and torsion estimation.

(a) Model and notations

Consider a collection of samples {pi} of a planar or a
spacial smooth curve r, i.e., a finite sequence of sample
points of r, eventually perturbed by a random noise. In this
theoretical analysis, the curve is assumed to be parameteri-
zed by the arc–length. The curvature estimation for pla-
nar cuves needs an approximation of the first and second
derivatives of r(s), while for torsion estimation also needs
an approximation of the third derivatives of r(s).

pjpj−q

pj+q

pj+2

pj−2

σ
σ

σ

Figure 6: Sampled curve with noise.

Consider a fixed sample point p0. The estimatation of
the derivatives of r at p0 will be performed from a window
of 2q + 1 points around p0: {p−q,p−q+1, ...,pq}.

The noise at a point pi is modelled by a random vector
ηi, normal to r at pi, and the random variables ηi are as-
sumed to be independent and identically distributed (i.i.d.),
with zero mean and variance σ2.

Considering that p0 = r(0) is the origin, the second
order approximation can be written as :

r(s) = r′(0) s + 1
2 r′′(0) s2 + g(s)s3

the third order approximation as :

r(s) = r′(0)s + 1
2r
′′(0)s2 + 1

6r
′′′(0)s3 + g(s)s4,

with g(s) → 0 when s → 0. Let si be the arc–length corre-
sponding to the sample pi. The second order approximation
can now be written

pi = r′(0) si + 1
2 r′′(0) s2

i + g(si) s3
i + ηi

and the third order also :

pi = r′(0)si + 1
2r
′′(0)s2

i + 1
6r
′′′(0)s3

i + g(si)s4
i + ηi

(b) The weighted least squares approach

Figure 7: Second–order weighted least square fitting.

The estimates of r′(0), r′′(0) and r′′′(0) are obtained by
a weighted least squares minimisation. The weight wi of
point pi must be positive, relatively large for small |si| and
relatively small for large |si|. For example, one can consider

The corresponding work was published in Computers & Graphics, volume 29, number 5, pp. 641–655. Elsevier, october 2005.

http://www.elsevier.com/wps/find/journaldescription.cws_home/371/description
http://dx.doi.org/10.1016/j.cag.2005.08.004


5 Curvature and torsion estimators

  < 3.76e-008

  6.6e-006

  1.32e-005

  1.97e-005

  2.63e-005

  3.28e-005

  > 3.94e-005

5(a): Parabola fitting of [5]
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5(b): Dependent coordinate method
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  2.63e-005
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5(c): Independent coordinate method

Figure 5: The independent coordinate method is rotation invariant: big errors were drawn by wide line, the scale being the same
on the three figures.

weights of the form wi = α exp(−βs2
i )/sk

i ,, or simply
wi = 1.

The arc–length si can be estimated as follows: let ∆lk
be the length of the vector pkpk+1, where k ranges from
−q to (q − 1). Then, the arc–length from p0 to pi can
be approximated by li =

∑i−1
k=0 ∆lk, when i > 0, and

li = −∑−1
k=i ∆lk, when i < 0.

(c) Curvature Estimators for planar curves

Dependent coordinates method. Consider the case of a
planar curve. The idea of the dependent coordinate method
is to locally fit a parametric curve (x̂(s), ŷ(s)) to the curve,
with one of the coordinate functions, say x̂, being quadratic
in the arc–length: x̂(s) = x0 + x′0 · s + 1

2x′′0 · s2. This
coordinate will be called the independent coordinate, as
opposed to the dependent coordinate ŷ whose derivatives
will be deduced from those of x̂. The dependent coordinate
is chosen according to a simple criterion, for example the
angle of the tangent vector, minimal variance or the χ2 test.

The derivatives x′0 and x′′0 of x̂ can be estimated by
minimizing :

Ex(x′0, x
′′
0) =

q∑

i=−q

wi

(
xi − x′0li − 1

2x′′0 (li)2
)2

. (3)

The estimates y′0 and y′′0 for the dependent coordinate’s
derivatives y′(0) and y′′(0) are obtained by both the unit
norm of the tangent and the orthogonality of the tangent
and the normal:

{
(x′0)

2 + (y′0)
2 = 1

x′0x
′′
0 + y′0y

′′
0 = 0 . (4)

The minimization of equation ((3)) can be written in
terms of matrix inversion [12], which leads to a direct
resolution (see section 5(a) Dependent coordinates method for
planar curves for the implementation):

[
a1 a2

a2 a3

]
·
[

x′0
x′′0

]
=

[
bx,1

bx,2

]
, (5)

where




a1 =
∑q

i=−q wi l2i , bx,1 =
∑q

i=−q wi li xi

a2 = 1
2

∑q
i=−q wi l3i , bx,2 = 1

2

∑q
i=−q wi l2i xi

a3 = 1
4

∑q
i=−q wi l4i

Independent coordinates method. A variation of the
above method is to estimate the derivatives of the dependent
coordinate function ŷ, in the same way as the derivatives of
the independent coordinate x̂ : the estimations of y′0 and y′′0
are obtained from the following matrix equation :[

a1 a2

a2 a3

]
·
[

y′0
y′′0

]
=

[
by,1

by,2

]
, (6)

where
{

by,1 =
∑q

i=−q wi li (yi)
by,2 = 1

2

∑q
i=−q wi (li)2 (yi)

.

The tangent vector T is obtained by normalizing the vector
r′0 = (x′0, y

′
0), while the normal vector is obtained by

applying a rotation of 90 degrees on T.
Whereas both coordinates cannot be exactly quadratic

in the arc–length, the approximation of the independent
coordinates method has the advantage of being rotation
invariant (see Figure 5).

(d) Curvature estimator for spatial curves

In the case of spatial curves, a generalization of the
independent coordinates method for curvature estimation
is obtained as follows: The estimators x′0, x′′0 , y′0 and y′′0
are given by formulas ((5)) and ((6)) respectively. And the
estimators z′0 and z′′0 for the third coordinate derivatives
z′(0) and z′′(0) are given in a similar way by the matrix
equation [

a1 a2

a2 a3

]
·
[

z′0
z′′0

]
=

[
bz,1

bz,2

]
, (7)

where
{

bz,1 =
∑q

i=−q wi li (zi)
bz,2 = 1

2

∑q
i=−q wi (li)2 (zi)

.

Equation ((1)) then gives the curvature using the above
first and second order derivatives estimates.
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(e) Torsion estimator for spatial curves

For spatial curves, the torsion estimator fits a cubic
parametric curve to the sample points. Assuming that p0 =
r(0) = (0, 0, 0), x′0, x′′0 and x′′′0 should minimize

Ex(x′0, x
′′
0 , x′′′0 ) =

q∑

i=−q

wi

(
xi−

(
x′0si+

1
2
x′′0s2

i +
1
6
x′′′0 s3

))2

.

Considering again li as an approximation of si, the above
equation can be solved by matrix inversion :




a1 a2 a4

a2 a3 a5

a4 a5 a6


 ·




x′0
x′′0
x′′′0


 =




bx,1

bx,2

bx,3


 ,

where





a4 = 1
6

∑q
i=−q wi (li)4

a5 = 1
12

∑q
i=−q wi (li)5

a6 = 1
36

∑q
i=−q wi (li)6

bx,3 = 1
6

∑q
i=−q wi l3i (xi)

.

A similar approach is used to compute y′0, y′′0 , y′′′0 , z′0,
z′′0 and z′′′0 . Using the above derivatives estimates, equa-
tion ((2)) gives the torsion estimate.

(f) Convergence analysis of curvature estimators

This section analyses the proposed algorithm in term of
their convergence. The first part considers sampled curve
without noise while the second part considers sampled
curve with noise. It is important to mention that there are
proofs of convergence only for curvature estimators, not
for the torsion estimator. Nevertheless, the torsion estimator
had experimentally shown a typical convergence behavior
(see Figure 9(b) and Figure 10(d)).

Sampled curve without noise

Consider the following notation:

δ = max {|l−q| , |lq|}
K0 = max{|κ(s)| ,−δ ≤ s ≤ δ},
K1 = max{|κ′(s)| ,−δ ≤ s ≤ δ},
T0 = max{|τ(s)| ,−δ ≤ s ≤ δ},

where κ(s) is the curvature and τ(s) the torsion of r at s.
The curve regularity and sampling conditions will be

formulated as follow. The product K0δ should be small,
which corresponds to dense sampling in high curvature
regions. If not, some samples are too far from p0 to be
correctly used in the estimate of the first derivatives of r at
p0. Then, the products K1δ and T0δ should also be small,
which corresponds to dense sampling in regions where
curvature is changing rapidly. If this does not occur, some
samples must be considered too far from the basic point to
help in the second derivatives estimates.

In order to make precise these statements, let

φ1 =
li
4L




q∑

i=−q

wili

q∑

i=−q

wil
4
i −

q∑

i=−q

wil
2
i

q∑

i=−q

wil
3
i




φ2 =
l2i
4L




q∑

i=−q

wil
2
i

q∑

i=−q

wil
2
i −

q∑

i=−q

wili

q∑

i=−q

wil
3
i


 .

Denote also sinc(ε) = sin(ε)
ε , L = a1a3 − a2

2 and:

d1(ε) =
x′(0)(1− sinc(ε/2))

sinc(ε/2)
+

ε

sinc(ε/2)

d2(ε) = x′′(0)
1− sinc(ε/2)2

sinc(ε/2)2
+

ε

sinc(ε/2)2
(1+

x′(0)K0

6
).

Denote by r′0 and r′′0 the estimations obtained for the
coordinate derivatives by using the dependent or the inde-
pendent coordinate method. The following proposition is
proved in [15]:

Proposition 1 (a) Assume that K0δ ≤ ε. Then

|r′0 − r′(0)| ≤ φ1

(
d1(ε) +

∣∣∣∣
x′′(0)δ

2

∣∣∣∣
)

.

(b) Assume that K0δ ≤ ε, K1δ ≤ ε and T0δ ≤ ε. Then

|r′′0 − r′′(0)| ≤ φ2d2(ε).

Observe that φ1 and φ2 are homogeneous of degree zero,
i.e., they do not change if all li are multiplied by some con-
stant. The above proposition says that the curvature estima-
tion is convergent in the sense that reducing sufficiently the
value of δ without changing the proportions of the li, the
difference between the real and estimated will be arbitrar-
ily small.

Sampled curve with noise

This study assumes that the noise at each sample is a ran-
dom vector ηi, orthogonal to the curve at r(si), independent
for each sample, with mean 0 and standard deviation σ. In
order to have a good estimate of the derivatives, one must
assume that the noise is not too big relatively to the distance
between samples.

Denote by δ1 = min (|l1|, |l−1|). If someone wants to
use the above estimations in the noisy case, the ratios σ

δ1
and σ

δ2
1

should be small. If not, the noise is too strong to
guarantee the estimation for r′(0) and r′′(0), respectively.
The following proposition is proved in [15]:

Proposition 2 (a) Assume that σ ≤ γδ1. Then the error of
estimation |r′0 − r′(0)| is bounded by the sum of the errors

The corresponding work was published in Computers & Graphics, volume 29, number 5, pp. 641–655. Elsevier, october 2005.

http://www.elsevier.com/wps/find/journaldescription.cws_home/371/description
http://dx.doi.org/10.1016/j.cag.2005.08.004


7 Curvature and torsion estimators

of proposition 1(a) and a random variable of zero mean and
variance less than ψ1γ, where
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(b) Assume that σ ≤ γδ1
2. Then the error of estimation

|r′′0 − r′′(0)| is bounded by the sum of the errors of proposi-
tion 1(b) and a random variable of zero mean and variance
less than ψ2γ, where

2L

δ2
1

ψ2
2 =

q∑

i=−q

w2
i l4i




q∑

i=−q

wil
2
i




2

+
q∑

i=−q

w2
i l2i




q∑

i=−q

wil
3
i




2

Observe that ψ1 and ψ2 also are homogeneous of degree
zero. The above proposition says that the curvature estima-
tion is convergent in the sense that if reducing sufficiently
the noise standard deviation σ without changing the propor-
tions of the li, the difference between the real and estimated
will be arbitrarily small.

In the particular case where the samples are symmetri-
cally distributed around p0 and the weights wi are equal to
1, then

4
δ1

ψ2
1 =




q∑

i=−q

l2i



−1

and
2
δ2
1

ψ2
2 =




q∑

i=−q

l4i



−1

.

If q is big, ψ1 = O(q−3/2) and ψ2 = O(q−5/2).

5 Computational framework
The methods introduced in this work are extremely

simple to implement. The implementations follow directly
from the description of section 4 Theoretical framework.

(a) Dependent coordinates method for planar curves

Before solving the weighted least squares problem, Al-
gorithm 1 computes the coefficients a1, a2, a3, bx,1, bx,2,
by,1 and by,2. Then algorithm 2 solves the weighted least
squares problem for the independent coordinate, and de-
duces the estimations of the dependent coordinate. The
choice of which coordinate is dependent is done consid-
ering the angle of the estimated tangent: if |x′0| < |y′0|, the
x will be the independent coordinate. This algorithm also
estimates the tangent and normal vectors.

(b) Independent coordinates method for planar curves

Algorithm 3 implements the independent coordinates
method. It computes first x′0, x′′0 , y′0 and y′′0 and then it
estimates the curvature, the tangent and normal vectors.

Algorithm 1 Set weighted least squares variables
1: l[] = a1 = a2 = a3 = bx,1 = bx,2 = by,1 = by,2 = 0;
2: for i = -q . . . q do
3: l[i] ← l[i-1] + ‖pi−1pi‖ ;
4: end for
5: m = l[0];
6: for i = -q . . . q do
7: l[i] ← l[i] - m; // Centering l on 0
8: w = weight( l[i] )2;
9: a1 ← a1 + w (l[i])2 ;

10: a2 ← a2 + w
2 (l[i])3 ;

11: a3 ← a3 + w
4 (l[i])4 ;

12: bx,1 ← bx,1 + w (l[i]) (xi-x0) ;
13: by,1 ← by,1 + w (l[i]) (yi-y0) ;
14: bx,2 ← bx,2 + w

2 (l[i])2 (xi-x0) ;
15: by,2 ← by,2 + w

2 (l[i])2 (yi-y0) ;
16: end for
17: d = a1a3 − a2

2 ; // determinant

Algorithm 2 Dependent coordinates for planar curves
1: call Set Weighted Least Squares Variables ;
2: x′0 = (a3bx,1 − a2bx,2)/d ;
3: y′0 = (a3by,1 − a2by,2)/d ;
4: if |x′0| < |y′0| then // x is the independent coordinate
5: y′0 = sign(y′0)

√
1−T2

x;
6: x′′0 = (a1bx,2 − a2bx,1)/d;
7: y′′0 = −(x′0 x′′0)/Ty ;
8: else // y is the independent coordinate
9: x′0 = sign(x′0)

√
1−T2

y ;

10: y′′0 = (a1by,2 − a2by,1)/d ;
11: x′′0 = −(y′0 y′′0 )/Tx ;
12: end if
13: κ = x′0 y′′0 − y′0 x′′0 ;
14: T = (x′0, y

′
0);

15: N = sign(κ) (−Ty,Tx);

Algorithm 3 Independent coordinates method for planar
curves

1: call Set Weighted Least Squares Variables;
2: x′0 = (a3bx,1 − a2bx,2)/d ;
3: y′0 = (a3by,1 − a2by,2)/d ;
4: x′′0 = (a1bx,2 − a2bx,1)/d ;
5: y′′0 = (a1by,2 − a2by,1)/d ;
6: κ = (x′0 y′′0 − y′0 x′′0)/||(x′0, y′0)||3 ;
7: T = (x′0, y

′
0)/||(x′0, y′0)|| ;

8: N = sign(κ) (−Ty,Tx);

(c) Curvature estimator for space curves

The first step to implement the generalization of the al-
gorithm 4 to estimate the curvature of spatial curves using

Preprint MAT. 16/05, communicated on March 1st, 2005 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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8(a): Curve trace 8(b): Curve detail

Figure 8: Noisy spiral curve (1000 samples, σ = 1).

independent coordinates is to modify the routine of algo-
rithm 1 in order to compute bz,1 and bz,2. Algorithm 4
details the implementation of this method. This algorithm
provides an estimation for the curvature, and also for the
tangent, normal and binormal vectors. The tangent is on the
direction of r′. The normal is obtained by applying a Gram-
Schmidt ortogonalization process to the vectors T and r′′.
Finally, the binormal vector is a cross product of T and N.

Algorithm 4 Independent coordinates method for space
curves

1: call Set Weighted Least Squares Variables;
2: x′0 = (a3bx,1 − a2bx,2)/d ;
3: y′0 = (a3by,1 − a2by,2)/d ;
4: z′0 = (a3bz,1 − a2bz,2)/d ;
5: x′′0 = (a1bx,2 − a2bx,1)/d ;
6: y′′0 = (a1by,2 − a2by,1)/d ;
7: z′′0 = (a1bz,2 − a2bz,1)/d ;
8: κ = ||r′ × r′′||/||r′||3 ;
9: T = r′/||r′|| ;

10: N = r′′ − (r′′ ·T)T ;
11: N = N/||N|| ;
12: B = T×N ;

(d) Torsion estimator for space curves

Similarly to the curvature estimation of space curves, the
algorithm 1 has to be modified in order to also include the
computation of a4, a5, a6, bx,3 by,3 and bz,3. Algorithm 5
then implements the tosion estimator. This algorithm pro-
vides an estimation for the curvature, for the torsion, and
for the tangent, normal and binormal vectors.

(e) Boundary conditions

The above algorithms compute the curvature at a point
p0 using 2q + 1 samples around that point. However, for
points close to the boundary of a curve, or in the specific
conditions such as those of section 7 Applications to compres-

Algorithm 5 Independent coordinates method for space
curves

1: call Set 3D Weighted Least Squares Variables;
2: call SOLVE




a1 a2 a4

a2 a3 a5

a4 a5 a6


·




x′0 y′0 z′0
x′′0 y′′0 z′′0
x′′′0 y′′′0 z′′′0


 =




bx,1 by,1 bz,1

bx,2 by,2 bz,2

bx,3 by,3 bz,3




3: κ = ||r′ × r′′||/||r′||3 ;
4: τ = −((r′ × r′′) · r′′′)/||r′ × r′′||2.
5: T = r′/||r′|| ;
6: N = r′′ - (r′′ ·T)T ;
7: N = N/||N|| ;
8: B = T×N ;

sion, those points cannot be centered on p0. In that case one
can either reduce the width q of the sliding window, or sim-
ply compute the curvature using a non–centered window.

6 Experimental results
In this section the performance of the proposed algo-

rithms will be compared to the previous works mentioned
in section 3 Previous and related works.

(a) Experimental setting

The tests included here were performed on the three pla-
nar curves of Figure 14,15 and Figure 16, and on the five
spatial curves of Figure 1. All of them were uniformly sam-
pled in time. As a consequence, the samples were equally
spaced for the circle, but not for the ellipse and the spiral.
In the noisy case, as proposition 2 showed, it is important to
keep σ/δ2

1 small for the curvature estimation. Similarly, for
the torsion estimation, the ratio σ/δ3

1 must be small. There-
fore, the noise was simulated as a uniform random variable
in the normal segment (disc, in the 3D case) of radius σl̄d,
where σ is fixed, d is the derivation order required and l̄
is the average distance between consecutive samples. The
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9(a): Curvature estimation without noise (logarithmic scale): q = 2.
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9(b): Torsion estimation without noise (logarithmic scale): q = 2.

Figure 9: Tests on spatial curves of Figure 1: convergence in the noiseless case (logarithmic scale) for the curvature and the torsion.
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10(a): Curvature estimation with noise: q = 9, σ = 1.
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10(b): Torsion estimation with noise: q = 9, σ = 1.

Figure 10: Tests on spatial curves of Figure 1: behaviour in the noisy case: with σ/δ3
1 fixed, the curvature converges, and the torsion

error stabilizes.

number of points in the window 2q + 1 was fixed and the
sample density was let to grow until the error become small.

The algorithm has been tested with weights given by the
formula presented in section 4 Theoretical framework and also
for constant weights.

Since the parametric formula was known for the exam-
ples tested, the real curvature was computed using auto-
matic differentiation [10]. The absolute error between es-
timated curvature k̂ and the real value k at a point pj is
measured by E(pj) = ||κ̂(pj)| − |κ(pj)||. The mean error
was obtained as the arithmetic mean of the absolute errors
at the considered points.

(b) Results

In the noiseless case (σ = 0), it was observed that, for all
curves and methods considered, the punctual error E(pj)
increase with q (see Figure 14(c), Figure 15(c), and Fig-
ure 16(c)). This is not surprising, since the curvature esti-
mation should be better when using points closer to the base
point.

In the noisy case, it was observed that the use of more
sample points can improve the estimates. The ideal number

of points q depends on the curve, on the point, on the
sampling and on σ (see Figure 14(e), Figure 15(e) and
Figure 16(e), Figure 14(g), Figure 15(g) and Figure 16(g)).

Consider now the error as a function of the number of
samples with q and σ fixed. This is exactly the context
of the convergence analysis. And the experimental results
confirms the convergence analysis: the mean error is re-
duced when the distance between consecutive samples is
reduced (see Figure 14(d), Figure 15(d) and Figure 16(d),
Figure 14(f), Figure 15(f) and Figure 16(f), Figure 14(h),
Figure 15(h) and Figure 16(h)).

The graphs of Figure 14, Figure 15 and Figure 16, and
many other tests that have been performed show that the
performance of the methods descibed above are close to the
best among the methods tested, in a great variety of sam-
pling and noise conditions. Also, the independent coordi-
nates method has shown consistently better results than the
dependent coordinates method.

In the 3D noiseless case, the mean error in the curvature
estimation decreases to 0 (see Figure 9(a)), as the theory
predicted. The same occurred for torsion, although theorem
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does not include this case (see Figure 9(b)). Figure 10
shows the convergence of curvature and torsion estimators
in the noisy case. Since the simulated noise has standard
deviation σl̄3, the theory predicts that the errors in the
first and second derivatives tends to 0 when the number
of samples points increases. This explains why the error
in curvature estimation tends to 0 (Figure 10(a)) while
the error in torsion estimation remains small but stable
(Figure 10(b)). In the 3D case, the curvature and torsion
estimators performed well in the sense that the obtained
errors were small. Instead of comparing with other methods
to confirm this assertion, the next section will introduce a
practical framework to test those methods.

7 Applications to compression
Among the applications of curvature estimation meth-

ods, predictors for lossy geometric compression scheme
provide real challenges. In those applications, the regularity
of the geometric object to be compressed allows predicting
the geometry of a vertex from the previously visited ones.
Those schemes provide a very nice framework for testing
the methods described above in a non-simulated noise envi-
ronment, as the performance of the predictor can be directly
measured from the final compression rate. The emphasis
will be now put on two specific geometric predictors: the
first one in 2D for Simplicial Isocontour Compression [13],
and the second one in 3D for the Edgebreaker [21, 14].

(a) Prediction for Simplicial Isocontour Compression

a

b

c

Figure 11: “Singular” curve: the predictor must guess whether
the curve will traverse edge ac or bc, approximating the real
curve (in red) by the scheme proposed above (blue curve)
using only the points known to the decoder (in blue), i.e.
midpoints of the edges crossing the curve.

This method aims at encoding a curve by its intersections
with an adapted simplicial grid. The intersection are first
transmitted in a hit/fail manner. Therefore, the decoder
reconstructs the curve considering that it crosses always
at the midpoint of the edges of the simplicial grid. When
the decoded curve enters a triangle abc of the simplicial
grid by the edge ab, the predictor must guess whether a
curve crosses the edge ac or bc. The scheme proposed here
computes the parabola approximating the curve around the

edge ab as described in section 5(b) Independent coordinates
method for planar curves. The predictor considers that the
curve crosses the same egde as the approximating parabola
(see Figure 11).

The method of section 5(b) Independent coordinates method
for planar curves is particularly well suited in that case: The
predictor uses an extrapolation of the curve, which is not
directly provided by 3–points methods. Moreover, whereas
the circle fitting method provides a highly accurate approx-
imation of the curvature, the osculating circle generically
crosses the curve at the approximation point, which could
lead to a bad prediction even in ideal conditions, as the
curve must stay as close as possible to the curve. The inde-
pendent coordinate method above gives very good results,
with a mean above 80% of success on the benchmark of
table 1.

Figure 12: A decompressed implicit sinoide without smoothing
(left) and with the predictor on–the–fly smooting (right).

In a second step, the reconstruction of the curve can be
enhanced by a smoothing operation, moving the intersec-
tion of the curve with the simplicial grid away from the edge
midpoint. This should reduce the distortion of the decoded
curve. In order to perform this operation on–the–fly, the ap-
proximation used by the predictor is directly used to com-
pute the new intersection (see Figure 12). This smoothing
behaves well when the curve is regular and well–sampled
(see table 1).

(b) Prediction for the Edgebreaker

As most of the 3D surface encoders, the Edgebreaker al-
gorithm compresses a triangulated surface by encoding its
connectivity and the position of the vertices. To encode the
coordinates of the vertices more efficiently, a predictor can
be used to guess the position of a vertex from the former
triangle in the compression traversal. The classical scheme
relies on parallelogram prediction [23]. This scheme has
been enhanced in many ways, but this section aims at test-
ing the method of section 5(d) Torsion estimator for space
curves more than defining another geometric predictor for
the Edgebreaker. Therefore, the objective of the predictor
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Figure 13: The Edgebreaker cuts the compressed surface along a curve in the space. An extrapolation of this curve is used to
enhance the parallelogram predictor. The predictor uses the parallelogram predictor to guess the distance from the last vertex of
the curve, and rotates this estimation acording to the approximating curve.

Prediction Size (bits) Distortion (10−3)
Curve success direct prediction gain direct prediction gain
bicorn 80.3% 1479 1014 46 % 2.26 2.52 −10%
circle 80.6% 1658 1106 50 % 2.38 2.20 8 %
cubic 81.4% 566 324 75 % 3.48 3.99 −13%
ellipse 82.5% 1430 920 55 % 2.03 1.99 2 %
singular 77.9% 1501 1099 37 % 1.43 1.36 5 %
hyperbola 80.2% 1648 1164 42 % 1.53 1.39 10 %
sinoide 84.5% 2645 1612 64 % 0.91 0.76 20 %

Table 1: Results of the predictor for the Simplicial Isocontour Compression: for each one of the implicit curves, the number of
successes over the erroneous guesses of the predictor is around 80%. The gain in the size of the compressed curve is half of the
compressed size. The smoothing induced by the predictor reduces the distortion for most of the case. All the results were obtained
as means of the same model over various resolution of the grid, from 50 to 3000 vertices, with q = 84.

# vertices # models //gram curve gain
0- 500 16 6.917 6.841 2.7 %

500- 1000 29 6.962 6.830 1.5 %
1000- 3000 39 4.519 4.454 2.2 %
3000-10000 42 2.118 2.077 2.1 %

10000-20000 15 0.867 0.870 −0.5%
20000-50000 20 0.671 0.665 0.9 %

Table 2: Results of the predictor for the Edgebreaker: the
results are compared in terms of mean error with the real
vertex coordinates. The approximation is performed with q =
12. The distortion are in per-thousand.

is to enhance the parallelogram predictor by approximating
the curve formed by the cut of the Edgebreaker (see Fig-
ure 13).

The predictor works as follows: The parallelogram–
predicted point p is used to estimate the distance d of
the unknown vertex. The approximation of the cut curve
{c−q, ..c−1, c0} at parameter d gives another point r. The
predicted point will then be the point e, image of p by the

rotation in the plane−→n ,−→c0p of arc d, where−→n is the normal
to the parallelogram (see Figure 13).

The approximation is considered coherent when r and
c−1 are on the same side of the plane of the parallelogram.
If the approximation is not coherent, the parallelogram
predictor is used. This predictor enhances the parallelogram
predictor (see table 2), validating the curve approximation
of section 5(d) Torsion estimator for space curves in a real
context.

8 Conclusion
This paper proposed curvature and torsion estimators

for sampled curves in the plane and in the space. They
are based on weighted least–squares fitting of parametric
curves. It analysed the convergence of the curvature esti-
mators under reasonable hypothesis.

The proposed curvature estimators was compared exper-
imentally with some important methods in the literature and
their performance were close to the best. Based on exper-
iments, it has also been observed that they are robust with
respect to noise and that they behave well under a great va-
riety of sampling conditions.
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A very important advantage is that it can be immediately
generalized for the estimation of curvature and torsion of
spatial curves. Other advantage of the proposed method is
that it can be easily implemented. The program used for
comparison is available at [16].

The authors plan to continue this work in order to de-
velop predictors for other 3D compression schemes. An-
other natural extension, would be to develop a new estima-
tor for geodesic curvature of curves on surface in the space.
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13 Curvature and torsion estimators

14(a): Ellipse without noise: n = 1000, σ = 0. 14(b): Ellipse with medium noise: n = 32, σ = 0.5.
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14(c): Punctual error, n = 500, σ = 0.
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14(d): Mean error, q = 1, σ = 0.
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14(e): Punctual error, n = 500, σ = 0.5.
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14(f): Mean error, q = 10, σ = 0.5.
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14(g): Punctual error, n = 500, σ = 1.
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14(h): Mean error, q = 10, σ = 1.

Figure 14: Tests on the ellipse r(t) = (2 cos(t), 0.5 sin(t)) : t ∈ [−π, π]: (a,b) the original curve noiseless and with medium noise.
(c,e,g) punctual error with n fixed, varying q at the point pointed out on figures (a,b). (d,f,h) mean error with q fixed and varying
n.
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15(a): Hypocycloid without noise:
n = 1000, σ = 0.

15(b): Hypocycloid with medium
noise: n = 32, σ = 0.5.
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15(c): Punctual error, n = 500, σ = 0.
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15(d): Mean error, q = 1, σ = 0.
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15(e): Punctual error, n = 500, σ = 0.5.
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15(f): Mean error, q = 10, σ = 0.5.
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15(g): Punctual error, n = 500, σ = 1.
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15(h): Mean error, q = 10, σ = 1.

Figure 15: Tests on the hypocycloid r(t) = (4 cos(t) − cos(2t), 4 sin(t) + sin(2t)) : t ∈ [−π, π]: (a,b) the original curve noiseless
and with medium noise. (c,e,g) punctual error with n fixed, varying q at the point pointed out on figures (a,b). (d,f,h) mean error
with q fixed and varying n.
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15 Curvature and torsion estimators

16(a): Lissajous without noise: n =
1000, σ = 0.

16(b): Lissajous with medium noise: n =
32, σ = 0.5.
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16(c): Punctual error, n = 500, σ = 0.
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16(d): Mean error, q = 1, σ = 0.
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16(e): Punctual error, n = 500, σ = 0.5.
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16(f): Mean error, q = 10, σ = 0.5.
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16(g): Punctual error, n = 500, σ = 1.
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16(h): Mean error, q = 10, σ = 1.

Figure 16: Tests on the lissajous r(t) = (sin(2t), sin(3t)) : t ∈ [−π, π]: (a,b) the original curve noiseless and with medium noise.
(c,e,g) punctual error with n fixed, varying q at the point pointed out on figures (a,b). (d,f,h) mean error with q fixed and varying
n.
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