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Abstract. We present a deformable model to reconstruct a surface from a point cloud. The model is based
on an explicit mesh representation composed of multiple competing evolving fronts. These fronts adapt to the
local feature size of the target shape in a coarse–to–fine manner. Hence, they approach towards the finer (local)
features of the target shape only after the reconstruction of the coarse (global) features has been completed. This
conservative approach leads to a better control and interpretation of the reconstructed topology. The use of an
explicit representation for the deformable model guarantees water-tightness and simple tracking of topological
events. Furthermore, the coarse–to–fine nature of reconstruction enables adaptive handling of non-homogenous
sample density, including robustness to missing data in defected areas.
Keywords: Surface Reconstruction. Deformable Models.
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Figure 1: Growing a watertight, genus 0 mesh model inside the point cloud of the dragon (a-c). Attaching a handle between the
body and the tail and projecting the model onto the point cloud (d).

1 Introduction
The generation of manifold polygonal representations of

3D shapes from point clouds is an elaborate task. Objects
may have high genus and various scales of detail. Further-
more, many of today’s model acquisition techniques gen-
erate imperfect results that cause difficulties in reconstruc-
tion. Scans of 3D objects are often very noisy, and may con-
tain cracks and missing parts. However, in many cases the
a priori assumption is that the reconstructed model should
be a solid object with a certain topology and a watertight
surface. These priors are global properties of the model.

In recent years local reconstruction techniques have
been extensively used and proven to faithfully recover small
features [1, 4, 16]. However, the local nature of these
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techniques may fail to recover the global structure of the
shape, and cannot guarantee global properties such as wa-
tertightness especially for inhomogeneous sample density
or missing data. In contrast, deformable models such as
snakes [19, 23, 12] use a global structure to maintain wa-
tertightness and certain topology. However, previous de-
formable models adapt a global structure directly to the
finest features size. This in turn, may lead to erroneous
topological interpretation of the data.

In this paper we present a deformable model that uses an
explicit evolving front technique for reconstruction of a 3D
model. Our model uses a conservative approach while de-
forming, yielding a better interpretation of the topology of
the reconstructed shape, and enabling better topology con-
trol to a certain extent. The model includes multiple com-
peting evolving fronts at different locations that approach
towards the finer (local) features of the target shape only af-
ter reconstructing the coarse (global) features. Hence, these
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fronts adapt to the local feature size of the target shape in
a coarse–to–fine manner. The fronts evolution is guided by
a scalar-field representing the distance from the point set.
The fronts always move in outward normal direction. Thus,
they can move up-hill as well as down-hill, passing over
local extrema of the guidance field and approaching suffi-
ciently close the point-set.

The explicit representation of the deformable model is
evolved in incremental steps which maintain some global
invariants: it guarantees water-tightness and it allows sim-
ple tracking of topological events (such as handle attach-
ment). While deforming, we apply mesh optimization oper-
ators which maintain a high mesh quality. Furthermore, the
coarse–to–fine nature of the reconstruction enables dealing
with non-homogenous sample density, including robustness
to cracks and missing parts in defected areas of the input
data (see for example Figures 1 and 2).

2 Related Work
There has been a substantial amount of work on surface

reconstruction, in particular for the case of a reconstruction
from point cloud. We briefly review the most related works
with a focus on how they handle the topology and the scale
of the details. It is out of the scope of this paper to cover
this large research area. For a thorough review the reader is
referred to [21].

Surface reconstruction can be formulated as a global
minimization problem. For example, a surface approximat-
ing a point cloud can be defined as the zero–crossing of ra-
dial basis functions (RBF) [9, 25]. Such minimization tech-
niques create implicit surfaces, which is then polygonized
into a mesh. With such techniques it is difficult to control
the topology. Another family of volumetric reconstruction
techniques is based on Voronoı̈ diagrams [3, 7, 13]. Under
strong sampling conditions, these algorithms guarantee the
validity of their results. However, these constraints are usu-
ally not met in practice and they fail to produce plausible
results for sparse point clouds and non-uniform sampling.
The method we present in this paper is explicitly designed
to handle such delicate cases. In section 8 Results we com-
pare our results with two representatives of the above men-
tioned methods.

To avoid expensive minimizations and volumetric struc-
tures, wrapping techniques [5, 26] iteratively grow a mesh
surface which approximate the point cloud. The advantage
of such techniques is the adaptation to the local features
of the target shape. However, as opposed to our technique,
they have difficulties to guarantee a watertight surface and
lack awareness of shape topology. Local features can also
be reconstructed by local projection mechanisms, such as
the moving least squares (MLS) method [1]. In our work
we use a simplified version of the MLS projection as means
to reconstruct the finer details of the target shape.

A different approach to reconstruct the surface is to use
deformable models. There are many types of deformable
models, but they all derive from the well known notion of
snake [19, 30, 18, 14]. Snakes are basically splines which
minimize an external energy functional, while maintaining
their smoothness by an internal tension term [19]. The
minimum is formulated as the stable solution of a partial
differential equation, and the spline is represented as a level
set, which evolves by local integration steps [27, 6]. This
evolution tends to be highly sensitive to the input data and
to get stuck into local minima, although this last part of
the problem is partially solved by globally smoothing the
external energy snakes [30].

Extending snakes to 3D is a very delicate task mainly
due to the difficulty to maintain surfaces as splines. To sim-
plify the problem, the snake, or in general the deformable
model, is typically discretized and represented by a set of
voxels, embedded in discrete representation of an implicit
function. Such implicit representation of the deformable
model has been used for surface reconstruction [17, 15].

Unlike classical snakes, balloons evolve along the nor-
mal of their surface, with respect to an external scalar
field. This formulation links them to mathematical mor-
phology [2, 24]. For shape approximation, balloons were
first used as a preprocessing step to get a good initial guess
for snakes [11]. More recently, [14] proposed to adapt para-
metric balloons to reconstruct shapes of arbitrary topology.
However, their balloon minimizes a single resolution en-
ergy functional similar to classical snake. Here, we use a
multiscale approach, in a coarse to fine manner, where the
model evolves with competing fronts. In addition, most pre-
vious work has dealt with regularly or well-sampled point
clouds, while we focus on more challenging cases where
the point cloud includes features at different scales and may
contain holes and cracks (see Figure 2).

At large, the above surface reconstruction techniques
can be classified into implicit/volumetric techniques vs. ex-
plicit/surface oriented techniques. Both come in hierarchi-
cal versions, but volumetric techniques use spatial hierar-
chies and surface techniques use geodesic scales. We com-
bine both: the attraction field is computed with respect to
a spatial hierarchy (adaptive octree) and the tension of our
evolving fronts corresponds to a geodesic scale.

3 Overview
On an abstract level, the task of surface recovery by

a deformable model is defined as follows: Given a target
surface T and a deformable model D, evolve the shape of
D such that the two–sided Hausdorff distance H(T,D) is
minimized. As observed in [10] it is sufficient to reduce the
local Hausdorff distance below an ε fraction of the local
feature size of T [3] because then the normal projection
of D to T is injective. Hence, our algorithm brings the
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Figure 2: The Victoria model is sparse and contains many missing pieces. Our deformable model recovers the shape while
completing missing part is a smooth manner.

deformable model D sufficiently close to the target surface
T and then we apply a moving least squares projection [1],
which eventually maps the vertices of D to T .

In practice, this approach faces several difficulties. First,
the information we have regarding the target surface T ,
given by a set of sample points, is only partial. Hence, in
sparsely sampled regions, the deformable model D should
fill gaps, cracks and missing parts. Therefore, the one-
sided distance from D to T has to be ignored there. On
the other hand, D is usually implemented as a polygonal
mesh with finite resolution. This implies that features of T
which are smaller than the local edge length ofD cannot be
captured correctly. Such unsatisfied regions of T have to be
detected by checking the one-sided distance from T to D
and applying a local refinement to D, if necessary.

Our deformable model D is represented as an unstruc-
tured triangle mesh, initialized as a small sphere placed in
the interior of the target point cloud T . Based on a simple
volumetric distance map of T , the vertices of D move in
outward normal direction towards T . A vertex stops mov-
ing when it reaches a local minimum of the distance func-
tion to T . This happens when the vertex is sufficiently close
to a sample point of T or when D is about to pass through
an undersampled region in the point cloud. By interleaving
the mesh deformation with a mesh optimization scheme [8]
we guarantee a high mesh quality in term of the triangle’s
aspect ratio.

As more and more vertices stop moving, the remaining
regions of D at some point fall into several unconnected
patches. These separate fronts denoted F continue to move
independently. When D comes to a complete stop, it means
that all vertices are sufficiently close to T or they belong
to a part of D which spans a hole in the point cloud of T .
However, what seems to be a hole in the point cloud could
in fact be a small surface feature or a tunnel in T , which
just cannot be resolved due to the current mesh resolution
of D.

We can easily detect this by checking the one-sided dis-
tance from T to D. If there are unsatisfied samples in T ,
we re-activate a region in D which is closest to the most
distant unsatisfied sample. To provide additional degrees of
freedom, we locally refine the mesh D and let the new ver-
tices continue to move in normal direction. This procedure
is repeated until all samples of T are satisfied, i.e., their
one-sided distance to D is below a certain threshold.

4 Algorithmic Features of the Fronts
Given a point cloud sampled from the boundary of a 3D

object, the deformable model recovers the target shape with
a watertight explicit mesh model. The evolution develops
in an iterative manner by moving the vertices in outward
normal direction (see Figure 3). The movement is guided
by a volumetric attraction field imposed by the point set.
Similar deformable models have been used in many pre-
vious works. However, defining an effective evolution of
an explicit and discrete deformable model is usually a dif-
ficult task. This is especially challenging when the point
cloud contains cracks and missing pieces and represents
a shape which is not smooth and has a complex topol-
ogy. The evolving model must penetrate delicate parts, pre-
serve topological constraints, and fill missing data, while
still maintaining high quality triangulation and preventing
fold-overs.

Our model achieves this goal using the following ele-
ments: (i) working coarse–to–fine with competing fronts
(ii) smoothing the fronts using least-square-meshes formu-
lation, (iii) continuously using local mesh operators which
preserve triangulation quality, (iv) allowing up-hill as well
as down-hill movement of the fronts, and (v) applying local
final fitting. Below we briefly describe these elements, and
provide details in the following sections.

Competing fronts. A key element in our model is the
coarse–to–fine evolvement of the fronts. Initially, all the
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a) b)

c) d)

e) f)

Figure 3: Some snapshots illustrating the evolving fronts: ac-
cording to the attraction field (a), the vertices of the fronts
(bold) incrementally move in outward normal direction (b-e).
The final reconstruction (f) is then obtained by a reduced MLS
projection to the point cloud.

vertices on the evolving mesh advance jointly as one front.
As soon as parts of the front meet the point cloud, the front
is split into several competing fronts. By using several inde-
pendent fronts we are able to reconstruct the shape in grow-
ing level-of-details. Each front is assigned a tension factor,
refraining or allowing greater adaptation. This tension fac-
tor is controlled in order to let the coarse fronts that are far
from the points evolve faster than finer fronts. Competition
continues until the model is ε away to all data points. This
coarse–to–fine process leads to a better interpretation of the
data, conservatively adapting to the local feature size of the
target shape (see Figure 5).

Smooth fronts. The fronts are kept smooth to avoid fold-
overs and self-intersections. This is accomplished by two
means. First, at each iteration, driven by an implicit func-
tion that represents the distance to the input data, an offset
vector for each vertex is set in its normal direction. The new
positions for each vertex are then calculated using least-
square meshes (LSM) formulation [28]. Second, since the
fronts evolve faster near their center (where it is farthest
away from the point cloud) than on the sides, they stay con-
vexly bent.

Figure 4: The fronts of our deformable model always move
in outward normal direction with a speed defined by the un-
signed distance value. Thus, they can move up-hill, from a blue
region to a red one, as well as down-hill, passing over local ex-
trema of the guidance field.

Outward Movement. A noteworthy property of the fronts
is that they always move in outward normal direction. Thus,
their advance does not depend on the gradients or the sign
of the distance field. The movement speed is defined by the
unsigned distance value. This allows the fronts to move up-
hill as well as down-hill in the guidance field. In particular,
a front can evolve from a narrow region into a larger one,
against the gradient of the field (Figure 4).

Adaptive dynamic mesh. As the front evolves, local mesh
operators [8] improve the connectivity of the mesh to main-
tain the quality of the output and the efficiency of the LSM
solver. The mesh resolution adapts automatically to adjust
to local characteristics such as curvature and surface details.
This leads in the end to a high quality mesh representation
of the reconstructed shape.

Final fitting. Once the deformable model has completed
its evolution, it is close enough to the point cloud to per-
form a final fitting. In this work, we use a Moving Least–
Square (MLS) projection to reconstruct the final shape.
Areas, where the data is missing, are interpolated with
a least-square-mesh using the MLS projected vertices as
constraints. Since the model well approximates the target
shape, the MLS procedure can be simplified and acceler-
ated while achieving high-quality final results (see section
7 Final Projection).

5 Fronts Evolvement Details
The front evolving paradigm involves a simple inflation

operator that is applied on an initial sphere-like mesh D
iteratively. Therefore, D grows and expands towards the
point cloud T using the metaphor of a balloon inflating in-
side a body. The balloon expands freely until it is blocked
by the body walls. Nevertheless, in open regions it contin-
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a) b) c) d) e)

Figure 5: The coarse–to–fine approach avoids early penetrations of the fronts (in orange) into small tunnels. The deformable model
first recover coarser regions (a), at (b) two fronts compete to penetrate through two different tunnels. A single level evolvement with
no competition might yield the non-intuitive results in (c). In (d) and (e) the coarser front recovers the hand first, and completes
the reconstruction.

a) b) c) d)

Figure 6: Surface tension guarantees a conservative reconstruction of surface and topology. First, coarse parts are reconstructed
(a-b) followed by a finer details (c-d). Each fronts is marked by a set of colored dots.

ues to expand, intruding narrow corridors and expanding in
wide chambers to match and recover the shape of T .

An adaptive 3D grid is used as an underlying structure.
On that grid, we define a rough signed distance field from
the shape. We use compactly supported RBF’s [25] for (i)
an initial coarse zero level–set approximation of the shape
and (ii) to define the inside-outside relation on the points
set. Next, we compute the distance to the zero level–set
by fast marching [27]. This function serves as the guidance
field to the fronts evolution (see Figure 3). To permit fronts
intrude narrow corridors in the shape, the function is refined
adaptively using finer levels of the octree.

The evolution process starts by placing a sphere-like
mesh inside the shape. This step can be easily performed
manually by the user or automatically using various heuris-
tics. The algorithm proceeds by iteratively advancing the
initial mesh towards the shape. In each iteration, new po-
sitions for all fronts’ vertices are computed by solving in a
least-square manner a constrained Laplacian system similar
to [29]:

arg min
{vi}

{ ∑

vi∈front

(
w · Eit + Eia

)2}
,

where:

Eit =
∑

vj∈N(vi)

cij(vj − vi) and Eia = ti − vi.

Et is the tension term (weighted by the tension factor
w) which maintains the smoothness of the model using a
Laplacian operator, with cij sum to one for each i and are
proportional to cotαij + cotβij , αij = ∠(vi, vj−1, vj)

and βij = ∠(vi, vj+1, vj) [22]. Ea is the attraction factor,
which includes the constraints for new positions of all
vertices vi. In each step the new position ti of a vertex
is calculated as an offset from its current position in the
direction of its outward normal. The offset is defined by
the unsigned distance value. Notice that this implies that
vertices can also move up-hill, apparently away from the
target surface, e.g., to fill a chamber of the object after the
front moved through a narrow tunnel (see Figure 4).

To avoid self-intersections and maintain the smoothness
of the mesh, we control the surface tension terms on the
evolving fronts with the tension factor w. In a more gen-
eral context, we use this tension to achieve a coarse–to–
fine reconstruction. Initially, w of each front is maximal
(w = wmax), thus restricting the mesh to evolve smoothly,
reconstructing only coarse details of the shape (Figure 6
left). The tension of a front is released (w ← w − δw)
incrementally each time it is stuck. This happens when it
does not move enough compared to the attraction guiding
it. When the tension passes below a certain threshold, the
mesh of the front is subdivided, allowing to reconstruct the
fine details of the shape and reach narrow regions (Fig-
ure 6). A front is also subdivided when its triangle density
is too sparse. In both cases, the tension of the front is re-
set to the minimum after subdivision (w = wmin). This
gradual reconstruction guarantees that the mesh first recon-
structs the coarse parts of the shape and then the finer parts,
and hence interprets better the topology of the point cloud.

Vertices that are within ε distance close to the zero level–
set become inactive. Effectively, such vertices partition the
mesh surface into active and inactive mesh components
where each active connected component becomes an inde-
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a) b) c) d)

Figure 7: Fronts can be merged by stitching a prisma to their central triangles (a). This prisma forms a new front that evolves
normally (b-c). This handle attachment is simple and does not perturb the reconstructed mesh (d).

pendent front. There are cases (e.g. coarse mesh triangu-
lation, coarse grid) where the whole model D is inactive
before all target points T being ε-close to D . In such cases
we wake-up mesh components as fronts using the following
procedure. We denote as unsatisfied points P , target points
that are more than ε far from D. We compute a distance
transform from P and re-activate the closest mesh compo-
nents in D as fronts. The new fronts are first subdivided,
their tension released and evolve based on a finer approx-
imation of the distance transform of the unsatisfied points
(see Figure 9 for pseudocode).

a) b)

c) d)

Figure 8: The model first grows into coarser regions and only
then aims at growing into finer holes (a). Hereby, it interprets
correctly the local topology and reconstruct a coherent genus
0 model (b). Then, a handle can be attached (c) and evolved
normally to get a genus 1 result (d).

6 Topology Control
In a well sampled object, there are various techniques

that can guarantee a topological correct reconstruction.

However, this is seldom the case in real-world scanned
models that may contain non-sufficient sampling, noise and
outliers. Still, under reasonable assumptions, our frame-
work is sensitive to the topology of the point cloud. Specifi-
cally, we target two topological ambiguities that may occur
and should be handled by the model: hole filling and tunnel
intrusion. Hole filling is the process of smoothly complet-
ing a region where no data is given and tunnel intrusion is
the process of entering narrow regions to reach far-away
parts of the object. Note that these may be difficult to dis-
tinguish since holes may contain noisy points and tunnels
may contain no points.

Our coarse–to–fine approach for evolving fronts helps in
solving these cases. At initial stages, the model reconstructs
smooth and coarse approximations of the point cloud, ig-
noring the fine details. Thus, missing regions are completed
smoothly by the mesh during these stages. However, this
also means that some of the fronts will stop instead of
intruding narrow regions. Nevertheless, due to the wake-
up procedure, mesh regions which are close to unsatisfied
points are re-activated. In these regions the mesh is sub-
divided and its tension released. This enables the front to
enter into finer details and narrow tunnels of the shape and
reconstruct it correctly (Figures 5 and 6).

We use a simple collision detection to control the genus
of our model, which is composed of two tests: front/front
collision and front/inactive parts collisions. The first detec-
tion is accelerated by updating the bounding boxes of each
front. The second one simply tests cells of the grid for pres-
ence of inactive mesh triangles. Collisions are either pre-
vented by deactivating the colliding parts, or induce a genus
change by merging the colliding fronts. This allows con-
trolling the maximal genus of the reconstruction (Figure 8).
Fronts merging is performed by removing two triangles at
each front center and carefully stitching their boundaries
to avoid twist. This 6–triangles prisma forms a new front
which evolves normally (Figure 7).

7 Final Projection
At the end of the evolution process we achieve a

high quality watertight triangular mesh guaranteed that the
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Table 1: Resulting meshes and topology. The NA indicates that
the PowerCrust did not return any result in less than 12 hours,
nv stands for the number of vertices, cnx for the number of
connected components and gen for the genus. We generated only
one component in all the presented examples.

size Mode RBF PowerCrust Ours
cnx gen nv cnx gen nv gen

foot 4k default 1 7 34k 1 8 9k 0
Victoria 12k stiff 1 6 91k 1 5 25k 0
horse 20k default 1 0 135k 1 0 14k 0
torus 20k default 1 9 96k 1 9 5k 9
drill 33k robust 15 6 164k 15 3 6k 0
hand 37k default 1 3 256k 1 2 9k 0
CAD 83k default 1 75 454k 1 99 53k 3
dragon 100k default 1 5 511k 1 3 77k 0/1
chair 1669k default 1 2 NA 75k 0

Table 2: Computation time on a Pentium IV 1GHz with 1Gb
of memory. Dist and March stand for the signed distance
transform, and fast marching from its zero level set (in min-
utes). Evolve include the LSM solver, Collide the collisions de-
tection, Remesh the local remeshing and Fitting is the final
MLS projection (in seconds).

Dist. March Evolve Collide Remesh Fitting Total
foot 1.9 0.8 0.1 0.4 0.2 0.0 0.7
Victoria 15.7 0.6 0.4 2.6 1.9 0.4 5.3
horse 14.5 0.5 0.2 0.9 0.6 0.1 1.9
torus 21.9 0.4 0.1 0.6 0.3 0.0 1.0
drill 9.6 0.1 0.2 0.2 0.2 0.2 0.8
hand 2.6 0.5 0.1 0.3 0.1 0.1 0.5
CAD 34.8 1.1 0.2 1.2 0.5 0.1 2.0
dragon 32.3 1.0 0.9 4.3 3.4 4.6 13.2
chair 51.4 2.7 0.4 1.4 3.1 3.8 8.7

Procedure: Inflate D to reconstruct T
P denotes the set of unsatisfied points
and F denotes the set of active fronts
Initialize P = T and F = D
while (P 6= ∅) {

while (evolve fronts (F)) {
remove inactive vertices from F
update fronts in F
remove satisfied points from P}

if (F = ∅ and P 6= ∅){
F = wake up fronts (D,P)
reset fronts tension(F)}

foreach front f ∈ F{
subdivide if small triangle density
release front tension if too high}

}

Figure 9: The Competing Fronts pseudocode.

point-cloud is ε–close to it. This guarantee can be used for
accurate reconstruction, for example using the abstract pro-
jection of [10]. In this final stage, we shift each vertex v of
the mesh along its normal nv towards the point cloud. This
can be seen as a low-order moving least square projection
(MLS) [1].

The main difficulty of the MLS approach resides in ap-
proximating the reference plane TMLS of the MLS projec-
tion [4]. In our case this is gracefully solved by using the
reconstructed mesh. Instead of solving a costly non-linear
minimization for TMLS , we simply use the tangent to the
mesh TMLS⊥nv as the reference plane. The stability of
this approach is grounded theoretically in the fact that ε–
close surfaces have close normals [10]. In the case where
the input data is sparse, the order of the MLS interpolat-
ing polynomial must be reduced, sometimes even to 0, in

which case each mesh vertex v is simply projected onto the
average distance along nv of the point cloud in its neigh-
borhood. Since the mesh is already a good approximation
of the shape, this 0–order MLS was sufficient to produce
the models in this paper (see Figure 15).

If data is too sparse or missing, mesh vertices in that re-
gion are too far from the point cloud (see Figure 13), hence
can not be projected using MLS. Instead, they are interpo-
lated again to generate a least–square mesh, by solving the
same Laplacian equation used for evolving the fronts, us-
ing positions of the nearest MLS–projected vertices as the
least–square constraints.

8 Results
We have experimented with our deformable model a

number of input point clouds, focusing on point clouds
which are usually difficult to reconstruct. The timings re-
ported were taken on a Pentium IV 1GHz with 1Gb of
memory. We compared our reconstruction to the Power-
Crust [3] (version 1.2) (see Figure 10), and to the Radial
Basis Functions of [25] (available from the author’s web
page) (see Figure 11). We evaluate RBF on the same grid
as our finest adaptation level, and polygonize it using [20]
to get the exact topology of the isosurface. As detailed in
Table 1, unlike the other methods, we recover the correct
topology in all cases, while maintaining a reasonable out-
put size, and a high quality mesh (see Figure 10). Note in
Table 2 that the remeshing time is negligible.

Also note that the final fitting is extremely fast. This
is achieved using the local evolving model as a reference
plane, which avoids the expensive optimization required
in the classical MLS. Nevertheless, the final fitting still
captures well highly detailed surfaces (see Figure 15).

One of the main advantages of using explicit deformable
models is the ability to control the topology of the result.
Even in delicate cases like the Figure 1, where the point
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Figure 10: A side by side comparison with the PowerCrust re-
construction (left). Note that our evolved model (right) retains
a high quality mesh with a simpler topology.

cloud is multiply connected, we can control our method
and maintain a genus 0 surface, separating the tail from the
body, or a genus 1 surface (see Figure 8).

We use a default setting for our deformable model that
performs well on most scans. We refer to this mode as de-
fault: wmax = 5, wmin = 3, δw = 0.5 and the mesh
is remeshed every 6 iterations. However, we need to use
two other modes in other cases. To handle very noisy mod-
els, such as the raw scans of Figure 14, we use a robust
mode which refrains the subdivision rate of the fronts to
avoid interpreting outliers as features: wmax = 6, wmin =
3, δw = 0.3. On models with large missing parts, such
as the Victoria of Figure 13, we use a stiff mode, since
the deformable model must stay rigid to avoid leaking:
wmax = 40, wmin = 20, δw = 1 and the mesh is remeshed
every 18 iterations.

Our coarse–to–fine approach is particularly visible
on Figure 6, where the toes of the foot are recovered only
after the foot arch is. This feature avoids misinterpretation
of the topology in locally, sparse regions; cases which are
difficult for the PowerCrust (Figure 10 left).

Figure 11 illustrates the importance of having topology
control. Other reconstruction methods such as the adaptive
RBF may interpret the noise around the sharp features as
many connected components. Our deformable model as-
sures it is a single water-tight component with high quality
mesh.

Our method can produce surfaces with a higher genus
using a handle attachment as illustrated on the noisy scan of
a CAD model Figure 7. We chose to reconstruct the whole
model first with genus 0, and only then attach its handles.
Thus, topology can be controlled and monitored by the user.

The limitation of our method is the use of a grid to repre-
sent the volumetric distance transform, especially for very
thin parts in the model, for which the deformable model
has not enough resolution to reconstruct (see Figure 12).
Increasing both grid and deformable mesh resolutions will

Figure 11: A reconstruction from a raw noisy scan with out-
liers. The adaptive RBF reconstruction (top) and our recon-
struction (bottom). Note that the adaptive RBF creates 15 con-
nected components, where the main one is of genus 6.

Figure 12: Very thin parts in the model hamper our recon-
struction method. For example, the reconstruction of happy
Budha (middle) is incomplete in the thin gown (left). For com-
parison the original part is shown on the right.

slow down the process considerably and can lead to numer-
ical instabilities. For example, the reconstruction of the thin
details in the cushion fabric in the Chair model (see Fig-
ure 15), significantly slows the deformable model evolution
(see Table 2).

It is often the case that models cannot be fully scanned
because of physical and viewpoint limitations. As shown
in Figure 13 our method can reconstruct very difficult mod-
els such as the Victoria model, which includes very large
missing parts (the head on Figure 2, and the legs, at the bot-
tom of Figure 13), although a distance transform yields a
wrong topology, in particular close to her ear.

The corresponding work was published in the proceedings of the Eurographics 2006, Blackwell, 2006.
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Figure 13: Our deformable model distinguishes between holes and tunnels in a coarse–to–fine manner. Note how it correctly
distinguishes the two legs, using their separation at the hip level, and the topology of the arm close to the head. For comparison,
we show in the middle the reconstruction of PowerCrust (version 1.2).

Conclusions
We presented a coarse–to–fine deformable model for re-

constructing surfaces from point clouds. Our method has
control and can monitor the topology and recovers details
even on challenging scans with the presence of noise and
with large missing parts. In the future we would like to ex-
tend this technique for mesh repairing and the consolida-
tion of polygon soups. We also plan to continue this work
to improve the final fitting to cope with sharp features, com-
bining robust statistics and dedicated local mesh enhance-
ments.
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Figure 15: A highly detailed model. Our coarse–to–fine technique first recovers the body of the chair, and only then the four legs.
Note the high quality of the reconstructed details.
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