
CHF: A scalable topological data structure for tetrahedral meshes

MARCOS LAGE1 , THOMAS LEWINER1,2, HÉLIO LOPES1 AND LUIZ VELHO3

1 Department of Mathematics — Pontifı́cia Universidade Católica — Rio de Janeiro — Brazil
2 Géométrica Project — INRIA – Sophia Antipolis — France

3 Visgraf Project — IMPA — Rio de Janeiro — Brazil
{mlage, tomlew, lopes}@mat.puc--rio.br. lvelho@visgraf.impa.br.

Abstract. This work introduces a scalable topological data structure for manifold tetrahedral meshes called
Compact Half–Face (CHF). It provides a high degree of scalability, since it is able to optimize the memory
consumption / execution time ratio for different applications and data by using features of its different levels. An
object–oriented API using class inheritance and virtual instantiation enables a unique interface for each function
at any level. CHF requires very few memory, is simple to implement and easy to use, since it substitutes pointers
by container of integers and basic bitwise rules.
Keywords: Geometric Modeling. Data Structures. Object Oriented Programming. Generic Containers.

Figure 1: Visualization of tetrahedral meshes using CHF.

1 Introduction
Tetrahedral meshes constitute one of the fundamental

representations for volumetric objects in computer graphics
and geometric modeling. Although mesh–less models are
very popular in visualization, meshes represent in a unique,
local and explicit manner the underlying geometric space of
an object. This is the main reason why these representations
are omnipresent for finite element methods. For these ap-
plications and many others, the efficiency of the data struc-
ture is a crucial element. In particular, generation of meshes
from point data is a very active area of research, where ef-
ficient data structures as CHF can help in both clarity and
efficiency.

Nowadays, many geometric modeling and scientific vi-
sualization systems commonly have to deal with huge vol-
umetric models [18, 20]. Several data structures and algo-

Preprint MAT. 12/05, communicated on May 15th, 2005 to the Depart-
ment of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro,
Brazil. The corresponding work was published in the proceedings of the
Sibgrapi 2005, IEEE Press, 2005.

rithm have been proposed to visualize and manipulate tetra-
hedral meshes [26, 17, 10, 21]. However, such structures
consume considerable memory, requiring high scalability to
handle large models without losing performance in memory
access because of thrashing.

Contributions. This work introduces a scalable topolog-
ical data structure for manifold tetrahedral meshes called
Compact Half–Face (CHF). This data structure is an im-
provement for the Handle–Face data structure [17] and ex-
tends the Corner–Table data structure for surfaces [25]. The
main advantages of CHF are threefold. First, it is scalable,
since it is able to change the use of memory to improve
execution time. The amount of information stored on the
data structure can adapt to a specific application or model.
Second, it requires very few memory, since it substitutes
pointers by container of integers and basic bitwise rules.
Moreover, it is very easy to implement and use. And last,
its object–oriented API using class inheritance and virtual
instantiation enables a unique interface of the same func-
tions for every scale.

http://www.natalnet.br/sibgrapi/


M. Lage, T. Lewiner, H. Lopes and L. Velho 2

Paper outline. Section 2 Combinatorial structures for geo-
metrical objects introduces some basic concepts of combi-
natorial structure. Section 3 Previous and related works re-
views some related works. Section 4 The CHF Data Structure
presents the CHF data structure, while section 5 Operations
on the CHF for each level studies the complexity of the ba-
sic operations on the CHF. Section 6 Memory Comparisons
compares CHF to some of the related works.

2 Combinatorial structures for geometrical
objects
This sections introduces the basic concepts that will be

modeled by our data structure. For more details on the
following definitions, see [1].

Simplices. A simplex σp of dimension p is the closed con-
vex hull of p + 1 points {v0, . . . , vp}, vi ∈ Rm, in general
position, i.e., when the vectors v1−v0, v2−v0, . . . , vp−v0

are linearly independent. For example, simplices of dimen-
sions 3, 2, 1 and 0 are, respectively, tetrahedrons, triangles,
edges and vertices. The points v0, . . . , vp are called the ver-
tices of σ. A face of σ is the convex hull of some but not all
of the vertices of σ and therefore is also a simplex. If σ is a
face of a simplex τ then τ is said to be incident to σ and τ
bounds σ. The boundary of a p–simplex σ, denoted by ∂σ,
is the collection of all of its faces.

Simplicial Complex. Two k–simplices σ and ρ ∈ K are
adjacent when σ ∩ ρ 6= ∅, and independent otherwise. A
simplicial complex K is a finite set of simplices together
with all their faces such that if σ and τ are simplices of K,
then they either meet at a face λ, or are independent.

Stars. The open star of a simplex σ ∈ K, is the union of
all simplices in K having σ as a face. The star of σ ∈ K,
denoted by star (σ,K), is the union of all simplices of the
open star together with all their faces (see Figure 2).

Manifolds. A simplicial complex M is a combinatorial
k–manifold if the open star of a vertex in M is homeomor-
phic either to Rk or to Rk−1 × R+. In particular, if M is
a manifold, then every (k−1)–simplex in M is bounding
either one or two k–simplex.

A combinatorial k–manifold is orientable when it is pos-
sible to choose a coherent orientation for all of its simplices,

Figure 2: The star of an inner edge vavb is composed of the
tetrahedrons, triangles, edges and vertices drawn.

where coherent means that two adjacent k–faces induce op-
posite orientations on their common (k−1)–face. From now
on, a k–manifold will always mean an oriented combinato-
rial k–manifold and we will denote by nk be the number of
k–simplices in M .

Boundary. The (k−1)–simplices of a combinatorial k–
manifold M that are incident to only one k–simplex are
called boundary simplices. All faces of a boundary simplex
are also called boundary simplices. The set of boundary
simplices forms the boundary of M and is denoted by ∂M .
The boundary of a combinatorial k–manifold is a combi-
natorial (k−1)–manifold without boundary. The simplices
that are not on the boundary are called interior simplices.
Figure 3 shows an example of interior and boundary cells
of a combinatorial 3–manifold.

Figure 3: Example interior and boundary cells of a combina-
torial 3–manifold.

Operations on manifolds. This works aims at defining
an optimized data structure for representing 3–manifolds
with or without boundary. According to [10], the necessary
operations on such data structures are the retrieval functions
Rpq (σ), which returns for a p–simplex σ the q–simplices τ
that bound common simplices.

For example R00 (v) returns all the vertices in the star of
v. More generally, when p < q, Rpq (σ) consists of the set
of q–simplices in star (σ). When p > q, Rpq (σ) consists
of the set of q–simplices that are faces of σ. Finally, when
p = q, Rpq (σ) consists of the set of q–simplices τ such that
σ and τ are both faces of a common simplex of M . All the
data structures described in the next section implement part
or all of the Rpq relations, each with a different trade–off
between memory consumption and execution time.

3 Previous and related works
Data structures for surfaces. Since Baumgart’s Winged–
Edge data structure [2] for representing solids in R3, sev-
eral modifications have been proposed in order to extend
the range of objects to be modeled. Among those, Braid [4]
introduced the concept of loop and Mäntylä [19] defined the
Half–Edge data structure. Guibas and Stolfi [11] proposed
a generalization to include non–orientable 2–manifolds im-
plemented as the Quad–Edge data structure. Lopes [16, 7]
defined the Handle–Edge, a new data structure that repre-
sents explicitly the boundary of a combinatorial surface,

The corresponding work was published in the proceedings of the Sibgrapi 2005, IEEE Press, 2005.

http://www.natalnet.br/sibgrapi/


3 CHF: A scalable topological data structure for tetrahedral meshes

which allows a direct description of its topology at each op-
eration. Rossignac et al. [25] proposed a very concise ver-
sion of the half–edge data structure, called Corner–Table,
which only uses two array of integers and a set of rules to
represent triangular surfaces. A first scalable data structure
for 2–manifold, name Direct–Edges was proposed by Cam-
pagna et al. in [6].

Data structure for 3–manifolds. For three dimensional
manifolds representation, other data structures have been
developed. Dobkin and Laszlo [9], with their Facet–Edge
data structure, extended Guibas and Stolfi’s scheme in order
to represent cell complexes that are subdivisions of the
3–dimensional sphere. After that, Lopes and Tavares [17]
introduced the Handle–Face data structure that explicitly
represents the boundaries.

Data structure for n–manifolds. Generalizing the idea of
the Quad–Edge and Facet–Edge, some significant works
were introduced to represent n–dimensional manifold.
Among those, the Cell–Tuple data structure by Brisson [5],
the n–Generalized Maps for simplicial quasi–manifolds by
Lienhardt [15] and the Hypermaps by Bertrand and Du-
fourd [3] are to be cited.

Cell representation. According to Brisson [5], among
all the above cited dimension–independent data structures,
only the Quad–Edge and the Facet–Edge do not explicit
represents each cell, while the Winged–Edge, the Half–
Edge, the Handle–Edge, and the Handle–Face are exam-
ples of data structures with explicit representation of cells.
Another widely used dimension–independent explicit rep-
resentation is the Indexed data structure with adjacencies
proposed by Paoluzzi et al. [22].

Non–manifold data structures. Traditional non–
manifold models usually results from Boolean operations.
Weiler [26] was the first to propose a non–manifold data
structure, called Radial–Edge. After that, several modifica-
tions have been suggested to deal with specific applications.
Some substantial contributions to non–manifolds represen-
tation include the works of Wu [27, 28], Yamaguchi and
Kimura [29], Gursoz [12], Rossignac and O’Connor [24],
Cavalcanti et al. [8], and Lee and Lee [14]. More recently,
de Floriani and Hui [10] presented a very concise data
structure for non–manifold manipulation, called NMIA,
which is an extension of the Indexed data structure with ad-
jacencies, and Pesco et al. proposed the Handle–Cell [23],
which is an extension of the Handle–Edge, to deal with
general 2–dimensional cell complexes. Finally, Nonato et
al. [21] proposed Singular Handle–Face, an extension of
the Handle–Face in order to deal with some non–manifold
cases. All the above structures represent the cells explicitly.

The CHF proposal. The CHF data structure has been
created to represent 3–manifolds. It extends the Corner–

Table [25] to volumes and at the same time can be con-
sidered a concise version of the Handle–Face [17], since
its volumetric cells are simplices. It uses generic containers
instead of pointers or static arrays. Similarly to the Corner–
Table, it explicitly represents a few adjacencies and inci-
dence relations between cells and uses a set of rules to
obtain the others. However, CHF has a very different and
important characteristic that is its scalability, since it can
change in size according to the application.

4 The CHF Data Structure
The objective of this section is to introduce the CHF data

structure for the representation of 3–dimensional manifolds
with or without boundary. There are actually four levels
of structures, each one completing the previous in order
to accelerate the execution time, but consuming a little
more memory at each step. Those levels are implicit to
the programmer by virtual inheritance: a C++ feature that
avoids the programmer to care about which structure level
he is using. The compiler simply generates at the beginning
of each function a piece of code like:

Operation Rpq (σ) at level i;
if has level i+1 then

RETURN Operation Rpq (σ) at level i+1;
end if
(. . . )
This section describes the four levels of the CHF data

structure, with their construction from the first level. The
next section will describe the main operations on each of
those levels.

(a) Level 0: representing tetrahedrons by the Vertex
container

The CHF uses the concept of half–face (see Figure 4)
to represent the association of a tetrahedron with one of
its bounding triangles, or equivalently the association of
this triangle with its apex. Any access to the elements of a
tetrahedron is performed through its half–faces. The level
0 if the CHF represents only the tetrahedral soup (see
Figure 5) by storing the apex of each half–faces.

Figure 4: One half–face of a tetrahedron.

Preprint MAT. 12/05, communicated on May 15th, 2005 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.



M. Lage, T. Lewiner, H. Lopes and L. Velho 4

In the CHF data structure, the half–faces, the vertices
and the tetrahedrons are indexed by non–negative integers.
Each tetrahedron is represented by 4 consecutive half–faces
that define its orientation. For example, half–faces 0, 1, 2
and 3 correspond to the first tetrahedron, the half–faces 4,
5, 6 and 7 correspond to the second tetrahedron and so on. . .

Vertex geometry. The representation of the mesh geome-
try is done by the use of a container, named G[], that stores
the geometry (coordinates, normals,. . . ) of the n0 vertices
in M . For example, the geometry of a vertex with index
Vid v is obtained by accessing G[v].

Half–Faces’ rules. A half–face with index HFid hf is as-
sociated with the tetrahedron of index bhf/4c. Therefore,
the indexes of the four half–faces that belong to the tetrahe-
dron with index Tid t are 4t, 4t + 1, 4t + 2, and 4t + 3. The
next, middle and previous half–faces of a given half–face
HFid hf on the tetrahedron bhf/4c can be obtained by the
use of the following rules:

nexthf (hf) := 4bhf/4c+ (hf + 1) %4,
midhf (hf) := 4bhf/4c+ (hf + 2) %4,
prefhf (hf) := 4bhf/4c+ (hf + 3) %4.

Note that the arithmetic operations above can be coded
efficiently with bitwise rules: 4t := t ¿ 2, bhf/4c := hf À
2, hf%4 := hf&3 and 4bhf/4c := hf&(∼ 3).

The Vertex container. The association of each half-face
HFid hf to its apex is stored in a container of integers,
named the Vertex container and denoted by V[]. The in-
teger v = V[hf] is the index of the apex of half-face hf
(see Figure 6). The size of V[] is 4n3, and each entry of V[]
varies from 0 to n0 − 1. Table 1 and Figure 7 define the
triangle orientation for each half–face of a tetrahedron with
index t.

The Half–Edges. Similarly to the Handle-Face data
structure, each half–face in the CHF is bounded by a cycle
of three half–edges (see Figure 4). However, in the CHF the
half–edges are implicitly represented. The half–edge repre-
sents the association between a vertex of a half–face and the
half–face itself. Table 1 fixes the orientation of the half–
edge cycle inside a generic tetrahedron. For example, the

Figure 5: CHF level 0.

Figure 6: Insides of half-faces and vertices.

Half–Face < Orientation >
HFid 4t < V[4t + 1], V[4t + 2], V[4t + 3] >
HFid 4t + 1 < V[4t + 2], V[4t] , V[4t + 3] >
HFid 4t + 2 < V[4t + 3], V[4t] , V[4t + 1] >
HFid 4t + 3 < V[4t] , V[4t + 2], V[4t + 1] >

Table 1: Orientation of the triangles of tetrahedron Tid t.

cycle of half–edges inside half–face HFid 4t can be read
as: V[4t + 1] → V[4t + 2] ,V[4t + 2] → V[4t + 3], and
V[4t + 3] → V[4t + 1].

Define the index of a half–edge in half–face HFidhf as
(hf, he), where he is the index of the half–face opposed to
the initial vertex of the half–edge (denoted Vhe on Figure 8
and Figure 9). With this notation, the next and previous
half-edges of (hf, he) inside hf are, respectively:

nexthe (hf, he) := (hf, N [he%4][hf%4]),
prevhe (hf, he) := (hf, P [he%4][hf%4]).

where : N =




− 3 1 2
2 − 3 0
3 0 − 1
1 2 0 −


 and P = N t.

On one hand, the mate of a half–edge lives on the half–
face opposed to its previous vertex:

matehe (hf, he) = (prevhe (hf, he) ,nexthe (hf, he)) .

Figure 7: Orientation of the triangles of tetrahedron Tid t

The corresponding work was published in the proceedings of the Sibgrapi 2005, IEEE Press, 2005.

http://www.natalnet.br/sibgrapi/


5 CHF: A scalable topological data structure for tetrahedral meshes

On the other hand, the radial of a half–edge lives on the
opposite half–face, that will be defined in section 4(b) Level
1: representing the adjacencies among tetrahedrons through the
Opposite container or that can be constructed by algorithm 1:

radialhe (hf, he) = (O[hf] , nexthe (hf, he)) .

With these four rules on half–edge, one can derive an
algorithm similar to Weiler [26] to traverse all half–faces
around an edge.

(b) Level 1: representing the adjacencies among tetra-
hedrons through the Opposite container

Level 1 of the CHF adds to the level 0 (Figure 5) in-
formation on the neighbor of each tetrahedron (Figure 10).
Since M is a 3–manifold, each half–face is incident to
one or two tetrahedrons. In order to explicitly represent
the adjacency relation of two tetrahedrons, the CHF uses
another container of integers, named the Opposite con-
tainer, denoted by O[]. The face–adjacency between neigh-
boring tetrahedrons is represented by associating to each
half–face HFid hf its opposite half–face O[hf] (Figure 11),
which has the same vertices but opposite orientation. If the
half–face hf is on the boundary, then it doesn’t have an op-
posite, which is encoded by O[hf] = −1. Thus, the value
of O[hf] allows to directly checking whether a half–face hf
is on the boundary or not. The size of O[] is 4n3, and each
entry of O[] varies from −1 to n3 − 1. Algorithm 1 shows
how to efficiently construct the O[] container from the V[]
container. This algorithm uses maps, which is a simple as-
sociative container.

(c) Level 2: representing the cells explicitly

The Face map. An interior face will be identified by the
lowest of its two half–face Fid := HFid, since the other
half–face can be obtained by the use of container O[]. A
boundary half–face will be identified by its unique half–
face. The faces can then be explicitly represented by a map
FH mapping each face, identified by one of its half–face, to
its attribute. Depending on the application, this attribute can
be the normal vector, material color, differential quantity. . .
The vertices of the faces can be easily accessed through

Figure 8: Mate half–edge.

Figure 9: Radial half–edge.

Figure 10: CHF level 1.

the half–face identifying it. The map FH has exactly n2

entries, which can be allocated in O(n2log(n2)) time and
space using a classical red–black tree structure.

The Edge map. Incidence relations on edges are essential
in many applications such as simplification and subdivision
algorithms. An edge is identified by an ordered pair of in-
tegers Eid :=< v1, v2 >, where v1 < v2 are the indexes of
the edge vertices. The edges can be explicitly represented
by a map EH , mapping an edge identifier to the index of
one of its incident half–faces, and eventually to its attributes
such as color, collapse cost. . . If the edge lies on the bound-
ary, the stored half-face will be the boundary half–face ori-
entated from v1 to v2. This gives directly the classification
of an edge as interior or boundary. The map EH has n1

entries, which can be allocated in O(n1log(n1)).

The extra Vertex container. To compute simple geometry
operators such as derivation, it is necessary to obtain the
vertex star efficiently. Therefore, it is useful to store an extra
container of integers VH that for each vertex v stores an
index of a half–face incident to vertex v. In the case the
vertex is on the boundary, the stored half–face should be a
boundary one. Such container has size O(n0) and can be

Figure 11: Opposite of a half-face.

Preprint MAT. 12/05, communicated on May 15th, 2005 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.



M. Lage, T. Lewiner, H. Lopes and L. Velho 6

Algorithm 1 Opposite container construction
1: O[i] ← −1 // Inits the container
2: map{Vid × Vid × Vid → HFid} adjacency
3: for HFid hf ∈ {0 . . . 4n3 − 1} do
4: // Gets the vertices tuple of hf

v0 ← V[nexthf (hf)] ; v1 ← V[midhf (hf)] ;
v2 ← V[prefhf (hf)] ; v3 ← sort (v0, v1, v2)

5: if adjacency.find
(
v3

)
then

6: O[hf] ← adjacency
[
v3

]
7: O[O[hf]] ← hf // Found opposite half–face
8: adjacency.erase

(
v3

)
9: else // Temporarily stores half–face

10: adjacency
[
v3

] ← hf
11: end if
12: end for

constructed in time O(n3).

(d) Level 3: representing the boundary through a Com-
pact Half–Edge

The boundary of a combinatorial 3–manifold is a set of
combinatorial 2–manifolds without boundary. Lopes and
Tavares in [17] pointed out the importance of having effi-
cient boundary cells manipulation for building and unbuild-
ing 3-manifolds. Moreover, advancing front triangulations
is a very significant application that needs an explicit repre-
sentation of the boundary. To do so, the incidences and ad-
jacencies of cells on the boundary should be explicitly rep-
resented. In the CHF such representation is done by the use
of the Compact Half–Edge (CHE) data structure, which
is a version of the CHF for surfaces.

The CHE [13] is also a scalable data-structure. Similarly
to CHF, the first level of CHE has only the Vertex con-
tainer. The second level includes the Opposite container
for the half–edges. The third level represents the cells ex-
plicitly. And finally, the fourth level introduces an explicit
representation for the boundary curves.

Here, the CHF implements the second level of CHE,
i.e., it uses two containers of integers, the bV[] container and
the bO[] container. The vertices of CHE and CHF have the
same index, and the CHE does not need to store the vertex
geometry for level 0. Each boundary triangle is represented
by 3 consecutive oriented–edges that define its frontier. In
the CHE, the oriented–edges 0, 1, and 2 correspond to the
first triangle, the oriented–edges 3, 4, and 5 correspond
to the second triangle and so on. . . The bV[] container
stores the indexes of the vertices of the boundary triangles.
The bO[] container stores in each entry the index of the
opposite oriented–edge on the boundary surface. Those two
containers are obtained in linear time traversing V[] and O[].

5 Operations on the CHF for each level
This section discusses the computational performance of

some Rpq relations at all levels of the CHF.

(a) R0∗: the vertex star

The vertex star is essential in particular to volume mod-
eling. The CHF answers relations R0∗ in time O(n3) at
level 0, since the function has to transverse all the V[] con-
tainer. At level 1, the V[] container is traversed until one
half–face incident to the input vertex is found, after that the
vertex star is obtained in time O(deg(v)) by the use of the
O[] and the rules described above. Thus, the worst case at
level 1 has complexity O(n3), but it is in average deg(v)
times faster than for level 0. Finally, at level 2 and 3 the
complexity of finding the star of a vertex v is reduced to
O(deg(v)), since VH directly stores the starting half–face
to traverse the vertex star.

(b) R1∗: the edge star

Algorithm 2 R13 (Eid < v1, v2 >), level 0
1: container< Vid > R13

2: for HFid hf ∈ {0 . . . 4n3 − 1} do // all half–faces
3: if v1 == V[hf] and

(v2 = V[nexthf (hf)] or v2 = V[midhf (hf)]
or v2 = V[prefhf (hf)]) then

4: R13.insert(hf À 2) ; continue // add tetrahedron
5: end if
6: end for

The edge star is also very important to several kind of
algorithms, such as volume simplification schemes using
edge collapse. Here, the edge is considered as an ordered
pair of indexes of its vertices. Thus, R10 is directly an-
swered. At level 0, the time complexity for the CHF to an-
swer the relations R12 and R13 is O(n3), since the method
has to transverse all the V[] container (see algorithm 2).
At level 1, again the V[] container is traversed to find a
half–face incident to the input edge, after that by the use
of the O[] container and the rules for mate and radial,
the cycle of half–faces around the edge is obtained in time
O(deg(e)), where deg(e) is the number of faces incident to
e. The worst case for level 1 has complexity time O(n3) but
it is in average deg(e) times faster than for level 0. Finally,
at level 2 and 3 the complexity is reduced to O(deg(e)),
since EH directly identifies the first half–face (see algo-
rithm 3).

(c) R2∗: the face star

Obtaining the face star is simpler than the edge and
vertex star. Since a face is identified by one of its half–face
hf, we can get its vertices directly by v0 = V[nexthf (hf)],
v1 = V[midhf (hf)], v2 = V[prefhf (hf)], answering R20 in

The corresponding work was published in the proceedings of the Sibgrapi 2005, IEEE Press, 2005.

http://www.natalnet.br/sibgrapi/


7 CHF: A scalable topological data structure for tetrahedral meshes

constant time at any level. The edges v0v1, v1v2, v2v0, can
also be retrieved, answering R21 in constant time at any
level. At level 0, to answer R22 and R23 the methods have
to transverse all the V[] container to find the opposite half–
face if any, therefore the time complexity is O(n3) for both
relations. At level 1 and above, the complexity is reduced to
O(1), since the face is identified by one of its incident half–
faces and the O[] container gives the other one directly.

(d) R3∗: tetrahedron incidence and adjacency

All the incidences of a tetrahedron are answered in con-
stant time at all levels of the CHF, except at level 0 where
the query for adjacent tetrahedrons, R33, is answered in
O(n3). At level 1, 2 and 3 by the use of the O[] container,
the query is obtained in O(1) time.

6 Memory Comparisons

memory consumption
Handle–Face 135n3 + 10n2 + 12n1 + 10n0

CHF 0 4n3

CHF 1 8n3

CHF 2 8n3 + n2 log2 n2 + n1 log2 n1 + n0

CHF 3 CHF 2 + 6 card
(
∂M2

)

Table 2: Memory complexity for topology.

All data structures described in section 3 Previous and
related works provide different trade–offs between memory
usage and time complexity of basic operations such as iden-
tifying a simplex, accessing its vertices, computing its stars.
When handling huge amount of data, a programmer has al-
ways to balance the memory consumption with the time
complexity. We compared CHF with the unique structure
specific to 3–manifolds that has an explicit representation
for cells and for the boundary: the Handle–Face [17] (see
table 2). In a real context, the structure can be adapted
in three complementary ways. First, the programmer can
choose to use a specific level for the whole program. Sec-
ond, a set of rules can be defined to decide dynamically
which level offers the best memory consumption / execu-
tion time trade–off. Last, the whole structure can be first

Algorithm 3 R13 (Eid < v1, v2, (hf0, he0) >), level 3
1: container< Vid > R13

2: Tid t0 ← bhf0/4c // first tetrahedron
3: HFid hf ← hf0 ; HEid he ← he0 ; Tid t ← t0
4: repeat
5: R13.insert(t); // insert to the result
6: (hf, he) ← radialhe (hf, he) // radial mate
7: t ← bhf/4c // next tetrahedron
8: until hf 6= −1 and t 6= t0

reserved, dynamically filled each time a query is performed
and completed when filled more than a given ratio.

7 Conclusions and Future Works
The main contribution of this paper is an introduction

of an efficient data structure for 3–manifold representation,
called CHF. The CHF is straightforward to use, concise
and easy to implement. Moreover, it can adapt its size
according to its necessity by the use of inheritance. The
use of containers makes the CHF implementation clear and
general.

In order to illustrate its use, Figure 1 shows some simple
visualization examples using the CHF. The first picture
is an example of a wire-frame visualization of a scalar
field defined on a molecule. The second illustrates some
isosurfaces of a scalar field defined on the Stanford Bunny.
The third one shows in blue the boundary vertices and
in red the interior ones. Finally, the last picture shows in
different colors the several boundary components of the
volume mesh.

The authors plan to extend the CHF in order to consider
non-manifolds. In that case, the scalable level structure of
CHF is used again by adding one level to deal with 3-
complexes with singular vertices, and another one to deal
with singular edges. This extension is straightforward in
both cases, replacing the map containers used in CHF by
multi-maps.

Acknowledgments
The authors would like to thank Pierre Alliez (INRIA)

for the volumetric models. Marcos Lage is supported by
CAPES. Hélio Lopes is partially supported by CNPq and
FAPERJ (contract E261170.693/2004).

References
[1] J. W. Alexander. The combinatorial theory of com-

plexes. Annals of Mathematics, 31:219–320, 1930.

[2] B. G. Baumgart. A Polyhedron Representation for
Computer Vision. AFIPS National Computer Confer-
ence, 44:589–596, 1975.

[3] Y. Bertrand and J.-F. Dufourd. Algebraic Specifica-
tion of a 3D–Modeler Based on Hypergraphs. CVGIP
Graphical Models and Image Processing, 56:29–60,
1994.

[4] I. C. Braid, R. C. Hillyard and I. A. Stroud. Stepwise
construction of polyhedra in geometric modeling. In
K. W. Brodlie, editor, Mathematical Methods in Com-
puter Graphics and Design, pages 123–141. Academic
Press, 1980.

Preprint MAT. 12/05, communicated on May 15th, 2005 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Alexander.html
http://www.jstor.org/journals/0003486X.html
http://www.jstor.org/journals/0003486X.html
http://www.baumgart.org/
http://www.baumgart.org/winged-edge/winged-edge.html
http://www.baumgart.org/winged-edge/winged-edge.html
http://www.lirmm.fr/~bertrand/
https://dpt-info.u-strasbg.fr/~jfd/
http://portal.acm.org/citation.cfm?id=180466
http://portal.acm.org/citation.cfm?id=180466


M. Lage, T. Lewiner, H. Lopes and L. Velho 8

[5] E. Brisson. Representing Geometric Structures in d Di-
mensions: Topology and Order. Discrete and Computa-
tional Geometry, 9:387–426, 1993.

[6] S. Campagna, L. Kobbelt and H.-P. Seidel. Directed
edges: A scalable representation for triangle meshes.
Journal of Graphics Tools, 3(4):1–11, 1998.

[7] A. Castelo, H. Lopes and G. Tavares. Handlebody
Representation for Surfaces and Morse Operators. In
Curves and Surfaces in Computer Vision Graphics III,
pages 270–283, 1992.

[8] P. Roma Cavalcanti, P. C. P. Carvalho and L. F. Martha.
Non–Manifold modelling: an approach based on spatial
subdivision. Computer–Aided Design, 29(3):209–220,
1997.

[9] D. P. Dobkin and M. J. Laszlo. Primitives for the ma-
nipulation of three–dimensional subdivisions. Algorith-
mica, 4:3–32, 1989.

[10] L. de Floriani and A. Hui. A scalable data structure for
three–dimensional non–manifold objects. In Symposium
on Geometry processing, pages 72–82. ACM, 2003.

[11] L. J. Guibas and J. Stolfi. Primitives for the manip-
ulation of general subdivisions and the computation of
Voronoi diagrams. Transactions on Graphics, 4:74–123,
1985.

[12] E. L. Gursoz, Y. Choi and F. B. Prinz. Vertex–Based
Representation of Non–Manifold Boundaries. In J. U.
Turner, M. J. Wozny and K. Preiss, editors, Geometric
Modeling for Product Engineering, pages 107–130. El-
sevier, 1990.

[13] M. Lage, T. Lewiner, H. Lopes and L. Velho. CHE: A
scalable topological data structure for triangular meshes.
Technical report, PUC — Rio de Janeiro, 2005.

[14] S. Lee and K. Lee. Partial Entity Structure: A Com-
pact Non–Manifold Boundary Representation Based on
Partial Topological Entities. In Solid Modeling and Ap-
plications, pages 159–170. ACM, 2001.

[15] P. Lienhardt. N–dimensional Generalized Combina-
torial Maps and Cellular Quasi–Manifolds. Journal of
Computational Geometry & Applications, 4:275–324,
1994.

[16] H. Lopes. Algorithm to build and unbuild 2 and
3 dimensional manifolds. PhD thesis, Department of
Mathematics, PUC–Rio, 1996.

[17] H. Lopes and G. Tavares. Structural operators
for modeling 3–manifolds. In C. Hoffman and
W. Bronsvort, editors, Solid Modeling and Applications,
pages 10–18. ACM, 1997.

[18] H. Lopes, G. Nonato, S. Pesco and G. Tavares. Deal-
ing with topological singularities in volumetric recon-
struction. In P.-J. Laurrent, P. Sablonière and L. Schu-
maker, editors, Curve and Surface Design, pages 229–
238, Saint Malo, 2000. Vanderbilt University Press.

[19] M. Mäntylä. An Introduction to Solid Modeling. Com-
puter Science Press, Rockville, 1988.

[20] G. Nonato, R. Minghim, M. C. F. de Oliveira and
G. Tavares. A Novel Approach for Delaunay 3D Recon-
struction with a comparative analysis in the Light of Ap-
plications. Computer Graphics Forum, 20(2):161–174,
2001.

[21] G. Nonato, A. Castelo, R. Minghim and H. Hideraldo.
Topological tetrahedron characterization with applica-
tion in volume reconstruction. Journal of Shape Mod-
eling, 11(2), 2005.

[22] A. Paoluzzi, F. Bernardini, C. Cattani and V. Ferrucci.
Dimension–independent modeling with simplicial com-
plexes. Transactions on Graphics, 12(1):56–102, 1993.

[23] S. Pesco, H. Lopes and G. Tavares. A Stratification
Approach for Modeling 2–cell complexes. Computers
& Graphics, 28(2):235–247, 2004.

[24] J. Rossignac and M. A. O’Connor. SGC : A Di-
mension Independent Model for Pointsets with Internal
Structures and Incomplete Boundaries. In J. U. Turner,
M. J. Wozny and K. Preiss, editors, Geometric Model-
ing for Product Engineering, pages 145–180. Elsevier,
1990.

[25] J. Rossignac, A. Safonova and A. Szymczak. 3D
Compression Made Simple: Edgebreaker on a Corner–
Table. In Shape Modeling International, pages 278–283.
IEEE, 2001.

[26] K. J. Weiler. Topological Structures for Geometric
Modeling. PhD thesis, Rensselaer Polytechnic Institute,
New York, USA, 1986.

[27] S. T. Wu. A new combinatorial model for boundary
representation. Computers & Graphics, 13(4):477–486,
1989.

[28] S. T. Wu. Non–manifold data models: implementation
issue. In MICAD, Computer Graphcis and Computer
Aided Technologies, pages 37–56, 1992.

[29] Y. Yamaguchi and F. Kimura. Non–Manifold Topol-
ogy Based on Coupling Entities. Computers & Graph-
ics, 15(1):42–50, 1995.

The corresponding work was published in the proceedings of the Sibgrapi 2005, IEEE Press, 2005.

http://scv.bu.edu/SCV/ebrisson/ebrisson.html
http://www-2.cs.cmu.edu/afs/cs/user/glmiller/public/computational-geometry/3D-Comp-Geo/RelatedWork/brissonSOCG.pdf
http://www-2.cs.cmu.edu/afs/cs/user/glmiller/public/computational-geometry/3D-Comp-Geo/RelatedWork/brissonSOCG.pdf
http://www9.informatik.uni-erlangen.de/Persons/Campagna/
http://www-i8.informatik.rwth-aachen.de/
http://www.mpi-sb.mpg.de/~hpseidel/
http://www.acm.org/jgt/papers/CampagnaKobbeltSeidel98/
http://www.acm.org/jgt/papers/CampagnaKobbeltSeidel98/
http://www.icmc.sc.usp.br/~castelo/
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://bookstore.spie.org/index.cfm?fuseaction=DetailPaper&ProductId=131753
http://bookstore.spie.org/index.cfm?fuseaction=DetailPaper&ProductId=131753
http://w3.impa.br/~roma/
http://w3.impa.br/~pcezar/
http://www.tecgraf.puc-rio.br/~lfm/
http://dx.doi.org/10.1016/S0010-4485(96)00066-8
http://dx.doi.org/10.1016/S0010-4485(96)00066-8
http://www.cs.princeton.edu/~dpd/
http://scis.nova.edu/~mjl/
http://www.cs.princeton.edu/~dpd/Papers/DobkinLaszlo.pdf
http://www.cs.princeton.edu/~dpd/Papers/DobkinLaszlo.pdf
http://www.disi.unige.it/person/DeflorianiL/
http://www.cs.umd.edu/~huiannie/
http://portal.acm.org/citation.cfm?id=882380
http://portal.acm.org/citation.cfm?id=882380
http://geometry.stanford.edu/member/guibas/
http://www.dcc.unicamp.br/~stolfi/
http://portal.acm.org/citation.cfm?id=808751
http://portal.acm.org/citation.cfm?id=808751
http://portal.acm.org/citation.cfm?id=808751
http://www.ri.cmu.edu/people/prinz_fritz.html
http://www.elsevier.com/wps/find/bookdescription.librarians/502207/description
http://www.elsevier.com/wps/find/bookdescription.librarians/502207/description
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://w3.impa.br/~lvelho/
http://mae.snu.ac.kr
http://www.cad.snu.ac.kr/cadal/4_Member_%20image/content_Membe3.htm
http://portal.acm.org/citation.cfm?id=376976
http://portal.acm.org/citation.cfm?id=376976
http://portal.acm.org/citation.cfm?id=376976
http://sic.sp2mi.univ-poitiers.fr/membres/index.php?username=lienhard
http://wotan.liu.edu/docis/dbl/ijcgea/1994_4_3_275_NGCMAC.htm
http://wotan.liu.edu/docis/dbl/ijcgea/1994_4_3_275_NGCMAC.htm
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://portal.acm.org/citation.cfm?doid=267734.267745
http://portal.acm.org/citation.cfm?doid=267734.267745
http://www.mat.puc-rio.br/~lopes
http://www.icmc.sc.usp.br/~gnonato/
http://www.mat.puc-rio.br/~sinesio
http://www.mat.puc-rio.br/~tavares
http://perso.enst.fr/~afa/saint-malo/program.html
http://perso.enst.fr/~afa/saint-malo/program.html
http://perso.enst.fr/~afa/saint-malo/program.html
http://www.cs.hut.fi/~mam/
ttp://portal.acm.org/citation.cfm?id=39278
http://www.icmc.sc.usp.br/~gnonato/
http://www.lcad.icmc.usp.br/~rosane/
http://www.icmc.usp.br/~cristina/
http://www.mat.puc-rio.br/~tavares
http://www.eg.org/EG/CGF/volume20/issue2/cgf486.html
http://www.eg.org/EG/CGF/volume20/issue2/cgf486.html
http://www.eg.org/EG/CGF/volume20/issue2/cgf486.html
http://www.icmc.sc.usp.br/~gnonato/
http://www.icmc.sc.usp.br/~castelo/
http://www.lcad.icmc.usp.br/~rosane/
http://www.icmc.sc.usp.br/admin/sce/reldpto2001/orientacao_de_alunos_e_participacoes_em_comissoes_julgadoras.htm
http://paoluzzi.dia.uniroma3.it/
http://www.research.ibm.com/people/f/fausto/
http://www.mat.uniroma1.it/people/cattani/cattani.html
http://paoluzzi.dia.uniroma3.it/cadgroup/cad0.html
http://portal.acm.org/citation.cfm?id=169728.169719
http://portal.acm.org/citation.cfm?id=169728.169719
http://www.mat.puc-rio.br/~sinesio
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://dx.doi.org/10.1016/j.cag.2003.12.009
http://dx.doi.org/10.1016/j.cag.2003.12.009
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.gvu.gatech.edu/~jarek/papers/SGC.pdf
http://www.gvu.gatech.edu/~jarek/papers/SGC.pdf
http://www.gvu.gatech.edu/~jarek/papers/SGC.pdf
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www-2.cs.cmu.edu/~alla/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.gvu.gatech.edu/~jarek/papers/smi.pdf
http://www.gvu.gatech.edu/~jarek/papers/smi.pdf
http://www.gvu.gatech.edu/~jarek/papers/smi.pdf
http://www.webscopeinc.com/about/team.html
http://sunzi1.lib.hku.hk/ER/detail/2962377
http://sunzi1.lib.hku.hk/ER/detail/2962377
http://www.dca.fee.unicamp.br/~ting/
http://portal.acm.org/citation.cfm?id=102377.111777
http://portal.acm.org/citation.cfm?id=102377.111777
http://www.dca.fee.unicamp.br/~ting/
http://www.graco.c.u-tokyo.ac.jp/member.html
http://www.cim.pe.u-tokyo.ac.jp/~kimura/index.html
http://portal.acm.org/citation.cfm?id=616034.617949
http://portal.acm.org/citation.cfm?id=616034.617949
http://www.natalnet.br/sibgrapi/

	Introduction
	Combinatorial structures for geometrical objects
	Previous and related works
	The CHF Data Structure
	Level 0: representing tetrahedrons by the Vertex container
	Level 1: representing the adjacencies among tetrahedrons through the Opposite container
	Level 2: representing the cells explicitly
	Level 3: representing the boundary through a Compact Half--Edge

	Operations on the CHF for each level
	R0*: the vertex star
	R1*: the edge star
	R2*: the face star
	R3*: tetrahedron incidence and adjacency

	Memory Comparisons
	Conclusions and Future Works
	Bibliography

