
ORIGINAL PAPER

V. Surazhsky Æ C. Gotsman

High quality compatible triangulations

Received: 18 September 2002 / Accepted: 3 October 2003 / Published online: 28 April 2004
� Springer-Verlag London Limited 2004

Abstract Compatible meshes are isomorphic meshings
of the interiors of two polygons having a correspon-
dence between their vertices. Compatible meshing may
be used for constructing sweeps, suitable for finite ele-
ment analysis, between two base polygons. They may
also be used for meshing a given sequence of polygons
forming a sweep. We present a method to compute
compatible triangulations of planar polygons, some-
times requiring extra (Steiner) vertices. Experimental
results show that for typical real-life inputs, the number
of Steiner vertices introduced is very small. However,
having a small number of Steiner vertices, these com-
patible triangulations are usually not of high quality, i.e.
they do not have well-shaped triangles. We show how to
increase the quality of these triangulations by adding
Steiner vertices in a compatible manner, using reme-
shing and mesh smoothing techniques. The total scheme
results in high-quality compatible meshes with a small
number of triangles. These meshes may then be mor-
phed to obtain the intermediate triangulated sections of
a sweep, if needed.

Keywords Compatible triangulations Æ Low
discrepancy point sets Æ Morphing Æ Remeshing Æ
Sweep meshes

1 Introduction

In CAE, swept volumes, sometimes called two and one
half dimensional volumes, are frequently constructed
between two base polygons given with a correspondence
between their vertices. To discretize a swept volume for
finite element analysis, it is necessary to mesh the inte-
riors of the sequence of polygonal cross-sections forming
the sweep, usually introducing interior (Steiner) vertices,
in a manner such that the mesh is isomorphic, valid and
well-shaped within all the polygons. This mesh is said to
be compatible with all the polygons. See Fig. 1 for an
example. The result is a set of prisms defining the sweep,
whose edges are the so-called ‘‘ribs’’ of the sweep [1].

In the case where only the two base polygons of the
sweep are given, it is possible to automatically generate
the intermediate polygons by a process known as
morphing. The morphing problem, in general, is to
smoothly transform one given polygon, the source, into
another, the target, over time. Constructing the sweep
volume may be considered a morphing problem by
thinking of the sweep axis as the time axis of the morph.
Morphing has been the subject of much research over
recent years and has wide practical use in areas such as
computer graphics, animation and modelling.

The naive approach to the morphing problem is to
decide that the polygon vertex trajectories are straight
lines, where every feature of the shape travels with a
constant velocity along the line towards the corre-
sponding feature of the target during the morph. How-
ever, this simple approach can lead to undesirable
results. The intermediate shapes can vanish, i.e., degen-
erate into a single point, or self-intersect even though the
source and target are simple. Even if the linear morph is
free of self-intersections and degeneracies, its interme-
diate shapes may have areas or distances between fea-
tures far from those of the source and target, resulting in
a ‘‘misbehaved’’ morph. See the top row of Fig. 2. Most
of the research on solving the trajectory problem for
morphing concentrates on trying to eliminate self-

V. Surazhsky (&)
Department of Informatics,
Oslo University,
Oslo, Norway
E-mail: vitus@ifi.uio.no

C. Gotsman
Center for Graphics and Geometric Computing,
Department of Computer Science,
Technion—Israel Institute of Technology,
32000 Haifa, Israel

Engineering with Computers (2004) 20: 147–156
DOI 10.1007/s00366-004-0282-6

intersections and preserving the geometrical properties
of the intermediate shapes. Numerous existing methods
achieve good results for many inputs, (e.g. [2,3,4]), yet,
only the methods that use compatible triangulations are
able to guarantee any properties of the resulting morph.

In order to perform finite element analysis on a swept
volume—a sequence of corresponding simple polygonal
cross sections—it is necessary to mesh the polygon
interiors in a compatible manner. In this work we
concentrate on compatible triangulations. Compatible
meshing is not always possible unless Steiner vertices are
introduced into the interior of the polygons. The main
challenge is then to minimize the number of Steiner
vertices to the least needed to achieve compatibility.
Unfortunately, this can be as much as W(n2), where n is
the number of vertices of the polygons. In the first work

on this problem, Aronov et al. [5] provided two con-
structions that result in quite a large number of Steiner
vertices. In their work on polygon morphing, Gotsman
and Surazhsky [6] improved Aronov et al.’s so-called
‘‘spiderweb’’ method to significantly reduce the number
of Steiner vertices required. Kranakis and Urrutia [7]
presented a completely different method in which the
number of Steiner vertices introduced depends on the
number of reflex vertices of the two polygons. Gupta
and Wenger [8] described an algorithm that uses mini-
mal-link polylines in the polygon.

While compatible triangulations of polygons with a
very small number of Steiner vertices are definitely an
advantage from a complexity point-of-view, it appears
that these triangulations are naturally not well-shaped.
They tend to contain long skinny triangles that cannot
be adjusted to improve the triangle shape significantly.
Hence a major challenge in our application is to intro-
duce as small a number of Steiner vertices as possible,
yet obtain two triangulations with decent quality and
maintain compatibility of the triangulations throughout
the process. We call this process compatible remeshing.
This was attempted in the work of Alexa et al. [9], who
start off with compatible triangulations of polygons and
introduce Steiner vertices in order to improve the quality
of the triangulation. They, however, start from a large
number of Steiner vertices and thereafter increase this
number significantly, in order to achieve triangulation of
good quality. This results in compatible triangulations
that are overly complex.

The main contribution of this paper is a method to
compatibly triangulate two planar polygons using Stei-
ner vertices. Our experiments show that for typical real-
life inputs the number of Steiner points introduced is
very small. The drawback of our method is that we
cannot prove at this time reasonable bounds on the time
complexity of the algorithm and on the number of
Steiner vertices. Another important contribution of this
paper is a new area-based remeshing technique, which
dramatically improves the spatial distribution of the
vertices over the total mesh area. In this paper we also
show how to modify and combine several remeshing
techniques to produce compatible triangulations of high
quality.

Fig. 1a–e The concept of compatible triangulations of correspond-
ing polygons. Vertex correspondence is denoted by digits. a, bNon-
compatible triangulation; c, d compatible triangulation; e the sweep
with bases (c) and (d)

Fig. 2 Morphing of two corresponding polygons. Leftmost poly-
gon is source and rightmost is target. Note that the correspondence
implies some rotation during the morph. Top row: the linear morph
resulting in self-intersecting intermediate polygons. Bottom row: the
morph of the polygons generated by embedding the source and
target into compatible triangulations and applying the method of
[12] or [13] guarantees that the intermediate polygons are also
simple

148

2 Sweep generation

Meshing for sweep generation has been attempted before
by a variety of authors in the meshing community (e.g.
[1,10,11]). Their basic approach is to generate amesh for a
subset of the cross-section polygons, usually just one of
the sweepbases, and then project thismesh somehowonto
the other polygons. Beyond the fact that this certainly
does not guarantee that the result will be a valid triangu-
lation, there are also no guarantees for the quality of the
triangulation even if it were valid. Our solution, taking
into account both sweep bases (and theoretically all
intermediate polygons), solves all these problems.

If only the base polygons of the sweep are given,
the intermediate polygons, with their corresponding
compatible triangulations, may be generated using the
morphing methods of Gotsman and Surazhsky [6]. This
is done by reducing the problem to that of morphing
compatible planar triangulations with a common convex
boundary, in which the polygon is embedded, as de-
scribed by Floater and Gotsman [12] and Surazhsky and
Gotsman [13]. Two corresponding point sets admit a
compatible triangulation if there exists a triangulation of
one point set which, when induced on the second point
set by the correspondence, is a legal triangulation there
too. The morphing method of Floater and Gotsman [12]
is based on the convex representation of triangulations
using barycentric coordinates, first introduced by Tutte
[14] for graph drawing purposes and later generalized by
Floater [15] for parameterization of 3D meshes. This
avoids many of the problems associated with morphing
and basically guarantees that the triangulation remains
valid (i.e. compatible with the source and target)
throughout the morph.

To embed the two polygons in a triangulation, first
compatibly triangulate the polygon interiors. Then cir-
cumscribe the two polygons in a common convex
enclosure and compatibly triangulate the two resulting
annuli between the polygons and the enclosure [16]
(possibly requiring Steiner vertices). This results in two
compatible triangulations with a common convex
boundary, in which the polygons are embedded.
Morphing these triangulations using the methods of [12]
or [13] will then result in a valid (compatible) morph of
the two polygons. See the bottom row of Fig. 2.

3 Compatible triangulations

3.1 Previous work

As already stated,Kranakis andUrrutia [7] presented two
differentmethods to compatibly triangulate two polygons
in which the number of Steiner vertices introduced
depends on the number of the polygons’ reflex vertices.
The first algorithm produces a rather large number,
O((k+l)2), of Steiner vertices, where k and l are the
number of the two polygons’ reflex vertices respectively.

The second algorithm introduces, at most, O(kl) Steiner
vertices, but its drawback is that it may add Steiner ver-
tices on the polygon boundaries, which some applications
do not allow. Furthermore, enlarging the boundarymight
prevent this algorithm from being used as a black box in a
recursive manner, as the algorithm might not terminate.

Gupta and Wenger [8] described an algorithm, in
theory the best so far, which constructs the compatible
triangulation based on minimum link paths inside the
polygons P and Q. A ‘‘minimum’’ link path is a polyline
of the minimal number of straight-line segments con-
necting two given polygon vertices and lying entirely in
the polygon interior. The idea behind their algorithm is
the following. First, compute an arbitrary triangulation
Tpof P. Using edges of Tp it is possible to partition
P into sub-polygons such that the number of links in
minimum link paths in those sub-polygons is no more
than a small constant (e.g. 5). Then the corresponding
partition of Q is constructed using non-intersecting
minimum-link polylines. The vertices of these polylines
are the Steiner vertices of the triangulations. These
corresponding sub-polygons are then compatibly trian-
gulated, usually requiring a relatively small number of
Steiner vertices owing to the properties of the partition.

The resulting compatible triangulations have O(Mlog
n+nlog2n) triangles, where M is the number of triangles
in the optimal solution. Theoretically, this is good,
except that the constant factor is quite large (approxi-
mately 40, according to the authors), so it is not very
practical for smaller inputs. Moreover, the complexity of
compatible triangulations is measured in the number of
triangles instead of the number of Steiner vertices. Thus,
for example, if the optimal compatible triangulations
have no Steiner vertices or only a small (constant)
number of Steiner vertices, even a constant factor of the
number of triangles of the optimal triangulations will
allow adding O(n) Steiner vertices. This means that the
algorithm will result in a large number of Steiner vertices
for most real-life polygons, for which several Steiner
vertices are usually sufficient.

Another drawback of this algorithm is that it is not
symmetric in P and Q. The choice of the triangulation
Tp of P strongly influences the resulting compatible tri-
angulations and the number of Steiner vertices. From a
practical point of view, the algorithm involves imple-
menting many state-of-the-art computational geometry
algorithms developed over the last two decades. As a
consequence, an implementation of the algorithm is
currently not available and thus, it is impossible to
compare this algorithm with other algorithms generating
compatible triangulations.

3.2 Our algorithm

Our algorithm is similar in spirit to that of Gupta
and Wenger [8], namely, it is based on the idea of
partitioning polygons using minimum-link polylines.
However, our algorithm is much simpler. Given two

149

polygons P and Q with a correspondence between their
vertices, we find a pair of vertices u and v with a mini-
mal-link polyline between them in one of the polygons
and a corresponding polyline in the second. After the
shorter polyline is refined to the same number of vertices
as the longer one, the two polylines compatibly partition
both of the input polygons into two sub-polygons. The
vertices of these polygons are the Steiner vertices. We
then apply the algorithm recursively on these two
sub-polygons. The process terminates when the input
polygons contain only three vertices, namely, the poly-
gons have become triangles.

We still need to show how to find a pair of vertices u
and v that minimizes the number of links in the parti-
tioning polylines. To achieve this, we employ the method
of Suri [17], who showed how to find the minimum-link
path between two given vertices in a simple polygon in
O(n) time, where n is the number of polygon vertices. In
a subsequent work, Suri [18] showed how a simple
polygon can be preprocessed in O(n) time in order to
query the number of links of the minimum-link path
between two given vertices of the polygon in O(log n)
time. Thus, we can query all possible vertex pairs of the
polygon in O(n2log n) time using this algorithm. We
believe that the time complexity for finding the optimal
vertex pair(s) of the polygon(s) can be further improved
to O(nlog n) by exploiting the existing preprocessed data
structure for the queries, instead of using the query
procedure for a specific pair as a black box.

Hence, in this manner we may determine which pair
is best to use and then employ the first algorithm to
actually compute the paths. Accordingly, in order to find
the best path for both polygons we query the two
polygons for the minimum-link distance and choose the
pair that has the best (minimal) value of the maximum
between two distances. Namely, we choose the pair (u,v)
which satisfies:

u; vð Þ ¼ arg min
u;v2P

max distP u; vð Þ; distQ u; vð Þ
� �

ð1Þ

In practice, this pair is not unique. Therefore, we
choose the pair that will partition the polygons into sub-
polygons that are as balanced as possible, in order to
reduce the overall algorithm complexity. This can be
easily done by comparing the indices of the polygon
vertices. More formally, if the polygon vertices are
v1,...vn and nis the size of the polygon, we look for:

vi; vj
� �

¼ arg max
vi;vj2P ;j

min j� i; nþ i� jf g ð2Þ

Note that if it is possible to compatibly triangulate
the two polygons without any Steiner vertices, our
algorithm will do so in most cases, as opposed to the
other algorithms. Since this is the case for many inputs,
our algorithm has a significant advantage. However,
because of its greedy nature, our algorithm in some rare
cases may introduce a few Steiner vertices, when com-
patible triangulations without Steiner vertices do exist.

We must still show that the algorithm terminates,
because when the polygon P is partitioned into two sub-
polygons P1and P2, theoretically the size of P1or P2 (or
both) can be identical to that of P and, if this repeats, the
algorithm can run indefinitely. In general, to prevent
such cases we should check that the size of the parti-
tioned polygon stays the same as the size of P only once
during the run of the algorithm. If the size stays the same
after two iterations, the algorithm should backtrack and
choose another vertex pair for the partition polylines.
This, theoretically, may result in exponential time com-
plexity. However, in practice (we have tested the algo-
rithm over numerous, very complex inputs), even the
case when the size of the polygons repeats itself twice
does not occur. Thus, although we cannot prove it at
this time, we believe that for most real-life inputs
backtracking is not required and the algorithm com-
plexity is polynomial. By analyzing the algorithm com-
plexity for this case, we achieve a total time complexity
of O(n4log n) for the worst case when W(n2) Steiner
vertices have been introduced. When no Steiner vertices
are needed, the algorithm complexity is O(n3log n).
However, on the average, the recursive partitioning of
the polygon is balanced because of Eq. 2. Thus, the
average complexity will be O(n3log2n) and O(n2log2n) for
W(n2) and zero Steiner vertices respectively.

See Fig. 3 for an illustration of the various stages of
the compatible triangulation algorithm.

Fig. 3 Compatible triangulations of two polygons (one on each
row), whose vertex correspondence is denoted by digits. The light
grey region denotes the current polygon during the recursion. The
grey regions are regions already triangulated. Thick segments are
minimal-link polylines, which recursively partition the polygons

150

4 Mesh improvement

Our compatible triangulation algorithm generates a small
number of Steiner vertices, at locations which have not
necessarily been optimized for mesh quality. It is possible
to improve these meshes by smoothing them (moving the
vertices), or remeshing them (changing the connectivity).
In this section we describe methods for these two opera-
tions, which we believe are also of independent interest.

4.1 Weighted angle-based smoothing

Zhou and Shimada [19] presented an effective and easy-
to-implement angle-based mesh smoothing scheme.
They show that the quality of the mesh after angle-based
smoothing is much better than after Laplacian
smoothing. Moreover, the chance that the scheme will
produce inverted (invalid) faces is much less than that in
Laplacian smoothing. Unfortunately, this is true mostly
for meshes whose vertices have degrees close to the
average degree, namely, the mesh connectivity is close to
regular. When the mesh has more irregular connectivity,
the scheme may fail. In applications involving meshes
with very distorted (long and skinny) triangles, a more
robust smoothing scheme is critical. We propose a very
simple improvement to the original angle-smoothing
scheme, which significantly reduces the chances of in-
verted triangles and improves the quality of the resulting
mesh. Furthermore, it has almost the same computa-
tional cost per iteration and a lower total computational
cost due to better convergence in practice.

The original scheme attempts to make each pair of
adjacent angles equal. Given a vertex c and its neigh-
bours p1,...,pk, where k is the vertex degree, we want to

move c in order to improve the angles of the triangles
incident on c. Let ai be the angle adjacent to pi in the
polygon p1,...,pk. We define ci to be the point lying on the
bisector of ai such that ||pi–ci||=||pi–c||, namely, the edge
(pi,c) is rotated around pi to coincide with the bisector of
ai (see Fig. 4). The new position of c is defined as the
average of all ci for all the neighbours, namely:

cnew ¼
1

k

Xk

i¼1
ci ð3Þ

We improve this scheme by introducing weights into
Eq. 3. For a small angle ai it is difficult to guarantee that
the resulting cnew will be placed relatively close to the
bisector of ai. Since ai is itself small, a large deviation of
cnew from the bisector of ai will create angles not only
much smaller than ai/2 but even negative (invalid) ones.
Thus, the resulting mesh will have poor quality. To
prevent this, we modify Eq. 3 in the following way:

cnew ¼
1

Pk
i¼1 1=a

2
i

�
Xk

i¼1

1

a2i
� ci ð4Þ

Namely, the ci for small angles aiwill carrymoreweight
than for large angles. To demonstrate the robustness
of our improvement, see Fig. 5, Fig. 6 and Table 1.

Despite the superior results of our weighted angle-
based scheme, it still cannot guarantee that the new
vertex position forms a valid triangulation. Similarly,
the convergence of our scheme as well as the original
scheme cannot be guaranteed in cases when the given
mesh has invalid (inverted) triangles or when the mesh
boundary is far from convex. In these cases, both
schemes should be applied in a ‘‘smart’’ manner, namely,
verifying that the triangles are still valid, or that the
minimum angle of the adjacent triangles has been im-
proved, before a vertex is moved. In some rare cases,
both schemes may fail to improve the minimum angle
when even Laplacian smoothing may improve it. A
‘‘combined’’ scheme that applies Laplacian smoothing
when the angle-based method fails has extremely fast
convergence and achieves the best of both worlds.

4.2 Area-based remeshing

The idea to use triangle areas as one of the criteria for
triangulation optimization is not new. This usually

Fig. 4 Weighted angle-based smoothing: ciis obtained by rotation
of c around pi to coincide with the bisector of ai

Fig. 5 a–c Comparison of
smoothing methods.
a Laplacian; b angle-based [19];
cweighted angle-based

151

means trying to form triangles with as uniform an area
as possible. However, triangle areas alone cannot be
used to obtain meshes of reasonable quality. The reason
is that when only the areas are optimized, without taking
into account the angles, the resulting mesh can (and in
most cases will) have many long and skinny triangles.
Only when a mesh has an almost regular connectivity
may uniform triangle areas imply well-shaped triangles.
Nevertheless, a mesh containing triangles with areas
close to equal has one important property: the spatial
distribution of the vertices over the total mesh area is
very uniform. If we eliminate the edges of the mesh
leaving only the vertices, we obtain quite a uniform
point distribution, as may be seen in Fig. 7b. In the
combinatorial literature (e.g. [20]) this point set is said to
have low discrepancy. This usually means that given an
arbitrary rectangle of area A containing kpoints of the
total n points, the ratio k/nis very close to A/S, when S is
the total area encompassed by the point set.

We propose a remeshing scheme that utilizes this.
Given a mesh, we alternate between the area equali-
zation procedure and a series of angle-improving
(Delaunay) edge-flips. Edge-flips are performed until
improvement is no longer possible. This process results
in a mesh that is as close to regular as the ratio between
the number of the boundary and interior vertices, to-
gether with the geometry of the boundary, allows. It is
far superior to the results from an analogous scheme
involving angle-based smoothing instead of area equal-
ization. Figure 7c and d compare the two schemes.

To equalize the areas of the mesh triangles, a number
of iterations are performed over the mesh. Each iteration
moves all the mesh interior vertices sequentially to im-
prove the areas locally. Let p=(x,y) be an interior mesh
vertex and p1,...,pk its neighbours. (xi,yi) are the coor-
dinates of pi. Denote by Ai(x,y) the area of triangle
(pi,pi+1,p). Note that i+1 is modulo k:

Ai x; yð Þ ¼ 1

2

xi yi 1
xiþ1 yiþ1 1

x y 1

�����

�����
ð5Þ

Let A be the area of the polygon (p1,...,pk), which
may be computed as

Pk
i¼1 Aið0; 0Þ. In order to find the

position of p that equalizes the areas of the adjacent
triangles as much as possible, we minimize the
following function:

x; yð Þ ¼ argmin
x;yð Þ

Xk

i¼1
Ai x; yð Þ � A

k

� �2

ð6Þ

This reduces to solving a system of two linear equa-
tions in x and y. The computational cost of this unique
solution is close to that of traditional Laplacian
smoothing.

It turns out that a valid mesh can be obtained by
equalizing the areas of the mesh triangles, even in cases

Fig. 6a–d Comparison between
smoothing methods. a The
original mesh; b Laplacian;
c angle-based [19]; d weighted
angle-based. See Table 1 for a
quantitative comparison

Table 1 Quantitative comparison between quality of triangulations
in Fig. 6. The right three columns correspond to the relative
number of faces whose minimal angle is less than a specific value

Scheme Min — (�) <10� (%) <15� (%) <20� (%)

Laplacian 0.17 2.57 5.31 8.71
Angle-based 4.62 0.58 1.66 4.56
Weighted angle-based 17.2 0.00 0.00 1.82

Fig. 7a–h Area-based remeshing. a Triangle areas of the mesh
from Fig. 2 are equalized; b discarding the edges of (a) reveals a
uniform vertex distribution; c mesh obtained by alternation of
angle-based smoothing and weighted angle-improving edge-flips;
d mesh obtained by alternation of area equalization and edge-
flips; e a polygon with random distribution of interior vertices;
f Laplacian smoothing of (e); g angle-based smoothing of (e);
h area equalization of (e)

152

such as a highly non-convex boundary. This contrasts
with other methods, including the smart Laplacian [21]
and both angle-based smoothing methods, which fail (see
Fig. 7e–h).

5 Compatible remeshing

We now show how to combine the two methods intro-
duced in Sect. 3, along with a refinement procedure
(introducing new interior Steiner vertices), to produce
high-quality compatible triangulations of two given
polygons with a correspondence between their vertices.
Compatible triangulations created using the method
introduced in Sect. 2.2 usually have a small number of
Steiner vertices, but their quality is unlikely to be
acceptable. Therefore, remeshing techniques must be
applied to improve the quality. The main difficulty with
using existing remeshing techniques is that the reme-
shing criteria that are suitable for a single mesh may fail
when applied to two triangulations in parallel.

Our compatible remeshing technique is similar to that
of Alexa et al. [9]. The outline of the algorithm appears
in Fig. 9. We use a series of simultaneous edge-flips,
mesh smoothing and mesh refinement by edge splitting.
The parameter ksplitdictates the rate at which new Stei-
ner vertices are introduced. In addition, we control
vertex distribution by applying a single iteration of the
area equalization technique described in Sect. 3.2 after
ksplit refinement operations.

While the criteria for operations in the algorithm in
Fig. 9 are rather straightforward for a single mesh,
applying them simultaneously on two triangulations
requires more precise control. The corresponding prop-
erties of triangles within the two meshes may often
contradict each other. If care is not exercised, the pro-
cess of compatible remeshing may not lead to overall

improvement in quality of both meshes. As a result a
large number of vertices can be added to the meshes
without any gain in quality.

The following empirical criteria, based on their ana-
log for a single mesh, have produced the best results on
numerous examples:

– Edge-flips: Similarly to when constructing Delaunay
triangulations, the edge is flipped only if the minimum
angle between the angles of both meshes of the tri-
angles adjacent to the edge is improved.

– Angle-based smoothing: Both meshes are indepen-
dently smoothed, applying the technique described in
Sect. 3.1 in the ‘‘smart’’ manner, namely, preserving
the validity of both meshes.

– Edge-split refinement: Our criterion for choosing an
edge e to be split is based both on the edge length
denoted by |e| and the minimal of the four adjacent
triangle angles denoted byamin(e). The edge with the
maximal ‘‘normalized’’ length in both triangulations
(T0 and T1) is refined:

e ¼ arg max
e2T0[T1

ej j
amin eð Þð Þ2

ð7Þ

Note that the refinement is performed simultaneously on
both triangulations in order to preserve the compati-
bility. The criterion defined in Eq. 7 produces better
experimental results than the aspect ratio-based criterion
of [22] or distortion metrics criteria of [23] and [21]. The
number of edges to be split in each iteration (ksplit)
determines the trade-off between the number of Steiner
vertices together with mesh quality and the algorithm
running time.

– Area equalization: As noted in Sect. 3.2, area equal-
ization improves the spatial vertex distribution. Be-
cause of the refinement operations, some regions of
the mesh may have an excess in vertex density. To
smooth this out, we apply a single iteration of area
equalization (step 4). This area equalization can pre-
vent a further increase in the number of Steiner ver-
tices at later stages, but at the price of slowing down
the algorithm. See Fig. 8. On the one hand, the
refinement operations change the meshes locally and
thus step 1 (or 3) of the algorithm (Fig. 9) converges
quickly. On the other hand, the area equalization af-
fects the mesh globally and thus step 5 takes much
longer to improve the mesh globally. If a faster

Fig. 8a–f High-quality compatible triangulation of letters U and S.
a–b Optimal compatible triangulations generated by the algorithm
of Sect. 2.2. No Steiner vertices are required, but the minimum
angle of U is 10.8� and of S is 3.4�. c–d Compatible triangulations
generated by the algorithm of Sect. 4, without area equalization.
The number of Steiner vertices is 27 and the minimum angles are
15.4� and 15.7� respectively. e–f Compatible triangulations gener-
ated using area equalization. The number of Steiner vertices is 7,
the minimum angles are 17.1� and 17.6�. The time required to
generate (c), (d) and (e), (f) was similar

153

algorithm is required, step 4 can be applied more
rarely, for example every 2–20 iterations, or can only
be applied in regions affected by refinement opera-
tions of step 2.

6 Experimental results

We have implemented all the algorithms described in
this paper and applied them to numerous example
inputs. Our inputs consist of two planar polygons, which
serve as the source and target (top and bottom) cross-
sections of the sweep. These two are compatibly trian-
gulated with sufficient mesh quality (using the algorithm
in Fig. 9) and then morphed to create intermediate
compatibly triangulated polygons. Especially challeng-
ing inputs are when the source and target are signifi-
cantly different. Figures 10, 11 and 12 show some
sample input pairs, the compatible triangulations (usu-
ally of low quality) with a small number of Steiner
vertices generated by the methods of Sect. 2.2, the re-
meshed high quality compatible triangulations gener-
ated by the methods of Sect. 4 and the intermediate

Fig. 9 Compatible remeshing algorithm

Fig. 10a, b 3D sweep
generation. a Optimal (no
Steiner vertices) compatible
triangulation of source and
target polygons. Top row:
high-quality compatible
triangulation and intermediates
generated by morphing
procedure. Minimum angles of
the source and target
triangulations are 27.2� and
25.9�, respectively. b 3D
visualization of sweeps from a
number of different angles

Fig. 11a, b 3D sweep
generation. a Compatible
triangulation of source and
target polygons with three
Steiner vertices. Top row: high
quality compatible
triangulation and intermediates
generated by morphing
procedure. Minimum angles of
the source and target
triangulations are 15.9� and
15.3�, respectively. b 3D
visualization of sweeps from a
number of different angles

154

triangulated cross-sections generated by applying
morphing techniques. The latter are shown both as a
sequence of 2D cross-sections and as a sliced 3D sweep.
For each example, we specify the statistics of the source
and target meshes. We found that the angles of the
intermediate meshes generated using the techniques of
Surazhsky and Gotsman [6,13] were always in between
those two, so the mesh quality is preserved throughout
the morph.

In terms of runtimes, all these examples required no
more than a second or so to run on a Athlon 1.2 GHz
PC with 256 MB RAM. Larger inputs, which ultimately
involved hundreds of (interior and exterior) Steiner
vertices for the mesh and the morph, required no more
than 5 s on the same machine.

7 Discussion and conclusion

We have shown how to generate compatibly triangu-
lated sweeps with quality adequate for finite-element
analysis. Our method is fast, robust and, as opposed to
previously published methods, is guaranteed to always
produce a valid result.

Several components of our algorithm, in particular
the weighted angle-based smoothing procedure, may be
used in their own right in other meshing applications.

The method was designed primarily for parallel pla-
nar inputs, but can probably be extended easily to more
general cases. A straightforward extension is to gener-
alize all presented algorithms to a sequence of n>2 input
polygons. Another extension is to treat a set of source
and target polygons, forming so-called ‘‘multi-sweeps’’
or ‘‘barrels’’ [10]. Compatible hexahedral meshes is an-
other challenging direction for future work.

Acknowledgements The work was carried out while the authors
were at Technion—Israel Institute of Technology. Thanks to
Tatiana Surazhsky and Michael Floater for their contribution to
the area-based remeshing method, to Alla Sheffer for helpful
discussions on sweeps and to Gill Barequet for helpful discussions

on the implementation of minimum-link path algorithms. This
work was partially supported by the Technion Computer Science
Software Technology Laboratory (STL) and the Technion Fund
for Promotion of Research.

References

1. Staten ML, Canann SA, Owen SJ (1998) BMSweep: locating
interior nodes during sweeping. In: Proceedings of the 7th
International Meshing Roundtable, 26–28 October 1998,
Dearborn, MI, USA, pp 7–18

2. Shapira M, Rappoport A (1995) Shape blending using the star-
skeleton representation. IEEE Trans Comput Graphics Applic
15(2):44–51

3. Sederberg TW, Greenwood E (1992) A physically based ap-
proach to 2D shape blending. Comput Graphics (SIGGRAPH
‘92) 26:25–34

4. Sederberg TW, Gao P, Wang G, Mu H (1993) 2D shape
blending: an intrinsic solution to the vertex path problem.
Comput Graphics (SIGGRAPH ‘93) 27:15–18

5. Aronov B, Seidel R, Souvaine DL (1993) On compatible tri-
angulations of simple polygons. Comput Geom Theor Applic
3:27–35

6. Gotsman C, Surazhsky V (2001) Guaranteed intersection-free
polygon morphing. Comput Graphics 25:67–75

7. Kranakis E, Urrutia J (1999) Isomorphic triangulations with
small number of Steiner points. Int J Comput Geom Applic
9:171–180

8. Gupta H, Wenger R (1997) Constructing piecewise linear
homeomorphisms of simple polygons. J Algorithms 22:142–157

9. Alexa M, Cohen-Or D, Levin D (2000) As-rigid-as-possible
polygon morphing. In: Proceedings of SIGGRAPH 2000,
23–28 July 2000, New Orleans, LA, pp 157–164

10. Blacker T (1996) The Cooper tool. In: Proceedings of the 5th
International Meshing Roundtable, 10–11 October 1996,
Pittsburgh, PA, pp 13–19

11. Knupp PM (1998) Next generation sweep tool: a method for
generating all-hex meshes and two and one-half dimensional
geometries. In: Proceedings of the 7th International Meshing
Roundtable, 26–28 October 1998, Dearborn, MI, pp 505–514

12. Floater MS, Gotsman C (1999) How to morph tilings injec-
tively. Comput Appl Math 101:117–129

13. Surazhsky V, Gostman C (2001) Controllable morphing of
compatible planar triangulations. ACM Trans Graphics
20:203–231

14. Tutte WT (1963) How to draw a graph. Proc Lond Math Soc
13:743–768

15. Floater MS (1997) Parameterization and smooth approxima-
tion of surface triangulation. Comput Aided Geom Design
14:231–250

16. Babikov M, Souvaine DL, Wenger R (1997) Constructing
piecewise linear homeomorphisms of polygons with holes. In:
Proceedings of the 9th Canadian Conference on Computational
geometry, 11–14 August 1997, Kingston, Ontario, Canada,
pp 6–10

17. Suri S (1986) A linear time algorithm for minimum link paths
inside a simple polygon. Comput Vis Graph Image Process
35:99–110

18. Suri S (1990) On some link distance problems in a simple
polygon. IEEE J Robotics Automat 6:108–113

19. Zhou T, Shimada K (2000) An angle-based approach to two-
dimensional mesh smoothing. In: Proceedings of the 9th
International Meshing Roundtable, 2–5 October 2000, New
Orleans, LA, pp 373–384

20. Niederreiter H (1992) Random number generation and quasi-
Monte Carlo Methods. SIAM

21. Canann SA, Tristano JR, Staten ML (1998) An approach
to combined Laplacian and optimization-based smoothing
for triangular, quadrilateral, and quad dominant meshes.

Fig. 12 3D visualizations of sweeps between letters U and S using
compatible triangulations from Fig. 8e–f. The optimal compatible
triangulations of U and S appear in Fig. 8a–b

155

In: Proceedings of the 7th International Meshing Roundtable,
26–28 October 1998, Dearborn, MI, pp 479–496

22. Parthasarathy V, Kodiyalam S (1991) A constrained optimi-
zation approach to finite element mesh smoothing. Finite Elem
Anal Design 9:309–320

23. Berzins M (1998) Mesh quality: a function of geometry, error
estimates or both? In: Proceedings of the 7th International
Meshing Roundtable, 26–28 October 1998, Dearborn, MI,
pp 229–238

156

