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Abstract 

 
Parameterization of 3D mesh data is important for many graphics 
applications, in particular for texture mapping, remeshing and 
morphing. Closed manifold genus-0 meshes are topologically 
equivalent to a sphere, hence this is the natural parameter domain 
for them. Parameterizing a triangle mesh onto the sphere means 
assigning a 3D position on the unit sphere to each of the mesh 
vertices, such that the spherical triangles induced by the mesh 
connectivity are not too distorted and do not overlap. Satisfying 
the non-overlapping requirement is the most difficult and critical 
component of this process. We describe a generalization of the 
method of barycentric coordinates for planar parameterization 
which solves the spherical parameterization problem, prove its 
correctness by establishing a connection to spectral graph theory 
and show how to compute these parameterizations. 
 
CR Categories: I.3.5 [Computer Graphics] Computational Ge-
ometry and Object Modeling – Curve, Surface and Solid and Ob-
ject Representations.  
Keywords: Triangle mesh, parameterization, embedding. 
 
1.  Introduction 
 
Parameterization of 3D mesh data is important for many graphics 
applications, in particular for texture mapping, remeshing and 
morphing. To date, mostly planar parameterizations have been 
considered. The main challenge is to produce a planar triangula-
tion that best matches the geometry of the 3D mesh, minimizing 
some measure of distortion, yet is still valid. In this context, valid 
means that the individual planar triangles do not overlap. Most of 
the recent works on the subject of parameterization (e.g. [Desbrun 
et al. 2002; Floater 1997; Levy et al. 2002; Sander et al. 2001; 
Sheffer and de Sturler 2001]) have focused on defining the distor-
tion, and showing how to minimize it.  
 
While parameterizing to the plane is the most natural way to per-
form texture-mapping, this is less natural for other mesh process-
ing operations which also require a parameterization. For applica-
tions such as morphing [Alexa 2000; Kanai et al. 2000; Shapiro 
and Tal 1998] and remeshing [Gu et al. 2002; Kobbelt 1999] it is 
best to parameterize the mesh over a domain which is topologi-
cally equivalent to it. This significantly reduces the distortion 
introduced by the parameterization without resorting to methods 
which introduce other artifacts, such as cutting seams. 
 
 

If the mesh has the topology of a sphere, it is best to use a spheri-
cal parameter domain. Parameterizing a 3D triangle mesh over  
the  sphere  is  equivalent  to embedding its connectivity graph on 
the sphere, such that the resulting spherical triangles partition the 
sphere (their union is the sphere, and they are disjoint). A classical 
result due to Steinitz is that a graph may be embedded on the 
sphere if and only if it is planar and 3-connected. Thus a closed 
manifold genus-0 triangulation can always be mapped to a spheri-
cal triangulation. 
 
The simplest way to map a closed triangle mesh to the sphere is to 
reduce the problem to the planar case. First cut out one triangle to 
serve as a boundary. Then parameterize the resulting open mesh 
over the unit triangle using any planar parameterization method, 
and finally use the inverse stereo projection to map the plane to 
the sphere [Haker et al. 2000]. See Fig. 1(b). The main problem 
with this method is severe distortion, and although the inverse 
stereo projection is conformal, namely, preserves angles in the 
continuous case, it does not preserve angles (or any other geomet-
ric properties) in the discrete case. The projection also does not 
guarantee that the result will be a spherical triangulation. 
 
Another straightforward method to parameterize to the sphere is 
to cut the mesh into two pieces, each topologically equivalent to a 
disk, parameterize each over a planar disk with a common bound-
ary, and then map each disk to a hemisphere (by adding an appro-
priate z component to each vertex). The common boundary guar-
antees that the two hemispheres fit together at the equator. See 
Fig. 1(c). Since this boundary will presumably contain more than 
just three vertices, each of the two disk parameterizations will be 
less distorted than the one obtained by using a single triangle as 
the boundary, so the spherical result will also be less distorted. 
However, the result will depend strongly on the specific cut used 
to obtain the two disks. 
 
It is more natural to parameterize a mesh directly on the sphere 
without going back and forth to the plane. Several methods for 
direct parameterization on the sphere exist. The only one to date 
that seems to guarantee a valid spherical triangulation (i.e. with no 
triangle foldovers) is that of Shapiro and Tal [1998], similar to 
that of Das and Goodrich [1997]. This method works by simplify-
ing the mesh by vertex removal until only a tetrahedron remains.  
 

 
                                    

(a) (b) (c) 
Figure 1: Parameterizing the (a) rabbit by (b) inverse stereo map-
ping (c) two hemispheres. Colored dots mark corresponding ver-
tices. 



 

The tetrahedron is easily embedded on the sphere, and then the 
vertices are inserted back one by one, so that the validity of the 
triangulation is preserved throughout the process. While this is 
quite an efficient process, it is difficult to optimize the parame-
terization, due to its greedy nature, and impossible to steer it to 
have any desirable mathematical properties. Other direct parame-
terization methods were proposed by Kobbelt et al [1999] and 
Alexa [2000]. These are heuristic iterative procedures, attempting 
to converge to a valid parameterization by applying local im-
provement (relaxation) rules. These work well in many cases, but 
there is no guarantee that they will terminate, and, even if they do, 
that the resulting embedding will be valid, or have any desirable 
mathematical properties. A method which guarantees a valid em-
bedding was recently proposed by Sheffer et al. [2003]. This is a 
highly non-linear optimization procedure, working with the angles 
of the spherical triangulation (as opposed to the vertex positions), 
inspired by the angle-based method of Sheffer and de Sturler 
[2001] for planar parameterizations. So far it lacks an efficient 
numerical computation procedure, so it is not very practical. 
 
1.1 Our contribution 
 
The problem of mesh parameterization is that of mapping a 
piecewise linear surface with a discrete representation onto a con-
tinuous spherical surface. The theory of mappings between vari-
ous Riemann surfaces is well understood in the continuous case 
using classical differential geometry [Do Carmo 1976]. Probably 
the most notable example of this is the so-called conformal map-
ping theory which shows how to map any continuous Riemann 
surface to another such that angles are preserved. However, the 
discrete case of meshes is much less understood. In the limit it 
obviously converges to the continuous case, but in practical appli-
cations the meshes involved may be far from this limit. Hence 
there is a need to treat the discrete case separately in a combinato-
rial manner, albeit inspired by the classical theory. 
 
This paper introduces a precise mathematical characterization of 
all possible spherical parameterizations of a closed manifold ge-
nus-0 triangle mesh. We show that it is a natural non-linear exten-
sion of the linear theory of barycentric coordinates used in the 
planar case. The correctness of this methodology is proved by 
establishing a link to the so-called Colin de Verdiere matrices 
associated with planar graphs. We also describe a computational 
method for generating and controlling these parameterizations. 
These contributions are concentrated in Section 4, after establish-
ing the theory in Section 3. 
 
2.  The Method of Barycentric Coordinates 
 
2.1 The planar case 
 
Floater [1997] described a generic method to embed a manifold 
3D mesh with a boundary in the plane without foldovers. Floater's 
method is a generalization of the basic procedure originally pro-
posed by Tutte [1963] for a planar graph, which can be traced 
back as far as I. Fary in 1948 and J.C. Maxwell in 1864. This 
method makes use of so-called barycentric coordinates (or convex 
combinations) and proceeds as follows:  
 
1. To each interior (directed) edge e = (i,j), assign a positive 

weight wij, such that          1
)(

=∑
∈ iNj

ijw        

where N(i) is the list of vertices neighboring the i'th vertex.  

2. To all other entries (i,j), assign wij = 0. 
 
3. Embed the boundary vertices in the plane such that they form 

a closed convex polygon. 
 
4. Solve the following two linear systems for the x and y coordi-

nates of the n interior vertices: 
yx byWIbxWI =−=− )(,)( , 

where W is a nxn matrix containing wij, and bx and by vectors 
with non-zero entries corresponding to vertices adjacent to the 
boundary. 

 
The cornerstone of this theory is the following theorem, first 
proven by Tutte [1963], and reproven over the years in different 
ways (e.g. [Floater 2003b, Richter-Gebert 1996, Chap 3]): 
 
Theorem 1: Given a planar 3-connected graph with a bound-
ary fixed to a convex shape in R2, the positions of the interior 
vertices form a planar triangulation (i.e. none of the triangles 
overlap) if and only if each vertex position is some convex 
combination of its neighbor's positions. 
 
Theorem 1 implies that the method of barycentric coordinates 
generates all possible valid embeddings of the graph in the plane, 
given the (convex) positions of the boundary. Tutte proposed 
using wij=1/deg(i) for all edges (i,j), in effect placing each interior 
vertex at the centroid of its neighbors (deg(i) is the degree, or 
valence of the i'th vertex). This choice of W does not take into 
account the geometry of the mesh, just its connectivity. When the 
mesh is given with 3D geometry, a number of recipes for W have 
been proposed, each aiming for some effect related to reflecting 
the geometry of the mesh in the parameterization, namely, mini-
mizing its metric distortion when flattened to the plane. The most 
popular methods seem to be the shape-preserving method [Floater 
1997], the conformal, or harmonic method [Haker et al. 2000; 
Levy et al. 2002; Pinkall and Polthier 1993] and the mean-value 
method [Floater 2003a]. These methods all have the desirable 2D 
reproduction property [Floater 1997], namely that when applied 
to a 2D triangulation, the embedding procedure will produce an 
output identical to the input. However, some of the methods, most 
notably the conformal method, do not always result in positive 
weights, hence cannot guarantee a valid embedding. 
 
In general, the method of barycentric coordinates may be formu-
lated as the solution to the 2D vector Laplace equation on the 
interior vertices: 
(1)                                      bxLW =  
with boundary conditions derived from the convex boundary ver-
tex positions, which prevents the trivial zero solution. This is a 
linear system. LW = I-W is the general normalized Laplacian op-
erator, general because the weights of W are arbitrary positive 
values, and normalized because the rows of W all sum to unity. 
The special case of wij=1/deg(i) proposed by Tutte will be called 
the normalized Tutte Laplacian. 
 
A simple numerical procedure to solve (1) is a relaxation proce-
dure, where the boundary vertices are placed on a convex bound-
ary, and the interior vertices are repeatedly updated to be at the 
weighted average of their neighboring vertex positions, as dictated 
by W. Since LW is diagonally dominant, this Gauss-Seidel proce-
dure is guaranteed to converge. 
 
 
 



 

2.2 The spherical case 
 
The Laplacian LW has a unit diagonal, negative entries for each 
mesh edge, and vanishes otherwise. Also, all rows sum to zero, 
hence LW is singular. LW is, however, not symmetric. In what fol-
lows, we restrict the discussion to the class of symmetric Lapla-
cians, which corresponds to sets of barycentric coordinates which 
are edge-symmetric up to normalization of each row. These are: 
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Note that the symmetric Tutte Laplacian has -1's at entries corre-
sponding to edges, and the vertex degrees along the diagonal. 
Symmetric systems such as these can be given the physical inter-
pretation of a mass-spring system at rest, where the vertices are 
point masses joined by springs along the edges. In this case, the 
Laplace equations are just the normal equations for minimizing 
the quadratic spring energy. Tutte and conformal barycentric co-
ordinates have the symmetry property, but mean value coordinates 
unfortunately do not. 
 
Generalizing the barycentric coordinates theory to spherical em-
beddings is not straightforward. Being non-planar, it will be im-
possible in general to express a vertex on the sphere as a convex 
combination of its neighbors (e.g. if a vertex's neighbors are all 
co-planar, this will imply that the vertex should also be on the 
same plane).  
 
Inspired by classical differential geometry operator theory, Gu 
and Yau [2002] proposed to embed on a curved 3D surface using 
the generalization of the Laplacian to the Laplace-Beltrami opera-
tor. Intuitively, this is just the tangential component of the Lapla-
cian at that point of the surface, and implies the following non-
linear system: 
 
 (2)           nixxL iW ,..,1,10|| === s.t.   

where L|| is the tangential component of L. The right hand side of 
(2) is zero, as opposed to the non-zero b in (1), because there is no 
boundary.  
 
While Gu and Yau showed that solving (2) results in a bijective 
embedding of a continuous Riemann surface on the sphere, they 
did not show that this also holds for the discrete case of a piece-
wise-linear mesh, in the sense that the result is a valid spherical 
triangulation. In the next section we show how some recent deep 
results in spectral graph theory may be applied to establish this. 
 
3.    Connection to Spectral Graph Theory 
 
We would like to prove the following analog of Theorem 1: 
 
Theorem 2: Given a planar 3-connected graph embedded in 
R3, the positions of the vertices form a spherical triangulation 
(i.e. none of the spherical triangles overlap) if and only if each 
vertex position is some convex combination of the positions of 
its neighbors, which is then projected on the sphere. 
 
Theorem 2 means that the barycentric coordinate theory holds 
also on the sphere up to a radial residual, consistent with (2). In 
Section 4 we will prove this theorem. We start with some theory. 

3.1 The Colin de Verdiere number 
 
In 1990, Colin de Verdiere [1990] established an algebraic invari-
ant for certain families of graphs. Given a n-vertex graph G = 
<V,E>, consider the class M(G) of symmetric matrices with ele-
ment Mij such that:  
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Note that M(G) is a superset of the symmetric Laplacians for G, 
allowing the diagonal entries to assume arbitrary values (so that 
the rows do not necessarily sum to zero). Denote by λ(M) = {λ0 
,.., λn-1} the spectrum of M with corresponding eigenvectors {ξ0,.., 
ξn-1}. Let r = r(G) be the maximal integer such that λ1=λ2=..=λr 
over all matrices in M(G). Let M be a matrix which attains this 
maximum. This r(G) is called the Colin de Verdiere (CdV) num-
ber of G, the matrix M a CdV matrix for G, its r identical eigen-
values CdV eigenvalues, and the corresponding eigenvectors CdV 
eigenvectors. Colin de Verdiere showed that: 
 

G is a 3-connected planar graph if and only if r(G) ≤ 3. 
 
3.2 Nullspace embedding  
 
An important extension of the results of Colin de Verdiere was 
obtained by Lovasz and Schrijver [1999], who showed that CdV 
eigenvectors of a graph G may be used to embed G in Rr. For the 
special case r(G) = 3, this translates to:  
 
G describes the edges of a convex polyhedron in R3 containing 
the origin if the three eigenvectors ξ1, ξ2 and ξ3 of a CdV ma-
trix of G are used as coordinate vectors for its vertices.  
 
The fact that the polyhedron is convex and contains the origin is a 
key fact, since convexity implies star-shapedness. This in turn 
implies that by normalizing the vertices, the polyhedron may be 
projected onto the unit sphere to form a (valid) spherical triangu-
lation. 
 
Since the spectrum of a matrix may be shifted arbitrarily by add-
ing an appropriate constant to the diagonal entries, we may as-
sume, without loss of generality, that the three CdV eigenvalues 
are zero. Thus the corresponding CdV matrix has just one nega-
tive eigenvalue and co-rank 3. In this case the three CdV eigen-
vectors are independent non-trivial solutions to what looks like 
Laplace equations: Mx = 0, or a basis of the nullspace of M. 
Hence x is called the nullspace embedding of G. 
 
Using eigenvectors of matrices as coordinate vectors for embed-
ding graphs is not new. The traditional way of doing this is taking 
the eigenvectors corresponding to the smallest positive eigenval-
ues of the Tutte Laplacian (the smallest eigenvalue is zero, due to 
this matrix being singular). This dates back to Fiedler [1975] and 
Hall [1970]. See [Koren 2002] for a discussion of the different 
ways of using the Laplacian for "drawing" graphs. Eigenvalues 
and eigenvectors of the Tutte Laplacian of a graph are the corner-
stone of spectral graph theory [Chung 1997], and have also been 
used for coding 3D mesh geometry [Karni and Gotsman 2000]. 
However, the embeddings resulting from eigenvectors of this 
Laplacian do not have very appealing geometric properties, and, 
specifically, the triangles overlap. The Colin de Verdiere theory 
reveals that more powerful generalizations of the Laplacian must 



 

be used, yielding eigenvectors which are more “symmetric”, since 
they correspond to identical eigenvalues. On an intuitive level, 
this symmetry is what guarantees the validity of the embedding. 
 
4.    Generating Spherical Nullspace Embeddings 
 
It is difficult to use the Colin de Verdiere theory directly to embed 
on a sphere, since, given a 3-connected planar graph G, neither 
Colin de Verdiere nor Lovasz and Schrijver provided any recipe 
to generate a CdV matrix for G.  
 
In the planar case, once the boundary of the triangulation has been 
fixed and the barycentric coordinates chosen, the positions of the 
interior vertices are uniquely determined by solving a linear sys-
tem. This is not the case for the spherical scenario. However, we 
propose to use a symmetric Laplacian as the starting point for 
constructing a CdV matrix. The off-diagonal values will not 
change, but the diagonal of the matrix is still lacking, and must be 
corrected. Only then can the embedding (the nullspace of the CdV 
matrix) be obtained. 
 
The key observation of this paper is that we may solve for the 
diagonal of the CdV matrix and its nullspace simultaneously. We 
also force the resulting nullspace vectors to lie vertex-wise on the 
3D sphere. This may be posed as the following set of 4n quadratic 
equations on the 3n positions of the vertices (xi, yi, zi) and the n 
auxiliary variables αi: 
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LW[i] denotes the i'th row of the matrix LW, and x, y, and z are 
column vectors. The number of vertices in the mesh is n. 
 
Fig. 2 illustrates the geometric interpretation of (3): the vector 
difference between the i'th vertex and the weighted average (as 
dictated by LW) of its neighbors is collinear with the vector differ-
ence between the vertex and the sphere's center. 
 
To prove that this procedure is correct, assume that L is a symmet-
ric Laplacian for G and that (3) has been solved for column n-
vectors x, y, z and α. This means that the i'th row L[i] of L satis-
fies L[i](x, y, z) = αi (xi, yi, zi). Define the matrix M as: 
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obtaining M(x, y, z) =  0. Hence M is a CdV matrix for G with 
vanishing CdV eigenvalue and nullspace spanned by x, y and z, 
implying that x,y,z form a valid spherical triangulation when used 
as coordinate vectors. 
 
A similar argument shows the converse: If the three vectors (x,y,z) 
are a spherical triangulation of a 3-connected planar graph G, then 
these three vectors span the nullspace of a suitable CdV matrix M, 
which may easily be translated into LW and α satisfying (3). This 
completes the proof of Theorem 2. 

 
Figure 2: A spherical triangulation based on the Tutte Laplacian: 
The average of the neighbors of vertex V (A, B, C and D) is the 
point M, which is collinear with the sphere center O and the ver-
tex V: M-O = c(V-O). A similar relationship between a vertex and 
its neighbors holds for all mesh vertices.  
  
5.    Implementation Details 
 
Steinitz's theorem guarantees that any planar 3-connected mesh 
admits a valid spherical triangulation. The theory of Colin de 
Verdiere guarantees that if a valid spherical triangulation exists, 
then it can be found by solving a system of the form (3) for some 
symmetric Laplacian LW. However, there is no guarantee that an 
arbitrary symmetric Laplacian, when used in (3), will result in a 
non-degenerate triangulation. 
 
Degenerate solutions always exist. The case α≡0 is the trivial 
solution when all vertices collapse to one point on the sphere. Gu 
and Yau [2002] tried to prevent this by requiring that the vertices 
average to zero. However, this is damaging and can prevent other 
solutions. Another degenerate solution can occur when the verti-
ces are mapped to two antipodal points on the sphere. In this case, 
the vertices are partitioned into two sets such that the weighted 
average of the neighbors of a vertex in each set is still in the same 
hemisphere as the vertex. A more interesting situation can occur if 
the connectivity graph contains a Hamiltonian cycle. The cycle of 
vertices may then be mapped to the equator.  
 
Beyond the degenerate solutions, a solution to (3) is not unique, 
since any spherical triangulation is certainly invariant to the rota-
tion group SO(3), which immediately gives three degrees of free-
dom. However, there are more. This can be seen by examining the 
simple special case of a tetrahedral mesh connectivity combined 
with the Tutte Laplacian. Observe that any rectangular paral-
lelpiped circumscribed by the unit sphere defines an equifaced 
tetrahedron (i.e. a tetrahedron whose four faces are identical), by 
taking its edges to be the opposite diagonals of the six faces of the 
parallelpiped. It is easy to see that any vertex of the tetrahedron is 
collinear with the origin and the centroid of the three opposite 
vertices. This means that the vertex locations on the sphere satisfy 
(3) with LW = the Tutte Laplacian and αi = 4 for 1≤i≤4. The CdV 
matrix is a 4x4 matrix whose entries are all -1's. There are two 
degrees of freedom in constructing such a rectangular paral-
lelpiped, so all together there are five degrees of freedom.  
 
To solve the nonlinear set of equations (3) for very large meshes, 
it is important to have a stable and efficient numerical procedure. 
A relaxation procedure where each vertex is updated to be the 
weighted average of its neighbors, and then projected onto the 
sphere, will not converge to the desired result, rather collapse to 
some degenerate configuration. 
 



 

We use the fsolve procedure of MATLAB, a subspace trust region 
procedure [Coleman and Li 1996]. To better condition the system, 
it is useful to anchor an arbitrary vertex to a fixed position on the 
sphere. This eliminates only two degrees of freedom from SO(3), 
so is not damaging. It appears that anchoring two arbitrary verti-
ces limits the solution. Anchoring three vertices is damaging, 
since in the case of the equifaced tetrahedron there does not al-
ways exist a fourth vertex on the sphere forming the tetrahedron.  
 
6.  Experimental Results 
 
We have used our methodology to generate a variety of embed-
dings of closed manifold genus-0 meshes on the unit sphere. The 
characteristics of the embedding may be controlled by the weights 
in the Laplacian matrix, similarly to the planar case. For example, 
uniform (Tutte) weights should be used if the spherical triangula-
tion is required to be equi-angular, cotangential weights for a 

conformal angle-preserving mapping (although these can be nega-
tive), inverse edge lengths for a triangulation preserving edge 
lengths, and the prescription of Desbrun et al. [2002] for an area-
preserving triangulation. 
 
Fig. 3 shows some spherical embeddings generated by our proce-
dure on three sample meshes, and compares them to those gener-
ated by the procedure of Alexa [2000], and those based on reduc-
tion to the planar case by inverse stereo projection. The Tutte 
Laplacian produces an equi-angular triangulation, which is similar 
in some cases to that generated by Alexa's algorithm. Alexa's 
algorithm, though, sometimes tends to spread the vertices out over 
the sphere (as in the Triceratops model). The conformal embed-
ding preserves many of the features of the 3D geometry, so the 
eyes and ears of the Rabbit are still noticeable in the result. The 
stereo embedding tends to lose most of the geometric structure. 
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Figure 3: Some 3D models and their spherical parameterizations. Colored dots mark corresponding vertices. 



 

In terms of runtimes, solving (2) using the MATLAB procedure 
required anywhere between a few seconds for the Pawn model of 
154 vertices, and a few minutes for the Triceratops model (1,727 
vertices) on a Xeon 2.8 GHz PC with 1GB RDRAM. 
 
7.  Conclusion 
 
Parameterizing a closed manifold genus-0 mesh to the sphere is of 
paramount importance in digital geometry processing. It is a fun-
damental operation required for remeshing, morphing, filtering 
and texture mapping. While mapping between Riemann surfacees 
is well understood in the continuous case, the discrete case has not 
received satisfactory treatment to date. This paper has closed this 
gap, providing precise characterizations of discrete spherical 
parameterizations and methods to compute them. 
 
We have shown that there is a natural extension of the barycentric 
coordinate theory from planar triangulations to spherical triangu-
lations, corresponding to the extension of the Laplacian operator 
to the Laplace-Beltrami operator in differential geometry. Unfor-
tunately, the extension involves a transition from a linear theory to 
a non-linear theory, so is much more difficult to analyze and com-
pute.  
 
The extension of the theory of continuous Riemann surfaces to a 
combinatorial treatment of discrete triangle meshes has been 
made based on recent results in algebraic and spectral graph the-
ory. This translates to a set of equations which may be solved with 
not too much difficulty. 
 
A few questions remain open, most notably on the existence of 
non-degenerate solutions and the analysis of the degrees of free-
dom in the various spherical embeddings, and how to control (or 
eliminate) them. Extensions to higher genus is also interesting. 
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