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Abstract 
We show how spectral methods may be applied to 3D mesh data 
to obtain compact representations. This is achieved by projecting 
the mesh geometry onto an orthonormal basis derived from the 
mesh topology. To reduce complexity, the mesh is partitioned 
into a number of balanced submeshes with minimal interaction, 
each of which are compressed independently. Our methods may 
be used for compression and progressive transmission of 3D 
content, and are shown to be vastly superior to existing methods 
using spatial techniques, if slight loss can be tolerated. 

 
CR Categories and Subject Descriptors: I.3.3 [Computer 
Graphics]: Picture/Image Generation. 
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1. INTRODUCTION 
 

With the advent of the Web and the increase in demand for 3D 
content, it is becoming very important to compress 3D mesh data 
for efficient transmission. The basic content of a 3D mesh dataset 
is the topology, i.e. the connectivity information of the mesh 
structure, and the geometry, i.e. the 3D coordinates of the mesh 
vertices. All of the works to date on mesh compression 
[1,3,4,5,8,10,11,13,17,18,21,22] have concentrated mostly on 
efficient coding of the mesh topology, and the secondary coding 
of the geometry is driven by this. For example, the early mesh 
compression schemes of Deering [5] and Chow [3] and the later 
scheme of Taubin and Rossignac [21] order the vertices accord-
ing to the topological information, and then code them using a 
simple linear predictor. Similarly, the mesh compression scheme 
of Touma and Gotsman [22] codes the topology as a traversal of 
the vertices, and the vertex coordinates are coded by predicting 
them along this traversal using the so-called “parallelogram 
rule”,  
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which better captures the geometry of the mesh surface. In all 
cases, the prediction errors are then entropy-coded. Due to the 
topology coding driving the geometry coding, and not the oppo-
site, the geometry code is not optimal. Ironically, the geometric 
data contains far more information than the topological data (15 
bits/vertex vs. 3 bits/vertex on the average), so more effort 
should be invested in reducing the geometry code than the topol-
ogy code, but this seems to have been neglected for the most part 
by contemporary mesh compression algorithms. 
 
While the existing mesh compression algorithms are advertised 
as being lossless, from a pure theoretical point of view, they are 
actually lossy. This is because the vertex coordinates are quan-
tized to finite precision before the actual coding. Typical 3D 
mesh geometry is quantized to 10-14 bits per coordinate, predic-
tive coding subsequently reducing this to approximately half. At 
these quantization levels, the decoded mesh is usually visually 
indistinguishable from the original, justifying the use of the term 
“lossless”. More significant loss may be introduced, and the code 
size reduced, by performing coarser quantization, but this results 
in a model with a blocky structure, which is very different from 
the original. Hence these algorithms are not suitable for lossy 
compression, due to their non-graceful degradation. This paper 
proposes a mesh geometry compression technique which de-
grades gracefully, based on spectral methods. 
 
Many compression techniques for traditional media, such as im-
ages, employ spectral methods to achieve impressive lossy com-
pression ratios, e.g. the popular JPEG method which relies on the 
discrete cosine transform. These involve expressing the data as a 
linear combination of a set of orthogonal basis functions, each 
basis function characterized by a “frequency”. The underlying 
assumption is that a relatively good approximation may be ob-
tained using only a small number of low-frequency basis func-
tions. JPEG typically reduces image storage requirements by a 
factor of 20 relative to the raw RGB data. The next section shows 
how to extend classical Fourier theory to the case of 3D meshes. 
Subsequent sections show how to apply this to 3D mesh coding. 
Similarly to JPEG, we are able to obtain very significant com-
pression ratios at the expense of a very small loss in mesh qual-
ity. For example, in many cases the code size may be reduced by 
a factor of 2 or 3 relative to the lossless version, with an almost 
unnoticeable damage to mesh appearance. 
 
Due to the assumption that the “low frequency” coefficients con-
tribute more to the mesh data than the “high frequency” ones, the 



 

codes generated by our algorithm may be employed in a progres-
sive manner. For instance, a rough approximation of the model 
may be reconstructed using a small number of spectral coeffi-
cients, and this progressively refined by increasing the number of 
coefficients used in the reconstruction. 
 
Spectral codes are useful also in other applications where precise 
accuracy is not important, e.g. rapid previewing and product 
visualization for e-commerce. 
 

2. MESH SPECTRA 
 
We start by showing how to extend the classical Fourier analysis 
to 3D mesh data. Imagine a simple graph consisting of n vertices 
connected in a cycle. The adjacency matrix A of this graph is the 
circulant n x n matrix induced by the vector [1 0 1] (where the 
zero coincides with the diagonal). The so-called Laplacian opera-
tor associated with A is L=I – ½A, and is the analog of the second 
spatial derivative. As is well-known in matrix theory [16], the 
traditional cosine basis functions of the one-dimensional Fourier 
transform are none other than the eigenvectors of this L. The 
associated eigenvalues are the squared frequencies. Since the 
rows of L sum to zero, L is singular and has a vanishing eigen-
value, which corresponds to an eigenvector of constant values. 
The projection of any real n-dimensional vector on this basis 
vector is just the DC component (mean) of the vector. 
 
Analogously, the Fourier basis functions for 2D signals are ob-
tained as the eigenvectors of the Laplacian matrix of the graph 
with the topology of a 2D grid: Aij = 1 for entries (i,j) such that 
vertex i and vertex j are neighbors on the grid and L = I-¼A. 
Because of the regular structure of the 2D grid, these are just the 
2D cosine functions used in JPEG. 
 
This classical spectral theory may be extended naturally to more 
general graph topologies [2], and, in particular, to arbitrary 3D 
mesh structures [20]. If A is the adjacency matrix as defined by 
the n-vertex  mesh topology, i.e.  
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and D is the diagonal matrix such that Dii=1/di, where di is the 

degree (valence) of vertex i, then L=I-DA is the mesh Laplacian: 
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See Fig. 1 for an example. If vertex i has no neighbors, Lii  is set 
to zero. The eigenvectors of L form an orthogonal basis of Rn. 
The associated eigenvalues may be considered frequencies, and 
the three projections of each of the coordinate vectors of a 3D 
mesh geometry vector on the basis functions are the spectrum of 
the geometry. The essential observation is that geometries that 
are smooth relative to the mesh topology should yield spectra 
dominated by the low-frequency components. By “smooth rela-
tive to the mesh topology” we mean that the local geometry, as 

defined by topological neighborhoods in the mesh, is such that 
the coordinates of a vertex are very close to the average coordi-
nates of the vertex’s neighbors, hence the Laplacian operator, 
when applied to the mesh geometry, will yield very small abso-
lute values. Note that there is a separate spectrum for each of the 
x,y and z components of the geometry, and they could behave 
differently, depending on the directional geometric properties 
(e.g. curvature) of the mesh. 
 
Recent years have seen an increase of interest in signal process-
ing approaches [20,6] to 3D mesh manipulation, and their exten-
sion to multiresolution analyses [15,9]. However, to the best of 
our knowledge, this work is the first in which they are exploited 
for compression purposes.1 
 
Fig. 2 shows a decimated horse mesh containing 2,978 vertices, a 
visualization of the some of the basis functions, and reconstruc-
tion of the horse using a small number of the low-frequency basis 
functions. Note how smooth these reconstructions are, due to the 
smooth nature of the low-frequency basis functions. 
 

3. MESH PARTITIONING 
 
Computing the spectral basis functions involves computing the 
eigenvectors of a n x n matrix. Ordinarily, this would require 
O(n3) time, which is prohibitive. However, since the Laplacian 
matrix is sparse  (each row has only six non-zero entries on the 
average), this can be done in O(n) time using multi-resolution 
methods [9,15]. Nonetheless, when n is large, the numerical 
stability of these methods breaks down, due to adjacent eigen-
values becoming too close. Hence it is practically impossible to 
compute Laplacian eigenvectors for meshes containing more than 
1,000 vertices, and the mesh must be partitioned into submeshes, 
each of which is treated separately. This, of course, may result in 
a degradation in coding quality due to “edge-effects” along sub-
mesh boundaries, but has the advantage that local properties of 
the mesh may be captured better. In order to minimize damage, 
the partition should be well balanced, i.e. that each submesh 
contain approximately the same number of vertices, and also the 
number of edges straddling the different submeshes, the edgecut, 
be minimized. A optimal solution to this problem is NP-
Complete [7], and algorithms approximating the optimum are an 
active branch of graph algorithmic research. An algorithm that 
performs reasonably well on meshes of up to 100,000 vertices is 
MeTiS [14], for which an optimized linear-time implementation 
is available. It seems that METIS gives some preference to 
minimizing the edge-cut over balancing the partition, which is 
the preference in our application as well. In particular, if the 
mesh consists of a number of connected components, MeTiS will 
prefer to partition into these components, unless the balance is 
significantly violated. Fig. 3 shows partitions generated by 
MeTiS for the (non-decimated) horse and bunny models. On 
these models MeTiS requires less than a second to run on a 350 
MHz machine. 

                                                             
1 As this paper went to press, we discovered that [12] addresses 

this issue. 
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Figure 1: Spectral analysis of a simple 3D mesh containing 5 vertices. (a) Mesh. (b) Adjacency matrix A. (c) Laplacian L. (d) Laplacian (column) eigenvectors 
and (e) eigenvalues. Note that the first eigenvector has constant (DC) values and a vanishing eigenvalue.  

 
 

 
 

(a) 
 

(b) (c) 
 

(d) 
 

(e) (f) 
 
Figure 2: Approximation of the decimated horse model containing 2,978 vertices. (a) The original. (b) Reconstruction of the horse using 100 of the 2,978 basis 
functions. (c) Reconstruction of the horse using 200 basis functions. Note that both are smooth, and how the fine details gradually appear as more basis functions 
are used. (d) Second basis function. Eigenvalue = 4.9x10-4. The grayscale intensity of a vertex is proportional to the scalar value of the basis function at that coor-
dinate. (e) Tenth basis function. Eigenvalue = 6.5x10-2. (f) Hundredth basis function. Eigenvalue = 1.2x10-1. Note how higher frequencies (color bands) appear in 
the higher-order basis functions. 

 
 

 

 

 

 

 



 

4. SPECTRAL CODING 
4.1 A Visual Metric 
  
In order to measure the loss resulting from a non-perfect recon-
struction, a metric is required which captures well the visual 
difference between the original M1 and its approximation M2. 
The simplest measure is just the RMS geometric distance be-
tween corresponding vertices in both models. While this does 
give some indication of geometric closeness, it does not capture 
the more subtle visual properties the human eye appreciates, 
such as smoothness. This may be captured by a Laplacian opera-
tor, which takes into account both the topology and geometry. 
The value of this geometric Laplacian at vertex vi is  
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where n(i) is the set of indices of the neighbors of vertex i, and lij 
is the geometric distance between vertices i and j. 
 
Hence we have chosen to use a metric which is the simple aver-
age of the norm of the geometric distance between models and 
the norm of the Laplacian difference (v is the vertex set of M): 
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Fig. 4 shows the original horse model, and two reconstructions of 
it. It is clear that the second reconstruction is closer to the origi-
nal than the first. A simple geometric difference does not capture 
this, but our visual metric does. 

 
(a) 

 
(b) 

Figure 3: MeTiS partitioning of meshes. Each submesh is colored in a random color. Black triangles straddle submeshes. Edgecut is the percentage of edges 
straddling submeshes. The smaller, the better. Balance is the ratio of the largest submesh to the average submesh size (in vertices). The closer to unity, the better. 
(a) Horse model: 19,851 vertices, 59,547 edges, 40 submeshes, edgecut = 4.2%, balance = 1.03. Runtime = 0.28 sec on a 350 MHz machine. (b) Bunny model: 
34,834 vertices, 104,288 edges, 70 submeshes, edgecut =5.5%, balance = 1.03. Runtime = 0.47 sec on a 350 MHz  machine. 
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(b) 

 
(c) 

 
Figure 4: A simple visual metric: (a) Original model M1. (b) Approximation M2 to M1. (c) Approximation M3 to M1. It is obvious that M3 is visually closer to M1 
than M2, yet ||v1-v2||=||v1-v3|| = 0.10. However introducing the geometric Laplacian component of Eq. (1) yields ||M1- M2|| = 0.16 and ||M1- M3|| = 0.07, which better 
reflects the visual distance. 



 

 

4.2 Coefficient Coding 
 
The first step in coding the spectral coefficients is to uniformly 
quantize them to finite precision. This, of course, introduces 
some loss into the code. Typical quantization levels are between 
10 and 16 bits. The second step is to truncate the coefficient 
vector. The resulting set of integers is then entropy coded using a 
Huffman or arithmetic coder [19]. It is possible to optimize the 
tradeoff between coefficient quantization level and the truncation 
by taking either a small number of high-precision coefficients, or 
a large number of low-precision coefficients. In practice, the 
input parameter to the compression procedure is the desired vis-
ual distance d from the original. The mesh is partitioned into k 
submeshes, such that each submesh contains approximately 500 
vertices. The visual distance d is divided by √k, and the number 
of retained coefficients per coordinate per submesh chosen so 
that the RMS of the truncated coefficients does not exceed this 
value. 
 

5. EXPERIMENTAL RESULTS 
 
We present numerical results for the horse and bunny models 
shown in Fig. 5. These models are relatively smooth, but also 
have some fine details. Our compression results are compared 
with results obtained using commercial compression software of 
Virtue Ltd. (www.virtue3d.com), which incorporates the Touma-
Gotsman (TG) compression algorithm [22], and is widely consid-
ered to do a very good job. This software is meant primarily for 
lossless compression, but can introduce loss by aggressively 
quantizing the geometry before coding. 
 

 
 
Fig. 6 shows a “rate-distortion” graph for each of the models. 
There we plot the visual distance between the original and the 
decoded version of the model, as described in Eq. (1), vs. the 
code size. The main result is that in the lossy domain, we are 
able to achieve codes of approximately half to a third the size of 
those of the TG method for comparable visual distance. In the 
lossless domain, the code lengths converge to comparable values. 
Fig. 7 shows lossy versions of the horse and bunny models re-
constructed by our algorithm, and models reconstructed by the 
TG algorithm, when compressed with significant quantization in 
order to achieve the same code size. The superiority of our recon-
structions is obvious. Additionally, when our lossy reconstruc-
tions are losslessly compressed using the TG algorithm, the code 
size is still 1.6 and 2.5 times larger than ours.  
 
We should emphasize that although we compare our results to 
those of the TG algorithm, it is not a fair comparison, since the 
TG algorithm is not progressive, and there is no immediate way 
to continuously increase model quality by increasing the number 
of code bits. 
 
Animated GIFs showing progressive reconstruction of the horse 
and bunny models as the number of spectral coefficients is in-
creased may be found at http://www.cs.technion.ac.il/~gotsman/ 
siggraph2000/demos 
 
 
 

 
(a) 

 
(b) 

 
Figure 5: Models used in our experiments. (a) Horse: 19,851 vertices, 59,547 edges. (b) Bunny: 34,834 vertices, 104,288 edges. 

 
 



 

 
Figure 6: Geometry (only) compression performance comparison between our algorithm and the TG algorithm for the horse and bunny models. Visual lossless-
ness is achieved at visual error of approximately 0.03 for horse and 0.02 for bunny. The best performance from our algorithm is achieved when the spectral coef-
ficients are quantized to 14 bits. 

 

6. DISCUSSION AND CONCLUSION 
 
We have presented an algorithm for spectral coding of the geo-
metric information in 3D meshes. This algorithm is similar in 
spirit to lossy JPEG coding of images, in the sense that it parti-
tions the model into manageable and local submeshes, and repre-
sents each as a compact linear combination of orthogonal basis 
functions. The basis functions are eigenvectors of the topological 
Laplacian of the submesh. 
 
In constrast to lossless coding, which is relatively well defined, 
lossy coding introduces a major (open) question of how to meas-
ure the loss (sometimes called distortion) present in the recon-
structed signal. If not carefully addressed, it can be extremely 
hard to quantify lossy coding algorithm results. We presented a 
simple metric which we believe captures well the visual distance 
between models. Although it is far from perfect, and can still be 
fine-tuned, we do not believe that it will be possible to design a 
single metric that will be agreeable to the subjective visual sys-
tems of multiple observers. 
 
Progressive transmission of 3D meshes is easy using the spectral 
methods presented here. First the compact mesh topology would 
be transmitted, and then the spectral coefficients of the geometry 
streamed, the low order coefficient first. As more and more coef-
ficients are received, they are used to obtain a better approxima-
tion to the original. 
 
Our results are seen to be excellent for relatively smooth models. 
We performed a limited number of experiments also on CAD-
type models, containing sharp edges and folds. Here our results 
were not significantly better than the TG algorithm. This is due 
to the very high frequencies present in the models, forcing the 
coding of a very large number of coefficients. More work is re-
quired to overcome these difficulties. 
 

We believe that ultimately it will be neccesary to employ mesh 
partition algorithms which are geometry-dependent, cutting the 
mesh along sharp folds. Since this partition will no longer be 
based purely on the mesh topology, and as only the topology is 
available at the decoder before geometry decoding, it will be 
neccesary to include this partition information as part of the 
code. This will theoretically increase the code size, but, fortu-
nately, it seems that this overhead may be minimized by polygo-
nal group coding, such as that of Isenberg and Snoeyink [11], 
which requires approximately 0.2 bits/vertex. 
 
An alternative way to perform lossy compression of 3D mesh 
data is through mesh simplification, where the number of mesh 
vertices is reduced and topology modified, explicitly reducing the 
information present in the data set. It is also possible to modify 
even the remaining vertices, further reducing information, as is 
done in Khodakovsky et al [12]. The relationship between com-
pression thru simplification and our spectral methods, which 
preserve the number of mesh vertices and mesh topology, has yet 
to be investigated. On the other hand, it would be interesting to 
check whether new mesh simplification methods may be ob-
tained using spectral methods.  
 
In practice, the mesh topology is coded and decoded separately 
from the geometry (e.g. using any of the algorithms of 
[1,8,11,13,17,18,21,22]). Since some of the topology coding al-
gorithms permute the mesh vertices at the decoder, the geometric 
coordinate list must be permuted accordingly before coding. The 
decoder also runs the deterministic mesh partitioning algorithm 
and eigenvector computation algorithms based only on the topol-
ogy information, in order to decode the geometry. 
 
There are tradeoffs in many places in the encoding and decoding 
procedures between the time and space complexities, the code 
size and visual loss. There is still work to be done in order to 
fine-tune the parameters and optimize the results. As client CPU 
power seems to be increasing faster than network bandwidth, we 
believe that even complex decoding procedures will ultimately 

  



 
be tolerable, as long as the corresponding encoders produce very 
short codes. Nonetheless, as we have demonstrated, our results 
are extremely good even without significant optimizations. 
 
Modern signal processing has embraced multiresolution methods 
(e.g. wavelets) as an alternative to classical Fourier theory. The 
main motivation is that basis functions with local support better 
capture the local features of the signal, hence the need for artifi-
cial signal partitioning is eliminated. Much effort has been in-
vested in designing orthogonal multiresolution 2D basis func-
tions, and these will be used for wavelet image coding in JPEG 
2000. Designing orthogonal multiresolution basis functions for 

arbitrary 3D mesh topologies has so far proved to be elusive, but, 
when discovered, might yield results better than those presented 
here. 
 
Optimization algorithms for mesh partitioning proved very useful 
in our compression application, and we believe that partitioning 
methods which achieve compact edgecuts should be useful for 
other 3D mesh applications, particularly efficient rendering. 
  
Future work will include the extension of spectral coding theory 
to 3D mesh animation sequences. 
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Figure 7: Some representative results of our spectral coding procedure: (a) Reconstructed horse (original in Fig. 5(a)) from code of 7,400 bytes (3.0 bits/vertex). 
Number of submeshes = 40, number of coefficients per coordinate per patch ranges from 66 to 221, average is 145. This horse compresses losslessly by the TG 
algorithm to 18,635 bytes (7.5 bits/vertex). (b)  Same reconstruction as (a). The minimal (66 coefficients) complexity patch is in the hoof area, and the maximal 
(221 coefficients) complexity patch is the neck, due to the  curvature. (c) Reconstructed horse from code of 10,100 bytes (4.0 bits/vertex) generated directly by the 
TG algorithm with significant geometry quantization. (d) Reconstructed bunny (original in Fig. 4(b)) from code of 17,900 bytes (4.1 bits/vertex). Number of 
submeshes = 70, number of coefficients per coordinate per patch ranges from 69 to 144, average is 97. This bunny compresses losslessly by the TG algorithm to 
28,361 bytes (6.5 bits/vertex). (e)  Same reconstruction as (d). The minimal (69) complexity patch is in the lower back area, and the maximal (144) complexity 
patch is the ear, due to the curvature and sharp edges. (f) Reconstructed bunny from code of 18,032 bytes (4.1 bits/vertex) generated directly by TG algorithm 
with significant geometry quantization. 
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